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Abstract

Figure-ground maps play a key role in many disciplines where urban planning or analysis is involved. In this context, the automatic

generation of such maps with respect to certain requirements and constraints is an important task. This paper presents a first step

towards a deep automatic generation of figure-ground maps where the built density of the generated scenes is controlled and taken

into account. This is preformed building upon a Geographic Data Translation model which has been applied to generate less

available geospatial features, e.g. building footprints, from more widely available geospatial data, e.g. street network data, using

conditional Generative Adversarial Networks. A novel processing approach is introduced to incorporate the population density and

the built density accordingly. Furthermore, the impact of both the level of detail of the street network, i.e. its sparsity or density,

and the spatial resolution of the training data on the generated figure-ground maps has been investigated. The generated maps and

the qualitative results reveal an obvious impact of these parameters on the layout of built and unbuilt areas. Our approach paves the

way for the expansion of existing districts by figure-ground maps of future neighbourhoods considering factors such as density and

further parameters which will be subject of future work.

1. Introduction

To counteract the growth of sealed surfaces and simultaneously

create new living space in cities, urban planning plays a vital

role. Current paradigms in urban planning suggest to rebuild

or upgrade existing parcels or buildings instead of creating new

districts on undeveloped land. In such case, a construction com-

pany redevelops a parcel with a goal, e.g. to maximize rev-

enue or to build the most possible flats while respecting certain

constraints, e.g. the building law or the physical dimensions

of the parcel. In an initial planning phase, a draft represent-

ing the broad layout of the street network and the arrangement

and geometry of the building footprints is laid out. This initial

drafting process lays the foundation of the following planning

phases, where each phase facilitates the draft further with de-

tail to eventually become a site plan for a development project.

Usually, the creation of such drafts builds upon the so called

figure-ground maps as those visualize the existing built struc-

tures while demonstrating the relationship between built and

unbuilt spaces in cities. In such maps, buildings are depicted

as black solid mass (figure) while streets or open spaces are

represented as white void (ground) (Wang et al., 2024).

In practice, it is rarely sufficient to create a single draft for a

urban development project. Instead, several hundreds of ini-

tial drafts might be needed to visualize different and alternat-

ive design ideas. However, drafting is often a tedious and time

consuming process as it involves mainly analogous or digital

manual drawing or crafting. Depending on the scale and spe-

cifications of the parcel and the experience level of the plan-

ner, such a task could be overwhelming. Besides, there are

many further requirements and constraints to consider such as

the desired level of building density, the construction law or the

physical dimensions of the plot. To support planners with this

endeavour, this paper proposes a first approach towards a deep

automatic generation of figure-ground maps with the possibility

to control the built density of urban structures. This approach

paves the way for the expansion of existing districts by figure-

ground maps of future neighbourhoods considering influencing

factors such as population and built density.

One recent research field that could pave the way towards the

automatic generation of figure-ground maps is Geographic Data

Translation (GDT) which follows the idea of generating less

abundant geospatial datasets by learning associations from other

more plentiful datasets. In this context, two new approaches

GANmapper and InstantCity which use conditional Generative

Adversarial Networks (cGAN) to tackle GDT have been pro-

posed (Wu and Biljecki, 2023, 2022). These approaches capit-

alize on more commonly found geospatial features, e.g. street

networks, to generate less common features such as building

footprints by leveraging on their mutual relationship.

This paper investigates whether the recently proposed approach

of Wu and Biljecki (2023) is able to capture and reflect higher

and lower built densities of urban structures. By leveraging a

latent relationship between the population and the built density,

we present a novel training data processing that precisely cap-

tures the desired level of built density which will be explained

in more detail in Section 3.2. Hence, the main contribution of

this paper consists in the incorporation of new factors into the

automatic generation of figure-ground maps. In particular, we

focused on the assessment of the impact of the level of detail

of the underlying street network, the spatial resolutions and the

built density.

The remainder of this paper is as follows. Before going into the

details of the methodology of our figure-ground map generation

in Section 3, we give a review of related work in Section 2.

The setup of our experiments and their findings are presented

in Section 4. Section 5 concludes the paper and gives outlooks

for future research.
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2. Related Work

The analysis of the surrounding urban morphology is funda-

mental for new building projects. According to Wang et al.

(2024) urban morphology studies heavily rely on morphomet-

rics such as building footprints or street lengths. In this con-

text, they developed a method for learning morphology features

based on figure-ground maps where they compare urban form

types in a fully unsupervised manner. In their approach, they

apply a visual representation learning model called SimCLR to

capture the layout of building groups (Wang et al., 2024). How-

ever, several factors may influence the underlying morphology.

In this context, Hijazi et al. (2017) engineered a GIS-based

approach to quantify, for instance, the homogeneity of urban

structures as an important factor by extracting attributes such as

the angles or distances between buildings directly from building

footprints. In order to incorporate such influencing factors, our

approach builds upon ideas of Wu and Biljecki (2023, 2022).

These approaches have been dedicated to create geospatial data

using conditional Generative Adversarial Networks following

the image-to-image translation paradigm. In their work, street

network data is used as input to generate building footprints

with the goal to support applications in the fields of urban mor-

phology analysis and urban simulations which often suffer from

missing spatial details.

Recently, an approach developing a GAN-based end-to-end gen-

erative model for the 2D and 3D building layout generation has

been proposed (Jiang et al., 2023b). They stated that most ap-

proaches overlook the impact of site attributes on built struc-

tures, hampering their potential for further evaluation and in-

formed decision making. The authors conducted experiments

with conditional vectors showing improved performance in dif-

ferent scenarios. Similarly, Jiang et al. (2024) proposed an

approach for automating site planning with integrated domain

knowledge of the built environment with the goal to improve

context-awareness. Their developed Generative Adversarial Net-

work called CAIN-GAN is supposed to not only be capable

of synthesized visually realistic and semantically reasonable

design solutions but also useful for urban sustainability simu-

lations.

Many researchers applied formal grammars, particularly shape

grammars (Stiny, 1980), as another paradigm to generate real-

world man-made objects. For instance, Gong et al. (2020) gen-

erated urban fabric in orthogonal and non-orthogonal urban land-

scapes based on a pre-defined set of shape rules. However,

these approaches are in general suffering under the overhead of

the manual design of the grammar rules by experts. For more

details on the topic of generative urban design, the interested

reader is referred to Jiang et al. (2023a).

3. Methodology

The following sections will introduce the acquisition and pro-

cessing of training data and describe the applied model for the

generation of building footprints based on different street types

building upon the ideas of Geographic Data Translation presen-

ted by Wu and Biljecki (2022) and further taking the population

and street network density into account.

3.1 Model architecture

The network architecture of the applied model is a type of Image-

to-Image conditional GAN (Isola et al., 2017) that can translate

Figure 1. InstantCITY architecture which our approach builds

upon (Wu and Biljecki, 2023).

input image data such as street networks to an output image fa-

cilitated with generated building footprints (Wu and Biljecki,

2023). Using different resolutions, the underlying network is

trained on two residual networks namely a Global Generator

and a Local Enhancer. In each forward pass, the generator

tries to create outputs that could ’trick’ the discriminator into

thinking the outputs are ’real’ while the discriminator will learn

to classify the outputs as ’fake’ and the ground truth as ’real’

(Wu and Biljecki, 2023). Discriminators in the model compare

the encoded features form both the generated images and the

ground truth to indicate whether the generated image is real or

fake. At the end of each forward pass, the loss of the generator

and the discriminator is evaluated and their weights are updated

accordingly until the generator’s outputs are compelling enough

so that the discriminator detects half of them as real images (Wu

and Biljecki, 2023). Figure 1 shows an overview on the network

architecture of InstantCITY which builds the basis of our paper

taking further constraints into consideration.

3.2 Processing

To generate figure-ground maps, the previously described model

is provided with training data consisting of two different sets

of image pairs. Each image pair consists of an input and an

output image where the model is supposed to learn the visual

patterns to transform an input image to an output image accord-

ingly. An input image resembles the street network with dif-

high density mid density
1:4000

sparse net. dense net.
1:8000

Figure 2. Example of training image pairs for different datasets

showing spatial resolutions of 1:4000 vs. 1:8000, sparse vs.

dense street network and high vs. mid built density.
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color line width (in px) type
#ffb301 12 & 9 trunk, trunk link
#840000 7.5 & 6 motorway, motorway link
#ff1a01 12 & 6 primary, primary link
#014182 9 & 3 secondary, secondary link
#58d751 6 & 3 tertiary, tertiary link
#75bbfd 3 access roads

Table 1. CRHD configuration applied in this work.

ferent street types indicated by different line-width and color-

ing accordingly. The output image represents the figure-ground

map showing the street network including building footprints.

Based on the road network and the building footprints that are

extracted from OpenStreetMap (OSM), we can generate an ar-

bitrary amount of such training image pairs. As mentioned,

the geometry of the street network has to represent the street

type and therefore is converted into a Coloured Road Hierarchy

Diagram (CRHD) as proposed by (Wu and Biljecki, 2023). A

CRHD differentiates street types by their assigned line-width

and coloring as can be seen in Table 1 and Figure 2 (Chen et al.,

2021). Ground truth images are rendered based on the build-

ing footprint geometry as well as the street network geometry

where every geometry is colored in solid black and the street

network geometry which has the same line-width as defined for

the CRHD used in the input images. The types of roads and

paths which have been selected are also listed in Table 1. As

they belong to the same level of hierarchy, the types residential,

service, living street, footway, path, pedestrian and unclassified

are grouped into access roads. Each hierarchy has been asso-

ciated to a pre-defined color. For the sake of replicability, the

used colors and the line widths are also listed in the same table.

The European Commission and the Federal Ministry of Trans-

port and Digital Infrastructure (Bundesministerium für Verkehr

und digitale Infrastruktur) divided the population density for

Germany into three different categories for contiguous grid cells

of 1 km2 as highlighted in Figure 3 European Commission

(2016); BMVI (2018). A high-density grid cell (city) corres-

ponds to a population density of at least 1.500 inhabitants per

km2 with a minimum total population of 50.000. A mid-density

grid cell (suburb) refers to a population density of at least 300
inhabitants per km2 with a minimum total population of 5.000.

A low-density grid cell has a population density below 300 in-

habitants per km2. In this work, these categories will be ap-

plied as a template for extracting the training data from OSM

according to their population density as highlighted in Figure 4.

As performed for the city of Hamburg, we overlay the popula-

tion density and extract training images according to their spa-

tial boundary for the ten biggest cities in Germany according to

their total population. In the following, the population density

based extraction of training images summarized in Figure 4 will

be explained in more detail.

To render input and output image pairs, the Atlas-tool avail-

able in QGIS has been used. This tool allows for subsequent

map rendering to automatically extract the training images for

a specific spatial extent, scale and density category as can be

seen in both Figure 2 and Figure 4. Subsequently, the training

images for each population density are rendered in a resolu-

tion of 1024×1024 pixel and stored as a PNG file to match the

input size and file type requirements of the underlying model

designed by Wu and Biljecki (2023).

In total, we generate different training datasets with the follow-

ing characteristics:

high density

mid density

low density

missing data

population >= 1500

population >= 300

population < 300

Figure 3. Population density grid cells representing defined

categories for the city of Hamburg, Germany. Colors distinguish

the different population densities. The categories have been

derived according to the definition of the European Commission.

• Spatial resolution: 1:4000 or 1:8000

• Built density: high or mid

• Street network: sparse or dense

For each training dataset, we extracted the image pairs for a

scale of 1:4000 and 1:8000 in order to provide high details to in-

dividual buildings or a neighborhood of building blocks as high-

lighted in Figure 2. Additionally, according to Wu and Biljecki

(2023) at these scales the model is supposed to be able to gen-

erate artificial images with sharper corners that would represent

real images more closely. The added value of this paper, is the

consideration of the density of the street network and, hence,

the investigation of its potential impact on the trained model

and the according generated figure-ground maps. Therefore,

we created two different training datasets. The first one does

not include access roads and, hence, represents sparse street

network data, whereas the second comprises such roads and,

thus, reflects dense street network data as can be seen in Fig-

ure 2. Further, the population and the according built density

has been taken into account in order to generate figure-ground

maps depending on this parameter. Thus, the model has been

trained on two different high and mid built densities as already

depicted in Figure 2.

In general, categorizing the training data after the above men-

tioned levels of population densities results in the expected out-

comes. For regions with high population densities, we can ob-

serve a high built density represented through closed building

development. The latter is characterized by a continuous and

cohesive built structure. Similarly, mid built densities show

the expected open building development typically expressed by

a more spacious and less densely constructed built structure.

However, this pattern is sometimes violated contrasting the un-

derlying training data.

To overcome this problem, we merged both the high and the mid

built density training data resulting in two datasets for sparse

and dense street networks. Analogously, two datasets with dif-

ferent spatial resolutions, namely 1:4000 and 1:8000 have been
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Output

Input

OSM

Pixel-based
filtering

High

Mid

High

Mid

Population-based filtering

High population

Mid population

density

density

Figure 4. Illustration of our training data processing pipeline. High, mid and low population density data is provided as 1 km2 grid

cells by Eurostat but only high and mid population density data is processed.

generated. To further refine the four datasets and hence reflect

well the level of density, we apply a pixel-based filtering. Here-

with, image pairs are sorted according to their proportion of

unbuilt area. An image comprising more than 82% white pixels

is then removed from the training dataset. Images with less

than 72% white pixels have been assigned to the training data-

set for high built densities whereas those having a proportion

of white pixels between 72% and 82% have been associated

to the training dataset with mid built density accordingly. The

thresholds used to refine our training datasets have been determ-

ined based on a qualitative visual inspection of the underlying

images. Since the levels of built density might differ from coun-

try to country, the thresholds might be re-evaluated for cities

outside of Germany. In German cities, a low population dens-

ity can be predominantly stated in industrial districts such as

the south of Hamburg as depicted in Figure 3. In this paper,

we focused on districts with mid and high density and omitted

those corresponding to low density. For each training dataset,

the image pairs are split into training and testing data with a

proportion of 90% and 10% respectively.

4. Experimental Results

The following section describes the training data in more details

and gives insight into the achieved experimental results which

have been evaluated by qualitative visual inspection and quant-

itative metrics.

4.1 Datasets

To produce our training data, we use OSM1 and population

density data2. In order to reflect the urban morphology of Ger-

man cities, we focus on the ten biggest cities for training and

generating figure-ground maps. This allows for addressing dif-

ferent population densities as important factor influencing the

design of such diagrams. The following ten most populated cit-

ies in Germany have been selected accordingly: Berlin, Ham-

1 https://download.geofabrik.de/europe/germany.html
2 https://ec.europa.eu/eurostat/de/web/gisco/geodata/

reference-data/population-distribution-demography/

geostat

burg, Munich, Cologne, Frankfurt, Stuttgart, Düsseldorf, Leip-

zig, Dortmund, Essen (Statista, 2024). After downloading the

OSM data of each city, the street network data and the build-

ing footprints are cropped to the administrative boundaries of

each respective city. Analogously, the population density data is

structured in contiguous grid cells of size 1 km2 and matched to

the administrative boundaries of the aforementioned ten biggest

cities in Germany.

4.2 Configuration & Accuracy Measures

We applied the model proposed by Wu and Biljecki (2023) fol-

lowing the advised hyperparameters which yielded the best res-

ults in their experiments. The model was implemented in Py-

Torch and CUDA accelerator. In this context, our experiments

have been conducted with PyTorch version 2.2.0 with CUDA

version 12.3. While training, the model consumed roughly 11
GB of VRAM. A starting learning rate of 0.0002 and a batch

size of 1 have been chosen with a training time amounting 100
epochs for each experiment.

One of the most commonly applied measure to assess the per-

formance of a GAN is the Fréchet Inception Distance (FID)

proposed by Heusel et al. (2017). The FID is a distance met-

ric which captures the similarity of images created by gener-

ative models to real images and thereby expresses the models

overall quality. Formally, with FID we measure the difference

between two Gaussian distributions using the Fréchet distance

(Har-Peled and Raichel, 2014). In this work, the first distribu-

tion corresponds to the dataset of images generated by our ap-

proach, while the other distribution corresponds to the reference

dataset of images containing the ground truth, i.e. figure-ground

maps of identical spatial location. Each parametric Gaussian

distribution is defined by it’s mean µ and covariance matrix Σ
which have been derived after transforming the real and gener-

ated images from the image space to latent vector embeddings

using the final coding layer of an inception model as can be

seen in Equation 1. This way, the FID compares features that

correspond to real-world objects rather than directly compar-

ing generated and real images pixel-wise. As a result, a higher

FID indicates a larger difference between the generated and the

real image while a smaller FID indicates a higher similarity.
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In our case, this is in general optically reflected by more cor-

rect representations of shapes, sizes, and densities of generated

building footprints.

FID = ||µX − µY ||2 − Tr(ΣX +ΣY − 2
√
ΣXΣY ) (1)

4.3 Interpretation & Discussion

1)

ge
n
er
at
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n

re
al

high built density
sparse street net. dense street net.

2)

re
al

ge
n
er
at
io
n

Figure 5. Comparison of two generated figure-ground maps with

a high built density trained with sparse (left) and dense (right)

street network data with a spatial resolution of 1:8000.

Varying the above mentioned factors and the resolution, we

trained a model in order to generate figure-ground maps ac-

cordingly. Experimental results shown in Figure 5 highlight

the differences in the generation of high density figure-ground

maps using sparser or denser street network training data. Par-

ticularly, clear to see is that the model is much better to generate

inner courtyards which are typical for closed building develop-

ment in high built density districts in Germany when small ac-

cess roads to these inner courtyards are provided to the model

during training. Moreover, a denser, more detailed street net-

work seems to obviously improve the generation of built struc-

tures that follow along the geometry of streets as highlighted

by Figure 5. Interestingly, the model does not seem to get over-

whelmed when learning on a denser street network as the streets

are always generated superbly with only minor divergence from

the input image.

1)

ge
n
er
at
io
n

re
al

mid built density
sparse street net. dense street net.
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Figure 6. Comparison of two generated figure-ground maps with

a mid built density trained with sparse (left) and dense (right)

street network data with a spatial resolution of 1:8000.

Doing the same comparison but for mid density figure-ground

maps, the visual difference between the maps generated by the

model that was trained on dense street network data and the one

that was trained on sparse street network data is less noticeable

as visualized in Figure 6.

Figure 7 example 2) demonstrates a generated figure-ground

map where even individual pathways to house entrances are

considered by the model and are clearly distinguishable. Fur-

thermore, example 1) of the same figure depicts results where
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realgeneration

1)

2)

3)

4)

input

Figure 7. Results from four different high density test images

with a spatial resolution of 1:8000 and a dense street network.

The input image, the generated figure-ground map and the real

figure-ground map are displayed.

large industrial facilities are accurately generated due to the ar-

rangement, type and width of the streets. For the mid built dens-

ity, we can further state that the generated scenes are character-

ized by organic and reasonable building footprint shapes as can

be depicted in Figure 8.

Analyzing the figure-ground maps for high and mid densities at

a spatial resolution of 1:4000 issued from a trained model on a

dense street network reveals a large discrepancy to those gener-

ated at 1:8000 as indicated by Figure 9. At a spatial resolution

of 1:4000, the model seems to be incapable to produce accurate

building geometries both for high and mid density scenarios.

To conclude our experimental results, we calculated the FID

scores. As indicated by Table 2, figure-ground maps generated

with a model that is trained on a spatial resolution of 1:4000

results in worse performance compared to the output of a model

that is trained on a spatial resolution of 1:8000, supporting the

findings of the visual analysis. The FID scores for the figure-

ground maps resulting from high and mid densities for a spatial

resolution of 1:8000 show that training the model with sparse

street network data hampers the performance of the model sig-

nificantly.

density street network spatial resolution FID
high dense 1:4000 153.14
mid dense 1:4000 140.20
high dense 1:8000 71.25
mid dense 1:8000 75.52
high sparse 1:8000 116.46
mid sparse 1:8000 84.77

Table 2. FID scores for the conducted experiments.

realgeneration

1)

2)

3)

4)

input

Figure 8. Results from four different mid density test images

with a spatial resolution of 1:8000 and a dense street network.

The input image, the generated figure-ground map and the real

figure-ground map are displayed.

1)

2)

3)

realgeneration realgeneration

high built density mid built density

4)

Figure 9. Results from four different high and mid density test

images with a spatial resolution of 1:4000 and dense street

network data.

5. Conclusion and Outlook

This paper introduced an approach towards a deep automatic

generation of figure-ground maps commonly used in urban plan-
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ning. We show that our approach is able to automatically gen-

erate figure-ground maps that can be adjusted for high and mid

built densities. The generated maps consist of artificially gen-

erated building footprints and a predefined street network. This

opens up new opportunities to support the as yet tedious site

plan drafting and has the potential to accelerate this time con-

suming task which different stages of urban development rely

on. The trained model turns out to capture the built density

which has been reflected by the resulting maps. In this context,

a training and data processing on a dense and more detailed

street network with a mid spatial resolution impacted the res-

ulting arrangement and sharpness of building footprints. As of

now the models backbone is an unmodified conditional GAN.

A goal of future research is the incorporation of further typical

site plan requirements, e.g. the physical dimensions of a plot

or constraints on the ratio between built and unbuilt area. For a

more accurate representation of the population and built dens-

ities, the incorporation of the desired number of floors will be

addressed as well. Additionally, detailed experimental investig-

ation including parameter tuning and optimization will be sub-

ject of future work.

Acknowledgements

The authors would like to express their gratitude to the open

code from Wu and Biljecki (2023).

References

BMVI, 2018. Regionalstatistische Raumtypologie (RegioStar)
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