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Abstract
The menace of sedimentation to reservoirs has a significant implication for water quality, storage capacity and reservoir life-
time. Rainfall patterns and other anthropogenic and environmental impacts alter the erosion rate and, by extension, directly 
affect sedimentation rates if left unchecked. This research focused on using the integration of Markov Chains and Cellular 
Automata (MC – CA) models to estimate and forecast the future bathymetric surface of the Kainji reservoir in Nigeria for 
the year 2050. The bathymetric datasets used for this research comprise two different epochs (1990 and 2020). The datasets 
were acquired using a Single Beam Echosounder at Low and High frequencies of 20 kHz and 200 kHz. The preliminary 
investigation revealed that sedimentation is exacerbating a greater danger to the reservoir functionality. The results show 
that the maximum observed depth is 71.2 m, indicating a 7.53% loss in depth from the 1990 archived data and a 16.24% 
depth loss to sedimentation from 1968 to 2020 and 22.35% depth loss in the year 2050 as shown on the projected surface. 
Consequently, the integrated model (MC and CA) efficiently predicted the future bathymetric surface of the Kainji reservoir 
for the year 2050 based on the data characteristics. However, the proven techniques for analysing spatial data, such as the 
Markov Chain and Cellular Automata, best suited for analysing categorical transition data, show some artefacts (black spots) 
on the projected generated map which is subject to further investigation.
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Introduction

Bathymetric survey has shown to be a remarkable approach 
to assessing and estimating the rate of sediment deposits in 
reservoirs and other water bodies (Ibrahim and Sternberg 
2021). The menace of sedimentation and siltation is a con-
tinuous process that affects the optimal performance of any 
reservoir over time if left unchecked (Girish et al. 2014; 
Estigoni et al. 2014). A greater contributing factor to sedi-
ment inflow is the topography gradient which is enhanced by 

precipitation and the adjoining rivers to a reservoir (Horton 
1945; Hansen and Boss 2000); including the hydrology of 
the catchment and the river basin characteristics. This phe-
nomenon affects the optimal operational capacity of dams 
and reduces the volumetric capacity, irrigational activities, 
and to some extent domestic supplies (Dargahi 2012). Con-
sequently, repeated bathymetry has become the most com-
mon and generally accepted technique for estimating long-
term sediment accumulation in reservoirs (Vahid et al. 2018; 
Mohammad et al. 2018). This involves using the data from 
different epochs, such as obtaining the data before impound-
ment and the bathymetric survey data collected after a period 
of years (Psilovikos and Margoni 2010; Veli et al. 2019). 
These two datasets will show the volume lost to sedimenta-
tion and erosion. However, a single beam echo sounder is 
employed to adequately measure the amount of sediment 
deposited in a specific water body. This is due to the capacity 
of low-frequency pings to penetrate suspended sediment to 
a greater degree, which is one of the drawbacks of multi-
beam echosounder because it uses high frequency for its 
operations (El-Hattab 2014). The multibeam echosounder is 
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adequately suitable for complete seafloor mapping because 
of its multibeam, but lack the capacity to penetrate sediment 
layers due to its high-frequency calibration (Xavier 2010). 
Hence, the difference between the high and low-frequency 
ping readings is the deposited materials (Odhiambo and 
Boss 2004; Ibrahim and Sternberg 2021). Low-frequency 
single-beam echo sounder has the tendency to penetrate the 
sea bottom surface up to 15 m (Chapra 1997; Xavier 2010). 
In addition, a multibeam echosounder can also be used; how-
ever, this will require different epoch datasets of at least 
five-year intervals and the difference in depth between the 
datasets is assumed to be the measured suspended sediment 
(Chapra 1997; Vahid et al. 2018). The information gathered 
from the bathymetric survey will aid the water body manag-
ers in determining the amount of material to be dredged and 
the section in which the dredging activities should be more 
concentrated.

However, several researchers have conducted investiga-
tions to evaluate soil erosion and sediment deposits using 
different approaches and models which are classified as 
empirical, physical and hybrid models (Mohammad et al. 
2018; Dutta 2016). These models are suitable for model-
ling soil loss via water erosion and sediment transport in the 
river channel but cannot accurately account for deposited 
suspended material due to differences in field and labora-
tory observations. Psilovikos and Margoni (2010) gave an 
in-depth description of these models. In addition, Morris 
and Fan 1998, Martin 2015, and Mohammad et al. 2018 
employed some of these models to estimate sediment yield 
in rivers and reservoirs but could not forecast the surface 
based on sediment deposit characteristics. Consequently, 
this research focuses on using Markov Chains and Cellular 
Automata (MC – CA) models to evaluate and forecast the 
future bathymetric surface of Kainji reservoir in Nigeria, 
West Africa, based on prevalent environmental characteris-
tics at the period of this investigation. The Markov process is 
a stochastic model describing a sequence of possible events 
in which the probability of each event depends only on the 
state attained in the previous event (Gagniuc 2017).

Furthermore, Markov chains are extraordinarily useful 
to model a discrete-time, discrete space or continuous-time 
stochastic process/random process of various domains, such 
as environmental sciences (land use and land cover classi-
fication) and meteorology “weather forecasting” (Nurmiaty 
et al. 2014). A discrete-time markov chain (DTMC) is a 
countably infinite series in which the chain state changes at 
discrete time steps, while a continuous-time Markov chain 
is called a continuous-time Markov chain (CTMC) (Pankin 
2017; Serfozo 2009). In addition, Cellular Automata (CA) is 
a sophisticated mathematical technique employed to manip-
ulate data in rows and columns often represented in extended 
binary format, where neighbouring pixel information is par-
amount (Chih-Hung 2014). In addition, researchers such as 

Nurmiaty et al. 2014; Kumar et al. 2016; Palmate et al. 2017; 
Tadese et al. 2021; Zouiten et al. 2021 etc., have conducted 
several investigation employing MC and CA in modelling 
spatiotemporal land dynamics and forecasting using sat-
ellite imageries and their outcome have been impressive. 
Hence, an effective implementation of MC–CA to assess 
and forecast future bathymetric surfaces from discrete-time 
based bathymetric datasets will be an added knowledge to 
the research community. Additionally, these models were 
selected as an integration for this research because of their 
robust nature in manipulating geospatial data, especially the 
masking attributes of cellular automata.

Study area

Kainji Reservoir was constructed as the largest dam per-
pendicular to the Niger River in the year 1968. Kainji has a 
main concrete dam with rockfill embankments and a saddle 
dam. The saddle dam protects the main dam during flood-
ing. There are four spillways with hydraulically operated 
gates of 15.2 × 15.2 m, which are used to control flood-
ing and water supply to the Jebba dam downstream. The 
dam has a maximum depth of 85.5 m and 4.971 miles in 
length before joining the lake upstream. The lake and the 
dam are wholly joined together; the total length is approxi-
mately 59.03 miles, as shown in Fig. 1. Figure 1 is the map 
of the study area describing Kainji Dam. The Kainji dam is 
located in Niger State and it shares boundaries with Kwara 
and Kebbi states. The geographical extent of the entire 
reservoir is 10036!40.16!! N, 4031!08.11!!E ; 9051!17.55!! N, 
4036

!
03.48

!!E  ;  10
0
21

!
24.46

!! N,  4040
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!!E  ;  and 
10

0
22

!
53.66

!! N, 4017!13.64!!E . The major activities of the 
adjoining communities within the reservoir corridor’s are 
farming and fishing.

Additionally, the image in the lower right part of Fig. 1 
shows the location of the hydropower plant, major and minor 
access roads, and other vital structures, such as offices and 
security checkpoints. The area has experienced a high influx 
of dwellers over the years due to the strategic location of 
the infrastructure. The power station area of the reservoir is 
considered the administrative section.

Materials and methods

The datasets used for this research are from primary and 
secondary sources. The spatial datasets reference system 
is based on the World Geodetic Reference System 1984 
(WGS84) with Clark 1880 ellipsoidal parameters to maintain 
global datum uniformity of the datasets used. The bathymet-
ric datasets are from two different epochs “1990 and 2020”, 
as presented in Table  1. The 1990 dataset is archived data 
obtained from the reservoir managers. While the data for the 
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year 2020 was observed using a single beam echosounder 
in low and high frequencies (20 kHz and 200 kHz). The 
essence of frequency variation is to measure the water depth 
and the amount of deposited suspended sediment. The high 
frequency measures the water depth from the water surface 
to the bottom surface, while the low frequency measures the 

bottom surface to a certain level below the bottom surface 
deep.

Similarly, the main limitation of a higher frequency 
transducer is that there is high attenuation of the sig-
nal with depth, and lacustrine sediments with low spe-
cific gravity or lower vegetation will easily reflect the 

Fig. 1  Map of the Study Area- Kainji Dam. Source: The map was produced using QGIS software and Google Earth Engine

Table 1  Datasets for the study

Data Data format Period Instrument type Source

Bathymetric N, E, D (coordinates)/CSV 1990 SBES_200 kHz Archive/Dam Management
Bathymetric N, E, D (coordinates)/CSV 2020 SBES_200 and 20 kHz 

respectively
Field observation

SRTM-OpenDEM Shape (contour lines) (25 m interval) 2020 https:// www. opend em. info/ 
opend em_ client. html

https://www.opendem.info/opendem_client.html
https://www.opendem.info/opendem_client.html
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signal. Similarly, high-frequency transducers are not 
recommended in areas where layers of lacustrine sedi-
ment are common or where the vegetation may mask the 
required grade of payment. Hence, frequencies ranging 
from 20 kHz to 50 kHz are commonly used for sediment 
deposit measurement payment (USACE 2002). The low 
frequency is used to generate maps showing the accu-
mulated sediment over time after impounding the reser-
voir (Chapra 1997). Consequently, the change in depth 
between the high and low frequencies yields the estimated 
lacustrine sediment thickness of the area being surveyed. 
The reservoir shoreline was delineated using interac-
tive vectorization. Shoreline delineation using satellite 
imagery and GIS has received recognition over the years 
due to the difficult terrain that is associated with water-
bodies (Barman et al. 2014). Thus, the spatial attributes 
were extracted and combined with the bathymetric data 
to coordinate the data for the effective implementation 
of MC-CA models. Fig. 2 describes the shoreline in cyan 
(light blue colour). The reservoir water line was assumed 
to be the zero level during data modeling analysis. Table  
2 is a sample of the spatial sounding data used for the 
MC-CA data modeling.

Data cross‑validation

Descriptive statistics are primarily employed to quanti-
tatively assess interpolation errors such as the minimum, 
maximum, mean, root mean square error (RMSE), mean 
error (ME), R – square, and standard deviation (Burrough 
and McDonnell 1998; Hu et al. 2004). The mathematical 
expressions for the descriptive statistics used and the result 
obtained are given in Table  3. Furthermore, the split–sam-
ple technique was used to evaluate the dependency of the 
generated digital depth model surface of the Kainji reser-
voir from the two epoch datasets. In each case, the data 
was partitioned into a series of 10,000, 30,000, 50,000, and 
70,000; the mean varied from 0.018 to 0.016, and the root 
mean square (RMS) varied from 0.429 to 0.434 for the 1990 
dataset. The 2020 dataset presented a mean of 0.0013 to 
0.069, and the RMS was within the neighbourhood of 0.477 
to 0.516. Similarly, the final cross-validation was conducted, 
and the result is presented in Table  3.

From Table 3, as the mean error tends to zero in both 
datasets, the mean square errors (MSE) also drive toward 
the same direction, supporting the central limit theorem, 
which says that as the sample size n increases, the variance 
of the quantity 1

n

∑n

i=1
(Ẑ

i
− Z

i
)
2

=
∑

i

(�
i
)2
�

n
 should con-

verge to zero. At the same time, the standard way to meas-
ure the error of the model of the predicting quantitative 

Fig. 2  Point cloud bathym-
etry data. Source: a The 1990 
bathymetric data, provided by 
Mean Stream Dam: Managers 
of Kainji Dam, Nigeria. b 2020 
data from field observation. 
Both data were acquired using 
SBES at 200 kHz



519Applied Geomatics (2024) 16:515–528 

data (RMSE) suggested that the model error is 0.012 and 
0.029 in both cases. The cross-validation outcome indi-
cated that the generated DDMs are replicates of the reser-
voir bed based on the data trend.

Implementation of Markov Chains – Cellular 
Automata

Investigators have used Markov Chains and Cellular 
Automata mathematical techniques in various research 
on modeling and analyzing spatial data, such as (Samat 
2009; Lingling et al. 2011; Jamal et al. 2011; Aqil and 
Shu 2020). These models have proven to be effective in 
transients in various data that can be divided into catego-
ries, for instance, the type of land use and land cover clas-
sification changes in the ratio of variation in development 
within a region. Figure 3 is the methodology diagram, 
which illustrates the procedures used to forecast future 
bathymetry surfaces for the year 2050 due to sediment 
deposit patterns. The entire process was executed using a 
Python programming language.

Initial dataset and preprocessing

The initial data for this study are the depths of the stud-
ied area of the Kainji reservoir, measuring approximately 
24 × 83 km, measured at 2 points in time: 1990 and 2020 
(200 kHz). Unfortunately, the coordinates of the measured 
depths do not correspond to each other; therefore, we have 
to use interpolation to compare and match the data. The 
inner rectangle was selected for the interpolation, which is 
enclosed in all two presented datasets. Then, the rectangle 
was divided into grids with a step of 100 m. Such a grid step 
is recognized as probably optimal for spatial data prediction 
(Samat 2009). After that, the depth values were calculated at 
each point using linear interpolation of the nearest measured 
points. After interpolation, contour plots of the study area 
for each historical moment in time were built (Fig. 7). The 
time difference between the two datasets is 30 years.

Cellular automata application

Cellular automata represent a discrete model, which is a grid 
of arbitrary dimensions, each cell of which can assume one 
of a finite set of states at each moment, and a rule for the 
transition of cells from one state to another is determined. 
The rules specify the transition from one state to another, 
which may include considering the states of the neighbour-
hood cells. The CA is mathematically expressed as (Hou 
et al. 2004):

where S is the set of limited and discrete cellular states, N is 
the cellular field, t and t + 1 indicate the different times, and f 
is the transformation rule of the cellular states in local space. 

(1)S(t, t + 1) = f (S(t),N)

Table 2  Sample of spatial 
sounding data

The data presented is a sample of the observed information in Northing, Easting and depth. All measure-
ments are in metres (m)

Easting Northing Depth Easting Northing Depth

674240.275 1089791.335 8.68 675900.078 1093430.167 43.12
674239.502 1089791.573 8.25 675898.469 1093432.134 39.35
674238.830 1089791.699 7.73 675896.629 1093434.239 39.92
674238.029 1089791.983 7.61 675895.455 1093435.596 39.56
674236.877 1089792.394 7.45 675894.836 1093436.363 41.68
674235.551 1089792.926 7.31 675890.600 1093441.645 42.77
674233.270 1089793.174 7.16 675889.767 1093442.707 41.44
674223.724 1089793.713 6.76 675888.824 1093443.944 41.87
674213.981 1089797.088 6.57 675888.000 1093445.071 39.87
674208.236 1089802.483 6.62 675884.524 1093449.189 39.35
674207.031 1089810.348 6.69 675884.006 1093449.798 42.17
674208.376 1089817.529 6.76 675881.470 1093453.263 39.68

Table 3  Cross-validation/split–sample technique outcome

Final split – Sample technique

Statistical model 1990 data 2020 data

��� =
1

n

∑n

i=1
(Ẑ
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Thus, according to the following template, this research 
defines a significant neighbourhood (Fig. 4).

Furthermore, the behaviour of Cellular Automata mod-
els is affected by uncertainties arising from interactions 
between model elements, structures, and the quality of the 
data sources used as input to the model (Batty et al. 1999; 
Peterson et al. 2009). Hence, the Cellular Automata takes 
into account the data trend for effective output.

Markov chains procedures

Markov chains imply that we have a particular graph of 
states and transition probabilities from one state to another. 
The Markov process explains the rate of changes in states 
between the loss in depths due to sedimentation over time 
and uncovers the degree of depth losses in the depth classes. 
Hence, to predict the surface’s future state, the formula 
based on the conditional Bayes probability formula is also 
used (Hou et al. 2004; Yang et al. 2007; Jiang et al. 2009).

Fig. 3  Flow diagram of the CA-Markov chain model for predicting future depth changes due to sediment deposits in the Kainji reservoir

Fig. 4  Cellular Automata significant neighbourhood template. The 
cells to be defined are highlighted in red, significant neighbours are 
highlighted in white, and insignificant neighbours are black. In this 
case, the state of the determined cell at the previous time also affects 

the cell’s future state. For instances where the cell is close to the edge 
of the study area (a, b), some of the neighbours are not considered in 
the calculations
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where S are the system states at time t or t + 1 and P is the 
transition probability matrix in a state, which is calculated 
as follows (Tadese et al. 2021):

Furthermore, in this research, the states are the depth 
intervals of the studied area ‘Kainji reservoir’. Therefore, 
the entire depth of the study area was divided into depth 
ranges of ten states from zero to nine (Table 4).

Consequently, the initial datasets were transformed into 
datasets of Markov chain states. Fig. 8 describes the histori-
cal data’s contour plots as often transformed into states. In 
addition, based on the historical data of transitions, the tran-
sition probability matrix for the chain was calculated. In this 

(2)S(t + 1) = P_ij × S(t)

(3)
Pij =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

p11 p11 … p1n
p21
…

p22
…

… p2n

pn1 pn2 … .
…

pnn

⎤

⎥

⎥

⎥

⎥

⎥

⎦

0 ≤ Pij < 1 and
∑N

j=i
Pij = 1, (i, j = 1,2,… , n)

case, first, each cell was considered a separate experiment. 
Then, the research considers its state at the next point of time 
as a result of the experiment. Table  5 presents the results 
generated from the calculated transition probability matrix.

The CA-Markov technique integrates the theories of 
Markov and CA, which are about the time series and space 
for an advantage of forecasting. Thus, to predict the future 
state of each cell, the researcher used the transition matrix 
for the current state of the cell and all significant neighbours 
determined by the mask as described above. The majority 
principle determined the final state of the desired cell. The 
resulting maps for the estimated state of the study area in 
2050 compared to historical data are shown in Fig. 9.

Evaluation of forecasted bathymetric surface

Basically, two methods of accuracy evaluation were 
employed to test the dependency and reliability of the fore-
casted bathymetric surface. The methods are the matching 
spatial coordinates and quantitative approaches of precision 
testing. The former involves interactive performance check 
by digitally matching the spatial coordinates of the 2020 
and 2050 bathymetric surfaces to examine the differences 
between the two datasets; the results is as shown in Table 6. 
Similarly, some selected quantitative precision testing 
employed are the mean square error (MSE), the root mean 
square error (RMSE), the coefficient of multiple determina-
tion ( R2 ), and the coefficient in depth axis. RMSE is used to 
determine the rate of error size; in contrast, it is sensitive to 
outliers due to the magnitude of weight it allocates to large 
errors (Hernandez-Stefanoni et al. 2006). Mean error (ME) 
determine the level of bias in the output (Isaaks and Srivas-
tava 1989); however, negative and positive predicted value 
should be considered (Nalder and Wein 1998). Meanwhile, 
the mathematical expression is given in Eqs. 4 and 5 (Ahmed 
and Marsily 1987; Vicente-Serrano et al. 2003):

Table 4  Depth classified according to Markov states

Depth span, meters Markov state

0.00–8.50 0
8.50–17.00 1
17.00–25.20 2
25.50–34.00 3
34.00–42.50 4
42.50–51.00 5
51.00–59.50 6
59.50–68.00 7
68.00–76.50 8
76.50 + 9

Table 5  Transition probability matrix of the Markov chain states in percentage

Source: Research lab

0 1 2 3 4 5 6 7 8 9

0 97.543075 2.360739 0.096186 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 13.910420 65.007047 20.010129 1.070202 0.002202 0.000000 0.000000 0.000000 0.000000 0.000000
2 0.195477 16.368107 76.101465 7.273866 0.047342 0.013744 0.000000 0.000000 0.000000 0.000000
3 0.074890 0.773861 76.920090 21.695837 0.418828 0.036058 0.049926 0.030511 0.000000 0.000000
4 0.507068 0.476337 35.172096 52.596804 9.864782 0.645360 0.199754 0.460971 0.076829 0.000000
5 3.176471 1.529412 5.529412 23.058824 41.411765 15.411765 4.470588 2.352941 3.058824 0.000000
6 0.374532 0.561798 4.494382 9.176030 15.355805 47.191011 14.981273 5.992509 1.872659 0.000000
7 0.000000 0.000000 2.736318 4.975124 7.462687 16.915423 51.741294 15.174129 0.995025 0.000000
8 0.000000 0.000000 4.838710 9.139785 12.365591 11.290323 33.870968 24.731183 3.763441 0.000000
9 0.000000 0.000000 6.896552 37.931034 24.137931 6.896552 6.896552 5.172414 12.068966 0.000000
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While the root mean square error is given as:

where Zi = the observed value, Ẑi = the predicted value and 
n = the total number of points considered in Eqs. 4 and 5, 
respectively. Additionally, the mean error is computed as:

where ZPRED
i

 and ZOBS
i

 are the predicted and observed depths, 
and n is the total number of observations. The results from 
the quantitative methods of precision testing is as presented 
in Table  7.

Results and analysis

The negative impact of sedimentation on Kainji reservoir 
is evident based on the measured data. The echo sound-
ing operation of 2020 shows that the maximum depth of 
the reservoir is 71.2 m, while the 1990 bathymetric data 

(4)MSE =
1

n

∑n

i=1
(Ẑi − Zi)

2

(5)RMSE =
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∑n

i=1
(Ẑi − Zi)

2

n

(6)ME =

∑n

i=1
(ZPRED

i
− ZOBS

i
)

n

present a maximum depth of 77.3 m. This accounts for a 
7.49% (5.8 m) loss in depth over the past 30 years. The 
construction highest depth of the reservoir as of 1968 is 
85 m. This implies that the reservoir has lost an estimated 
13.4 m within the period of 52 years due to sedimentation 
and siltation. This geomorphological region is located at 
the dam axis area. This region is termed the hydrological 
powerhead of the reservoir. The total area of 1990 data is 
1007.780 km2 , as recorded, while as of 2020, the estimated 
area is 1009.110 km2 . Fig. 5 describes the comparison of the 
computed reservoir storage capacity curve from HF_1990, 
HF_2020 and LF_2020 data.

Similarly, the output of the computed volume from the 
200 kHz data of 2020 shows that the volume of the reser-
voir at the time of the survey was 10.5 × 10

9m3 . The 1990 
200 kHz data presented an estimated reservoir volume of 
12.9 × 10

9m3 . This implies that the reservoir has experienced 
an 18.6% loss in storage capacity within the period of 30 
years. However, the estimated volume for 2020 does not 
include some of the reservoir tributaries, incredibly inac-
cessible areas, due to the terrain’s hazardous nature. Fig. 6 
shows the 100% stacked column chart showing the percent-
age loss in volume over time relative to the observed depths. 
According to survey data from 2020, a larger percentage 
has been lost to sedimentation, and this loss is more notice-
able at depth ranges of 76.1 m to 64.1 m. Hence, Depths of 
76.1 m to 72 m are not in existance, indicating that if sedi-
ment inflow patterns continue unchecked, depth values from 
71 m to 64 m will soon go extinct in a few years. This loss of 
depth poses a significant threat to marine life and ecosystems 
in the area, as it disrupts habitats and can lead to a decrease 
in biodiversity. Efforts must be made to address sedimenta-
tion issues in order to preserve the remaining depth ranges 
for future generations.

Markov chains and Cellular Automata output

The computation outcome of transition probabilities using 
Markov chain analysis is presented in Table  5 below; the 
rows reflect from which state the transition occurs and 
the columns to which state. For example, the probability 
of going from state 1 to state 0 is 13.9%. It is evident that 
the Table  is not symmetrical about the main diagonal. For 
example, the probability of going from state 0 to state 1 is 
much less than the probability of going back, which is 2.4%. 
The research printed the zero transition probabilities in light 
gray for adequate presentation. The maximum values bylines 
are underlined. Analysis of Table  5 shows that states with 
small ordinal numbers (shallow depths) tend to preserve the 
status quo. Their most significant value lies on the main 
diagonal. It is also evident that the values under the main 
diagonal are more significant than those above the main 
diagonal, which means there is a tendency for a decrease 

Table 6  Quality and accuracy evaluation: Spatial coordinates match-
ing technique

The measurement unit in meter (m)

Matched coordinates 
(E, N)

1990 2020 CA-Markov 2050 Change

676182.42, 1093090.31 75.42 70.27 68.20 0.07
675839.24, 1091575.45 68.08 62.36 59.41 0.09
674489.16, 1106413.62 44.92 41.78 39.01 0.21
664890.56, 1150213.41 23.41 20.82 18.92 0.51
670145.08, 1162347.31 29.42 24.62 21.29 0.65
670056.56, 1113540.71 21.01 18.83 15.97 0.03
669957.34, 1159313.12 25.21 23.73 20.51 0.09

Table 7  Quality and accuracy evaluation: quantitative precision test-
ing techniques

Some quantitative model used Data considered: 2020 
HF and 2050 MC_CA

ME 0.046
MSE 0.214
RMSE 0.463
R
2 0.012

Coef. of depth variations 0.629
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in the state number; this refers, in general, to a reduction in 
the depth of the investigated area. The research made the 
same conclusions when constructing contour diagrams from 
historical data, as presented in Fig. 7.

Consequently, Fig. 7 below describes the Markov chain 
classification of depths into state contour plots prior to 
applying and computing the probability matrix or confu-
sion matrix. The vertical scale readings show the states for 
the 1990 and 2020 historical data as classified, and the depth 
gradually reduces based on historical data as presented in the 
forecasted MC – CA (Figs. 8 and 9).

Finally, the predicted future depth distribution was mod-
elled based on the integration of CA and Markov chain tech-
niques, as presented in Fig. 9. The map contains artefacts 

probably caused by the random choice of the following state 
in the Markov chains. The reason is that the Markov pro-
cess is a categorization process that is best applicable to 
spatially categorized data, e.g., imagery depicting different 
land uses and covers. The artifacts are the black spots on 
the projected surface of 2050 as shown in Fig. 9. However, 
the CA-Markov chain adequately predicted the future state 
depths following historical patterns except for the introduced 
artefacts on the map (Markov 2050). This setback affected 
the quality of predicted map, because the map was sup-
posed to be a clear map as that of 1990 and 2020 (Fig. 9). 
The future maximum depth is between 59 m and 65 m; the 
depth gradually decreases from upstream, and the weight 
is experienced at the reservoir axis region. Meanwhile, the 

Fig. 5  Elevation capacity curve 
of the Kainji reservoir. The 
volume presented is computed 
from the LF and HF of 2020 
acquired bathymetric data and 
the received HF_1990 bathym-
etric data. The space between 
LF_2020 and HF_2020 is the 
region consumed by lacustrine 
sediment from 1968 to 2020 
when the measurement was 
carried out. Additionally, amsl 
refers to elevation above mean 
sea level while BCM is abbre-
viation for billion cubic metres

Fig. 6  100% stacked column 
chart of 1990 and 2020 com-
puted volume. The graph shows 
the relative loss in volume to 
depth between the two epochs 
of data. Mainly, it compares 
the percentage that each depth 
range value contributes from 
each dataset to the computed 
volume of that section
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actual cause of the artefacts is not clearly ascertained; there-
fore, it is subject to future investigation. Additionally, fur-
ther investigation should be conducted using bathymetric 
datasets that are densely captured about a particular water-
body, however, this is a postulation because the data used is 
sparsely distributed.

Quality and accuracy evaluation of forecasted 
surfaces

The practical approach to investigating the quality and reli-
ability of projected surfaces is implementing interactive per-
formance checks or matching spatial coordinates (Ibrahim 

and Sternberg 2021). Thus, spatial coordinates matching 
was conducted to evaluate the accuracy of the projected 
bathymetric surface of the Kainji reservoir from the CA 
– Markov models of 2050. Table 6 shows the quality and 
accuracy evaluation of forecasted bathymetric surfaces of 
Kainji reservoir. The difference between 2020 HF and the 
CA – Markov surfaces is the change on spatial coordinates, 
neglecting the negative signs.

Similarly, the change between 1990 and 2020 measured 
data shows a remarkable reduction in depth in the year 2020 
due to the menace of sedimentation, and this also translates 
to a decrease in depth in the projected surfaces of 2050 
depending on the characteristics of the existing sediment 

Fig. 7  Generated contours from linear interpolation. According 
to these plots, it is clear that the limiting depth decreases with time 
due to sedimentation and siltation from 1990 to 2020. Additionally, 

the maximum depth at construction (1968) of 85 m was reduced to 
77.3 m (1990) and 71.3 m based on 2020 HF data
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inflow pattern. In addition, Table 7 is the results obtained 
from the quantitative precision testing approach used to eval-
uate the extent of dependency of the predicted bathymetric 
surface of Kainji reservoir.

The evaluation results revealed that the ME (0.046) is 
small, which agrees that the bias between the existing and 
forecasted bathymetric surface is negligible. This is also 
reflected in the MSE; the MSE has a significant influence 
on the RMSE as seen in Table 7. Hence, the result of the 
RMSE reflects the weight of MSE, because it is sensitive to 
outliers and influences large error; for this reason, the MSE 
and EMSE suffer the same setback (Merwade et al. 2003; 
Eriksson and Siska 2000). It is obvious that the model exper-
iment of R – squared or coefficient of determination ( R2 ) of 
0.012 indicates that there is no unique correlation between 
the two datasets considering depth value. R – squared value 
that tends to one, indicates strong relationship, while when 
the value tends to zero shows weak or no correlation (Pal-
mate et al. 2022). This is collaborated by the outcome of 

coefficients of variation in depth assessment, which gave a 
value of 0.629. The weak correlation between the 2020 and 
2050 MC – CA bathymetric surfaces shows the menace of 
sedimentation and siltation taking its toll on the reservoir 
due to environmental impact characteristics.

Conclusion

The research carried out sediment deposit analysis of the 
study area and forecasting by the use of a Cellular Autom-
ata – Markov Chain. The outcome revealed that Cellular 
Automata – Markov chain models effectively predicted the 
future reservoir depth pattern for 2050. The transition matrix 
shows similar results and how sediments are distributed 
based on the data trend. The lower diagonal has a major-
ity of the higher value (Table 5), and the upper diagonal 
has a lower value (Table  5), suggesting loss in depth due 
to sedimentation. However, the projected surface map has 

Fig. 8  Contour plots for depth states based on historical data. Horizontal and vertical scale readings are in meters (m). The plots present the 
Markov chain depth states based on the transformation conducted on the historical datasets of 1990 and the measured datasets of 2020
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some artefacts on it. The actual cause of artifacts on the 
projected surface cannot be ascertained for now. However, 
the researchers suggest that it is either CA-MC is not a good 
model for forecasting bathymetric point cloud data or there 
is an unidentified data distribution error, meanwhile, these 
assertions are subject to future investigations. In addition, 
the research projected surface is in agreement with the Inter-
national Sediment Initiative (2011), which says that by 2050, 
most reservoirs will lose more than 50% of their designed 
capacity to sedimentation if left uncheck. This implies that 
most major dams would not adequately serve their purpose 
of construction within the projected period and Kainji dam 
is not an exception.

Acknowledgements The authors sincerely acknowledge the German 
Academic Exchange (DAAD) and the Nigeria’s Petroleum Trust Devel-
opment Fund (PTDF) for awarding the leading Author scholarship for 
his PhD program. Additionally, thanks go to all other survey team 
members who supported during data acquisition.

Author contributions Each author played a critical role in this research. 
The co-authors were the leading author supervisors during his PhD 
study and made significant input in this article.

Funding Open Access funding enabled and organized by Projekt 
DEAL. No funding was received to assist with the preparation of this 
manuscript.

Data availability The datasets generated during and/or analyzed during 
the current study are available from the corresponding author upon 
reasonable request.

Declarations 

 This article adhered to all relevant ethical standards.

Ethical approval This study does not involve any studies with human 
participants or animal experiments.

Informed consent Informed consent was obtained from all the indi-
vidual participants, or third parties included in the study.

Conflict of interest The authors have no conflict of interest to declare 
that are relevant to this article.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Fig. 9  CA-Markov historical and forecasted plots. The vertical scale is the Markov states in all plots. The predicted plot (Markov 2050) contains 
artefacts caused by the uncertainty of the modelled Markov states. However, this assertion is subject to future investigation

http://creativecommons.org/licenses/by/4.0/


527Applied Geomatics (2024) 16:515–528 

References

Ahmed S, De Marsily G (1987) Comparison of geostatistical methods 
for estimating transmissivity using data on transmissivity and spe-
cific capacity. Water Resour Res 23:1717–1737

Aqil T, Shu H (2020) CA-Markov chain analysis of seasonal land sur-
face temperature and land use land cover change using optical 
multi-temporal satellite data of Faisalabad Pakistan. Remote Sens 
12(20):3402. https:// doi. org/ 10. 3390/ rs122 03402

Batty M, Yichun X, Zhanli S (1999) Modelling urban dynamics 
through GIS-based cellular automata. Comput Environ and Urban 
Systems 23:205–33. http:// www. compl excity. info/ files/ 2011/ 07/ 
batty- ceus- 1999. pdf

Barman N, Chatterjee S, Khan A (2014) Trends of shoreline position: 
an approach to future prediction for balasore shoreline, Odisha, 
India. Open J Mar Sci 5:13–25. https:// doi. org/ 10. 4236/ ojms. 
2015. 51002

Burrough PA, McDonnell RA (1998) Principles of geographical infor-
mation systems. Oxford University Press

Chapra SC (1997) Surface water-quality modelling. McGraw-Hill
Chih-Hung C (2014) Some properties of topological pressure on cel-

lular automata. J Algebra Combinatorics Discrete Struct Appl 
1(1):41–51. https:// dergi park. org. tr/ tr/ downl oad/ artic le- file/ 
148543

Dargahi B (2012) Reservoir sedimentation. In: Bengtsson L, Herschy 
RW, Fairbridge RW (eds) Encyclopedia of lakes and reservoirs. 
Springer, pp 628–649. https:// doi. org/ 10. 1007/ 978-1- 4020- 4410-
6_ 215

Dutta S (2016) Soil erosion, sediment yield and sedimentation of res-
ervoir: a review. Model Earth Syst Environ 2:123. https:// doi. org/ 
10. 1007/ s40808- 016- 0182-y

EL-Hattab AI (2014) Single beam bathymetric data modelling tech-
niques for accurate maintenance dredging. Egypt J Remote Sens 
Space Sci 17(2):189–195. https:// doi. org/ 10. 1016/j. ejrs. 2014. 05. 
003

Eriksson M, Siska PP (2000) Understanding Anisotropy computations. 
Math Geol 32:683–700

Estigoni M, Matos A, Mauad F (2014) Assessment of the accuracy 
of different standard methods for determining reservoir capacity 
and sedimentation. J Soils Sediments 14:1224–1234. https:// link. 
sprin ger. com/ artic le/ 10. 1007/ s11368- 013- 0816-x. Accessed 11 
Dec 2020

Gagniuc PA (2017) Markov Chains: from theory to implementation 
and experimentation. Wiley

Girish G, Ashitha MK, Jayakumar KV (2014) Sedimentation assess-
ment in a multipurpose reservoir in Central Kerala, India. 
Environ Earth Sci 72:4441–4449. https:// doi. org/ 10. 1007/ 
s12665- 014- 3344-0

Hansen JT, Boss SK (2000) Bathymetry and empirical modelling of 
sedimentation in the prairie creek sub-basin of beaver lake, North-
west Arkansas. Geol Soc Am Abstracts Programs 32(3):A13

Hernandez-Stefanoni JL, Ponce-Hernandez R (2006) Mapping the spa-
tial variability of plant diversity in a tropical forest: comparison of 
spatial interpolation methods. Environ Monit Assess 117:307–334

Horton RE (1945) Erosional development of streams and their drainage 
basins: hydrophysical approach to quantitative morphology. Bull 
Geol Soc Am 56:275–370. https:// pdodds. w3. uvm. edu/ resea rch/ 
papers/ others/ 1945/ horto n1945a. pdf

Hou XY, Chang B, Yu XF (2004) Land use change in Hexi corri-
dor based on CA–Markov methods. Transactions of the CSAE 
20(5):286–29

Hu K, Li B, Lu Y, Zhang F (2004) Comparison of various spatial 
interpolation methods for non-stationary regional soil mercury 
content. Environ Sci 25(3):132–137

Ibrahim PO, Sternberg H (2021) Bathymetric survey for enhancing the 
volumetric capacity of Tagwai Dam in Nigeria via leapfrogging 
Approach. J Geomatics 1(2):246–257. https:// doi. org/ 10. 3390/ 
geoma tics1 020014

International Sediment Initiative (ISI-2011) (2011). https:// unesd oc. 
unesco. org/ ark:/ 48223/ pf000 02128 85. Accessed 14 Sept 2021

Isaaks EH, Srivastava RM (1989) Applied Geostatistics. Oxford Uni-
versity Press, New York, p 561

Jamal J, Arsanjani WK, Ali JM (2011) Tracking dynamic land-use 
change using spatially explicit Markov Chain based on cellular 
automata: the case of Tehran. Int J Image Data Fusion 2(4):329–
345. https:// doi. org/ 10. 1080/ 19479 832. 2011. 605397

Jiang G, Zhang F, Kong X (2009) Determining conversion direction of 
rural residential land consolidation in Beijing mountainous areas. 
Nongye Gongcheng Xuebao/Transactions of the Chinese Society 
of Agricultural Engineering 25:214–21

Kumar KS, Kumari KP, Bhaskar PU (2016) Application of Markov 
chain & cellular automata based model for prediction of Urban 
transitions. International Conference on Electrical, Electronics, 
and Optimization Techniques (ICEEOT), pp 4007–4012. https:// 
doi. org/ 10. 1109/ ICEEOT. 2016. 77554 66

Lingling S, Chao Z, Jianyu Y, Dehai Z, Wenju Y (2011) Simulation 
of land use spatial pattern of towns and villages based on CA–
Markov model. Math Comput Model 54(3–4):938–943. https:// 
doi. org/ 10. 1016/j. mcm. 2010. 11. 019

Martin JT (2015) Modeling sediment movement in reservoirs. Prepared 
by the USSD committee on hydraulics of Dams, subcommittee on 
reservoir sedimentation ISBN 978-1-884575-70-9

Merwade VM, Maidment DR, Goff JA (2003) Anisotropic consid-
erations while interpolating river channel bathymetry. J Hydrol 
331:731–741

Mohammad H, Assefa MM, Hector RF (2018) Erosion and sediment 
transport modelling in shallow waters: a review on approaches, 
models and applications. Int J Environ Res Public Health 15:518. 
https:// doi. org/ 10. 3390/ ijerp h1503 0518

Morris GL, Fan J (1998) Reservoir sedimentation handbook. McGraw-
Hill, Tata

Nalder IA, Wein RW (1998) Spatial interpolation of climatic normals: 
test of a new method in the Canadian boreal forest. Agric For 
Meteorol 92:211–225

Nurmiaty A, Sumbangan B, Samsu A (2014) GIS-Based modelling 
of land use dynamics using cellular automata and markov chain. 
J Environ Earth Sci 4(4). https:// core. ac. uk/ downl oad/ pdf/ 23466 
3312. pdf. Accessed 15 Aug 2021

Odhiambo BK, Boss SK (2004) Integrated echo sounder, GPS and GIS 
for reservoir sedimentation studies examples from two Arkansas 
Lakes. J Am Water Resour Assoc Res 40(4):981–999

Palmate SS, Pandey A, Mishra SK (2017) Modelling spatiotemporal 
land dynamics for a trans-boundary river basin using integrated 
Cellular Automata and Markov Chain approach. Appl Geogr 
82:11–23. https:// doi. org/ 10. 1016/j. apgeog. 2017. 03. 001

Palmate SS, Wagner P, Fohrer N, Pandey A (2022) Assessment of 
uncertainties in modelling land use change with an integrated cel-
lular automata–Markov Chain Model, vol 27. Environmental Mod-
eling & Assessment. https:// doi. org/ 10. 1007/ s10666- 021- 09804-3

Pankin MD (2017) Markov chain models: Theoretical background. 
Archived from the original. https:// web. archi ve. org/ web/ 20071 
20912 2054/, https:// www. pankin. com/ markov/ theory. htm. 
Accessed 26 Mar 2021

Peterson LK, Bergen KM, Brown DG, Vashchuk L, Blam Y (2009) 
Forested land-cover patterns and trends over changing forest 
management eras in the Siberian Baikal region. For Ecol Manag 
257(3):911–22. https:// doi. org/ 10. 1016/j. foreco. 2008. 10. 037

Psilovikos A, Margoni S (2010) An empirical model of sediment dep-
osition processes in Lake Kerkini, Central Macedonia Greece. 

https://doi.org/10.3390/rs12203402
http://www.complexcity.info/files/2011/07/batty-ceus-1999.pdf
http://www.complexcity.info/files/2011/07/batty-ceus-1999.pdf
https://doi.org/10.4236/ojms.2015.51002
https://doi.org/10.4236/ojms.2015.51002
https://dergipark.org.tr/tr/download/article-file/148543
https://dergipark.org.tr/tr/download/article-file/148543
https://doi.org/10.1007/978-1-4020-4410-6_215
https://doi.org/10.1007/978-1-4020-4410-6_215
https://doi.org/10.1007/s40808-016-0182-y
https://doi.org/10.1007/s40808-016-0182-y
https://doi.org/10.1016/j.ejrs.2014.05.003
https://doi.org/10.1016/j.ejrs.2014.05.003
https://link.springer.com/article/10.1007/s11368-013-0816-x
https://link.springer.com/article/10.1007/s11368-013-0816-x
https://doi.org/10.1007/s12665-014-3344-0
https://doi.org/10.1007/s12665-014-3344-0
https://pdodds.w3.uvm.edu/research/papers/others/1945/horton1945a.pdf
https://pdodds.w3.uvm.edu/research/papers/others/1945/horton1945a.pdf
https://doi.org/10.3390/geomatics1020014
https://doi.org/10.3390/geomatics1020014
https://unesdoc.unesco.org/ark:/48223/pf0000212885
https://unesdoc.unesco.org/ark:/48223/pf0000212885
https://doi.org/10.1080/19479832.2011.605397
https://doi.org/10.1109/ICEEOT.2016.7755466
https://doi.org/10.1109/ICEEOT.2016.7755466
https://doi.org/10.1016/j.mcm.2010.11.019
https://doi.org/10.1016/j.mcm.2010.11.019
https://doi.org/10.3390/ijerph15030518
https://core.ac.uk/download/pdf/234663312.pdf
https://core.ac.uk/download/pdf/234663312.pdf
https://doi.org/10.1016/j.apgeog.2017.03.001
https://doi.org/10.1007/s10666-021-09804-3
https://web.archive.org/web/20071209122054
https://web.archive.org/web/20071209122054
https://www.pankin.com/markov/theory.htm
https://doi.org/10.1016/j.foreco.2008.10.037


528 Applied Geomatics (2024) 16:515–528

Environ Monit Assess 164:573–592. https:// doi. org/ 10. 1007/ 
s10661- 009- 0914-9

Samat N (2009) Integrating GIS and CA-Markov model in evaluating 
urban spatial growth. Malaysian J Environ Manage 10(1):83–97. 
https:// core. ac. uk/ downl oad/ pdf/ 11491 356. pdf

Serfozo R (2009) Basics of applied stochastic processes: probability 
and its applications. https:// doi. org/ 10. 1007/ 978-3- 540- 89332-5

Tadese S, Soromessa T, Bekele T (2021) Analysis of the current and 
future prediction of land use/land cover change using remote 
sensing and the CA-Markov Model in Majang Forest Biosphere 
Reserves of Gambella, Southwestern Ethiopia. Sci World J 2021. 
https:// doi. org/ 10. 1155/ 2021/ 66850 45

USACE (2002) https:// www. publi catio ns. usace. army. mil/ USACE- 
Publi catio ns/ Engin eerMa nuals/ u4354 4q/ 48796 4726F 67726 17068 
6963/. Accessed 14 Jan 2021

Vahid R, Jude HK, Frank deN, Mark EJ, Edward AM, Donald HH, 
Christian G, Paul ML, Scott WC, Ryan AC, Adam JB (2018) 
Examining storage capacity loss and sedimentation rate of large 
reservoirs in the central U.S. Great Plains. Water 10:190. https:// 
doi. org/ 10. 3390/ w1002 0190

Veli I, Ibrahim MO, Reha MA, Serdar E, Murat U, Yunus K, Serdar 
DZS (2019) Determination of reservoir sedimentation with 

Bathymetric Survey: a case study of Obruk Dam Lake. Fresenius 
Environ Bull 28(3):2305–2313

Vicente-Serrano SM, Saz-Sánchez MA, Cuadrat JM (2003) Compara-
tive analysis of interpolation methods in the middle Ebro Valley 
(Spain): application to annual precipitation and temperature. Clim 
Res 24:161–180

Xavier L (2010) An introduction to underwater acoustics: principles 
and applications second edition. Springer

Yang G, Liu Y, Wu Z (2007) Analysis and simulation of land-use tem-
poral and spatial pattern based on CA-Markov model. Geomatics 
and Information Science of Wuhan University 32:414–18

Zouiten M, Jamal C, Ibtissam N (2021) Predicting Land Use changes 
within the Tazekka Park and its Borders via a Cellular Automata-
Markov modelling of satellite images. J Southwest Jiaotong Univ 
56:2. https:// doi. org/ 10. 35741/ issn. 0258- 2724. 56.2. 43

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s10661-009-0914-9
https://doi.org/10.1007/s10661-009-0914-9
https://core.ac.uk/download/pdf/11491356.pdf
https://doi.org/10.1007/978-3-540-89332-5
https://doi.org/10.1155/2021/6685045
https://www.publications.usace.army.mil/USACE-Publications/EngineerManuals/u43544q/487964726F67726170686963/
https://www.publications.usace.army.mil/USACE-Publications/EngineerManuals/u43544q/487964726F67726170686963/
https://www.publications.usace.army.mil/USACE-Publications/EngineerManuals/u43544q/487964726F67726170686963/
https://doi.org/10.3390/w10020190
https://doi.org/10.3390/w10020190
https://doi.org/10.35741/issn.0258-2724.56.2.43

	Estimating future bathymetric surface of Kainji Reservoir using Markov Chains and Cellular Automata algorithms
	Abstract
	Introduction
	Study area

	Materials and methods
	Data cross-validation
	Implementation of Markov Chains – Cellular Automata
	Initial dataset and preprocessing
	Cellular automata application
	Markov chains procedures
	Evaluation of forecasted bathymetric surface

	Results and analysis
	Markov chains and Cellular Automata output
	Quality and accuracy evaluation of forecasted surfaces

	Conclusion
	Acknowledgements 
	References


