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Observations indicate regionally
misleading wetting and drying trends
in CMIP6

Check for updates

Laura Jensen 1,2 , Helena Gerdener3, Annette Eicker 2, Jürgen Kusche3 & Stephanie Fiedler 4,5,6

Weevaluate trends in terrestrial water storage over 1950–2100 inCMIP6 climatemodels against a new
global reanalysis from assimilating GRACE and GRACE-FO satellite observations into a hydrological
model. To account for different timescales in our analysis, we select regions in which the influence of
interannual variability is relatively small and observed trends are assumed to be representative of the
development over longer periods. Our results reveal distinct biases in drying and wetting trends in
CMIP6 models for several world regions. Specifically, we see high model consensus for drying in the
Amazon, which disagrees with the observedwetting. Other regions show a high consensus of models
and observations suggesting qualitatively correctly simulated trends, e.g., for the Mediterranean and
parts of Central Africa. A highmodel agreementmight therefore falsely indicate a robust trend in water
storage if it is not assessed in light of the observed developments. This underlines the potential use of
maintaining an adequate observational capacity of water storage for climate change assessments.

Global warming and the intensification of the water cycle are expected to
cause persistent drying and wetting patterns1,2, with consequences for water
resources, food, health, transport, tourism, and other sectors. Physical
arguments entail that the precipitation− evapotranspiration deficit P− E
will be enhanced, owing to an increased water-holding capacity of the
atmosphere.This explains only awet getswetter (WGW)responseover land
since, assuming equilibrium state, the discharge Q cannot exceed P− E.
However,WGWhas been observed for a fraction (10.8%) of the global land
only3. Simulations suggest bothWGW and dry gets drier (DGD) emerging
over land1 and oceans4 at multidecadal timescales, inspiring the term
WGWDGD, although recent observational studies disagree3,5–7.

Global coupled Earth System Models (ESMs) are used for simulating
the future emergence or amplification of wetting and drying under socio-
economic scenarios, and for attributing to potential drivers. It is thus rele-
vant in how far such patterns can be confirmed with observations. Wetting
and drying can be understood as trends in the mean or occurrence of more
frequent andheavier extremes, andbothmust be considered sincee.g.,DGD
implies higher-impact droughts. However, constructing observational
records is challenging due to heterogeneity of the observing system in terms
of coverage and sampling, and the stochastic nature of the climate system.
The joint presence of trends, variability, and extremes causes difficulties in
observational studies with limited temporal coverage6.

Another question is what observable one should consider for quanti-
fying wetting and drying8. This was originally studied in terms of P− E,
while recently othermetrics have evolved8. In summary, such studies (based
onmodels or observations directly) showed robustWGWDGDpatterns for
few areas only, whereas overall a more complex picture of wetting and
drying than previously suggested1 was found3,5,8,9. These studies assume that
change in water storage dS/dt is negligible, i.e., P− E balanced by Q.
However, since the Gravity Recovery and Climate Experiment (GRACE)10

satellites beganmeasuring in 2002,we know that total water storage changes
(dS/dt) occur at all spatial and temporal scales, within the duration of the
data record at least11. Runoff and discharge depend on land surface andmay
not balance P− E; as a result, P− E−Q represents an indicator of land
water storage changes due to natural droughts or pluvials as well as direct
and indirect anthropogenic actions12, and intensification causes departure
from the equilibriumP− E−Q=0 even at the global scale13,14. Considering
only the departure, including activities like groundwater pumping, irriga-
tion, and reservoir management (I), the effects of which are actually
observable with GRACE15–18, the evolving balance can be viewed as ΔP−
ΔE−ΔQ− I = dS/dt. This means TWSA is linked to (i) modifications of
land conditions and resulting climate forcing (ΔP−ΔE), (ii) direct and
indirect human impacts (I + ΔE), and (iii) hydrological response of the
system (ΔQ + ΔE)6,19,20. Along this line GRACE TWSA trends can be
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attributed to ‘climate change impact’, ‘direct human impact’, and ‘natural
variability’21.

TWSAasmeasured byGRACE refer to the entire land system including
changes in all water storage compartments (soil moisture, surface water,
snow, groundwater). Long-term changes had been difficult to assess from
modeling22, but we nowhave twenty years observations fromGRACE and its
follower GRACE-FO23–25. Previous studies compared GRACE trends to
atmospheric reanalyses or models forced with reanalyses, finding disagree-
ment at interannual timescales, and suggesting opposite behavior (water net
gainor loss) inmajor catchments compared toGRACE6,22. In acomparisonof
GRACE and discharge data to reanalyses, P− E offsets were attributed to
precipitation biases26. Recently, consistent biases in seasonal TWSA derived
from ESM ensembles compared to GRACE were found, suggesting that
many models overestimate precipitation, with incorrect representation of
runoff as another contributing factor27,28. Another study7 compares GRACE
reconstructions, hydrological models, and ESMs, quantifying drying/wetting
via trends in storage-based hydrological droughts29,30.

On the downside, the GRACE record has gaps due to instrument
problems and since GRACE-FO could not be launched in time for con-
tinuation. The data have an effective resolution of 300 km and this is not
expected to significantly change even beyond GRACE-FO31. Also, the data
contain geophysical signals not related to water masses (e.g., earthquakes
and glacial isostatic adjustment (GIA))24 as well as anthropogenic impacts
(e.g., groundwater withdrawal) not considered in climatemodels. They also
include reservoir storage changes which are not well represented in
hydrological models, but for large reservoirs this can be accounted for32.

State-of-the-art ESMs, for example those taking part in the Coupled
Model Intercomparison Project Phase 6 (CMIP6)33, are indispensable tools
for gaining future climate information but are of course far from perfect.
Besides simplified process representations34,35, mainly inaccurate para-
meterization has been shown to be a reason for limitations and uncertainties
in ESMs, which can result in misleading conclusions about feedback
cycles36,37.Also soilmoisture, themainwater storage-relatedvariable inESMs,
is highly dependent on complex soil and vegetation characteristics, which are
often not well-known on a global scale. Simplified assumptions on processes
andparameters affecting soilmoisture estimatesmay also feedback into land-
atmosphere interactions, further amplifying uncertainties38–40.

In a previous study41 we derived hot spots of wetting and drying in land
water storage from aCMIP542 ensemble and a 14-year GRACE record, while
masking regions where geophysical or anthropogenic processes could not be
ruled out. High-consensus regions of 250-year (1850–2100) modeled total
water storage (mTWS) trendswere identified.However,fitted linear trends in
the short observational recordweredominatedby interannual variability, and
we suggest this to causemismatchbetweenGRACEandmodel trends. In fact,
this study revealed that the chanceof amatchbetween14- and250-year trend
isonly53%whenaveragedover theglobe.However,we emphasize at regional
scales there are regionswhere variability is less pronouncedand the signof the
trend much less sensitive with respect to the time series length.

Given these limitations, we revisit whether modern climate models
reproduce wetting/drying patterns from observations. We use CMIP6 data
and extended observation data until 2019/12 (instead of 2016/08) to perform
a more comprehensive identification of possible long-term climate trends in
land water storage. In addition to identifying regions of large inter-model
consensus, we determine regions of temporal consensus between trends
computed over different periods, i.e., regions with temporally consistent
trends over longer time periods. This step is motivated by the natural
variability in water storage that is not forced by anthropogenic perturbations.
We assess where long-term model trends can be expected to meet (shorter)
observational trends. Further, we partition the CMIP6 ensemble intomodels
with deep and shallow soil layers. Instead of using original GRACE/-FO
observations,wemakeuse of anewreanalysis product forGlobal LandWater
Storage (GLWS) data43 which was derived via assimilation44 of GRACE and
GRACE-FO TWSA data into the offline WaterGAP45 hydrology model.
GLWS provides monthly TWSA data that is spatio-temporal consistent and
at a higher spatial resolution compared to GRACE/-FO. It does not suffer

from data gaps, and is less reliant on the GRACE instrument data quality.
More realistic TWS trends can be derived fromGLWS, uncertainty estimates
aremore comprehensive as compared to earlier assimilations43,46, and thiswill
enable better comparisons to climate model simulations. Furthermore,
GLWS provides estimates for the individual storages, namely soil moisture,
surface water, snow, and groundwater, which the satellite product alone does
not separate, and which may pave the way for more comprehensive inves-
tigations of climate model deficiencies.

Results
Consensus of mTWS trends in CMIP6 model output
We investigate (1) the consensus among individual models of the CMIP6
ensemble, regarding the direction (sign) of long-term trends and (2) the
agreement of short-term with long-term trends. The rescaled multi-model
median (MMMed) mTWS trend from 17 CMIP6 ESMs over 1950–2100 is
displayed in Fig. 1a, cf. Methods section. mTWS trends of up to 4.3 mm/yr
and down to−23.6 mm/yr occur globally, with drying prevailing (58.6% of
the land area excluding Greenland, Svalbard, and Antarctica) over wetting
trends (41.4%). The model spread of trends is quite large (Fig. 1b). There-
fore, to identify regions with good agreement among models we derive the
model consensus (see “Methods”), i.e., the number of models agreeing on
the trend direction (Fig. 1c) for each grid cell.We restrict further analyses to
high-consensus regions, i.e., where at least 75% of models agree on the sign,
which cover 48.0% of the land (red and blue color in Fig. 1c). In the
remaining 52.0% there is strong disagreement among the models on trend
direction (gray color in Fig. 1c). High consensus on long-term drying can,
e.g., be identified in the Amazon, around the Mediterranean Sea, the SW
U.S., and southernAfrica.Models agree on long-termwettingparticularly in
central Africa and the Sahel, India, and parts of Central Asia.

We investigate the agreement of short-term trends for various time
spanswith the long-term(150-years) trendandderive regions that represent
high temporal consensus (see “Methods”). As expected, with increasing
short-term period the average agreement becomes higher: Fig. 2a–c shows
the percentage of trend estimates frommoving 17-, 30-, and 50-years slices
thatmatch the 150-year trend. However, there appears also a distinct spatial
pattern of less or more than average agreement; quite robust among dif-
ferent time periods. Grid cells with higher-than-average agreement with the
150-year trend for all periods (17, 20, 25,..., 50 years) appear red in Fig. 2d:
these are regions of CMIP6 high temporal consensus mTWS trends (27.6%
of the land), which suggests the influence of interannual variations is low.
We therefore assume that in these regions we can safely compare long-term
model trends with observations. High temporal consensus often corre-
sponds to high model consensus (cf. Fig. 2d and Fig. 1c).

Observation-based trends from GRACE/-FO and GRACE/-FO
data assimilation
We estimate trends for both GRACE/-FO and GLWS43 (referred to as
GRACE/DA in the following) data (see “Methods”). Figure 3a shows linear
TWS trends for 2003–2019 in the original GRACE/-FO data, with large
negative trends with−15 mm/yr or more, e.g., in East Brazil, Caspian Sea,
parts of India and glacier-rich Alaska, Patagonia, and Canada Northern
territories. In previous studies21,47–51, these regions were identified to match
with droughts, decreasing water surface levels, groundwater depletion, and
glaciermelting. Large positive trends can be found in Central Canada,West
and Central Africa, and in South Brazil/North Argentina, which were all
identified as affected by increasing precipitation, e.g., recovery after a dry
period at the beginning of the observation period21.

TWS trends for the same period (2003–2019) but from GRACE/DA
are shown in Fig. 3b. Regions of pronounced drying and wetting coincide
with the original GRACE/-FO data, with the main difference being spatial
resolution. For example, large negative GRACE/-FO trends in Patagonia
appear more focused on actual glacier locations in GRACE/DA. Due to the
higher spatial resolution, we use GRACE/DA in what follows for compar-
ison to CMIP6. However, we aggregate GRACE/DA and ESM output to 2∘

since the resolution of most ESMs is currently not finer.
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Agreement of high consensus mTWS trends with assimilated
TWS trends
Observed GRACE/DA trends (Fig. 3b) are compared to CMIP6 MMMed
mTWS trend estimates. We focus on regions in which the model ensemble
shows strong agreement in trend sign and estimates appear robust over
different time spans. For this purpose, Fig. 4a merges regions of (1) high

model consensus (Fig. 1c) with regions having (2) a high temporal con-
sensus (Fig. 2d).All coloredgrid cells inFig. 4a exhibit highmodel consensus
and cells lacking high temporal consensus are shaded in gray. The map is
then compared to the sign of the observed trends (Fig. 3b), with dark colors
indicating agreement of modeled and observed trend direction and light
colors for disagreement.

Fig. 2 | Temporal consensus. a–cAgreement of trend estimates derived from (overlapping) short-term time slices (derived from 17, 30, and 50 years of model output) with
the 150-years model trend. d Grid cells with higher-than-average agreement with the 150-year trend for all periods (17, 20, 25, 30, 35, 40, 45, 50 years).

Fig. 1 | Analysis of mTWS trends in the CMIP6 ensemble. a Rescaled weighted
multi-model median (MMMed) trend (1950–2100) in each grid cell, stippling
indicates non-significant trends; b standard deviation of trend values; c the model

consensus showing the number of models agreeing on the direction of the drying
(red) and wetting (blue) trend.
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For clarity, in Fig. 4b–e we plot different parts of Fig. 4a, regarding
different combinations of model and temporal consensus and their con-
sistencywith observational trends.We introduce the notationM+/−T+/−O+/−,
where M stands for model consensus, T for temporal consensus, and O for
observations, with high (+) or low (−) consensus, and identical (+) or
opposite (−) sign of observational trend. For example, M+T+O+ denotes
regions in which models exhibit high model (M+) and high temporal con-
sensus (T+) and agree with observations (O+) (Fig. 4b). Complementary to
regions of high model consensus (M+, Fig. 4a, b–e) are regions of lowmodel
consensus (M−, Fig. 4f–i). In regions with low model and low temporal
consensus (M−T−, Fig. 4h and i), the fit to observations is irrelevant as there
appears no distinct model agreement for any time period. In the subsequent
section, we discuss selected regions from Fig. 4b to i with respect to possible
causes for (dis)agreement.

Globally, highmodel consensus areas (M+)makeupabout 48.0%of the
land area, and in 44.5% of high model-consensus areas also the temporal
consensus is high (M+T+). In M+T+ regions, the model trend is confirmed
byGRACE/DA trends in about 63.0% of the area (M+T+O+). In contrast, in
37.0% of the land the GRACE/DA trend shows the opposite sign
(M+T+O−).When temporal consensus is disregarded, the areaof agreement
between model and GRACE/DA trend is only about 55.2% (M+T+/−O+),
which stresses the importance of consistency of trends over different time
periods.

Disagreement between the majority of ESMs and observations may be
caused by limitations in soil parameterization, resulting in deficiencies in
evaporation and soil–groundwater interactions52,53. One parameter influ-
encing simulated soil moisture is the total soil depth of the ESMs. We
partition the CMIP6 ensemble into two subsets, one containing all ESMs
utilizing a land surface model with a thickness of all soil layers of >4.6m
(deep soil), and one with ≤4.6 m (shallow soil). We repeat the trend com-
putation and derive the overlay map of model/temporal consensus and
observational trend for the subsets (Fig. 5). Trend maps (Fig. 5a, b) are
similar regarding the spatial pattern but themagnitude of the trends is larger
for the deep soil model ensemble in many regions. We explain this by a
larger water-holding capacity in models with deep soil, thus increasing
storage times and enhancing the simulation of long-term trends. The M+

region is smaller for deep soil than for shallow soil models (45.8% vs. 53.9%,
Fig. 5c, d), which may indicate a larger complexity (and thus discrepancy)
for models with deep soil. The extent of model-observation agreement
(M+T+O+) is very similar for both model subsets (62.1% vs. 61.4%). We
conclude that soil moisture representation in ESMs is complex54, with soil
depth being only one contributing factor, and that a deep soil para-
meterization may be more advantageous for simulating realistic intra- and
interannual storage variability than for long-term trends. However, the two
subsets of models are rather small (9 ESMs with shallow and 8 ESMs with
deep soil), which somewhat limits the robustness of this comparison. Fur-
thermore, the threshold of 4.6 m (median soil depth of all models) for the
partitioning is not physically based.

Analysis of selected regions
The comparison of TWSA sign fromCMIP6 ESMs andGRACE/DA (Fig.
4a) reveals distinct geographical regions, some of which are discussed in
the following because they either (1) show good agreement between
models and observation in high consensus regions (M+T+O+), (2) exhibit
distinct disagreement despite high model consensus (M+T+O−), or (3)
show clear mTWS trend, but low consensus either across models and/or
regarding temporal consistency of modeled trends (M+T−O+, M−T+O+,
or M−T−O+/−). In the upper panel of Fig. 6 regions with different +/−
combinations of M-T-O are outlined. In the lower panel, the mTWS
trends for all 17 ESMs are shown spatially averaged over each region. The
assignment of the trend values to the regions is possible via the colors at
the top of the lower panel.

High model and temporal consensus with GRACE/DA agreement
(M+T+O+). In M+T+O+ regions (Fig. 4b), a majority of ESMs agree on
wetting/drying trends, short-term trends are supposed to be repre-
sentative of the long-term trend, and observations support the direction
of ESM trends. Thus, we suggest these regions are suspect to climate-
related wetting or drying. However, agreement between model and
observational trends still has to be interpreted with care, as there are
processes not included in ESMs but present in observations. For example,
the negative mass trend in Alaska is mainly due to glacier melting, which
is not yet considered in ESMs, rendering a comparison in this region
difficult as long as this process cannot be properly separated from the
observational record.

Mediterranean region and Turkey. ESMs exhibit drying with very strong
model consensus (region average 97.3%), and also high temporal consensus.
There is a relatively small model spread in the mean trend (Fig. 6), the
ensemble mean trend is negative for all models, and drying is also prevalent
in GRACE/DA. This regionwas already identified as a hot spot in CMIP541.
Increasing drying conditions are confirmed by several other studies. For
example, in the historical period (1948–2005), Greve et al.3 found South
Europe asWGD, except Spain asDGD, but no significant change inTurkey.
In a follow-up study, Greve et al.8 suggest South Europe including Turkey as
WGD and TGD (transitional, no significant attribution of current state),
under RCP8.5 and 2100–2080 vs. 2000–1980. The driver of the drying is
probably a combination of decreasing precipitation (in the western) and
increasing evapotranspirationdue to increasing temperatures (in the eastern
part), which is seen for 1980–2014 in observations from the Climatic
ResearchUnit (CRU)55, resulting inP− E being significantly negative8. As a
caveat, several dams have been built in the Güneydoğu Anadolu Projesi
(GAP) since about 1990; this includes the large Ataturk and Karakaya
reservoirs and Turkey’s biggest lake. Abdelmohsen et al.18 show how GAP
river regulation effectively buffers droughts and floodings at a scale visible
from GRACE/-FO. Therefore, we cannot expect a perfect agreement with
models.

Fig. 3 | Observation-based linear TWS trends.Trends computed over 2003–2019 for a the original GRACE/-FO data that were used as input for the data assimilation, b the
GRACE/DA product.
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Central Africa. In this vast region, includingCongo and LakeVictoria basins,
parts of the Niger, and the White Nile, ESMs exhibit wetting with strong
model (region average 85.9%) and high temporal consensus, and this is also
projected in the near-termunder all SSPs56. However, there appears relatively

large model spread (Fig. 6). The wetting trend is supported by GRACE/DA.
This region was not yet identified as a hot spot in CMIP541 due to less model
consensus and insufficient support by GRACE/-FO observations. Pro-
nounced overall wetting in GRACE/DA can be traced to changes in

M+ T+ O+

M+ T- O+ M+ T- O-

M+ T+ O-

M- T+ O+

M- T- O+

M- T+ O-

M- T- O-

M = model consensus, T = temporal consensus, O = observations, +/- = high/low (fit/no fit)

(b)

(e)

(f)

(a)

(d)

(c)

(g)

(h) (i)

Fig. 4 | Agreement of high consensus CMIP6 mTWS trends with observation-
based trends. a Regions of highmodel consensus of 17 CMIP6models regarding the
direction of mTWS trends, distinguished into high/low temporal consensus and fit/
no fit to GRACE/DA TWS trends. See text for explanation of legend notation.

b–e Different subsets of (a), fulfilling different criteria regarding high/low temporal
consensus and fit/no fit to observations. f–i Regions of low model consensus, and
different combinations of high/low temporal consensus and fit/no fit to observations.
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precipitation regimes since 2015. Recent assessments therefore conflict with
earlier studies, which found Central Africa as WGD3 and suggested that
P− E changes play only a minor role and WGWDGD thus being insignif-
icant in this region8.

Congo has a bimodal rainfall distribution with large year-to-year
variability, precipitation and water storage are difficult to simulate due to
large land surface feedbacks, deep soils57 poorly represented in models, and
fewmeasurements allowingmodel calibration. The hydrologicalmodel that
underlies GRACE/DA exhibits little interannual variations and overall
wetting/drying of a fewmm/yr only.While Rodell et al.21 ascribe decreasing
storage in GRACE data 2002–2016 to precipitation decrease, this reversed
since then, with record precipitation in 2019. In GRACE/DA this is
attributed to a sudden increase in soil wetness since 2018, only partly
compensated by ongoing groundwater decrease. In addition, a sustained
trend of several cm/yr in basin-averaged surface storage accumulation since
2006 contributes to the wetting trend, whereas groundwater storage in
GRACE/DA shows little net effect.

The Niger region is characterized by unimodal rainfall distribution,
with the inner Niger Delta turning into a floodplain every year, another
modeling challenge.GRACE,GRACE/DA, and the underlyinghydrological
model consistently suggestwetting of several cm/yr,mainly due to sustained
recovery prior to 2012 in both groundwater and surface storages.

Observed TWSA in the White Nile and Lake Victoria basins are
attributable to reservoir construction and managed lake levels, as several
authors demonstrated. In fact, GRACE/DA reveals significant (few cm
basin-averaged for Lake Victoria) interannual variability in surface and
groundwater storages, but little trend over the entire time frame. These
effects explain a misfit of observations to models, but when averaged over
large regions they are dwarfed by the large precipitation signal in theCongo.

Highmodel and temporal consensuswithGRACE/DAdisagreement
(M+T+O−). In M+T+O− regions (Fig. 4c) a majority of ESMs agree on
trend direction, and short-term trends are consistent with centennial
trends, but observations have the opposite direction. The mismatch can

either hint to ESM deficiencies or to remaining influence of interannual
variations. Such regions are particularly interesting because high CMIP6
model consensus with low spread suggests confidence, but this can be
misleading and poses the risk of inadequate measures for climate change
action.

Amazon/Orinoco region. Amazon and Orinoco show particularly strong
CMIP6model consensus (region average 93.4%) ondrying, with low spread
(Fig. 6), but in disagreement with GRACE/DA. Models also exhibit a mean
underestimation of precipitation34. Again, model precipitation biases are
pronounced duringmonsoon season and persist since CMIP3, but reduced
in recent CMIP phases34. Similarly, regional drying was seen across CMIP5,
butwetting inGRACE41. In Jensen et al.41 recovery fromdrought in the early
GRACE period was suggested as a possible reason for the wetting trend.
While such multiannual variations may still overlay long-term observa-
tional trends, their influence is decreasing with increasing duration, and
there are also indications for aWGWregime in this area, even though rather
localized, and possibly not statistically significant yet3,8.

Mismatch can result from systematic model deficiencies. The drying
trend in CMIP6 mTWS is most likely driven by a negative trend in pre-
cipitation, but CMIP6 underestimates precipitation across the Amazon
measured against observational products (CRU,TRMM),which is at least in
parts associated with precipitation biases during El Niño events with little
improvements across CMIP phases34. In addition, missing groundwater in
CMIP6 models may result in artificial drying trends. It was shown that
considering groundwater buffering in CMIP5 models causes a shift in the
evapotranspiration regime resulting in less drying trends in the Amazon58.
Soil depth in this region is heterogeneous, butmostly deep57. The hypothesis
thatmodel deficits cause drying is further supportedwhen considering only
deep-soil models. For models with deeper soils, the area of high temporal
consensus in theAmazon andOrinoco region ismuch smaller compared to
the entire CMIP6 models ensemble (Fig. 5c), which means that some
models with a deep soil indeed simulate the observed wetting at least over
shorter time periods.

Fig. 5 | Partitioning the model ensemble into deep and shallow soil ESMs.Above:
Rescaled weighted mTWS MMMed trend (1950–2100) for models with a total
thickness of all soil layers of a >4.6 m (deep soil; 8 models), and b ≤4.6 m (shallow

soil; 9 models). Below: Regions of high model consensus regarding the direction of
mTWS trends, distinguished into high/low temporal consensus and fit/no fit to
GRACE/DA TWS trends for c deep soil models, and d shallow soil models.
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Labrador Peninsula. Here the average model consensus is high with 83.5%
agreement ondrying, yetwith large spread (Fig. 6) and in disagreementwith
GRACE/DA. InCMIP5 thiswas also a high consensus region41. A reason for
wetting trend may be residual GIA trends in GRACE/DA; it was shown
recently that in this region the choice of theGIA correction can significantly
affect the observational trend59.However, despite this, this region is assumed
to exhibitWGW regime with P− E being significantly positive8. Regarding
the model trends, no clear precipitation bias for CMIP6 is identified for the
Labrador Peninsula relative to CRU, but there is observational evidence for
CMIP6 models wrongly simulating decreasing snow depth trends60.

Furthermore, when considering only CMIP6models with deep soil, there is
no agreement on drying conditions in the northern part of the Peninsula
(Fig. 5c), whichmeans that the observedwetting can be reproducedby some
deep soil models and thus strengthens the hypothesis that deep-soil
representation aids in simulation of TWS dynamics.

Highmodel but low temporal consensusandGRACE/DAagreement
(M+T−O+). In M+T−O+ regions (Fig. 4d) a majority of ESMs agree on
trend direction, but low temporal consensus indicates that the observa-
tions (agreeing with the direction of the models) may not be

Fig. 6 | SpatialmeanmTWS trend over selected regions for 17CMIP6models.Different colors in themap denote different cases ofmodel/temporal consensus andfit/nofit
to observations, as indicated in the lower panel. Models marked with an * in the legend denote models with deep soil (>4.6 m) in the land surface model.
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representative for the long-term trend. In such regions, interannual
variations overlaying long-term climate signals may play a particularly
strong role and agreement of models and GRACE/DA might only be a
coincidence.

Haihe/Yellow river region (China). Models show an average consensus of
83.0% on wetting trend, with small spread (with one exception), and
GRACE/DA also hints at wetting. However, there is no high temporal
consensus, which suggests that it might be difficult to compare long-term
trends and observations. In this region the advantage of the increased
resolutionofGRACE/DAbecomesobvious: due to the spatialfiltering of the
original observations a strong drying in the Haihe/Yellow, probably due to
groundwater use21, is blurred. GRACE/DA reveals a differentiated pattern
with drying andwetting, and large-scale coherent trend in theHaihe/Yellow
river, which is also seen in ESMs. Wetting is supported by a small positive
bias in P− E8, even though it is not significant.

Southeast Australia. Models agree on drying with 79.5% average model
consensus and small spread (with one exception). While GRACE/DA
agrees, it is not clear to what extent short-term trends can be compared to
the long-term trend, as there is limited temporal consensus among models.
In SE Australia interannual variations are significant: it experienced a very
severe Millenium Drought in 2001–200961, and 20-year trends may be
masked by the recovery. For example, Rodell et al.21 find the region in
GRACE data as slightly wetting and ascribe this to progression from dry to
wet conditions; however, their time frame is 2002–2016, and 2017–2019
were characterized by unusual droughts, leading to an overall drying trend.
Also, surface-water groundwater interactions seem to play a significant role,
which even hydrological models are not able to correctly reproduce62.
Therefore, it is unclear whether the agreement is more than a coincidence.

Low model but high temporal consensus and GRACE/DA agree-
ment (M−T+O+). While model consensus is relatively low in M−T+O+

(Fig. 4f), the observational trend is likely representative for the long-term
trend. This is an indication that the MMMed mTWS trend is real, even
though it is currently only supported by a small majority of models.

West Africa. ESMs show wetting with average model consensus of only
69.1%, and large spread, but high temporal consensus. Also, GRACE/DA
suggests awetting trendhere.A reason for lowmodel consensusmay be that
land-atmosphere coupling plays a large role54 and feedbacks are important
that almost certainly are not well represented in CMIP models. Rainfall is
related to the location of the Intertropical Convergence Zone (ITCZ), which
may be positioned differently from model to model, explaining the large
model spread. Again, tropical soils are likely poorly represented inmodels53.
There is a positive mean precipitation bias in coastal West Africa during
summer monsoon in CMIP6 w.r.t. TRMM, which was also simulated in
earlier CMIP phases34, and rising TWS trends are attributed mainly to a
precipitation increase21. However, also dam building63, land use change and
cropland expansion may contribute to increased storage64.

Low model and low temporal consensus (M−T−O+/−). The reported
MMMed mTWS trend in M−T−O+/− regions (Fig. 4h,i) is neither sup-
ported by high model nor high temporal consensus. In this case, it is
reasonable to take themagnitude of the model trend into account. Model
disagreement is generally more likely the closer the trend is to zero41.
Therefore it is interesting to investigate regions with large trend signal
(below the 25%- or above the 75%-percentile) despite low consensus.

Parana basin. Models show an average consensus of only 65.4% with pre-
ference on wetting, in agreement with GRACE/DA. However, due to low
model and temporal consensus it is unclear if this represents a climate signal
or rather originates from interannual variability or human interactions.
Wetting in observations may be due to recovery from an early-period
drought (2001–2005), similar as in the largest part of the Amazon21. This

drought has been so strong that it has been even visible in TWSA obser-
vations fromsatellite laser ranging65.Also thefillingof reservoirs in southern
Brazil may have contributed to the observed trend21. A small (insignificant)
positive bias in P− E8 may be driving the wetting in the majority of ESMs.
Low model consensus may be due to the varying skill of CMIP6 models in
the spatio-temporal distribution of precipitation and temperature found for
South America66.

Lena basin. Wetting with an average model consensus of only 64.4% is
reported by ESMs, which contradicts the GRACE/DA trend. The spread is
large, with two contradicting extreme trends of−4.1mm (UKESM1-0-LL)
and +4.3mm (NorESM2-LM). A reason for large model spread and low
consensus may be that the basin is governed by permafrost soils, which are
challenging to simulate53. Furthermore, interannual variations likely conceal
long-term trends. For example, a strong TWSA increase in 2001 and 2002
had been reported for theOb/Yenisei/Lena,most likely a rebound following
a steady decline in water storage since 199465.

Discussion
From our analysis of inter-model, temporal, and observational consensus, a
robust picture ofCMIP6model limitations in simulatingdrying andwetting
in termsofwater storage emerges, despite the still shortGRACE/-FOrecord.

Good agreement between models and observations in high consensus
regions (M+T+O+), is found in ~13% of the global land. For the Medi-
terranean region and Central Africa, we suggest that drying and wetting are
predominantly driven by precipitation, responding to climate change, and
that confounding effects in observations such as lake level changes average
out.However, due to the superposition of various signals, someofwhich not
taken into account in the sameway in observations andmodels (e.g., glacier
melting), in someM+T+O+ regions attributing drying/wetting to climate is
still challenging.

Regions with distinct disagreement despite high model consensus
(M+T+O−) cover ~8% of the global land. For Amazon/Orinoco and Lab-
rador Peninsula we argue that either remaining multiannual variations in
observations or deficiencies in process simulation of e.g., groundwater-
surface interactions or snow accumulation (in either CMIP6 models or the
hydrological model behind GRACE/DA) cause the mismatch. These
regions are interesting because, despite a strong model consensus, CMIP6
trends can be misleading. We add that in some regions, e.g., the Haihe/
Yellow river and South East Australia, model and observational trends
agree, however, the temporal consensus of the models is low (M+T−O+).
These regions extend to ~13% of the global land.

Lowmodel consensus but agreement with observations, which (due to
high temporal consensus) seem representative for long-term trends
(M−T+O+) is found in ~4% of the global land. Complex soil and/or atmo-
spheric conditions, as e.g., in West Africa, may be challenging to model,
explaining the low consensus. About 46% of the land surface exhibits low
consensus across models and low temporal consistency of modeled trends
(M−T−O+/−). In many regions mTWS trends disappear, but some other
regions show clear trends despite low consensus, e.g., Parana and Lena
basins. Again, atmospheric or permafrost conditions may explain low
model consensus, and strong interannual variations may prevent temporal
consensus.

Partitioning the ensemble into subsets with deep (>4.6m) vs. shallow
soil (≤4.6 m) provides only limited insights into model performance.
Weighted mTWS trends appear significantly larger for models with deep
soil than with shallow soil, with the deep-soil ensemble showing a smaller
region of model consensus. While the overall advantage of a deep soil
parameterization may be more noticeable for short-term TWS variability
rather than long-term trends, there are some hints in model-observation
mismatch regions that deep soil models are better capable to meet obser-
vational trends. However, with only 9 and 8 models in the subsets these
results may not be representative.

Overall, by evaluating mTWS trends from a CMIP6 model ensemble
by means of a new GRACE assimilation product (GRACE/DA) we could
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show that, while in some regions wetting and drying can be confirmed, in
several world regions CMIP6 model agreement about trends in water sto-
rage is not necessarily indicating consistencywith trends fromobservational
data. Using an assimilation product for TWS enabled us to compare to
CMIP6 at a spatial resolution of 200 km. We acknowledge that any
assimilation gives rise to data depending on a specific model, but we believe
this is outweighed by the ability to downscale the GRACE data and the
ability to look at individual storages represented in GRACE/DA, i.e., snow
water equivalent or soil moisture.We account for uncertainties in modeled
TWSA due to structural model deficiencies in representation of hydro-
logical process and land-atmosphere interactions by (1) computing the
multi-model median of all available models, (2) considering only regions of
large inter-model consensus, and (3) focusing only on the sign of the trend
rather than the actualmagnitude, assuming thatCMIP6TWS trendsmostly
reflect wetting/drying of the full water column even though they do not
explicitly contain groundwater storage.Furthermore, discrepanciesbetween
modeled and observed TWSA are due to CMIP6 neglecting surface waters
and glaciers. However, their influence is local andwe focusedon regions not
(or only marginally) affected.

The length of the GRACE/-FO record is steadily increasing. As the
essential climate variable TWS, at least in regions unaffected by direct water
use, provides inference on precipitation and its partitioning into evapo-
transpiration, runoff and moisture, it can provide important constraints in
upcomingmodel experiments. At the same time, efforts aremade to further
reduce uncertainties and discrepancies in the CMIP6 model ensemble by
correcting output variables’ biases, and developing spatial downscaling and
datamergingmethods, whichwill probably improve alsomTWS estimates.
Next to traditional statistical methods67,68 also deep learning methods are
increasingly being applied69. Finally, we suggest that the continuation of
GRACE/-FO will provide new opportunities for evaluating future CMIPs,
along ideas outlined here. The MAGIC constellation70,71, consisting of the
NASA/DLR GRACE-C and ESA’s NGGM satellite pair, would enable
generating TWSA data with higher spatial and temporal resolution, shorter
latency and improved error representation, and find its way into more data
assimilation frameworks. At the same time, the community has begun to
develop data sets to correct TWSA for effects (e.g., gravity changes due to
large-reservoir operations) not included in ESM simulations, further facil-
itating the consistency between observations and models.

Methods
CMIP6 data processing
Coupled ESMs in the Climate Model Intercomparison Project phase 6
(CMIP633) deliver information on climate changes from 1850 to 2100 for
past and potential future developments of climate forces, e.g., greenhouse
gas concentrations. In this study, we approximate CMIP6 simulated total
water storage anomalies (mTWSA) by using the sum of the variables total
soil moisture content (mrso) and surface snow amount (snw), the only two
water storage-related variables providedbyCMIP6ESMs. Theuncertainties
of this approximation are hard to quantify, but qualitatively known. In
contrast to observed TWSA, CMIP6-modeled TWSA neglect water storage
changes occurring in surface waters and glaciers as well as anthropogenic
groundwater abstractions and irrigation, while natural groundwater varia-
bility is only implicitly contained in total soil moisture content. Further-
more, structural model deficiencies regarding the representation of soil
water dynamics, hydrological processes and land-atmosphere interactions
contribute to uncertainties in CMIP6-derived TWSA. However, regions
particularly affected by surface water or glacier mass changes and ground-
water abstractionare, e.g., identified in the supplementarymaterial of Jensen
et al.28 and only have a marginally overlap with the regions discussed in
this study.

Concatenating corresponding monthly output of the historical
experiments for 1950–2014 and the experiments for the future scenario
SSP5-8.5 for 2015–2100 provides a continuous time series of 150 years of
mTWSA. A uniform spatial resolution was achieved by re-mapping each of
the model output time series to a 2° grid. Subsequently, the linear trend is

calculated by fitting a function

f ðtÞ ¼ aþ b � t þ c � cosðωtÞ þ d � sinðωtÞ þ e � cosð2ωtÞ þ f � sinð2ωtÞ
ð1Þ

with parameters for bias (a), linear trend (b), annual and semi-annual cycle
(c,d,e,f) to the time series by means of least squares adjustment. When the
time series covers full years (as in our study), the estimated trend is equal to
fitting a pure linear function (except for the former estimation being
numerically more stable due to usually smaller residuals). If the time series
does not cover full years, the estimated trendmay be distorted if the annual/
semi-annual cycle is not co-estimated. The standard deviation of the linear
trend (b) is estimated from the postfit residuals. Based on this standard
deviation the significance (α = 5%) of the trend is computed.

In total, 25 individual model experiments are providing the variables
mrso and snw in theCMIP6 archive by the time ofwriting.Details about the
individual models (including references and information on sub-models)
can be found, e.g., in TableAII.5 inAnnex II of the SixthAssessmentReport
of the Intergovernmental Panel onClimateChange72. The 25models are not
all fully independent from each other. Some of them are improvements or
extensions of each other, or they share central elements, such as land,
atmosphere, or ocean sub-models. In order to obtain unbiased results when
analyzing multi-model averages, we reduce the ensemble by omitting all
highly correlated experiments by calculating pair-wise correlations of the
vectorizedmTWSA trendmaps, similarly to Jensen et al.41 using a threshold
of 0.7. The assessment in this study is based on the remaining 17 individual
coupled-climate models with altogether 105 ensemble members.

The multi-model median (MMMed) trend is obtained by calculating
the median of all N = 105 individual mTWS trend values for each grid cell
excludingGreenland, Svalbard, andAntarctica from the analysis. In order to
give each model the same weight, regardless of the number of ensemble
members belonging to it, we compute the weightedmulti-model median as
described in Jensen et al.28. However, the median operator smooths out
extreme values in each grid cell, resulting in the range of values in the
MMMed trend grid becoming smaller than the actual range of values in
individual ensemble members. We therefore use a rescaled MMMed trend
with rescaling factors based on the empirical cumulative density functions
(ECDFs) of theMMMedand compared to themeanECDFof the individual
ensemblemembers. Details of this procedure can be found in Jensen et al.28.

Computation of model consensus and temporal
consensus maps
To identify regions in which the ensemble of CMIP6 ESMs has a high
agreement about wetting/drying trends, we compute the so-called model
consensus as the number of models that agree on the sign of the trend for
each grid cell. Further analysis is then restricted to regions with high model
consensus (i.e., at least 75% of themodels agreeing on the sign of the trend).

To investigate the agreement of short-term trends with the long-term
centennial trends, we perform a model study: We cut the 150-year time
series into (overlapping) slices of 17-year time series (starting every 5 years)
and calculate a 17-year trend map for each slice. Afterward, from all slices,
we compute for each grid cell the percentage of 17-year trends that match
the 150-year trend. This procedure is repeated for 20, 25, 30, ..., 50 years. The
correspondingmaps give an indication inwhich regions the agreementwith
the long-term trend is comparablyhigh for each individual time span length.
To synthesize this information, we additionally compute a map of high
temporal consensusmarking the grid cells that have an above-average trend
agreement with the centennial trend for all differently long time span
lengths.

Observational data
As observation-based data sets we use two TWSA data sets. The first one is
derived from the satellitemissionsGRACEandGRACE-FOand the second
one is theGLWS2.0 data set43, referred to asGRACE/DAhere, a synthesized
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data set derived by assimilating GRACE/-FO TWSA into a global
hydrological model.

The GRACE satellite mission is a gravity mission by NASA/DLR that
was launched in 2002 and ended in 201710. The mission consisted of two
satellites flying in the same orbit and used a K-band range measurement
constellation between the two satellites to derive global gravity field mea-
surements. The successor GRACE-FO was launched in 2018 and is addi-
tionally equipped with a laser-ranging interferometer to derive a higher
accuracy of the inter-satellite distance73.

To derive TWSA time series from the GRACE and GRACE-FO data,
the monthly gravity fields are processed by the IGG standard processing:
ITSG2018 operational Level 2 gravity field coefficients are provided by TU
Graz and used in the further processing. Lower degree coefficients are
replaced by data from other sources because GRACE/-FO measure them
inprecisely74,75 (received from http://grace.jpl.nasa.gov) and a DDK3 filter is
applied to account for striping errors76,77. Then, a temporal mean is reduced
and the Level 2 coefficients are transformed via spherical harmonic
synthesis to the required gridded Level 3 total water storage anomalies.
Typically, the final grid resolution is 0.5∘, here we transform the TWSA to 2∘

grids to enable direct comparison with CMIP6 model data. The effect of
glacial isostatic adjustment (GIA) is removed by using a model78.

In case of comparing original GRACE/-FO data to other data sets or
model simulations, the processing is finished at this stage. For the assim-
ilation of GRACE-/FO into a model, we need to additionally aggregate the
standard 0.5∘ TWSC grids to 4∘ grids to account for numerical issues79. It is
important to understand that the 4∘ spatial resolution serves only as input to
the data assimilation framework. The output of the data assimilation and
thus the resolution of GRACE/DA is similar to the nativemodel resolution,
which is 0.5∘.

GRACE/DA is a global product that provides total water storage
anomalies, groundwater, soil moisture, snow, and surface water with a
spatial resolution of 0.5∘ from 2003 to 2019. The data set derives these
outputs by assimilating GRACE/-FO total water storage anomalies into the
WaterGAP hydrology model (WGHM45). The assimilation framework is
based on previous work of Eicker et al.44 and Schumacher et al.79, developed
at the Institute of Geodesy and Geoinformation at the University of Bonn,
Germany, and is updated by using the parallel data assimilation framework
(PDAF80) and extending the regional to a global scale. It uses the Ensemble
Kalman Filter81 to sequentially update the predicted model states by inte-
grating GRACE/-FO observations based on uncertainty information via
ensembles. Thus, the resultingdata set represents anoptimal synthesis of the
GRACE/-FO data and the data sets that went into the hydrological model.
By assimilating GRACE/-FO into WGHM we spatially downscale the
GRACE/-FO fields to the model’s resolution and vertically disaggregate the
TWSA into the different water compartments that WGHM represents.
Since the model is based on uncertainty given in forcing data and model
assumptions, the assimilation certainly improves the model’s realism by
pulling the simulations closer to the GRACE/-FO observations. The
GRACE/DA data set was e.g., evaluated against another 0.5∘ global land
water storage data set (CLSM-DA) derived from assimilating GRACE/-FO
into the CLSM model, showing a good agreement of the linear trends in
TWS43. Linear trends from the assimilation product further lie in-between
the trends from the hydrological model and the GRACE/-FO observations
used in the assimilation procedure. Furthermore, the GRACE/DA product
was compared to in situ GNSS observations of vertical loading at 1000+
stations globally with the result that it correlates better at short-term, sea-
sonal, and long-term (>1.4 yr) temporal bands than GRACE/-FO.We note
that in the GNSS analysis, the linear trends had to be removed in advance
(due to tectonic effects) to enable a comparison.

WGHM represents a global hydrological model that simulates water
fluxes and storages on an 0.5∘ grid based on horizontal and vertical water
routing; here we use version 2.2e. Themodel represents soil moisture via a
single layer that extends to the root zone, it simulates varying surfacewater
storages (lakes, wetlands, rivers, and reservoirs), and it includes a con-
ceptual groundwater representation. Anthropogenic water use is included

in WGHM with a specific focus on human water use (surface and
groundwater abstractions) and man-made reservoirs45. The model is
mainly forced by precipitation, temperature, longwave and shortwave
radiation. The forcing data used here is derived by the GSWP3-W5E5
data set82.

Data availability
The CMIP6 data are publicly available, e.g., via https://esgf-data.dkrz.de/
search/cmip6-dkrz/. The GRACE/DA data used in this contribution can be
downloaded from PANGAEA. Derived data that supports the findings of
this study are available from the corresponding author L.J. on request.

Code availability
ThePython codes for data analysis andfiguresgeneration are available upon
request from the corresponding author L.J.
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