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Abstract: Visualization and interpretation of user-generated spatial content such as Volunteered

Geographic Information (VGI) is challenging because it combines enormous data volume and hetero-

geneity with a spatial bias. When dealing with point data on a map, these characteristics can lead to

point clutter, reducing the readability of the map product and misleading users to false interpretations

of patterns in the data, e.g., regarding specific clusters or extreme values. With this work, we provide

a framework that is able to generalize point data, preserving spatial clusters and extreme values

simultaneously. The framework consists of an agent-based generalization model using predefined

constraints and measures. We present the architecture of the model and compare the results with

methods focusing on extreme value preservation as well as clutter reduction. As a result, we can state

that our agent-based model is able to preserve elementary characteristics of point datasets, such as

the point density of clusters, while also retaining the existing extreme values in the data.

Keywords: point generalization; agent-based modeling; constraints; spatial pattern

1. Introduction

User-generated geographic content (UGGC) has emerged as one of the main data
sources for researchers in recent years, often referred to as Volunteered Geographic Infor-
mation (VGI) [1]. The visualization and interpretation of VGI data are challenging because
of its enormous volume and heterogeneity, and when compared to traditional spatial sam-
pling techniques, VGI point data samples such as points of interest or locations of social
media posts often have a spatial bias [2] (see Figure 1, where the number of Flickr posts
does not reflect the quality of the view towards the landmark but mainly the popularity of
the place). If VGI point data are presented on a map, these data characteristics could reduce
the readability due to overlapping point symbols, which could possibly hide specific spatial
patterns in the data—such as extreme values, clusters or hot spots. Accordingly, a reduction
in the overall number of points is needed to improve the readability of the map, while at
the same time, the spatial patterns within the data have to be preserved.

The cartographic solution to the problem of overlapping point symbols—i.e., the dis-
play of clutter [3,4]—is point generalization, using operations such as selection, aggregation,
simplification, or displacement. However, if these generalizations are applied incautiously,
specific characteristics of the data, such as extreme values, may disappear, misleading
users to false interpretations of the underlying spatial phenomena (see Figure 2). Therefore,
it is key to preserve spatial patterns during the generalization process. More generally,
preserving spatial patterns contributes to the principle task of map generalization, which is
to provide the best representation of the map content without neglecting readability.

In recent decades, different approaches evolved to mimic the work of human cartogra-
phers with the aim of automating the map generalization process. The rule-based approaches
were built on stepwise, local transformations of map objects, following unambiguous pre-
defined rules [5]. While rule-based generalization was—and still is—a very promising tool
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for a variety of applications, a major shortcoming in the past was the problem that these
automated systems do not have the ability to respond to data variation or specific, task-
related requirements in a way that human cartographers could do by modifying these rules.
This led to the introduction of the constraint-based approach, where constraints operate
as requirements that shall be fulfilled in the final—i.e., generalized—map but without any
predefined actions bound to them. Map generalization using a constraint-based approach
is, therefore, an optimization problem, where the task is to find a map state that best fulfils
all predefined—and sometimes contradicting—constraints, while a set of generalization
operations is used to reach this optimal map state by manipulating the map objects.

Figure 1. Location of Flickr posts tagged with variations in the names of either Cristo Redentor (“Tag

A”) or the Sugarloaf Mountain (“Tag B”) in Rio de Janeiro. The spatial distribution of points in this

dataset mainly originates from the popularity of the places and not only in the quality of their line of

sight toward the two landmarks. Therefore, it is not possible to derive the best photo spots just from

the number of posts at the respective locations.

Figure 2. Example of point generalization. (a) Original data of 50 points with two main clusters

and eight extreme values (in red). (b) Generalized data of 25 points using point selection based on

value. All eight extreme values are preserved during generalization, while the two-point clusters

disappeared in the resulting map. (c) Generalized data of 25 points using point simplification based

on location. Both clusters are preserved, while only four of the eight extreme values are preserved.

If both the spatial distribution of events and the occurrence of extreme values are of interest, both

generalization results can mislead users to false interpretations of the underlying spatial phenomena.
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For the optimization process, Harrie and Weibel [6] argued that agent-based modelling
(ABM) is the most powerful modelling method in terms of applicability. In this case,
the agents are autonomous map objects attempting to minimize a given cost function,
which consists of constraint measures. Duchêne et al. [7] described this technique in detail.
In this paper, we want to follow this research, implementing an agent-based model using
predefined constraints, which are deduced by Knura and Schiewe [8] based on a study
analyzing user behavior when solving interpretation tasks on point data [9].

The remainder of this paper is structured as follows: In the second chapter, we summarize
approaches from the literature for point generalization (Section 2.1), pattern preservation
(Section 2.2) and agent-based modeling in cartography (Section 2.3). In the third section, we
describe the constraints we used during the optimization process (Section 3.1 and introduce
our model (Section 3.2). We then conduct experiments (Section 4) and discuss the results
(Section 5) before concluding our work (Section 6).

2. Related Work

2.1. Point Generalization

Focusing on the problem of point generalization, operations such as aggregation,
simplification, selection, and displacement are of major interest. When using aggregation
(i.e., point clustering), point clusters are replaced with aggregator markers. Different cluster
initialization methods can thereby trigger quite different results for the same data (e.g.,
see [10]). Furthermore, Meier [11] evaluates and compares marker cluster techniques and
similar approaches, including heatmaps and tiled heatmaps. Point simplification describes a
point reduction based on geometric criteria, such as minimum distances between points [12].
When semantic criteria are used to reduce the overall number of points, a point selection
takes place, e.g., based on scale [13]. In contrast, point displacement relocates points to
reduce point clutter, using an iterative workflow of overlap detection, relocation, and re-
evaluation [14].

While these operations all represent the traditional method of point generalization
based on cartographic scene judgement, there are also data-driven methods such as deep
learning [15], which can be utilized for the application of point generalization, as performed
by Xiao et al. [16]. Based on training data created through manual labeling, their model
predicts the probability for each point in the dataset to be retained after generalization.
Depending on the number of points requested for the final map, the respective points with
the highest retaining prediction are then selected.

2.2. Preserving Spatial Patterns

The aforementioned operations focus on the first task of map generalization—increasing
map legibility—mainly by removing a certain amount of points. By contrast, preserving
the present information of the point data as much as possible is the second task of map
generalization—and possibly contradicting the first. Thereby, the question arises as to which
spatial point patterns are of interest. A study conducted by Knura and Schiewe [9] analyzed
user behavior when interpreting spatial point patterns and thereby revealed two main aspects.
First, the proportion of points between different patterns, as well as between dense and sparse
areas, was crucial for the task-solving process of the participants. Second, the proportion be-
tween different classes within an area—or their respective absence—was frequently described
during decision-making. As a result of this study, point pattern preservation can be described
as a multi-criteria decision, a technique that has already been proposed in cartography for
specific tasks within the workflow of automated map generalization [17] and for class interval
selection [18]. Based on the latter work on choropleth maps, Chang and Schiewe [19] were
able to preserve spatial patterns such as local extreme values and hot or cold spots. As an
example of preserving a spatial point pattern for visualization purposes, Qiang et al. [20]
used a pyramid modeling framework and point density metrics in their work. For some
applications, it could also be useful to visualize point patterns with respect to other geometry
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objects, such as street networks [21]. To the best of our knowledge, approaches for point
pattern preservation with respect to point density and local extreme values are still missing.

2.3. Agent-Based Modeling in Map Generalization

In addition to the numerous advances in the optimization of individual generalization
operations, there is also considerable work regarding the orchestration of these operations.
Even before Harrie and Weibel [6] identified agent-based modeling as the most powerful
applicable modelling method, there were multiple research studies for automated gener-
alization systems that relied on this approach. For a detailed overview, we refer to the
work of Duchêne et al. [7], who explain the basic principles of this approach, describe
different implementations of agent-based models at the French National Mapping Agency
(IGN), and discuss the advantages and drawbacks of multi-agent systems for cartographic
generalization. Accordingly, the implementations introduced in the following sections of
this paper are based on this work.

These multi-agent systems rely on the definition of a set of constraints and their respective
measures, which define the level of satisfaction for each constraint. Thereby, Mackaness and
Ruas [22] distinguish between three levels of measures: micro-measures focus on individual
features of map objects, meso-measures describe properties of groups of objects, and macro
measures deal with characteristics of the whole map data. Furthermore, the authors distin-
guish between internal measures that describe single datasets, and external measures that
describe relations between different datasets or map states, for example between the original
and the generalized map. With regard to content, Beard [5] classified constraints into six
thematic categories: position, topology, shape, structure, function, and legibility. Consequently,
our work also relies on a subset of these constraints.

3. Method

3.1. Definition of Constraints

We define three different types of constraints and respective measures that can guide
the generalization process within our agent-based model. The first type is constraints
that correspond with the specific kind of tasks we aim for, such as the identification of
extreme values or dense clusters, and therefore ensure that spatial patterns are maintained.
The second type of constraints supports the task-solving process of the users and result
from the aforementioned user study [9]. The last type of constraint reflects the fundamental
requirements of successful point generalization, such as a reduction in clutter or the
preservation of Gestalt Law rules within the map.

Table 1 lists these constraints. For more details on the definition of these measures,
we refer to the work of Knura and Schiewe [8], in which the authors identified a set of
constraints by translating the outcomes of their study [9] into measurable values.

Table 1. Relevant constraints and measures based on [8]. Constraints are derived from either task

requirements (type 1), results of a user study [9] (type 2) or fundamentals of point generalization

(type 3).

Constraint (Type) Measure

Retain proportion of points between areas (2) spatial distribution of points [23]
Preserve ranking of densities between areas (2) cluster density ranking [23]

Preserve local extreme values (1) local extreme value preservation
Maintain at least one point per class (2) point category preservation

Preserve cluster density (1) mean distance to cluster members
Preserve spatial correctness (3) distance to origin location
Reduce number of points (3) number of points via Radical Law [24]

Preserve Gestalt law rules for cluster shape (3) convex hull or alpha shape [25]
Preserve Gestalt law rules for cluster orientation (3) minimum bounding rectangle
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3.2. Architecture of the Agent-Based Model

3.2.1. General Architecture

The agent-based model is implemented using the open-source framework Mesa [26]
and its spatial extension Mesa-Geo [27]. Mesa is written in Python and offers the basic ABM
functionalities by providing four core components (Model, Agent, Schedule and Space)
alongside two additional components for analysis and visualization. The Model class is the
main class of the framework and controls the major components of the system. In this class,
the initial state of the model is defined, as well as the actions that happen while the model
is running. The Model class also creates the agents that implement the Agent class and the
Scheduler class, which controls the time and the activations during runtime. Mesa offers
four different schedule activations, namely the BaseScheduler, which activates agents one at
a time in the starting order, RandomActivation, which activates the agents in random order,
SimultaneousActivation, which activates all agents at the same time, and StagedActivation,
where the action within one model step is divided into several stages, and all agents execute
one stage before moving to the next stage. For models that require the concept of space,
the respective Space class in Mesa has five general definitions of space: ContinuousSpace
where agents have (x,y) positions, NetworkGrid, which implements graphs with nodes
and edges, and three types of grids (SingleGrid, MultiGrid and HexaGrid). However, Mesa
does not directly support the integration of geographical data into the model, and so the
spatial extension Mesa-Geo was developed by Wang et al. [27], allowing users to import,
manipulate, visualize and export geographical data. Therefore, the new class GeoSpace was
added, which can consist of multiple layers of vector and raster data. Furthermore, Mesa-
Geo distinguishes between AgentLayers, which contain GeoAgents that carry out activities
during the simulation, and VectorLayers, which remain static (e.g., road networks).

Figure 3 shows the architecture of our ABM application for point generalization,
which consists of three modules. The Core Module contains the main Model class, a class for
different types of MapAgents, the Scheduler class and several instances of the GeoSpace
class. The DataCollector class of the Utility Module collects and provides the information
during runtime for the Visualization class of the User Interface Module, which also contains
two classes for the specification of the map and the parametrization of the constraints
and measures of the model. In the following, the modules and their interconnections are
explained in detail.

Figure 3. Architecture of the agent-based point generalization model.
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3.2.2. User Interface Module

The first step to run the model is to define global map specifications, such as the scale
of the original and the target map, the borders of the map frame, and whether the original
data set is already fulfilling legibility constraints. If this is the case, the target number of
points after generalization can be calculated, e.g., using the Radical Law [24]. Furthermore,
the desired behavior of the map agents regarding their fulfillment of the selected constraints
has to be predefined. The common workflow in agent-based map generalization to translate
a list of constraints into a satisfaction value representing the status of a map agent consists
of two steps [28]: First, the respective measures for the constraints are translated into
a Likert-like satisfaction scale according to predefined threshold values, ranging from 1
(“unacceptable”) to 8 (“perfect”). Second, global satisfaction is calculated based on the
individual satisfaction values, for example by calculating the mean value or by utilizing
principles from Social Welfare Orderings (SWO) [28].

Figure 4 lists the different types of parameters that have to be defined before run-
ning the agent-based model. In addition to the aforementioned global map specifications,
the basic model parameters, and a list of constraints, as presented in Table 1, the defini-
tion of, reasonable threshold values are essential for the success of an agent-based map
generalization model, but it is also a complex task. To help with this process of model
parametrization, we adapted an approach of Taillandier and Gaffuri [29] using a human–
machine dialogue. Therefore, we offer a guided user interface to adjust the thresholds
for each measure satisfaction function and visualize the impact of selected thresholds via
samples on a map to obtain a better understanding of the impacts of the thresholds on the
constraint satisfaction and on the expected results of the generalization process in general.
For example, decreasing the threshold values for the minimum distance between agents
ensures that the agents are more likely to decide to perform generalization operations that
improve their satisfaction regarding this measure, such as increasing the distance to their
neighbors using displacement, or deleting themselves as a result of a selection operation.
As a result, the distance between individual agents will likely increase on the final map,
while the number of points will decrease.

Figure 4. List of parameters and examples for manual parameter definitions using a human–machine

dialogue as suggested by Taillandier and Gaffuri [29]. As an example, adjusting the overlay ac-

ceptance thresholds for the respective measure-satisfaction function by allowing a smaller distance

between PointAgents will probably result in several overlapping points still existing in the final map.

3.2.3. Core Module

A simplified model flow is shown in Figure 5. When initializing the model, a Ma-
pAgent is created for every point within the data set, which should be generalized. Fur-
thermore, MapAgents are created for every cluster within the original point data set.
MapAgents are the central part of our model and their decision-making process follows the
work of Duchêne et al. [7], which decomposes the “brain” of agents in map generalization
systems into three main components: capacities, mental representation and procedural
knowledge. The capacities of MapAgents include the ability to perceive their surrounding
space—i.e., points in their neighborhood—to evaluate their own state, to communicate with
other agents, and to perform generalization operations on themselves. Spatial operations
for self-evaluation and self-generalization are thereby provided and controlled by the
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GeoSpace class. The part of the brain that represents the mental state of the agents compares
its current status with the goals the agents are aiming for—i.e., the mental representation
of MapAgents describes their fulfillment towards the predefined map constraints, using
the measure satisfaction functions retrieved as described above. Furthermore, this part
of the MapAgents’ brain memorizes all previous decisions and their respective outcomes.
The actual decision-making is undertaken in the procedural knowledge part of the MapA-
gents. Using the information about its current state of constraint satisfaction and its former
decisions and their outcomes, each MapAgent decides which generalization operation it
wants to perform next.

Figure 5. Simplified model flow chart without details of the decomposed “brain” of the MapAgents.

After initializing the MapAgents for points and clusters, each model step begins by calculating the

measures to analyze the actual state of constraint fulfillment. Using the measure-satisfaction functions

for each constraint, all MapAgents receive a list of satisfaction values ranging from 1 (worst) to 8 (best)

representing their own state. Based on this, MapAgents can calculate their own overall satisfaction,

and a general model state can be determined. If the overall model state does not reach an equilibrium

model state—or match the model termination conditions—MapAgents can perform generalization

operations on themselves, and the next step is initialized.

4. Experiments

We want to test our model by generalizing a test data set from a scale of 1:15,000 to a
scale of 1:30,000. The aim is to support the preservation of spatial patterns during point
generalization. In addition to specific patterns such as local extreme values, it is also of
interest to maintain point densities within clusters as well as in sparse areas.

Because approaches for point pattern preservation considering both point density and
local extreme values are still missing, we want to compare the results of our model with
different methods focusing on spatial distribution and extreme value preservation. For the
generalization of spatial distribution characteristics, we utilized a quad tree structure.
We fill this quad tree structure (capacity = 1) sequentially with a point data set and then
delete all points that are assigned to leaves with an area below the point signature size
threshold for the target scale. In other words, we only retain points that are assigned to
leaves of the quad tree of a predefined threshold level or higher. For the preservation of
local extreme values, we used the discrete isolation algorithm of Gröbe and Burghardt [13],
which calculates a point’s distance to the closest point with a higher value, which in the
next step can be used as a selection parameter for point generalization.

4.1. Data

We utilized a data set that shows the locations of social media images from the platform
Flickr that contain at least one bicycle [30]. Our test data set contains 800 of these data points,
which are all located in the area of Dresden, Germany. We chose this dataset because it
fulfils two requirements we want to test our model with: First, the point distribution is
clearly biased in a way that is characteristic of VGI data, as the majority of points are located
in a relatively small area around the city center, while there are only few outliers spread
over the suburbs. Second, the data set provides the number of bicycles per social media
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image, which can be used to determine local extreme values, i.e., photos that show a high
number of bicycles.

4.2. Performance Metrics

To evaluate the performance of our model in comparison to the quad tree general-
ization and the discrete isolation algorithm, we define metrics to evaluate point density
preservation, as well as local extreme value preservation. For point density preservation,
we first define clusters within the original dataset using the DBScan algorithm. Based on
these eight clusters, we measure the point density before and after generalization for each
cluster, and calculate the mean preserved density (MPD) and its standard deviation (SDPD)
over all clusters. Furthermore, we want to take a closer look at two specific clusters that
are characteristic of VGI data. The first cluster has 44 points and is located around the
Theaterplatz in Dresden, where several historic sites such as Semperoper, Hofkirche, Zwinger
and Grünes Gewölbe are in proximity, but without a specified center. The second cluster has
68 points and is located at the Frauenkirche, where a high amount of photos is located in a
small area of interest. We expect that our proposed model and the quad tree generalization
perform better than the discrete isolation algorithm with these clusters, as the objective
of the latter is point selection based on high values, but we also want to analyze if these
clusters are generalized differently.

For the preservation of local extreme values, we identify all extreme values and
count the number of preserved points in the generalized datasets. For this test, we expect
that the discrete isolation algorithm and our model perform better than the quad tree
generalization, as the latter takes only the point location into account during generalization,
but not its attributes.

4.3. Results

Figure 6 shows the generalization results for the three methods. It can be seen that
the result of the discrete isolation algorithm is more spread out compared to the other
methods, which preserve the overall shape of the central clusters better. In the quad tree
generalization result (Figure 6b), all clutters are resolved, but due to the applied method,
some of these clutters are completely removed. The same can be stated for the discrete
isolation algorithm (Figure 6c), which is even more spread out in the former cluster areas.
Looking at the less dense areas of the map, both the quad tree and the discrete isolation
method preserved the majority of points, which is in fact the intended behavior of both
algorithms. In the resulting map of our agent-based model (Figure 6d), the original shape
of the point distribution, as well as spots with points in close proximity within the clusters,
are preserved, but with the downside that there are still a few overlapping points existing
after the generalization.

Table 2 presents the results of our experiments using the performance metrics, which
confirm the findings stated above. While the point density within the eight clusters is
reduced to 26% for the quad tree and 35% for our model compared to the original dataset,
the discrete isolation algorithm maintains only 12% of the original density. In return, most
of the extreme values (25/27) are preserved with this method, while the quad tree (20/27)
and our model (23/27) preserve less extreme values. With respect to the number of points
retained in the two focus clusters, all generalization methods retained more or the same
number of points in the cluster around the Theaterplatz, although it has fewer total points
than the one at the Frauenkirche.
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Table 2. Results of the experiments evaluating our model compared to the quad tree generalization

and the discrete isolation algorithm. MPD = mean preserved density, SDPD = std.dev preserved

density, EXT = preserved extreme values, Ptp = preserved points at the Theaterplatz, Pfk = preserved

points at the Frauenkirche.

MPD SDPD EXT Ptp Pfk

quad tree generalizing 0.26 0.14 20/27 12/44 10/68
discrete isolation 0.12 0.06 25/27 6/44 6/68

agent-based model 0.35 0.12 23/27 20/44 16/68

Figure 6. Results of the point generalization. (a) Original data (800 points), (b) quad tree generaliza-

tion (394 points), (c) discrete isolation algorithm (404 points), (d) our agent-based model (398 points).

While the discrete isolation algorithm focuses on preserving extreme values and therefore disperses

the tight cluster structure in the city center, both the quad tree generalization and the agent-based

approach preserve the specific cluster shape. Note that quantities are only visualized in the original

map for a better understanding of the dataset.

A detailed view of the generalization results around the Theaterplatz area can be seen in
Figure 7. As stated in Table 2, our agent-based model retained more points in this area than
the other two methods, followed by the quad tree generalization and the discrete isolation
algorithm. It also maintains significant parts of the dense cluster in the northeastern corner
of the map, while the other approaches both delete all but one or two points in this area.
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Furthermore, our approach—as with the discrete isolation algorithm—preserves all extreme
values in the map, while the quad tree approach only preserves three of the five points.

Figure 7. Detailed view of the generalization results around the Theaterplatz. (a) Original data,

(b) quad tree generalization, (c) discrete isolation algorithm, (d) our agent-based model. Original

positions of extreme values are highlighted with a big black dot.

5. Discussion

The findings of our experiments show that our model is able to preserve both the
point density of clusters and extreme values, which was the main goal of this paper. Using
the performance metrics of point density preservation and extreme value preservation,
the results of the agent-based model are comparable to the better performance of the two
benchmark models, respectively. Elementary characteristics of the point dataset, such
as clusters with a specific point density, and the existence of local and global extreme
values are better preserved during generalization. To what extent the resulting maps of
our approach are able to improve the actual decision-making of users has to be tested in an
appropriate user study and is a major part of our future work.

In addition, we were able to implement an agent-based model for map generalization
in the programming language Python, using the spatial extension of the open-source
framework Mesa. To the best of our knowledge, this is the first time a Python-based
framework is used for agent-based map generalization, and we can show that Mesa-Geo
satisfies all the requirements we had for the implementation of our model. Furthermore,
the implementation in Python allows us to provide a plugin for QGIS in the near future,
which could considerably improve the usability of our model.

Nevertheless, there are some shortcomings of our approach. In Section 3.1, we present
the constraints and measures we implemented in our model. Before the model is able to
run, six of these measures require manual parameter adjustment to translate them into
satisfaction values. Although we think this is still a feasible number while adapting an
intuitive approach for setting suitable parameters, this process has been identified as one
of the major drawbacks of the agent-based approach in map generalization in general [7].
Although the manual parameter adjustment makes it difficult to transfer our approach
of point generalization to other applications, our first experiments with different datasets
also showed that most of the parameters can be transferred to obtain at least reasonable
results, especially when the same target scale and point size are used. A main part of
our future work will therefore be a user study with experienced cartographers to further
evaluate the outcome of our model while using different combinations of input parameters.
At best, the results can also be used to automate the parameter adjustment for the measure
satisfaction functions, reducing the number of parameters to fundamental inputs such as
target map scale and point size. The method itself, together with our set of constraints and
measures, can be transferred to—or implemented in—existing agent-based models for map
generalization, as we utilize the best practices from this research field.

Compared to the discrete isolation algorithm, a second drawback of our approach is the
computational performance. Because of the time-consuming calculation of measures that
rely on geospatial operations with logarithmic time complexity such as Voronoi diagrams,
the computing time depends mainly on the number of points to generalize. Using an
AMD Ryzen 7 with 3.2 GHz and 32 GB RAM, generalizing the whole dataset used in the
study takes nearly ten minutes of runtime, compared to a few seconds for discrete isolation
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and less than a minute for the quad tree generalization. Additionally, the complexity of a
point distribution—in terms of how often the original dataset violates the intended map
constraints—has an influence on the number of calculation steps that are needed to reach
an equilibrium model state, i.e., a state of the model where the majority of map agents
have reached a satisfying state for themselves, and variables such as the total number
of (visible) points and the distribution of points between the clusters are mostly stable.
Therefore, on-the-fly point generalization [31] is not yet possible with our approach, but the
framework of our model can already be deployed for map generalization on a regular basis.
However, there is still room for improvement on the computational side of our model.
As an example, we do not implement multi-thread computation yet, which could reduce
the computational time considerably. Especially when dealing with large datasets, it can
be useful to split them into smaller subsets, which can then be generalized seperately and
simultaneously, while using the same parameters and measuring satisfaction functions.

As a result, we can state that our approach is the best if a combination of preserving
local and global extreme values, while also maintaining spatial patterns such as clusters is of
interest, with the downside of a higher complexity and therefore longer computation time.
If the focus is mainly on the preservation and visualization of extreme values, the discrete
isolation algorithm is the best choice, as it is faster in computation and easy to use as a
QGIS plugin. If just a rough and general view of the distribution of clusters is needed,
the quad tree generalization can be used, as it is slightly faster in computation compared to
our approach, although there is no easy-to-use implementation available yet.

A different way to deal with the problem of point generalization while preserving
specific spatial patterns could be the integration of novel learning techniques. In this case,
our model and its output can be used to create training data for the learning model—similar
to the work of [16], or in return, parametrization can be learned and automated based on
manually created results.

6. Conclusions

The visualization and interpretation of VGI data are challenging because of its enor-
mous volume and heterogeneity, and datasets actively or passively retrieved from volun-
teers often have a spatial bias. If the data are presented on maps, these specific character-
istics of VGI often reduce the map readability due to overlapping point symbols. Even
worse, these point clusters can hide specific spatial patterns in the data, misleading users to
the wrong conclusion. In this paper, we develop an agent-based model that generalizes
point data by reducing the overall number of points, while specific spatial patterns such as
extreme values and clusters are preserved. We present the framework of the model and
test the performance in comparison to solutions focusing on pattern analysis and point
selection. With the results, we can show that our agent-based model is able to preserve
spatial patterns such as clusters, as well as local and global extreme values.
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