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Abstract

Positioning in Global Navigation Satellite System (GNSS)-challenged areas for
real-life applications, such as mobile location-aware services, augmented real-
ity, and location history-based applications remains a long-awaited technol-
ogy, particularly as a general or GNSS-comparable solution. The emergence

of powerful 5G-enabled wearable devices, equipped with advanced multi-sensor systems,
along with rapid developments in Artificial Intelligence (AI), presents opportunities for
indoor pedestrian localization. These technologies support a wide range of use cases for
visually impaired, firefighters, in hospitals or shopping as well as critical safety scenar-
iossuch as contact tracing during the COVID-19 pandemic.
This research aims to develop a GNSS-comparable method to enable long-term pedes-
trian navigation for real-world applications. While data-driven, positioning methods, so
called Inertial Localization (IL), using smartphone inertial sensors can provide relative
displacement estimates over extended periods, they still suffer from drift over time, neces-
sitating external corrections. Smartphones, however, can access sparse yet accurate 5G
positioning data, which can be used to integrate corrections; thereby making long-term
and reliable pedestrian navigation feasible.
To tackle open challenges, a data-driven inertial localization model using deep learning
and a novel transformer network is proposed, Transformer Automatic Features Interaction
(TAFI), which combines state-of-the-art machine learning with engineered physics-based
features derived from domain expertise. A dataset of real 5G Uplink Time Difference of
Arrival (TDoA) sparse positions, collected in cooperation with Fraunhofer Institut für
Integrierte Schaltungen (IIS) 5G Bavaria Testbed, supports this approach and provides
a better understanding of 5G positioning. The correction mechanism, in format of state
estimation algorithms, automatically computes heading to correct the pose.
The method’s performance was evaluated following the ISO 18305 standard. The results
show that a GNSS-comparable with a 3-meter accuracy in 90% of the cases is feasible by
integrating Inertial Measurement Unit (IMU) data and sparse but accurate 5G positions.
The research finding establish a foundation for further research into data-driven IL using
5G positioning data.
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Zusammenfassung

Die Positionierung in Global Navigation Satellite System (GNSS)-beeinträchtigten
Gebieten für Anwendungenwie mobile ortsbezogene Dienste, Augmented
Reality und ortsbezogene Anwendungen ist eine lang erwartete Technolo-
gie, insbesondere als allgemeine oder mit GNSS vergleichbare Lösung. Das

Aufkommen leistungsfähiger 5G-fähiger tragbarer Geräte, die mit fortschrittlichen Multi-
sensorsystemen ausgestattet sind, sowie die rasanten Entwicklungen im Bereich der künst-
lichen Intelligenz (KI) bieten Möglichkeiten für die Lokalisierung von Fußgängerinnen
und Fußgängern in Gebäuden. Diese Technologien unterstützen eine breite Palette von
Anwendungsfällen für Sehbeeinträchtigte, Feuerwehrleute, in Krankenhäusern oder beim
Einkaufen sowie kritischen Sicherheitsszenarien, wie z. B. die Kontaktverfolgung während
der COVID-19-Pandemie.
Ziel dieser Forschungsarbeit ist die Entwicklung einer mit dem GNSS vergleichbaren Me-
thode, die eine langfristige Fußgänger:innennavigation für Anwendungen in Praxis er-
möglicht. Zwar können datengesteuerte Positionierungsmethoden, so genannte Inertial
Localization (IL), die Inertial Measurement Unit (IMU)-Sensoren von Smartphones ver-
wenden, Schätzungen der relativen Verschiebung über längere Zeiträume liefern, doch
leiden sie immer noch unter einer zeitlichen Drift, so dass externe Korrekturen erfor-
derlich sind. Smartphones können jedoch auf spärliche, aber genaue 5G-Positionsdaten
zugreifen, die zur Integration von Korrekturen verwendet werden können, wodurch eine
langfristige und zuverlässige Fußgänger:innennavigation möglich wird.
Um offene Herausforderungen zu bewältigen, wird ein lernbasiertes Modell zur Träg-
heitslokalisierung vorgeschlagen, das Deep Learning und ein neuartiges Transformator-
Netzwerk verwendet, TAFI, welches maschinelles Lernen mit physikalisch basierten Merk-
malen kombiniert, die aus dem Fachwissen abgeleitet sind. Ein Datensatz von realen 5G
Uplink Time Difference of Arrival (TDoA) sparse Positions, der in Zusammenarbeit mit
dem Fraunhofer Institut für Integrierte Schaltungen (IIS) 5G Bavaria Testbed gesammelt
wurde, ermöglicht ein besseres Verständnis der 5G-Positionierung und unterstützt den
lernbasierten Ansatz. Der Korrekturmechanismus berechnet automatisch die Richtung
und korrigiert die Pose.
Die Leistung der Methode wurde in Anlehnung an die Norm ISO 18305 bewertet. Die
Ergebnisse zeigen, dass eine GNSS-ähnlicher Lösung mit einer Positionierung von 3-Meter-
Genauigkeit in 90% der Fälle durch die Integration von IMU-Daten und spärlichen, aber
genauen 5G-Positionen möglich ist. Die Forschungsergebnisse bilden die Grundlage für
weitere Forschungen zur datengesteuerten IL unter Verwendung von 5G-Positionsdaten.
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1 Preface
This cumulative dissertation explores advancements in Inertial Localization (IL) through
data-driven (learning-based) approaches. It further addresses the correction of relative
trajectories derived from IL using sparse location data from 5G Uplink Time Difference of
Arrival (TDoA) positioning, enabling real-life applications of long-term indoor localization
with wearable devices such as smartphones. The thesis is based on seven publications,
all of which underwent a peer-review process, except for the publication B2, which is
a proof of concept used in publication B1. Notably, the three main objectives of this
thesis are classified into objective groups A, B, and C (See Section 2.2), with the first
publication in the objective groups, i.e. A1, B1 and C1, serving as the primary criterion for
thesis evaluation at HafenCity University, Hamburg. The publications are summarized in
Chapter 5, with Chapter 6 and 7 highlighting the key findings and numerical results. The
author of this dissertation has made the primary contribution to all these publications,
particularly by introducing the methodological advancements.

• Publication A1:
Shoushtari, H., Harder, D., Kasparek, M., Müller-Lietzkow, J., Sternberg, H.
2023; Data-Driven Inertial Navigation assisted by UL-TDOA 5G Positioning, In-
ternational technical Meeting (ITM), Institute of Navigation (ION), Long Beach,
California. https://doi.org/10.33012/2023.18645

• Publication A2:
Shoushtari, H., H., Kassawat, F., Harder, D., Venzke, K., Müller-Lietzkow, J.,
Sternberg, H., 2022; L5IN+: From an Analytical Platform to Optimization of Deep
Inertial Odometry, International Conference on Indoor Positioning and Indoor Nav-
igation (IPIN) , Beijing, China.
https://ceur-ws.org/Vol-3248/paper24.pdf

• Publication B1:
Shoushtari, H., Kassawat, F., Sternberg, H. 2024; Context aware transformer
network and in-situ IMU calibration for accurate positioning, IPIN, Hongkong.
https://doi.org/10.1109/IPIN62893.2024.10786130

• Publication B2:
Shoushtari, H., Willemsen, T., Sternberg, H. 2023; Supervised Learning Regres-
sion for Sensor Calibration, DGON Inertial Sensors and Systems (ISS), Braun-
schweig, Germany.
https://doi.org/10.1109/ISS58390.2023.10361922
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• Publication C1:
Shoushtari, H., Harder, D., Willemsen, T., Sternberg, H. 2023; Optimized Tra-
jectory from Smartphone Sensors and 5G UL-TDoA Using Cluster Particle Filters
(Original title in german: Optimierte Trajektorie aus Smartphone-Sensoren und
5G UL-TDoA mit Cluster Partikel Filter), Internationalen Ingenieurvermessung,
Zürich, Hrsg.: Andreas Wieser, Wichmann Verlag, ISBN/EAN:9783879077342

• Publication C2:
Shoushtari, H., Askar, C., Harder, D., Willemsen, T., Sternberg, H., 2021; 3D
Indoor Localization using 5G-based Particle Filtering and CAD Plans, IPIN , Lloret
de Mar, Spain.
https://doi.org/10.1109/IPIN51156.2021.9662636

• Publication C3:
Shoushtari, H., Willemsen, T., Sternberg, H., 2021; Many Ways Lead to the Goal-
Possibilities of Autonomous and Infrastructure-Based Indoor Positioning, Electron-
ics Special Issue Indoor Positioning Techniques.
https://doi.org/10.3390/electronics10040397



2 Introduction
Autonomous navigation paradigms, from sensor-based to map-based ones, are highly rely-
ing on localization, which nowadays works as one of the key tasks in this domain. Inertial
Localization (IL) methods, which utilize inertial sensors, specifically Inertial Measurement
Unit (IMU) sensors to estimate position, have established themselves as standard tools
in various indoor and outdoor environments (Thrun et al., 2005).
The idea of locating people and objects in indoor environments dates back to the 1990s
when the Real Time Indoor Positioning System (IPS) was deployed in hospitals to track
equipment like wheel chairs, and warehouses to track merchandise, etc. (Malik, 2013;
Want et al., 1992). In the IPS domain, IL serves as a critical technique for positioning in
Global Navigation Satellite System (GNSS)-challenged areas where their signals are un-
available. This enables applications such as pedestrian navigation, aerospace instances,
autonomous navigation of vehicles and drones, and contact and asset tracking in different
use cases (Sternberg & Fessele, 2009). For pedestrian indoor positioning, IMU sensors
are particularly popular due to the widespread availability of (Micro Electro Mechan-
ical System) MEMS-IMU sensors embedded in wearable devices such as smartphones,
smartwatches, and smart glasses (Keller & Sternberg, 2013; Willemsen, 2016). Despite
advancements in motion sensors within wearables, indoor localization has remained a
long-anticipated technology. This is expected to change soon.

This chapter presents the motivation for the research, focusing on pedestrian indoor posi-
tioning using smartphones. It explores how machine learning and data-driven approaches
have emerged as key solutions, while also highlighting the continued necessity for opti-
mization and correction methods. In this context, 5G sparse positioning is considered a
potential correction source. The main objectives of the thesis are then outlined from a
broad perspective before being broken down into three specific objectives.

2.1 Motivation

Pedestrian Indoor Positioning with Smartphones
As of 2024, the number of smartphone users worldwide is projected to reach approxi-
mately 7.1 billion. In Germany, the smartphone penetration rate exceeds 80%, for in-
stance (Statista, 2024). Smartphones, as multi-sensor systems, integrate a variety of
preinstalled sensors, processors, and displays, making them a versatile platform for re-
search and development (Sternberg, 2013). Their extensive adoption by a massive user
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4 Chapter 2. Introduction

base further underscores their significance in technological innovation. In the context of
pedestrian localization and navigation use cases, smartphones remain the device most
commonly carried by individuals. Existing navigation applications, such as those devel-
oped by Google and Apple, already provide robust location-based services for outdoor
navigation. However, IPS have gained increasing attention due to their potential to ex-
tend navigation capabilities to indoor environments due to the GNSS signals limitations.

IL Meets Machine Learning
The term inertial sensor in IL refers to the combination of a three-axis accelerometer
and a three-axis gyroscope. Devices containing these sensors are commonly known as
IMUs. IL methods can provide information about the pose (orientation and position) of
any object to which they are rigidly attached using these inertial sensors. Integration
of gyroscope measurements provides information about the sensor’s orientation, while
double integration of accelerometer measurements, after subtracting the Earth’s gravity,
provides information about the sensor’s position. This approach is commonly referred to
as Strapdown methods (Titterton et al., 2004).
Pedestrian Dead Reckoning (PDR) utilizes inertial measurements to detect steps, esti-
mate stride length and heading, and ultimately determine position. Pedestrians can take
advantage of this information along with estimated average stride length to track their
relative position (Li et al., 2012). The extensive tuning required for PDR systems (e.g.,
step length estimation) represents a significant barrier to widespread adoption (Xiao et
al., 2014). Researchers consider using more data to learn and adapt to multiple walking
characteristics, and this is how IL meets machine learning domain.
Data-driven IL, particularly supervised learning approaches, presents promising opportu-
nities addressing indoor positioning challenges related to varying device placement and
changes in smartphone positioning during walking as common behaviors observed in real-
life experiments (Chen, Lu, et al., 2018). Instead of relying on discrete step events, these
algorithms use time windows and shift the windows during model training. This ap-
proach enables learning displacement patterns regardless of the device placement or the
type of user movement. As an example of a real-life use case, consider a postal worker
who interacts with their device in various scenarios: checking it, carrying it in a pocket
or bag, answering a call, or placing it on a tray. Despite these dynamic conditions, the
position estimation system is expected to maintain functionality and sustain submeter-
level accuracy over an extended duration. In this context, data-driven IL methods have
demonstrated significant advantages over Strapdown and PDR approaches, offering im-
proved accuracy and sustained performance over extended durations with reduced error
accumulation. (Yan et al., 2019).
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Data-Driven IL Still Needs Support
Recently, data-driven IL has shown up to submeter-level positioning accuracy and durabil-
ity for multiple minutes (Yan et al., 2019). However, considering a GNSS-comparable so-
lution for indoor environments, regardless of the accuracy and durability of an IL method,
some form of initialization pose and correction mechanism is required to start and then
keep the trajectory drift within acceptable limits. Such a system must be capable of con-
sistently and instantaneously delivering absolute position estimates, as opposed to relative
ones. While the error accumulation in state-of-the-art MEMS sensors can be reduced, it
cannot be entirely removed. Therefore, in the indoor positioning domain, as in other
localization use cases outdoors, the localization task does not solely rely on IMU sensors.
There are two main categories of real-time correction mechanisms (more details in 6.5-
C. Correction of relative trajectories using sparse positional data). The first involves the
use of maps, and the second relies on some form of position information to determine
and use an absolute position. Using a map, through a so-called map-matching process,
the relative trajectory can be laid down on walkable areas on the map. An algorithm
could also request a short walk to compare the relative trajectory derived from IL with
the map to address initialization tasks (Herath et al., 2022). By using absolute position
information, the second group of algorithms could initialize and reinitialize the trajectory
derived from IL, thereby enhancing accuracy and mitigating drift.

5G positioning
The fifth generation (5G) of cellular networks has been developed not only to revolutionize
communication but also to offer advanced positioning capabilities. With the proliferation
of powerful 5G-enabled smartphones, IPS can benefit significantly from the inclusion of
5G technology. In indoor environments, 5G holds the potential to act like the GNSS
infrastructure and solutions, particularly due to the standardization and organizational
support behind it and the widespread adoption of 5G-enabled devices, which is expected
to provide most smartphone users, above 80% in Europe and North America, access to
5G-based positioning services within the next few years (Statista, 2024).

The Third Generation Partnership Project (3GPP), a global collaborative initiative for
mobile communication standardization, has introduced several releases aimed at enhanc-
ing 5G positioning capabilities. Latest 3GPP standards require 5G systems to achieve
positioning accuracy of 3 meters at 80% reliability in indoor environments and 10 meters
at 80% reliability outdoors. Future releases, aim to push this boundary further, target-
ing sub-meter accuracy of up to 0.5 meters at 90% reliability or higher (3GPP, 2024).
The Uplink Time Difference of Arrival (TDoA) positioning method is among the earliest
5G positioning techniques capable of addressing the limitations in accuracy definitions
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However, despite its potential, 5G positioning faces practical limitations. For instance,
deploying a network capable of providing sub-meter accuracy uniformly across all indoor
spaces may not be financially viable. Additionally, 5G positioning shares limitations sim-
ilar to GNSS in terms of coverage, particularly in environments with restricted signal
penetration.

In the context of pedestrian IPS, several challenges emerge. Devices are inherently limited
by battery capacity, making it impractical to continuously operate 5G networks at their
maximum positioning frequency rate, as this would deplete device power within minutes.
Consequently, usable absolute positioning data may only be available intermittently, po-
tentially once every one to two minutes of walking. This phenomenon introduces the
concept of sparse location data, where position data is provided intermittently based on
network availability and configuration (Herath et al., 2021).

2.2 Objectives

To address the challenges and opportunities mentioned above, the overarching goal of
this thesis is to develop and advance a solution for pedestrian IPS that is comparable
to GNSS in terms of functionality and availability. This research aims to consider the
practical constraints and requirements of real-life applications, ensuring the proposed
system is robust, efficient, and user-centric (See Figure 2.1).

Figure 2.1: Real-life data-driven IPS supporting variations in smartphone placements.

This research focuses on pedestrian indoor positioning using smartphones. During the al-
gorithm development phase, a broader range of wearable devices and diverse IMU sensors
will be considered to enhance the accuracy and adaptability of IL methods. Leverag-
ing the IMU sensors available in smartphones, their quality, and real 5G Uplink TDoA
positioning data, this work aims to collect and utilize its own dataset to improve the
state-of-the-art data-driven IPS and 5G Uplink TDoA positioning approaches in terms
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of accuracy, reliability, availability, and durability. Sparse position updates derived from
the absolute Uplink TDoA positions, will be employed for initialization and correction,
while the investigation of map-based approaches may also be explored with respect to
complexity. This research emphasizes extensive qualitative and quantitative evaluations
of existing baselines and state-of-the-art IL methods across multiple benchmarks. The
main objective of this thesis can be divided into three smaller objectives:

• A: Evaluation of smartphone- and 5G-based positional data (publication A1-A2),

• B: Improving and developing efficient data-driven IL approaches (publication B1-
B2, partially in A2) and

• C: Design and development of map matching and correction approaches, compat-
ible with the sparse location data (publication C1-C3).

A: Evaluation of smartphone- and 5G-based positional data
As a first step, evaluation and integrating smartphone sensors data with synchronized
real 5G positioning data essential for advancing the next stages of development. The
dataset collection will play also a pivotal role in identifying patterns, weaknesses, and
potential areas for improvement in data-driven IL. These learning-based approaches rely
heavily on data quality; unsynchronized or poor-quality datasets will inevitably lead to
suboptimal model predictions. To better understand 5G positioning behavior, particularly
in the absence of available datasets, a novel dataset should be collected, capturing raw
5G positioning signals and time measurements for Uplink TDoA under different line-Of-
Sight (LOS) conditions. The evaluation of 5G positioning in indoor environments, includ-
ing both narrow corridors and expansive spaces, must also be addressed. Furthermore,
the development of simulation tools is critical for preparing to work with and process real
data, ensuring continuity in algorithm development even when real 5G data is unavailable.

B: Improving and developing efficient data-driven IL approaches
Building upon the collected dataset and derived insights, this objective focuses on devel-
oping and enhancing data-driven IL techniques. The primary goal is to create a real-life
compatible algorithm capable of handling diverse smartphone (also general wearables)
placements and user behaviors. This includes scenarios such as producing step events
during normal walking, handling activities like calling while walking, or accommodating
situations where the phone is carried on a stroller (e.g., with no step events). Additionally,
the algorithm aims to ensure accurate positioning and robust trajectory estimation over
extended periods. Furthermore, the data-driven approach will integrate state-of-the-art
machine learning methods, leveraging engineered features informed by physics and domain
expertise. This combination of advanced machine learning and domain-specific feature
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engineering is expected to improve algorithm novelty, performance and adaptability in
real-world scenarios.

C: Design and development of map matching and correction approaches
This objective involves designing robust initialization and correction strategies that are
compatible with sparse location data, addressing a critical challenge in real-life pedestrian
IPS applications. Considering the capabilities and limitations of 5G positioning, as well
as the goal of developing a GNSS-comparable IPS solution, this research aims to propose
a realizable concept and solution for efficient initialization. The map matching strategy is
expected to leverage sparse positional updates, and the map information, ensuring reliable
system startup even with limited availability of absolute position data. Additionally, an
automatic correction approach will be developed to optimize system accuracy over time.
This should utilize sparse position points as infrequent correction anchors, minimizing
their usage due to the constraints of sparse data availability and the battery limitations
of user devices.



3 Theoretical Background
This chapter provides a brief overview of the most important and relevant theoretical
knowledge related to data-driven inertial Inertial Localization (IL) and 5G positioning,
which is essential for understanding the content of this thesis. This chapter encompasses
three distinct topics: first, the inertial sensors and their calibration are explored, then
the orientation as foundational input for IL; third, the theoretical background of deep
learning models, with a particular emphasis on sequence models; and finally, an overview
of 5G positioning. In line with the concept of a cumulative dissertation, the topics are
presented at an intuition level that ensures a comprehensive understanding of the thesis
content. However, for more detailed explanations, extensive references are included.

3.1 Coordinates, Frames and Inertial Sensors

Coordinate Systems

In the context of data-driven IL and 5G positioning, there are many coordinate systems
and frames involved, each of them introduced and associated with a certain type of coor-
dinates, either Cartesian, Polar coordinate system, etc. Therefore, different coordinates,
and coordinate systems and frames are briefly defined, but they are well detailed in (Sav-
age, 2000; Torge et al., 2023).

Cartesian coordinates are denoted as x, y, and z, representing the perpendicular distances
of a point from the origin, projected onto the system’s first, second, and third axes,
respectively. Polar coordinates describe a point based on its distance L from the origin
(called the pole) and the direction φ, which indicates the angle between the polar axis,
a fixed ray from the pole, and the line connecting the point to the pole. Ellipsoidal
or geodetic coordinates are defined by ellipsoidal latitude, longitude, and height. These
coordinates are referenced to an ellipsoidal model of the Earth, making them particularly
useful in Global Navigation Satellite System (GNSS) positioning.

Next, the frames are elaborated, inspired from (Klingbeil, Lasse, 2023). A frame is
generally a realization of a coordinate system. The inertial frame (i-frame) is a non-
rotating, space-fixed frame with its origin in the barycenter of the solar system or, as in
this thesis, in the Earth's center of mass. The third axis is usually aligned in parallel
to the Earth's mean rotation axis, the first axis is pointing towards the vernal equinox
(which is by definition orthogonal to the third axis) and the second axis completes the
right-handed coordinate system. The inertial frame is the reference for inertial sensors

9



10 Chapter 3. Theoretical Background

used for trajectory estimation.

The terrestrial frame (e-frame) is situated in the center of mass of the Earth. It is
an Earth Centered, Earth-Fixed (ECEF) frame, rotating synchronously with the Earth
around its third axis. In general, the first axis points towards the Greenwich meridian in
the equatorial plane and the second axis completes the right-handed system. Positions are
expressed in terms of ellipsoidal coordinates. As examples, the World Geodetic System
1984 (WGS84) reference frame are mentioned, which both include the reference ellip-
soid Geodetic Reference System 1980 (GRS80) with a minute difference in the flattening
(Heinz, 2021).

Body frame (b-frame, also local or world frame) is attached to the moving platform. The
origin is a point on the device or vehicle, e.g. the center of mass, the x-axis is pointing
forward, the z-axis is pointing down, and the y-axis is completing the right-handed system
(pointing to the right). It is different from Sensor Frame, a local system attached to the
sensor, where raw sensor readings are given in this system. The variable relationship
between the b-frame and sensor frame, as in real-life usage of wearable devices, cause
challenges in position estimation, for instance using smartphone sensors (See Figure 3.1).

Figure 3.1: Android smartphone sensor coordinate system relative to a device (devel-
oper.android.com).

In Navigation Frame (n-frame) the origin is the same as for the body frame, the x-axis is
pointing towards North, the z-axis is pointing down (parallel to gravity), and the y-axis
is completing the right-handed system, pointing East. This system is also called North-
East-Down (NED).

Inertial sensors

Inertial sensors build the core of most navigation systems, as they can provide information
about the sensors motion. Two types of sensors are considered inertial; accelerometers
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and gyroscopes (angular rate sensors). They measure the sensors angular rates and non-
gravitational accelerations with respect to the inertial frame and can be used to determine
both translational and rotational components of the trajectory.

Accelerometers measure the specific force acting on the sensor along its sensitive axis
with respect to the inertial frame. The specific force is the nongravitational per unit
mass, which is a dynamic acceleration. An accelerometer, standing motionless on the
ground, measures 9.81m/s2 or 1g antiparallel to gravity. Gyroscopes measure the angular
rate of the sensor around its sensitive axis with respect to the inertial frame. A high-grade
gyroscope lying motionless on the ground would still measure the Earths rotation rate,
However, Micro Electro Mechanical System (MEMS) sensors are not sensitive enough to
measure this. MEMS are tiny sensors, which can detect mechanical, magnetic, or even
chemical changes and convert them into electrical information. These sensors are often
combined as three-axis sensors in smartphones, such as the MPU-9250 (TDK InvenSense,
Tokyo, Japan), and are called Inertial Sensor Assembly (ISA). The ISA sensors should
be calibrated by the manufacturer periodically. A calibrated ISA, or an Inertial Mea-
surement Unit (IMU) is the combination of three accelerometers and three gyroscopes
perpendicular aligned to cover all spatial axis.

Calibration of inertial sensors

Calibration of inertial sensors is a critical task to ensure the accuracy and reliability of
sensor systems. This process involves establishing a functional relationship that takes into
account the interaction between the sensor data, considering sources of error such as bias,
scale, orthogonality errors and temperature effects, and a known and error-free reference
value. The aim is to match the measurements to references and estimate the calibration
parameters for further use of the sensor values. In order to estimate these parameters and
to assess the quality of the estimation, a series of repeated measurements are performed
and therefore optimization methods need to be applied (Aggarwal et al., 2010).

The authors in (Poddar et al., 2017), summarize and review the works related to inertial
sensor calibrations, where the methods are divided into two categories, those using high
precision calibration equipment, and without equipment. In the first group, there is
usually a rotating platform in which the exact rotation can be measured, such as works
in (Willemsen, 2016) for smartphone sensors, and (Olivares et al., 2009) also using a total
station. To consider the temperature, a thermal test setup should be used (Aggarwal
et al., 2008). For the calibration of accelerometers without equipment, the methods rely
on gravity as a stable physical calibration standard (Fong et al., 2008).
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3.2 Attitude and heading reference systems

An Attitude and Heading Reference System (AHRS) uses an IMU consisting of MEMS,
typically including tri-axis gyroscopes and accelerometers, and magnetic sensors, to mea-
sure Magnetic, Angular Rate and Gravity (MARG) values respectively. These measure-
ments can then be used to derive an estimate of the object’s attitude (Madgwick et al.,
2011).

Gyroscopes have been successfully employed to determine system orientation in various
applications. However, it is well known that they suffer from drift (Pandit et al., 1986;
Van Dierendonck & Brown, 1969), which manifests itself as a time-variant low-frequency
bias, leading to significant orientation errors over long-term operation (Han, 2009). In the
case of low-cost gyroscopes, such as MEMS-based sensors found in smartphones, the drift
rate can reach several degrees per second. Even for high-precision mechanical gyroscopes,
accumulated errors remain a critical concern that cannot be overlooked.

Accelerometers and magnetometers, while can provide an absolute reference of orien-
tation free from long-term drift effects, are susceptible to significant short-term noise,
particularly in MEMS sensors. For accelerometers, this noise predominantly manifests
itself as a time-variant low-frequency bias mixed with white noise, making it challenging
to distinguish between dynamic acceleration and the inherent sensor noise. This issue
is especially pronounced in MEMS accelerometers due to their small size and minimal
mass, which increase their sensitivity to various noise sources (Mohd-Yasin et al., 2009).
Magnetometers, on the other hand, are highly sensitive to environmental magnetic in-
terference. Factors such as nearby ferromagnetic materials can significantly affect their
readings, leading to inaccuracies in some applications. This environmental sensitivity
requires hard and soft iron calibration and compensation techniques to ensure accurate
measurements (Willemsen, 2016; Q. Zhang et al., 2016).

The task of an orientation filter or an AHRS is to compute a single estimate of orientation
through the optimal fusion of gyroscope, accelerometer and optionally magnetometer
measurements. The Kalman Filter (Kalman, 1960) has become the accepted basis for
majority of filter algorithm to integrate gyroscopes values with some other augmenting
sensors to provide a stable orientation solution. Parameter tuning and large computational
load for implementation of Kalman-based solutions, provide a motivation for alternative
approaches. The Madgwick Filter (Madgwick et al., 2011) is an orientation filter that
is applicable to both IMUs and MARG sensor arrays. The filter employs a quaternion
(Kuipers, 1999; Shoemake, 1985) representation of orientation.

A quaternion is a four-dimensional vector composed of a scalar and a vector component.
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The scalar component represents the rotation angle, while the vector component defines
the rotation axis(Jekeli, 2001). A quaternion can be expressed as:

q = a+ ib+ jc+ kd (3.1)

where, i, j, and k are the imaginary units that satisfy the quaternion multiplication
rules. On the other hand, a, b, c, and d represent real numbers. A quaternion can also be
expressed in Equation 3.2 (Diebel, 2006) as:

q =
[
q0 q1 q2 q3

]�
=

[
q0 q1:3

]�
(3.2)

Quaternion multiplication combines rotations, which allows concatenating multiple rota-
tions by multiplying their respective quaternions. One notable benefit of using quater-
nions over Euler angles (Diebel, 2006; Jekeli, 2001) is their computational efficiency when
performing rotations and transformations. Quaternion operations, such as multiplication,
conjugation, and normalization, can be carried out more efficiently compared to the oper-
ations involved in Euler angle computations. This efficiency comes from the quaternions
compact representation and the use of quaternion-specific algebraic rules. Another ad-
vantage of using quaternions inrotation representation is that they avoid the problem of
gimbal lock, which occurs when using Euler angles. Quaternions do not suffer from this
issue and provide a smooth and continuous representation of rotations (Madgwick et al.,
2011).

The estimation of the IMU’s orientation quaternion can be achieved by combining fused
MARG values and its optimization techniques whenever inertial measurements are ac-
quired. Each quaternion represents the rotation required to transform an IMU’s frame
into another frame whenever a measurement is obtained (Jekeli, 2001).

Consider v as an acceleration or gyroscope measurement in either the sensor frame or the
local (world) frame, represented as a quaternion:

v =
[
0 ax ay az

]�
or

[
0 ωx ωy ωz

]�
(3.3)

Equations 3.4 and 3.5 perform the described transformations from the sensor to the world
frame and vice versa (Diebel, 2006):

vworld = qvsensorq
−1 (3.4)

vsensor = q−1vworldq (3.5)
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3.3 Sequence deep learning models

Machine learning was initially defined in the 1950s as the field of study that gives com-
puters the ability to learn without being explicitly programmed (Samuel, 1959). Machine
learning is fundamentally data-driven, with its primary objective being the development
of general-purpose methods to extract meaningful patterns from data, ideally with min-
imal domain-specific expertise. To achieve this, models are designed to represent the
underlying data generation process. As paraphrased from (Burkov, 1997), a model is
considered to have learned if its performance improves with data. The ultimate goal is
to create models that generalize well to unseen data by optimizing their parameters to
automatically identify patterns and structures (Deisenroth et al., 2020).

Supervised machine learning, commonly referred to as supervised learning, encompasses
algorithms that learn to map input features (x) to corresponding labels (y), effectively
establishing input-output functional relationships. While regression algorithms are de-
signed to predict continuous numerical values from an infinite range of possibilities, the
second major category of supervised learning algorithms, known as classification algo-
rithms, focuses on predicting discrete categories from a finite set of possible outcomes
(Ng, 2024b). In addition to supervised learning, machine learning encompasses several
other paradigms, notably unsupervised learning (Hastie et al., 2009; Murphy, 2012), semi-
supervised learning (Chapelle et al., 2010), and reinforcement learning (Sutton & Barto,
2012).

Regression learning serves as the fundamental core of many learning algorithms. By
extending the concept of linear regression, artificial neural networks emerge (Da et al.,
2016). A single neuron can be viewed as a linear regression unit, inspired by the structure
and function of biological neural networks in animal brains, forming the basis of neural
network concepts (Mcculloch & Pitts, 1943). Deep learning architecture, as in Figure 3.2,
is a contemporary term for the neural network approach to artificial intelligence, which
has been studied for over 70 years (Poggio et al., 2017). Furthermore, a regression problem
can also be transformed into a classification problem by applying an activation function,
such as the sigmoid, softmax, tanh, or Rectified Linear Unit (ReLU). These functions
convert predicted values into probabilities within the range of 0 and 1 (Ng, 2024b). This
transformation enables the model to estimate the likelihood of an instance belonging to
a particular category, forming the basis of the logistic regression algorithm (Tolles &
Meurer, 2016).

For regression learning algorithms, the closer the predicted results to the label data, the
lower the loss value, ideally a value of zero. In mathematical optimization a loss or cost
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Figure 3.2: Illustration of a simple neural network architecture with an input layer in
yellow, 5 hidden layers in blue and an output layer in orange (opennn.net).

function, also known as an error function, maps a event or variable values to a real num-
ber intuitively representing the "cost" of the event. The objective of machine learning
is to optimize this cost function (Murphy, 2022). Given that learning algorithms often
handle high-dimensional input and output vectors, the optimization process is typically
expressed using numerical and iteration-based optimization techniques such as Gradient
Descent (Deisenroth et al., 2020) or the first-order gradient-based optimization, so called
Adam (Kingma & Ba, 2014). Optimization of a loss function through data and hidden
layers, and thus, adjustments of parameters of each linear regression approximate model
corresponding to a neuron, is done using forward and backward propagation in deep learn-
ing (Goodfellow et al., 2016). This method consists of two steps: forward propagation,
predicting by letting the input data flow through the network, and backward propagation,
where gradients of the loss function are calculated with respect to respective parameters
(Deisenroth et al., 2020). This allows numerical optimization techniques to solicit up-
dates to the parameters. Traditionally, matrices were only interpreted as inputting to
neural networks. But in many real-world applications, sequence data is involved, and the
ordering of elements is important.

Sequence models
Different neural network architectures have originally been designed for the specific chal-
lenges and structures of supervised learning data and tasks. Since Convolutional Neural
Network (CNN)s are powerful tools used to process grid-like data, such as images, CNNs
apply convolutional layers to learn the spatial hierarchies of features. This architecture
has been very effective for computer vision, such as image recognition and classification
(Murphy, 2022). Advanced models such as Residual Network (ResNet) have enabled the
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training of very deep networks and improving performance in many tasks (K. He et al.,
2015). Temporal Convolutional Network (TCN) is another recent proposed CNN architec-
ture, which approximates recurrent architectures with dilated causal convolutions (Chung
et al., 2014).

Recurrent Neural Network (RNN)s, on the other hand, are designed to handle the data
by maintaining a form of state or memory that captures information from previous in-
puts. This capability makes RNNs well-suited for tasks where context and sequence are
crucial, to build models for natural language, audio, and other sequence data. This type
of model has demonstrated exceptional performance on temporal data, including Long
Short-Term Memory (LSTM) networks, which address the vanishing gradient problem
and enable long-range dependencies (Hochreiter & Schmidhuber, 1997); Gated Recurrent
Unit (GRU)s, which simplify the architecture while maintaining performance efficiency
(Ng, 2024a); and Bidirectional RNNs, which process information in both forward and
backward directions (Schuster & Paliwal, 1997), improving contextual understanding in
sequential data (Murphy, 2022).

Figure 3.3: Illustration of a simple RNN architecture (Ng, 2024a)

The advantage of using RNN models for sequence tasks becomes evident when the lengths
of inputs Tx and outputs Ty vary across different examples. Additionally, features learned
across different positions of the sequence can be shared, which reduces the number of
parameters in the model. Based on the relationship between input and output lengths,
RNN architectures can be categorized into one-to-one, one-to-many, many-to-many, and
many-to-one configurations (Murphy, 2022). There are an encoder and a decoder parts
in some architectures. The encoder encodes the input sequence into one matrix and feed
it to the decoder to generate the outputs. Encoder and decoder have different weight
matrices (Cho et al., 2014). In an RNN architecture (see Figure 3.3), the current output
ŷ<t> depends on the previous inputs and activations (Sutskever et al., 2014).
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Transformers
Sequence models can be enhanced using an attention mechanism, which helps retain nec-
essary information over long sequences. This, in turn, significantly increases the model’s
accuracy. The attention mechanism enables the model to determine where to focus given
a sequence of inputs, using so-called contextual information. In other words, attention
weights specify which inputs are required at each step to generate an output (Bahdanau
et al., 2014). The attention mechanism was first introduced for machine translation but
has been leveraged in several other fields, including computer vision, to create different
novel architectures. A drawback to this algorithm is that it has a quadratic time or cost
to run (Graves et al., 2014).

The Transformer that builds on the attention mechanism integrates the self-attention and
multi-head attention mechanisms, and thus in a way enhances the traditional deep learn-
ing models by including some ideas from CNNs. This method allows for computations to
be executed in parallel, which greatly increases efficiency by removing the sequential na-
ture that had restricted progress in RNNs. Another important innovation in Transformers
is positional encoding, which gives an index to input elements so that a non-sequential
function can keep the sequence order of the inputs (Vaswani et al., 2017). This makes
Transformers particularly effective for large-scale text processing tasks, as seen in models
like BERT (Devlin et al., 2018) and GPT (Radford & Narasimhan, 2018), where contex-
tual relationships and long-range dependencies are critical.

3.4 Positioning in 5G networks

Future indoor awareness requirements are expected to cause huge improvement in the
communication network capacity, energy efficiency, and latencies of services as well as
the number of connected devices. Therefore, the Fifth Generation New Radio (5G NR)
network is the first cellular network which is not only designed with the sole focus on
mobile phones, but also as basis for technologies such as Device-To-Device (D2D) or
Internet of Things (IoT) devices such as smart meters, watches, or wearables (Kraeling &
Brogioli, 2019; Wymeersch, 2017). The Third Generation Partnership Project (3GPP) is a
global collaboration that sets the standards and protocols for mobile telecommunications.
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The 3GPP has initiated the definition of 5G NR and its requirements have been structured
under three main categories through Releases and Technical Specifications 1:

• enhanced Mobile BroadBand (eMBB), whose aim is to provide wireless connec-
tivity with very high bandwidth.

• massive Machine-Type Communication (mMTC), providing connectivity to a large
number of IoT devices such as smart meters, watches, or wearables. mMTC
requires very large cell and network capacity.

• Ultra-Reliable Low-Latency Communication (URLLC), targeted to provide low la-
tency robust communication links for Vehicle-to-everything (V2X), remote surgery,
and other safety-critical applications.

The 5G network includes other devices and use cases, referred to as industry verticals. An-
other significant difference with respect to previous cellular networks is the use of higher
frequencies in the millimeter-Wave (mmWav) spectrum, starting at 24 GHz. 5G also
brought important features such as massive Multiple Input, Multiple Output (MIMO),
beamforming, cloud computing, and network virtualization (Shi & Jensen, 2011). All
these features help increase the scalability and modularity of the network and to reach
peak data rates of 20 Gbps with very high user density.

Measurement models
Release 16 specifies positioning signals and measurements for the 5G NR. They are sum-
marized below, inspired from (García et al., 2020). Time of Arrival (ToA) measurement
calculates the time lapse between the transmission and reception of a particular signal.
Based on the propagation delay multiplied by the propagation speed of the signal (vp)
and considering the measurement error (eX), the distance between the transmitter and
receiver can be determined. Geometrically, the locus of points with a constant distance
to a known point forms a sphere in 3D space. Assuming the position of either the trans-
mitter or the receiver is known, the ToA measurement defines a sphere of location. This
implies that the receiver is positioned on a sphere with a radius equal to the measured
distance, centered at the transmitter, or vice versa. Using the equation of a sphere and
incorporating measurement error, the observation equation is obtained.

A Round-Trip Time (RTT) measurement calculates the time lapse between the moment
a signal is transmitted and the moment the response or acknowledgment to that signal is
received. In the ideal case, the RTT measurement is twice the ToA measurement.

To eliminate the need for high-resolution time synchronization between the mobile ter-
1https://portal.3gpp.org (Accessed: 15 April 2025).
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minal and base station, the Time Difference of Arrival (TDoA) between multiple pairs of
antenna nodes can be measured. TDoA calculates the time lapse between the reception
of two signals originating from different transmitters.

This is expressed in Equation (3.6), where trxi represents the time at which the signal
from transmitter i is received:

TDoA = trx1 − trx2 (3.6)

The time difference measurement helps calculate the difference in distances between the
receiver and each of the transmitters. As shown in Table 3.1, a hyperboloid equation is
used for the observation model, where (RxTxi) denotes the distance between the receiver
and transmitter i, and eTDoA represents the error associated with the TDoA measurement.

The Phase of Arrival (PoA) measurement estimates the phase of the received signal and
calculates the distance between the transmitter and receiver based on this phase measure-
ment. If the transmitted signal is a sine wave with an initial phase of zero, the received
phase φrx depends on the distance traveled by the signal, as given in Table 3.1, where k is
a positive integer. The observation model can be derived by assuming that the propaga-
tion speed vp = c (the speed of light) and solving for the distance d, considering λ = c/f

as the signal wavelength.

An Angle of Arrival (AoA) measurement determines the angle at which a signal is received.
Knowing the incoming angle of the received signal allows the receiver to estimate the
transmitter’s direction. The transmitter can be located at any point along the straight
line defined by the angle α. Two classical methods are used to determine the AoA: by
using the Phase Difference of Arrival (PDoA) or the geometric estimation-PDoA Measures
the phase difference of signals received at two or more antennas. This method requires
an antenna array with at least two elements at the receiver side and assumes the receiver
is in the far field of the transmitter. Geometric estimation uses the known geometry of
multiple antennas to infer the signal’s arrival angle.

The Received Signal Strength (RSS) method estimates the distance between the trans-
mitter and receiver based on the received power level. If the transmission power is known,
the reception power can be used to estimate the signal’s path loss. The distance Dtra can
be computed using transmission equations such as Friis’ equation (García et al., 2020).
The error term eRSS is considered in the observation model (See Table 3.1).
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Table 3.1: Summary of Cellular-Based Measurements.
Measurement Model

ToA (x− a)2 + (y − b)2 + (z − c)2 = (ToA · vp)2 + eToA
RTT (x− a)2 + (y − b)2 + (z − c)2 = (RTT/2 · vp)2 + eRTT

TDoA (RxTx2)− (RxTx1) = TDoA · vp + eTDoA
PoA (x− a)2 + (y − b)2 + (z − c)2 = λ · (φrx/2π + k)
AoA (x− x1)

2 + (y − y1)
2 + (z − z1)

2 = (l · sinα)/ sin(α + β)

RSS
√
(x− xi)2 + (y − yi)2 + (z − zi)2 = Dtra + eRSS

While time-based measurements such as ToA, RTT, or TDoA require highly precise clocks,
phase-based methods are primarily dependent on antenna design and phase ambiguity
solutions. However, they can achieve millimeter-level accuracy using commercial off-the-
shelf hardware2. AoA measurements, when combined with the aforementioned methods,
enable single-anchor positioning, which is particularly advantageous for location based
applications, in which they often fail to provide a financially viable solution. Among
these, RSS measurements stand out due to their widespread availability and ease of ac-
quisition. This accessibility makes RSS one of the most globally applicable sources for
indoor positioning (see Section 4.2).

Positioning Technologies
Positioning measurements can be combined in various ways to calculate the coordinates
(location) of a target object. Although the positioning measurements and parameters may
be specific to cellular networks, the fundamental positioning algorithms remain consistent
across different generations of cellular technology.

Proximity is the simplest positioning method, where the object’s location is approximated
by assuming it shares the same coordinates as the nearest antenna. More advanced ap-
proaches utilize multiple antennas and apply a weighted sum of their positions based on
signal measurements. Triangulation determines the object’s position by measuring angles
from known reference points. In two-dimensional localization, at least two angle mea-
surements from two known locations are sufficient to estimate the position. Trilateration,
on the other hand, relies on distance measurements to compute the object’s location.
To obtain a 2D position, at least three reference points are required. Multilateration is
based on TDoA observations. It calculates position by measuring the difference in dis-
tances between the object and multiple known reference points, and needs at least three
measurements estimate a 2D position (García et al., 2020).

To standardize 5G positioning methods, 3GPP groups different positioning techniques

2https://www.koherent.io/ (Accessed: 7 October 2025).
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based on whether they use Downlink or Uplink methods (García et al., 2020). However,
this does not consider data-driven approaches, such as the widely used fingerprinting
technique (Laska, 2023). Table 3.2 presents different compositions of 5G positioning
technologies based on their underlying algorithms.

Table 3.2: Different compositions of 5G positioning technologies based on the methods.
Method Measurements

Proximity RSS, RTT
Triangulation AoA (DL-AoD, UL-AoA)
Trilateration ToA, RTT, RSS (NR-CID, Multi-RTT)
Multilateration TDoA (DL-TDoA, UL-TDoA)

Positioning in 5G extends beyond Radio Access Technology (RAT)-based methods, incor-
porating alternative localization techniques such as GNSS, Bluetooth, and other RAT-
independent approaches within the cellular network. Moreover, positioning can be ex-
ecuted either directly by the User Equipment (UE), in so called UE-based methods or
managed centrally through the Location Management Function (LMF) within the 5G
core network, so called LMF-based ones (Dwivedi et al., 2021).





4 Scientific Context
Indoor positioning solutions have gained considerable research attention in recent years.
The launch of 5G networks and the worldwide growth of Artificial Intelligence (AI) have
given a leverage to the problem of Indoor Localization. Many academic and industrial
activities and events have occurred during this time, which has influenced the scientific
context. Several milestones and events that shaped the trajectory for this dissertation are
highlighted in Figure 4.1.

On the national level, the German Bundestag approved approximately 66 million euros in
funding to support the research initiative of 5G technology, distributed by Bundesministerium
für Verkehr und digitale Infrastruktur (BMVI). As part of this investment, six special
grants were awarded in 2019 to research institutions and universities, with the aim of
enabling digital transformation across social, economic, and administrative sectors, to
contribute to long-term improvements in quality of life in Germany. The present disserta-
tion was developed during the framework of one of these funded projects, Level 5 Indoor
Navigation (L5IN), which began in 2019 (detailed in Section 4.4), coinciding with the
authors research employment.

Figure 4.1: Some important events on the context of the thesis.

At the same period of time, on the global AI stage, the invention of Transformer networks,
starting by researchers in Google with the landmark paper "Attention is all you need"
(Vaswani et al., 2017), marked a turning point in machine learning domain. The highly
active research domain came up with the first data-driven approaches in indoor positioning
domain, as a usage of learning-based techniques to inertial sensor drift-reduction, launched

23



24 Chapter 4. Scientific Context

at University of Oxford (Chen, Lu, et al., 2018). These seminal works set the scientific
tone that surrounded this thesis. The trend has been at its peak while companies such as
Facebook have released the "neural inertial localization", using the transformer networks
(Herath et al., 2022).

From 2020 to 2023, the COVID-19 pandemic has also highlighted the importance of
pedestrian localization on public safety and mobility. But it also led to extended delays
on research collaborations and event planning. For example, the organizers and steering
committee of the 11th Indoor Positioning and Indoor Navigation (IPIN) conference, among
the most prestigious events in the field, had to cancel this year's conference with the
pandemic having global repercussions.

Last but not least, contributing to the context of the thesis was the increasing of trans-
former network applications. While the paper "Improving Language Understanding by
Generative Pre-Training" (Radford & Narasimhan, 2018) didn’t gain much attention ini-
tially, its importance was made evident after OpenAI released ChatGPT in November
2022. This was reflective of AIs transformative potential, both its impact on the public
and on the research community. It is worth to mention here, that the dissertation author
utilized ChatGPT-4o during the writing process for proofreading.

This chapter aims to summarize the relevant state-of-the-art research in a concise and
accessible format, with references to key works, starting with exploring different types
of localization methods, followed by infrastructure-based positioning techniques. Next,
the state estimation approaches, also known as correction or filtering approaches, are
discussed. Lastly, L5IN project will be introduced.

4.1 Inertial localization

The use of inertial sensors to estimate the trajectory of a moving sensor, or a pedestrian or
a platform carrying the sensor, is called Inertial Localization (IL). Although the general
idea has been known for years (Savage, 2000), the data-driven approaches have only
recently been introduced, and the leading benchmarks have named the problem differently,
from inertial odometry (Chen, Lu, et al., 2018), to inertial navigation (Chen et al., 2020),
to inertial localization (Herath et al., 2022). It should be noted that the terms odometry,
navigation and localization have their standard definitions and differences, and they are
different from the IL process, although these are taken into account.

Strapdown integration is among the first IL methods that can estimate the position by
two time integrations of the dynamic acceleration (Titterton et al., 2004). Estimating
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the dynamic acceleration, i.e. reducing gravity and other force effects such as Coriolis
or centrifugal, is the challenging part, which may not be accurate with Micro Electro
Mechanical System (MEMS) inertial sensors.

g =
[
0 0 0 9.81

]�
(4.1)

Practical methods are used to overcome this challenge, focusing only on reducing the
gravity values, such as estimating the Inertial Measurement Unit (IMU) sensor orientation,
using Madgwick algorithms (Madgwick et al., 2011) and transforming the sensor values
to the local frame (see Equation 3.4), where 9.81m/s2 can be subtracted from the sensor
z-axis. To check whether the quaternion vector computed an algorithms is the correct one,
the inverse quaternion vector and the transfer function other way round (see Equation
3.5) can be used. The gravity vector in a quaternion way (See Equation 4.1) in sensor
frame, should be the same or very close to the mean of the acceleration values in a time
window, say 5 seconds for pedestrian motion. The mean vector has been shown to be
very close to gravity using MEMS sensors, with respect to the sensor frame (Mizell, 2003).
Although the process is not suitable for high-precision IMU sensors to accurately estimate
the dynamic acceleration, it also works based on the definition of thresholds depending
on the application, it can be used well for pedestrian localization purposes, therefore it is
the basis of other IL methods (Xiao et al., 2014).

4.1.1 Step based methods

The combination of accelerometer and gyroscope is of particular interest to Pedestrian
Dead Reckoning (PDR). The basis of PDR is the combination of a pedometer, a known
or estimated stride length, and orientation. Several implementation examples and vari-
ants exist for realizing PDR. Notable approaches include multi-threshold step detection
algorithms based on accelerometer and gyroscope signals (Li et al., 2012), the Madgwick
filter for orientation estimation (Madgwick et al., 2011), and regression-based models for
stride length estimation (Gu et al., 2019). Once a step is detected, PDR updates the
position. As shown in Equation 4.2, the current 2D position Xi is computed based on
the previous position Xi−1, combined with the stride length T and the rotation matrix
Ri build on the heading value.

Xi = Xi−1 +Ri · T (4.2)

PDRs are usually limited to the device placements, and works for instance very well in
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foot mounted sensors, where Zero Velocity Update (ZUPT) are used in order to correct
the sensor bias when the system stays stationary (Pinchin et al., 2012; Romanovas et al.,
2013), as well as handheld positions such as those using smartphone sensors (Wang et
al., 2020; Willemsen, 2016). Research works in step length estimation using regression
models has been extended, and consideration of placement and accuracy limitation in
PDR methods, established data-driven methods.

4.1.2 Data-driven methods

Data-driven methods have advanced significantly, employing learning techniques to en-
hance inertial tracking. The foundations of these approaches stem from early work in
human activity recognition, such as (Zhao et al., 2017), where a time-window of IMU
sensor values is used to classify activities like walking, running, and more. The concept of
using time-windowed data, rather than relying on step-detection events, has also proven
advantageous in approaches (Xiao et al., 2014).

Building on these ideas, the collection of the first inertial localization datasets enabled the
development of early neural network-based approaches to localization (Chen, Lu, et al.,
2018; Chen, Zhao, et al., 2018). The inertial sensor values, and accurate reference posi-
tioning values should be collected, in which a time window of the inertial sensor value in
three axis each (say 1 seconds) considered as the input for the supervised learning, and
displacement happened during the time window (velocity vector), tracked by the refer-
ence system, considered as the label data. In follow-up work, the Robust IMU Double
Integration (RIDI) method (Yan et al., 2017) demonstrated how velocity vectors could
be regressed by incorporating insights from activity recognition. This approach employed
simpler machine learning models, such as Support Vector Machines (SVM), to reduce
computational complexity (F. Zhang & O’Donnell, 2020). Notably, RIDI was the first
open-source implementation in this area, helping to catalyze broader community engage-
ment.

Subsequent developments led to more advanced architectures. Robust Neural Inertial
Localization (RoNIN) (Herath et al., 2020) and Inertial Deep Orientation-Estimation and
Localization (IDOL) further improved localization accuracy (Sun et al., 2021). Addition-
ally, Neural Inertial Localization (NILoc) leverages Transformer models for map-matching,
aligning trajectory points to road networks for accurate trajectory reconstruction (Herath
et al., 2022). The Comprehensive Transformer-based Inertial Navigation (CTIN) model
combines ResNet (Zhao et al., 2017)-based encoders with Transformer decoders to capture
both spatial and temporal information (Rao et al., 2022).
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4.2 Infrastructure-based positioning

Infrastructure-based positioning methods, as seen in section 3.4, are distinguished by the
signal measurements they use and therefore the positioning algorithms. Different position-
ing techniques are used in a wide range of beacon technologies, mostly focused on Received
Signal Strength (RSS) measurements, including beacon-based positioning as Wireless Lo-
cal Area Network (WLAN), Bluetooth Low Energy (BLE), Ultra-Wideband (UWB),
Radio Frequency Identification (RFID), etc. (Zafari et al., 2019) as well as cellular tech-
nologies such as those in 1G up to Long Term Evolution (LTE) and 5G (Del Peral-Rosado
et al., 2018). The suitability of these varies depending on the use-case requirements. While
certain beacon technologies, such as WLAN, have the advantage of being already densely
deployed in most buildings to provide Internet connectivity, they have the disadvantage of
needing constant adjustment to changes in the indoor environment (S. He & Chan, 2016).
In this way, absolute position estimates are mostly obtained from approximate measure-
ments such as RSS, in so-called fingerprinting approaches, whereas cellular positioning
methods use timing-based or angle-based measurements, making them less sensitive to
changes in the indoor environment (Blankenbach et al., 2017).

The problem of estimating the position of a given fingerprint naturally can also (similar
to data-driven IL) fit the definition of a supervised machine learning problem, where the
data is represented by the fingerprints labeled with the capture position. By collecting
labeled fingerprints in the so-called offline phase, a model can be trained in a supervised
environment that is able to predict the positions of unseen fingerprints in the online phase
(Laska, 2023). It also combines well with IL methods and map constraints (Ebner et al.,
2015; Klingbeil & Wark, 2008). Fingerprinting can be applied not only at the scale of a
building with in a zero-effort crowdsourcing way (Rai et al., 2012), but also globally by
collecting the signal information through mobile mapping systems or smartphone appli-
cations, using Global Navigation Satellite System (GNSS) as label data. For example, the
Android Application Programming Interface (API) named as Fused Location Provider1.
It combines input from GNSS, Bluetooth and WLAN to produce good indoor and outdoor
location indicators and provide sparse position data with an accuracy of about 20 meters
(Herath et al., 2021).

Positioning methods based on time-based measurements, such as Time of Arrival (ToA),
Time Difference of Arrival (TDoA), but also angle-based measurements such as ToA,
depend on the hardware and software of the transmitter or/and User Equipment (UE),
making them not commonly used as fingerprinting approaches (Liu et al., 2007). While
the synchronization limitation on the UE side should be the main challenge in realizing

1https://developers.google.com/location-context/fused-location-provider (Accessed: 15 April 2025).
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these approaches on smartphones, 5G positioning, especially those Location Management
Function (LMF) based solutions such as Uplink TDoA, make accurate positioning possible
also for this kind of portable devices. The research is trying to implement angle-based
methods as a 5G positioning technique (Dwivedi et al., 2021) similar to what has already
been tested in UWB (Blankenbach & Norrdine, 2011).

4.3 State estimation algorithms

In the last two sections, it was shown that relative trajectory estimation using inertial sen-
sors, but sick to a growing drift over time, and absolute positioning from infrastructure,
but energy consuming, can be done. This combination is reminiscent of the idea of an
Inertial Navigation System (INS), which uses the fusion of inertial sensors to continuously
estimate the position, orientation and velocity of a moving object (Britting, 1971; Jekeli,
2001). The difference, however, is that INSs usually use GNSS which can provide absolute
positions with a continuous frequency in case of availability, otherwise the INSs can keep
navigation accurate for a short period of time relying only on IMU sensors. However, the
challenge in indoor environments is that the availability of positions is very sparse, and
the estimation of position needs to be done in real time (Herath et al., 2021). There-
fore, accurate sparse position data and map constraints are typically used, respectively
through Recursive Bayesian Estimatio (RBE) algorithms such as Kalman Filtering (KF)
and Particle Filter (PF). While both of these approaches are well-known, they struggle
with sparse observations, an issue that can be considered their research gap, or simply a
scenario for which they were not designed.

4.3.1 Kalman filtering

Kalman filtering is used to estimate a state from motion model and control inputs as well
as measurement models, using so called prediction and measurement models respectively
(Kalman, 1960). It is assumed that system noise follow a Gaussian distribution, and both
models are linear with respect to the state. If the models are non-linear, and need to
be linearized using Jacobi matrices, then the algorithm is called Extended Kalman Filter
(EKF). Authors in (Solin et al., 2018) uses EKF in context of data-driven IL, in which the
landmarks positions such as stairs have been translated to sparse positions, and are used in
the filter, for correction of the relative trajectory delivered from PDR algorithm, although
heading correction mechanism is not explained or considered. Therefore, the challenge
for an indoor INS method, where sensor heading measurement is lacking, remains open.
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4.3.2 Particle filtering

In contrast to the correction mechanism using sparse location data, filtering with map
constraints is better known. PF belongs to the Monte Carlo Methods, used to model
highly non-linear problems with very noisy measurements (Wendel, 2011). PF is able
to handle highly non-linear problems, where the uncertainties are represented by several
estimation samples, so-called particles (Aggarwal et al., 2010). The goal in the implemen-
tation for map matching is to approximate the probability distribution function (PDF)
of a position by a large number of weighted, independent particles (Gordon et al., 1993).
Backtracking PF further consider the history of the trajectory to further improve position
estimates (Widyawan et al., 2008). PF have the advantage that non-linear processes and
observation models can be implemented without linearization (Willemsen, 2016). In no-
table studies, map-matching algorithms based on PF such as in (Davidson et al., 2010;
Woodman & Harle, 2008) has been tested in a real-time and sequential manner, in which
inertial sensor values could be also used (Yu et al., 2017).

4.4 Level 5 Indoor Navigation Project

In the scientific context and state-of-the-art Indoor Positioning System (IPS) approaches
and technologies, and the increasing demand for location-based services, L5IN project has
been defined and launched by HafenCity Universit (HCU), Hamburg. The main idea was
that there is no global system that works well enough to answer the indoor applications,
while 5G network infrastructure was seen as no extra infrastructure or reserved hardware,
since of promised availability to the public in the near future.

The aim of the project was to develop and provide indoor positioning and navigation
services within areas covered by a 5G network. To investigate this, a 5G positioning
capability was integrated into a 5G non-standalone (NSA) network deployed at HCU.
The key points covered were the experimental modular development system at HCU,
which supports the integration of heterogeneous technologies such as smartphones and
their sensors, UWB reference positioning system, a smartphone application representing
the HCU 3D building information model and the 5G network (see Figure 4.2). PDR
approaches and PF-based map matching were implemented in the smartphone application,
and the UWB transmitters, which were able to use the Uplink TDoA positioning method
as reference system using a separate receiver tag. The systems were synchronized using
a single Network Time Protocol (NTP) server located in the HCU, which received the
time signal via the installed GNSS antenna. The project was designed so that different
elements and methods could be easily improved and replaced, thanks to its modularity.
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In addition, a cloud-based data management and analysis platform was established to
facilitate data analysis and evaluation.

Figure 4.2: System overview of the L5IN project.

The project is working in partnership with the Fraunhofer Institut für Integrierte Schal-
tungen (IIS) to validate Release 16 positioning insights in a laboratory-scale experimental
prototype, as Fraunhofer IIS operates a laboratory network for positioning solutions in a
research environment (see Section 7.3).



5 Summaries of the Relevant Publications
This chapter briefly summarizes the publications that form the basis of this cumulative
thesis, and illustrates the relationship between the publications.

Figure 5.1: Content assignment of the relevant publications to clarify their respective
contribution to the dissertation.

Connection between the publications

The primary objective of the publications is to develop a Global Navigation Satellite Sys-
tem (GNSS)-comparable solution for real-life Indoor Positioning System (IPS) suitable
for smartphone-based pedestrian navigation use cases, considering the availability of 5G
signal and positioning services. This objective is to be achieved by a data-driven Inertial
Localization (IL) corrected with 5G sparse position data, from the 5G Uplink Time Dif-
ference of Arrival (TDoA) positioning method, for instance. In order to test the proposed
solution, experiments and data collection are required, making a dataset. Then, once the
data evaluated, two main approaches can be taken. Firstly, the IL can be made as suitable
for real-life applications as possible, and as long-lasting and accurate as possible. Sec-
ondly, the necessity for correction should be minimised by automatic detection of the need
for correction by sensor-based solutions, because this results in a more infrastructure-free
solution, less energy consumption of the smartphone, and greater autonomy. In an ideal
scenario, the sensor-based IL should be capable of triggering an alert when a correction
is required. Overall, the present publications are divided into three main objectives, A,
B, and C (see Section 2.2). Figure 5.1 classifies these publications according to their
content and scientific context.

The connection of the publications can be viewed from a variety of perspectives, including
the order in which the papers were published. The initial approach sought to identify a
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comprehensive filtering method for integrating the measurements and solutions, concur-
rently with the endeavour to utilise unavailable real-world experimental data. Following
the stabilisation of filter algorithms through the utilisation of simulated infrastructure
data, a data preparation phase ensued, resulting in the formulation of final data-driven
and filtering approaches.It is therefore recommended that readers peruse the publications
in the order specified in this section.

Publication C3 (peer-reviewed)

• Shoushtari, H., Willemsen, T., Sternberg, H., 2021; Many Ways Lead to the GoalPossi-
bilities of Autonomous and Infrastructure-Based Indoor Positioning, Electronics Special
Issue Indoor Positioning Techniques.

This study provides a study of indoor positioning along with both autonomous and
infrastructure-based methodologies. Two contrasting scenario studies, based on real ex-
periments, were conducted to assess Pedestrian Dead Reckoning (PDR) and infrastructure-
supported positioning, including the option of fifth-generation (5G) cellular networks.
This work has been based on the early autonomous approaches, started to use Inertial
Measurement Unit (IMU) embedded in smartphones for PDR. However, the findings
revealed limitations in long-term reliability because of drift and error accumulation and
user-device placement limitation of the last works has been addressed. A comprehensive
literature review and a detailed story outline indicate that data-driven approaches have
the potential to enhance the longevity of inertial localization, thereby introducing greater
flexibility.

To counter these issues, it was proposed the use of 5G positioning based corrections. Two
innovations were tested: Particle Filter (PF), in a form of a topological approach based on
floor plans and routing graphs to improve positioning accuracy. The filter assigns weights
to particles, hypothetical positions, based on how closely they align with the simulated
5G positioning data (reference points added noise), subsequently refining the estimate
toward the most probable trajectory. Floor plans and routing graphs were also utilized
within the particle filtering framework to further constrain the particles and improve
accuracy by preventing improbable paths through obstacles or walls. Second, to use only
a few of simulated 5G positions, to correct the step length, step heading and therfore
the trajectory. The study also modeled 5G-based positioning scenarios and demonstrated
better robustness in hybrid PDR with these Sparse position data. This hybrid approach
observed significant accuracy enhancements as shown in early implementations surpassing
only self-driven approaches.
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Publication C2 (peer-reviewed)

• Shoushtari, H., Askar, C., Harder, D., Willemsen, T., Sternberg, H., 2021; 3D Indoor
Localization using 5G-based Particle Filtering and CAD Plans, Indoor Positioning and
Indoor Navigation (IPIN) , Lloret de Mar, Spain.

Building on the previous publication, the study proposes an innovative methodologi-
cal framework incorporating simulated 5G locations, PF, smartphone sensor data and
geospatial analyses. This research includes a critical innovation of an effective workflow
converting CAD architectural plans into indoor maps and routing graphs, in the form of
Geojson data, by application of basic geospatial analyses, such as, spatial joins, short-
est paths and affine transformations. Providing maps and graphs for localization means
providing environmental context for positioning algorithms and the application of geospa-
tial analyses, makes the PF algorithm development flexible in terms of trying different
scenarios for more development.

The study utilises particle filtering as a fundamental algorithm, wherein all particles orig-
inate from a shared initial point. The movements of these particles are calculated in three
dimensions, incorporating covered length, heading information obtained from smartphone
sensors through the implementation of the Madgwick filter, and the height change of each
step. The application of the Madgwick filter represented a pioneering endeavour, en-
abling users to place the device with a high degree of flexibility. However, PDR shows
its limitations in terms of needing steps events to update information, including height,
which is not possible in an elevator, for instance. The application of Madgwick was the
first try, that allowed a flexible device placement by the user. The integration of random
noise accounting for real-world inaccuracy and particle position updates are performed
iteratively for each particle, reducing any uncertainty associated with the control, asso-
ciation, and update phases of the filter. Afterward, different line of sight, rooms, walls,
and routing graph weighting methods are applied to refine particle positions. As a result,
particles remain promptly dispersed, and divergence is avoided by means of a resampling
procedure.

Moreover, a 5G emulation tool was developed to simulate a realistic network environment,
thereby generating realistic measurements such as signal transmission and reception times,
as well as the angles and positions of the signal.This research has demonstrated the merits
of correction using sparse location data, which significantly reduced drift from IMU-based
or autonomous methods. The proposed methods were validated through experimental
setups in a complex university building, resulting in significantly higher precision and
accuracy of tracking when compared to the baseline, particularly when used in conjunction
with other map-matching techniques.



34 Chapter 5. Summaries of the Relevant Publications

Publication A2 (peer-reviewed)

• Shoushtari, H., Kassawat, F., Harder, D., Venzke, K., Müller-Lietzkow, J., Sternberg, H.,
2022; L5IN+: From an Analytical Platform to Optimization of Deep Inertial Odometry,
IPIN , Beijing, China.

Advancing investigations used in Level 5 Indoor Navigation (L5IN) project (see section 4),
this research work presents L5IN+ analysis platform and web-based simulation tools de-
veloped to support data-driven IL (see 4.1 for more information on the difference in
titles.) correction approaches for real-life indoor positioning applications. L5IN+ analy-
sis platform include an online application called Positioning Lab (PosLab) and provides
comprehensive evaluation tools and datasets, supporting the complete processfrom data
collection and management to dataset creation and position estimation. This publica-
tion also includes initial explorations of data-driven methods. This included the use of a
neural network architecture inspired by RoNIN-ResNet (Herath et al., 2020) to predict
velocities from IMU sensor values. This network was specifically designed to cope with
the drift issues due to noisy sensor readings and limited training data, by merging dif-
ferent quality of label data. Moreover, a correction method using Kalman Filtering (KF)
was formulated and verified on simulated data to complement the absolute placements
estimated from 5G measurements with the relative placements generated by the Residual
Network (ResNet) model. Preliminary evaluation demonstrated promising improvements
in positioning accuracy using this combined approach.

Publication A1 (peer-reviewed)

• Shoushtari, H., Harder, D., Kasparek, M., Müller-Lietzkow, J., Sternberg, H. 2023; Data-
Driven Inertial Navigation assisted by UL-TDOA 5G Positioning, International technical
Meeting (ITM), Institute of Navigation (ION), Long Beach, California.

This research work investigates the fusion of 5G Uplink TDoA positioning with data-
driven IL operated by neural networks, focusing on dynamic positioning scenarios and
settings, with a special emphasis on pedestrian navigation. With the proliferation of 5G
capable smartphones, there are great opportunities to develop indoor navigation solutions,
particularly by significantly enhancing positional accuracy under real-world conditions.

Extensive experiments were conducted within a test environment, covering diverse indoor
scenarios that ranged from clear line-Of-Sight (LOS) conditions to highly obstructed Non-
Line-Of-Sight (NLOS) environments. Absorber walls were strategically placed within
the testbed to effectively simulate varying degrees of signal obstruction, representing the
narrow corridors, which are challenging for 5G positioning coverage.
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The experiments were tailored to enable some of the different 5G situations, such as a
wallless open indoor space where there are no obstructions, and results were also provided
with wall configurations that were specifically designed to represent hallways and less
fictional indoor settings. A Qualisys optical system was used as reference system, tracking
two additional targets, one attached to the top of the user’s head to mimic normal human
movement, and another on top of the smartphone device. In addition, fresh 5G raw
signals were made available for positioning research for the first time in this study, which
increased the real-world nature and novelty of the dataset.

Moreover, available data-driven IL banchmarks were taken into account, which used infor-
mation from sensors on smartphones and advanced deep learning network architectures,
including ResNet, Long Short-Term Memory (LSTM), and Temporal Convolutional Net-
work (TCN). This was done to confirm the general agreement of the data gathered
through the experiences. Among the different models used, ResNet shows more efficient
learning speed and overall higher performance across various data types, indicating its
potential for practical detection and cancellation of common sensor drifts found in IMU-
based positioning. A key element of this work involved creating a large dataset called
L5IN+, which contained a variety of data from smartphone sensor readings and Uplink
TDoA 5G location data to positional estimates from Androids fused location provider.
This dataset covered a wide range of pedestrian movements and multiple smartphone
placements, greatly expanding the opportunity for training and validating deep learning
models for inertial navigation.

Overall, the study highlights the merits and effectiveness of integrating data-driven in-
ertial navigation methodologies with cutting-edge 5G positioning solutions, showcasing
significant advances in navigation precision in intricate indoor settings. This compre-
hensive method represents a solid ground for the effective progress towards the goal of
universally reliable indoor positioning systems.

Publication C1 (peer-reviewed)

• Shoushtari, H., Harder, D., Willemsen, T., Sternberg, H. 2023; Optimized Trajectory
from Smartphone Sensors and 5G Uplink TDoA Using Cluster Particle Filters (Original
title in german: Optimierte Trajektorie aus Smartphone-Sensoren und 5G Uplink TDoA
mit Cluster Partikel Filter), Internationalen Ingenieur-vermessungskurs Zürich, Hrsg.:
Andreas Wieser, Wichmann Verlag

This research work builds on the findings of previous publications by applying state-of-
the-art filtering approaches to the L5IN+ dataset using real 5G-ULTDoA positions. The
approaches include cluster-based PF, Weighted Least Square (WLS) and the previously
introduced KF (in Publication A2). The central research question guiding this study
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pertains to the efficacy of correcting a relative trajectory by sparse location data, an event
that should not occur as frequently as few seconds. The PF method aims to mitigate
heading drift by leveraging narrow corridors or/and topological information from the
routing graph. Additionally, the KF and WLS methods are designed to rectify shifts.
However, it is noteworthy that these methods have been evaluated individually in the
study.

One key feature of the PF approaches is that they essentially split particles in disjoint
spaces, two parallel corridors or two adjacent doors, for instance. The estimation of the
position is achieved through the consideration of the preceding steps, a process referred
to as the back-tracking solution (Harder et al., 2022). However, these weights will only
be useful if the filter mergs to the appropriate space. But that doesnt always work
out. Publication C1 recommends to define clusters, by applying mean-shift algorithm
(Welbaum & Qiao, 2025). Clusters are incorporated, allowing weighting methods to be
used on each particle along with identifying the winning cluster. Winning cluster may be
detected with with respect to the distance of the clusters to the PDR trajectory.

In the KF, it is necessary to provide measurements at a pre-defined rate; although the
filter has the capacity to manage measurement gaps using the movement model and other
measurements, it is not possible to cover gaps of several seconds if only IMU readings
and PDR are used as measurements and movement sources, which can be different using
WLS approach. The WLS, in addition to the automatic detection of wining clusters ap-
proach, which can be used as a signal for the need of correction, has been considered as a
replacement for the KF. The WLS has the advantage of being used as required, without
the need for constant operation, and it has been demonstrated that it is equally capable
as the KF in L5IN+ experiments. Specifically, the work shows that filter approaches can
be employed to correct errors with the use of sparse location data and map representations.

Publication B2

• Shoushtari, H., Willemsen, T., Sternberg, H. 2023; Supervised Learning Regression for
Sensor Calibration, DGON Inertial Sensors and Systems (ISS), Braunschweig, Germany.

This study explores the sensor calibration process in great detail, with a specific focus
on supervised learning regression techniques for application to Micro Electro Mechanical
System (MEMS) inertial sensors, specifically accelerometers. Inertial sensors are prone to
systematic measurement errors, and therefore require appropriate calibration to improve
accuracy. Conventional methods treat calibration as a pure mathematical optimization
problem, commonly tackled using techniques such as Gauss-Markov adjustment. This
study investigates sensor calibration as a supervised machine learning problem, as an
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add-on process, employing regression methods to specifically circumvent the systematic
sensor error that inherently complicates the calibration problem in MEMS.

The research develops a comparative model consisting of two calibration workflows, which
are a traditional Gauss-Markov adjustment method and a supervised learning regression
method. The Gauss-Markov method obtains the calibration parameters, such as offset,
scale and orthogonality from an iterative adjustment process. It is a functional relation-
ship with gravitational acceleration as the reference, using the measurement data obtained
from controlled static conditions. The supervised learning regression method refers to the
fact that the optimization problem can be treated as a supervised learning problem, where
gradient descent is used to minimize the same cost function defined in the previous work-
flow. In supervised learning, the data is divided into parts that are used for training
(Seen dataset) and testing (Unseen dataset), providing an assessment that more closely
resembles real-world deployment, where the model must deal with data that it has not
yet seen.

The experimental phase employs a multi-MEMS configuration comprising fifty MPU-
9150 sensors, thereby facilitating extensive validation across multiple sensor units. In this
experiment, the number of iterations in the Gauss-Markov model cannot be accurately
matched to the number of training epochs; however, it demonstrates the efficacy of su-
pervise learning approaches that incorporate calibration parameters.

Publication B1 (peer-reviewed)

• Shoushtari, H., Kassawat, F., Sternberg, H. 2024; Context aware transformer network and
in-situ IMU calibration for accurate positioning. IPIN, Hongkong, China.

This research provides an extensive approach to inertial localization, specifically through
the use supervised learning and Transformer networks to jointly calibrate the sensor, as
the proved concept in the publication B2) and provide accurate IMU-based IPS . IL
methods tend to exhibit very large drift and tracking errors in complex movements and
different device placements, especially using MEMS sensors in wearables devices such as
smartphones and smartwatches. To overcome these challenges, this paper proposes a novel
Transformer model with physics-based features, by which context-aware enhancements
can be applied to sensor data interpretation and localization performance.

The proposed model, referred to as the Transformer Automatic Features Interaction
(TAFI), integrates raw IMU sensor data with physics-based engineered features, such
as mean values, standard deviations, step length, and features derived through Simpson
integration and the Madgwick algorithm. These context-enriched features enhance the
models capability to accurately predict velocity vectors and improve the IL performance.
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The Transformer-based architecture, augmented by convolutional layers, efficiently cap-
tures temporal dependencies and spatial relationships within IMU data sequences, offering
robust and precise predictions even under diverse device placement conditions.

The TAFI architecture merges established domain-specific knowledge in inertial position-
ing with contemporary deep learning techniques. Initially, the Spatial Encoder extracts
spatial embeddings from raw IMU data using convolutional layers and batch normaliza-
tion, followed by Transformer encoders enhanced with convolutional layers to capture
complex local and global patterns. The Contextual Component contributes significantly
by embedding physics-based engineered feature into the learning process. These features
undergo convolutional processing, batch normalization, and linear transformations, subse-
quently integrating contextual insights via Transformer encoders, further refining the un-
derstanding of sensor behaviors and interactions. The Temporal Decoder then synthesizes
spatial, contextual, and temporal representations by creating temporal embeddings and
employing positional encoding. Utilizing Transformer decoders, this module effectively
leverages masked self-attention and multi-head attention mechanisms to model temporal
dependencies thoroughly. Finally, the Output Module consolidates these complex and
multi-dimensional representations into precise velocity predictions through linear trans-
formations, Rectified Linear Unit (ReLU) activations, and dropout techniques to enhance
robustness and prevent overfitting. Experimental evaluations were conducted using three
distinct datasets: Robust IMU Double Integration (RIDI) (Yan et al., 2017), Robust Neu-
ral Inertial Localization (RoNIN) (Herath et al., 2020), and L5IN+. The TAFI model’s
performance was benchmarked against state-of-the-art models, including Ronin-ResNet
(Herath et al., 2020) and Comprehensive Transformer-based Inertial Navigation (CTIN)
(Rao et al., 2022).

Overall, the time-ordered publications demonstrate not only the progression of research
aimed at addressing the defined questions, but also provide insights into how research
can be conducted alongside a project, in this case the L5IN project. While maintaining
a degree of independence, the research still relied on the necessary infrastructure that
had to be installed. Some time constraints may have led to opportunities, as the lack
of infrastructure in the early days was reflected in the development of simulation tools.
Reproducing and building upon existing machine learning models prior to dataset collec-
tion proved to be an efficient strategy in optimizing the overall process. Finally, based on
the experience gained and the knowledge accumulated throughout the previous process,
non-trivial ideas emerged, leading to the design and implementation of a novel model.

From a technical perspective, several considerations arise regarding the publications pre-
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sented together as one body of work. First, in the earlier publications, the capability to
compute headings for multiple device placements was limited to the use of data-driven
approaches such as IL. Later, however, it was shown that quaternion-based heading es-
timation can also support multiple placements, albeit with significantly lower accuracy
insufficient for practical, real-world applications.

Second, the filtering approaches, including various forms of KF and PF, were discussed
individually in the respective studies. In practice, however, these filters should operate
simultaneously and in coordination. Achieving this requires additional engineering effort
and adaptive adjustments to the methods, an aspect not fully addressed in the aforemen-
tioned publications.

Finally, the impact of the novelly introduced model should be regarded as a research
contribution of this dissertation. In practical terms, while there is a clear performance
improvement of data-driven methods compared to traditional IL techniques such as PDR,
the choice between the proposed model and existing state-of-the-art methods should ulti-
mately depend on the specific application requirements and the intended balance between
accuracy, robustness, and computational cost.





6 Research Findings
In the previous chapter, the relevant publications forming the foundation of this disser-
tation were briefly summarized in a publication-wise manner. This chapter presents the
major findings and insights derived from those publications, organized topic-wise in rela-
tion to the research objectives outlined in Section 2.2. Within topic "A," which addresses
data preparation and evaluation, Section 6.1 answers the question: "How can research
and investigation into 5G positioning accuracy be conducted during the planning phase or
in the absence of a positioning-capable cellular network?" Meanwhile, Section 6.2 focuses
on the availability and suitability of data sources, addressing the question: "What prop-
erties should a dataset and data sources have, to effectively support machine learning and
correction models?". Within topic "B", concerning data-driven il, Section 6.3 introduces
the novel data-driven Inertial Localization (IL) model, known as Transformer Automatic
Features Interaction (TAFI). It explores "whether it is feasible to combine physics-based
domain expertise with learning-based approaches for accurate IL". Section 6.4 addresses
the research question of "whether supervised learning methods, as of TAFI, inherently
consider the calibration of the Inertial Measurement Unit (IMU) sensor?". Finally, topic
"C," deals with the filtering approaches and correction methods. Herein, Section 6.4
summarize the findings, thereby facilitating a better understanding of hybrid approaches
using smartphone sensors and 5G infrastructures. The central research question guiding
this study is "How can data from smartphone sensors, absolute positioning provided by
5G networks, and environmental map data be optimally integrated?"

This chapter seeks to address the aforementioned research questions by referring to the
proposed solutions presented in the publications. Each section aims to frame detailed
research questions, discuss the methodology used to address them, and present the cor-
responding findings. However, detailed numerical results will be discussed in the next
chapter.

6.1 A. Design of a position generator as a 5G position simulator

The first contribution of this thesis, expressed in Publication A2, C2 and C3, is towards
a solution of the availability problem in cellular positioning domain, data availability of
smartphone sensors is less problematic in comparison. This problem becomes especially
pronounced when data must be obtained from specific infrastructures that are often lim-
ited in accessibility during the research stage, and can slow down or even halt research
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processes. For example, 5G or general cellular positioning has long been awaited, yet even
at the time of writing this dissertation, few practical options are available.

While researchers in the field, as it has been elaborated in section 4.3.1, used discrete refer-
ence points (so called waypoints) or Quick-Response (QR) codes to evaluate the trajectory
made by the smartphone sensors and remove the drift. From this the question arose, if the
waypoints could be generated automatically, simulating the accurate positions from 5G
networks, that are promised by the telcom industry. While the 5G standardization details
and releases were published, the implementation in the real network was postponed. The
question then arose whether a tool could simulate also cellular measurements. Addition-
ally, the quality of cellular positioning directly depends on the design and deployment
of the mobile network itself. Given the high costs of installing 5G infrastructure, it is
important to determine the required accuracy levels for 5G positioning to ensure it meets
the needs of specific use cases. To achieve this, how can one effectively experiment with
use cases under varying scenarios, specifically by testing different levels of expected errors
or standard deviations in coordinate measurements?

The simulator

A publicly available web-based simulation1 tool has been developed to facilityte such
experimentation and encourage further research in the above described context (See Figure
6.1), as the primary part of the PosLab introduced in Publication A2.

Figure 6.1: Interface of the web-based simulation tool.

The workflow starts with the calculation of a ground truth trajectory, which can be

1https://github.com/Hossein-Shoushtari/poslab (Accessed: 15 April 2025).
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provided from a user-uploaded ground truth trajectory or it can be directly created in the
application using chosen waypoints and sensor data (See Section 6.5 for details). Once
the ground truth is in place, the simulation computes cellular network measurements (e.g.,
times, angles, and positions for sending and receiving a signal) while introducing custom
systematic or/and white noise errors to emulate real-world scenarios. Given parameters
such as positioning rate, expected error, and optionally simulated systematic errors, the
simulation generates realistic measurement data expected from a cellular network like
5G, by applying the defined noise values to the ground truth trajectories positions at the
defined positioning rate. The simulated outputs may then be tuned based on the number
of simultaneous users and antenna placements. Therefore, the network quality can be
fully customized to simulate different possible scenarios.

The systematic errors are calculated based on simulation settings (Figure 6.2). Such
errors add further noise to localized segments of the trajectory. The user defines the
number of intervals (the subsections of the trajectory prone to the systematic errors) and
the duration of the errors. For example, a corridor without network coverage, where users
pass through for 10 seconds, could have different error characteristics compared to other
areas. The number of users also affects the timing measurements of the simulation. In
particular, delays are imposed on the measurement if the system usage exceeds the limit
defined by the network capacity.

Figure 6.2: Simulation settings and the parameters.

The proposed simulation, supports loading map data in GeoJSON format, reference
points, antenna positions, as well as Magnetic, Angular Rate and Gravity (MARG) data
in CSV format. Users can create individual accounts and enhance their sensor datasets
by integrating simulated cellular positioning measurements. Additionally, users have the
capability to create map elements, such as points, lines, and polygons, during the simu-
lation, which can then be exported. Ground truth trajectories, simulated measurements,
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and user-generated drawings are available for download as a ZIP file. It should be noted
that this simulation focuses mainly on positioning accuracy, with network details, such
as number of connected users or bandwidth constraints being neglected at this stage.
Nonetheless, this is only a temporary measure, a time delay is estimated, given a number
of users and maximum amount of users for the network.

6.2 A. Data preparation and evaluation: Introducing the
L5IN+Dataset

Once data becomes available, the key considerations shift to the format and quality of
the dataset itself, which are fundamental for any data-driven and correction approach.
In learning-based methods, both the input data and its corresponding labels significantly
affect the outcome. Advancing the methodology used in Level 5 Indoor Navigation (L5IN)
project (see section 4), a contribution of this thesis is the introduction of the L5IN+
dataset in the A1 and A2 publications to provide different qualities and types of data
needed to solve indoor positioning and 5G positioning challenges.

A key research question concerns the general characteristics of datasets required to build
IL machine learning models. Effective datasets should include sensor measurements as
input and displacement information for optimal labeling. To generalize and make the
models reliable, these datasets should also account for variability in sensor placement and
human behavior. The challenge lies in the determination of which behaviors should be
considered to form a comprehensive dataset of real-world indoor pedestrian positioning
applications.

Another important consideration is the required quality of the labeled data. These label
data will not only be used to express the reference displacement in short time windows
of a user movement, say 1 second, but also for evaluation purposes of the 5G positioning
or correction model outputs. Timely and accessible correction positions will facilitate
the mitigation of position drift, thereby extending the service life of Indoor Positioning
System (IPS). In summary, the dataset is designed to support two main objectives,
providing separate data sets for 1) machine learning and 2) correction models.

First, the L5IN+ dataset includes sensor data from a Huawei Mate 20 5G smartphone,
serving as input for data-driven approaches. It consists of accelerations and angular ve-
locities (from the 6-axis IMU sensor), magnetic field (from a 3-axis magnetometer), and
more calculated values out of the sensors, as so called software-based sensors. The labeling
data is obtained using the Qualisys optical motion capture system, which serves as a refer-
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ence system and provides millimeter-level accuracy in human biomechanics applications,
depending on the capture volume 2.

Second, the dataset contains 5G Uplink Time Difference of Arrival (TDoA) positioning
data, including positioning measurements, results and raw channel impulse responses. It
also contains position estimates from the Android fused location provider Application
Programming Interface (API). This second set of measures is used to apply the cor-
rection methods. The reference data provided by the Qualisys optical system can still
be used to evaluate this second set of measurements (for numerical results See Section 7.3).

Smartphone sensor data

The collection of the smartphone sensor data was done using an Android application
developed in the L5IN project (see section 4). The application was enriched with a so-
called researcher mode, which could collect the sensor data at the desired frequency, which
was set to 200 Hz, the same as for other benchmarks (Chen, Zhao, et al., 2018; Herath
et al., 2020). In the researcher mode, one could define a test route to be walked. Using the
pre-defined route, researchers could also evaluate the quality of the navigation assistance,
as well as the creation of waypoints with responsive timestamps (by clicking on the screen)
in the absence of a reference positioning system. Figure 6.3 shows the researcher mode in
the application.

Figure 6.3: Interface of the researcher mode in L5IN application.

2https://www.qualisys.com/engineering/marine-vessels-and-structures (Accessed: 15 April 2025).
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Qualisys data

The reference positions were measured using the Qualisys optical motion capture system,
a high-precision 3D tracking solution based on camera-based detection of both passive and
active markers. In the large L.I.N.K. hall, the system delivers sub-centimeter accuracy,
and with optimized settings, it can achieve millimeter-level precision. The setup includes
28×Oqus 7+ series cameras arranged around the test area, providing comprehensive cov-
erage. Additionally, two Miqus cameras are employed to capture video references. Both
position and orientation data are recorded at a frequency of 100 Hz. Two active Qualisys
tags are tracked: One tag attached to the smartphone, allows accurate tracking of the
User Equipment (UE)’s movement and a second tag is attached to a cap worn by the
subject to track the user regardless of the UE’s placement. This configuration can not
only help maintain a stable connection between that cameras and tags, but allows the
machine learning models to be trained on both sets of labeling data in order to distinguish
between user and device motion (See Figure 6.4).

Figure 6.4: Tags placement on user UE and a cap worn by the user.

5G Uplink TDoA positioning data

The data has been collected using a Huawei mate 20 5G, which supports the 5G New
Radio (NR) band n77/n78. For the emulation of 5G Uplink TDoA in real time, the
Fraunhofer Institut für Integrierte Schaltungen (IIS) FR1 Platform was used. This plat-
form follows a Software Defined Radio (SDR) approach, enabling flexible and accurate
signal generation and processing. The systems radio network consists of two main types
of Transmission Reception Points (TRPs): Serving cells and positioning cells. Each cell
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consists of a Universal Software Radio Peripheral (USRP) as RU and is connected to a
server PC by a fiber optic 10 Gb/s network link for software-based signal processing. The
serving cell is realized as a SDR 5G network and provides basic connectivity for the UEs.
The neighbor cells operation is limited to the reception and processing of uplink signals
that are transmitted by the UEs. Accordingly, the UEs are only connected to the serving
cell, and no handovers to the neighbor cells occur.

Other considerations

Measurements and coordinates must share a common time reference and coordinate sys-
tem. To ensure this, all input data was collected using a smartphone synchronized with a
time server. The reference system was using another time server. To align reference val-
ues with the other measurements, time drift was calculated by identifying the best match
and highest correlation between trajectories derived from 5G positions and the reference
coordinates. Additionally, all coordinates were transformed into the the local coordi-
nate system defined in the measurement hall, given the geo-referenced Global Navigation
Satellite System (GNSS) points outside. Moreover, the dataset records different types of
pedestrians and varying smartphone placements, such as handheld, pocket, backpack, and
stroller. In one scenario the smartphone was mounted on a robotic crane, to mimic more
non-step movements. This diversity can greatly augment training and validating inertial
localization machine learning models. The retrieved movements also include step-based
and non-step movements, with application as moving through an escalator, or strollers.
These scenarios fall under the category of pedestrian movement and represent tasks that
an IPS should be able to handle (for experience details See Section 7.3).

6.3 B. Development of a Transformer model for accurate inertial
localization

This contribution of the dissertation primarily shapes publication B1, which is one of the
main publications. Therefore, this section emphasizes the research questions and main
findings to ensure comprehensive coverage and clarity of the content. To avoid repetition,
further details can be found in the complete paper included in Appendix C.

During the time frame of this dissertation, data-driven approaches for accurate IL be-
gan to gain prominence. However, a challenge remained: To incorporate established
physics-based domain knowledge rather than relying solely on "black-box" deep learn-
ing models. For instance, leveraging the periodic characteristics of acceleration values
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allowed state-of-the-art physics-based methods to reliably detect step events. Similarly,
integrating gyroscope data over short intervals provided accurate estimations of device
orientation changes. Although using physics-based features, such as step count or orien-
tation changes, may appear beneficial, the implementation details and how to effectively
integrate this domain knowledge with the learning layers remain open questions. To inte-
grate such established domain knowledge, the TAFI was developed. The proposed model
TAFI in Publication B1, computes physics-based features and adds them as additional
inputs to the model. Building on the original Transformer architecture (Vaswani et al.,
2017), this network aims to estimate the velocity vectors by incorporating both the spatial
relationships between the IMU sensor values and contextual information from features.
The Transformer architecture combines these physics-based features with raw IMU data,
avoiding redundancy by optimizing feature interactions. The raw sensor data and physics-
based features are individually passed through numerous embedding layers and are then
concatenated together.

Another advantage of TAFI is its ability to achieve high accuracy with a less complex
architecture, i.e. few layers, compared with purely deep-learning Transformer models
as (Herath et al., 2020; Rao et al., 2022). This illustrates how physics-based domain
knowledge can be effectively structured to provide learning assistance. What is more,
the lightweight nature of TAFI makes it appropriate for deployment on even resource-
constrained devices including smartphones, though it has not yet been field tested in a
smartphone setting. TAFI processes IMU input data in fixed time intervals of one second,
and uses the label data from Qualisys optical system to predict and regress the velocity
vector, i.e. displacements in x and y directions. Regardless of whether a persona makes a
physical step or not, TAFI can estimate the displacements of pedestrian movements, even
when no physical steps happened, such as using elevators or pushing a stroller on which
the device is placed.

6.4 B. Validation of supervised learning localization models for
IMU calibration

This contribution is primarily reflected in Publication B1, which constitutes one of the core
components of this dissertation. Therefore, this section emphasizes the research questions
and main findings to ensure comprehensive coverage and clarity of the content. To avoid
repetition, further details can be found in the complete paper included in Appendix D.

Sensor Calibration is a standard task in measurement technology and allows the reduction
of systematic measurement components in the measurement result. In the field of local-
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ization and navigation, estimating the calibration parameters of IMU sensors, assuming
they remain constant over their operational lifetime, is a common and valuable proce-
dure, typically performed under the Gauss-Markov model. In contrast, as presented in
Section 3.1, the calibration of IMU MEMS sensors is generally discouraged in the literature
due to the temporal variability of their parameters. This raises the question of whether
alternative estimation approaches can be employed. Although accelerometer calibration
can be carried out without the need for additional equipment, the standard calibration
of gyroscopes typically involves external hardware. Consequently, it is unreasonable to
expect smartphone users to perform such procedures for applications like indoor naviga-
tion. Since supervised localization methods also establish functional mappings between
labeled data and the measurement model, can supervised regression and learning-based
localization approaches, such as TAFI, serve as in-situ calibration procedures during the
training phase?

The proposed solution, demonstrated through a proof-of-concept calculation, incorpo-
rates sensor calibration during the training phase of a regression model. In an example
involving accelerometer calibration, where a functional relationship is derived from the
constant value of gravity, the results show that the machine learning-based estimation is
significantly more accurate than conventional calibration approaches.

Indeed, the training epochs and numerical optimization in supervised learning are compa-
rable to the iterative procedures applied on standard sensor calibration methods with the
goal of minimizing an error or cost function. Since regression models are typically trained
to optimize predictive performance on labeled data, rather than to explicitly estimate
changes in sensor inputs as traditional calibration does, the calibration parameters are
optimized indirectly as part of the training process. While supervised learning methods
are not explicitly designed to estimate calibration parameters, they effectively consider
these parameters to deliver accurate predictions, particularly beneficial for inertial sensors
in smartphones.

6.5 C. Correction of relative trajectories using sparse positional
data

One contribution of this thesis, expressed in Publication C1, C2 and C3, is towards
the correction of relative trajectories, with a focus on sparse positional data, which is
defined and expressed in Section 4.2. In short, to achieve a GNSS-comparable solution
for indoor environments, and considering the high cost of infrastructure installation and
the limitation of UE battery, the localization solution should be as autonomous as possible,
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with as little infrastructure use and dependency as possible. Inertial sensors can provide
relative trajectory accuracy up to within a few meters for few minutes, when data-driven
approaches are utilized. Although long-term accuracy is critical for real-world applications
and the longevity of inertial localization, these approaches still require some form of
initialization and correction.

In this dissertation, the available sources of correction, in this case map data, routing
graphs, building plans, and sparse location data from 5G positioning, are identified and
assessed for their optimal application. While map data is typically autonomously avail-
able, continuous coverage from 5G positioning is practically infeasible. With an optimal
5G network design, accurate network-based positioning can expected approximately ev-
ery one to two minutes of walking. However, the question arises how map information
can support the correction procedure? Can autonomous approaches determine the need
for correction from the infrastructure? In other words, do correction algorithms possess
mechanisms to detect when autonomous localization fails and corrections must be trig-
gered? Finally, how can corrections be carried out efficiently using sparse location data,
applying an automatic re-initialization of the user’s pose? The proposed solution can be
divided into four key steps.

Step 1: Initialization

The pedestrian indoor positioning problem is, at its core, a challenge of estimating the
user’s pose, and floor level within a building. Considering a requirement for an instanta-
neous response from an IPS, infrastructure-based positioning methods such as 5G posi-
tioning can provide solutions for 3D position estimation or, alternatively, for 2D position
along with floor identification. A challenge arises in instance estimating the user’s heading
at the beginning of the navigation or positioning process. Although magnetometer sen-
sors can be used for this purpose, the accuracy of such sensors embedded in smartphones
is insufficient or at least unreliable for precise heading estimation. Another potential
approach is to calculate the initial heading φ using the arctangent formula:

φ = tan−1
(
y2 − y1
x2 − x1

)
(6.1)

where (x1, y1) and (x2, y2) represent the coordinates of the first two detected positions or
steps. However, this method assumes the availability of highly accurate sparse positioning
data, with sub-meter precision, at any location where the user intends to start walking
or navigating. In practical scenarios, such an assumption is rarely met. Therefore, head-
ing estimation using inertial sensors and sparse location data remains an open problem.
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Nevertheless, the initialization and subsequent trajectory estimation of the user can still
be addressed effectively.

Figure 6.5: The initialization for PF using 5G sparse location data. The blue shape is
the corridor or space that is determined as the one where the user located in
(Publication C2).

As discussed in the literature review Section 4.3.2, Particle Filter (PF) is one of the fil-
tering approaches that can play a key role in improving positioning accuracy through
map matching techniques. During initialization, particles are generated and distributed
according to the standard deviation of initialization position, which implies that there is
no strict requirement for highly accurate sparse position data. Indeed, an initial position
estimate with respective standard deviation of the position, and floor detection provided
by the 5G network are sufficient. Based on this initial data, the spatial space (such as the
room or corridor structure) and the routing graph can be identified (see Figure 6.5), in
parallel with particle initialization. This essentially implies that the initialization process
is completed and ready for further trajectory estimation.

Step 2: Correction with map data

The proposed particle filtering method for trajectory correction using map data comprises
three main steps: propagation, weighting and resampling, as detailed in the publication
C1 and C2. In short, particles are generated according to the initialization step, and
then they are moved following the IL-provided movement model, considering a system
noise. In the second step, weighting, the weight for particles is calculated due to its
position concerning the environment or map constraints. Depending on where they ended
up, particles crossing walls, in a physical sense, are weighted with zero, while particles
closer to the routing graph get higher weights. In the resampling phase, particles with
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zero weights are resampled uniformly at random with an initial weight of 1/N (where
N denotes the total number of particles) per new particle. This equal weighting means
that particles that are just introduced have no extra information for the first few steps.
Resampling however consists of creating new particles around particles that have a high
weight, as a wider interval has been formed around high weight particles and have a
greater likelihood of reproducing new particles.

The two principal innovations introduced in this work are as follows. Firstly, the inte-
gration of geospatial analysis methods (e.g., calculation of centroids and computation of
shortest distances) into the PF, which make the filtering process easier to develop and
and enables the implementation of different scenarios. Second, it incorporates the mean-
shift algorithm (Welbaum & Qiao, 2025) to allow the formation of a variable number
of particle clusters. This allows for the calculation of separate weighted means in each
cluster, especially useful when particles spatially separate. Mean-shift is an unsupervised
machine learning clustering technique, technically a non-parametric algorithm that iden-
tifies clusters by iteratively shifting data points toward regions of higher data density. At
its core, it uses Kernel Density Estimation, defined by:

f̂(p) =
1

nhd

n∑
i=1

k

(
p− pi
h

)
(6.2)

where h represents the bandwidth parameter, n is the number of data points or particles,
d is the dimensionality, and k is typically a Gaussian kernel function.

The clustering process involves repeatedly computing the mean shift vector, m(pi), for
each particle pi:

m(pi) =

∑
pj∈N(pi)

pj − pi

|N(pi)| (6.3)

Here, N(pi) is the neighborhood defined by the bandwidth h. Each point is shifted
iteratively in the direction of m(pi), moving towards the local density maximum until
convergence. Convergence occurs when the movements of the data points between iter-
ations fall below a predefined threshold. At this stage, the data points have stabilized
around the local maxima, or modes, of the density function. These modes become the
final cluster centers, effectively grouping data points based on density. The selection of an
appropriate bandwidth h is crucial, influencing the granularity and quality of clustering
results. Methods such as Scott’s rule, Silverman’s rule, cross-validation, expert knowl-
edge, and adaptive bandwidth approaches can help identify suitable bandwidth values to
improve clustering outcomes (Chugh, 2024).
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Figure 6.6: Example of particle clustering, where in left one cluster is, and in right two
clusters are detected (Publication C1).

In the Figure 6.6 the clustering can be seen in two different steps, the clustering is useful
to detect the correct side of the corridor, while the weighted mean calculation will only
consider the correct cluster, otherwise it will estimate a position between the clusters,
even with a low weight on the second particle cluster.

Step 3: Detection of Localization Failure

The identification of discrete clusters and their corresponding mean positions can offer
valuable insights for detecting localization failures and determining when corrective mech-
anisms should be activated. Several conditions can be defined to facilitate this detection.
For instance, the distance between the mean positions of clusters should not exceed a cer-
tain threshold, such as the width of a corridor, typically around 3 meters. Additionally,
the standard deviation of the clusters is another critical parameter that must be carefully
calibrated to effectively signal when corrections are necessary.

Furthermore, the calculated position obtained from IL , along with its cumulative accu-
racy, which should be maintained separately from the PF estimated position, can also
indicate when infrastructure-based correction mechanisms need to be initiated. Specif-
ically, if the IL accuracy is superior to the distance between the PF estimated position
and the IL position, it clearly suggests that the trajectory has diverged and requires im-
mediate correction.

Step 4: Correction with Sparse location Data

Once a correction event is triggered by the autonomous approach, the 5G network should
respond by providing a position. The network will also verify whether it can adequately
support this correction. Given that the 5G network is able to estimate a position and its
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accuracy, if the accuracy of this estimated position is better than the distance between
positions obtained from the IL or PF, the correction mechanism can be successfully ap-
plied. Otherwise, the autonomous localization method continues requesting corrections
while simultaneously operating, resulting in progressively increasing errors in the user
position estimation. This means, when accurate reference positions or waypoints (rather
than potentially erroneous positions from the 5G network) are provided to the correction
algorithm, the resulting trajectory can be considered as a ground-truth trajectory.

Details and how-to of the correction mechanism is shown in Figure 6.7. Initially, position
#1 is known with high accuracy, marking the starting point of the trajectory. As the
IMU-based trajectory progresses over time, it experiences drift, resulting in position and
heading errors, leading to a drifted pose at position #2. The IMU-based trajectory
provides not only heading information but also the entire sequence of trajectory positions
Pd. Using sparse positional data, such as position #1 (the origin), the angular difference
between the drifted pose and a known sparse measurement at position #2, denoted as
diff φd2,p2, can be computed, along with the associated error propagation values. Earlier
positions along the drifted trajectory can also be evaluated for their respective deviations.

Figure 6.7: Symbolic representation of IMU drift correction using sparse position data.

By calculating the angular difference and the distance ratio between the origin and the
drifted pose, the projected positions can be determined, as described in Equation (6.4). In
essence, the method estimates the heading drift by comparing a sparse positional update
with the drifted IMU-based trajectory. This difference is then propagated backward
through all preceding trajectory points, incrementally refining the pose estimate. The
final segment of the corrected trajectory yields an updated estimate of the heading and
its associated quality.

Pt(φ, L) = Pd

(
diff φd2,p2,

Ld · Ld1

L2

)
(6.4)
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where (φ, L) are the polar coordinates of the projected position Pt, and Li represent the
distances from the origin to various points along the drifted trajectory: Ld1 is the distance
to the drifted point 1, and L2 is the distance to sparse position #2.

Overall, the investigations explored several potential approaches to address the lack of
reliable GNSS measurements. These included the use of long-term motion estimation
methods, the incorporation of additional information from map data, and the integration
of infrastructure-based solutions as environmental sensors. The results demonstrate that
combining data-driven IL, to maintain trajectory accuracy within acceptable error bounds
for several minutes, with 5G uplink TDoA as an absolute positioning component, inte-
grated through a multi-step correction mechanism, can result in drift-free user trajectory
estimation. The next step involves numerically verifying these findings.





7 Evaluation
This chapter presents the numerical results and key findings of the proposed positioning
approaches, covering both the 5G Uplink Time Difference of Arrival (TDoA) method and
the data-driven Inertial Localization (IL) models, along with the correction filters applied.
The main output of these algorithms are the estimated trajectories, and the central ques-
tion is how good these position estimates are? To evaluate the quality of the positioning
results, different assessment concepts will be discussed, including those aligned with the
ISO/IEC 18305 standard. These concepts will help establish a framework for performance
evaluation. The measurable metrics used to detail the main research question to specific
ones will be introduced in the following section, followed by a detailed presentation of the
results, including separate analysis on 5G Uplink TDoA positioning, data-driven IL and
the correction methods through various plots and evaluation indicators.

In writing this chapter, particular care has been taken to avoid unnecessary repetition of
content already published in related papers, in line with the principles of a cumulative
dissertation. Nevertheless, additional details and results are provided here to ensure
clarity and completeness, even if some overlap with earlier publications might appear
necessary to maintain a coherent and comprehensive narrative.

7.1 Concepts and standardization

For an Indoor Positioning System (IPS) to come close to being comparable with and con-
sidered as a Indoor Global Navigation Satellite System (GNSS) it needs to provide the
estimated positions with four key features: accuracy, smoothness, ubiquity, and immedi-
acy (Angermann, 2019).

The most important is the property of accuracy, meaning correctness and precision, as
they measures how close the estimated location is to the real location (ground truth).
Several metrics are available to calculate the correctness of the models: Mean Absolute
Erro (MAE), Root Mean Squared Error (RMSE), or Cumulative Distribution Function
(CDF), while precision shows typically with standard deviation. But how accurate does an
IPS need to be, particularly for guiding pedestrians indoors? This Thesis does not answer
this question, as it needs statistical research, user studies, and collecting pedestrians
feedback regarding acceptable error-margins according to the indoor navigation use case
and the user experience. The other main property is smoothness. That is to say, how
natural the estimated movement seems over time. A positioning system can exhibit
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sudden jumps, erratic shifts or even imply that a person has walked right through a wall.
These often arise as a result of limitations in sensors, availability of signals, or reliability
of algorithms.

The third property is ubiquity. Mark Weiser and coworkers at Xerox PARC proposed
the notion of ubiquitous computing in 1988, envisioning a future with technology seam-
lessly interwoven with the people's everyday lives (Weiser, 1999). The ubiquity of an
indoor positioning system means that the system works anywhere and anytime for any-
one, regardless of the matter which device is being used, its device placement (position)
or environmental changes. Finally, the system must deliver instant position estimates and
uses processing to provide accurate positioning without lag or latency. However, relative
positioning methods, that rely heavily on user movement and history, do not provide in-
stant positioning. To solve this problem, IPS can employ hybrid solutions that combine
infrastructure-based systems with autonomous positioning approaches.

Guidelines on evaluation of IPS performance have emerged on the back of these principles,
resulting in metrics definitions and the adoption of the International Standard: ISO/IEC
18305:2016(E)1. Any evaluation should provide a clear definition of the system under test,
the entity being localized, and the context in which testing occurs, the standard states.
In addition, experiments need to be repeatable, which means that the same results should
be able to be obtained when the tests are performed several times in the same conditions.
Tests must also be transferrable because the evaluation must not itself modify the test
environment. Lastly, the standard necessitates the presence of a real-valued ground truth
reference (at least one order and typically 3-5 times more accurate than the evaluated
system) oriented to achieve meaningful evaluations.

Ground truth synchronization

It has been discussed in Section 6.2 that the ground truth trajectory can be measured
using a Qualisys optical motion capture system or, as demonstrated in the Level 5 Indoor
Navigation (L5IN) project, Ultra-Wideband (UWB) systems (see Section 4). Alterna-
tively, the ground truth trajectory can be generated as described in Section 6.5, when the
correction algorithm is feeded with reference points. However, the ground truth trajectory
is more frequent and more accurate and does not necessarily share the same timestamps
as the trajectory under evaluation. Therefore, for the purpose of evaluating a given tra-
jectory, the reference trajectory is linearly interpolated to match the timestamps of the
evaluated trajectory. This ensures that, for each timestamp of the estimated trajectory,
whether estimated by the 5G network, IL, or filtering approaches, a corresponding ref-

1https://www.iso.org/standard/62090.html (Accessed: 15 April 2025).
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erence position can be computed. Consequently, numerical evaluation metrics can be
calculated in a one-to-one manner at each trajectory point.

7.2 Metrics

Building on the considerations discussed in the previous sections, this section introduces
and details the selected evaluation metrics used, considering their relevance and impor-
tance to the pedestrian indoor positioning use case. Each metric is explained mathemat-
ically along with the meaning and performance information it provides. Let the ground
truth coordinates at time step i be denoted by (xi, yi), and the corresponding estimated
position by the localization algorithm be denoted by (x̂i, ŷi). The following metrics are
defined based on these values.

Mean Absolute Error (MAE) is used to measure the average positioning error across
all time steps, providing an indication of the correctness of a trajectory. It treats all errors
equally and expresses them in their real units. This is particularly useful when evaluating
absolute positions, such as those determined by a 5G network. The MAE over n samples
is defined as:

MAE =
1

n

n∑
i=1

|ei| (7.1)

where ei is the Euclidean distance between the estimated and true positions at time step
i. For the 2D case:

ei =
√

(x̂i − xi)2 + (ŷi − yi)2 (7.2)

Absolute Trajectory Error (ATE) measures the correctness of a trajectory by cal-
culating the RMSE across the entire evaluation trajectories. It indicates the position’s
correctness, when large errors are undesirable and should be emphasized. Absolute Tra-
jectory Erro (ATE) focus is on the variance of the error, making it a useful accuracy
indicator of positions delivered from IL, as they are later used in correction methods,
where the variance can be incorporated into filtering processes.

ATE =

√√√√ 1

n

n∑
i=1

e2i (7.3)
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Circular Error Probable (CEP) is a probabilistic key performance indicator, which
describes the radius within which a given percentage of the positioning errors fall. It is
presented via CDF graphs at different levels over all repetitions R, and defined as:

CEP = min {E : E ≥ 0, |{ei : i = 1, 2, ..., N, ‖ei‖ ≤ E}| ≥ pN} (7.4)

where p is the desired probability level. The Circular Error Probable at 50% (CE50)
and at 90% (CE90) are defined accordingly for p = 0.50 and p = 0.90. The metric can
be used for both absolute and relative positioning methods, where as typical or average
user experience are shown at 50%, and reliability guarantee shown at 90%, used generally
in mission-and safety-critical, or regulatory environments, when outliers or large errors
matter a lot. In general, CDF graphs and these indicators give an overview of the accuracy
of a positioning system or algorithm.

Availability of the system is quantified by the loss rate of the expected positioning
samples. The Loss Rate (LR) is defined as the mean of the individual loss rates over all
repetitions R:

LR =
1

R

R∑
r=1

LRr (7.5)

where the loss rate of a single repetition LRr is given by:

LRr = 1− nreceived,r

nexpected,r
(7.6)

Here, nreceived,r denotes the number of samples received from the system under test during
repetition r, and nexpected,r represents the expected number of samples, calculated as:

nexpected,r = Δtr · fs (7.7)

where Δtr is the duration of repetition r and fs is the sample rate of the system. The
availability metric is utilised to evaluate 5G networks and connectivity, as this is not a
subject of uncertainty with IMU sensors.
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Time Below Threshold and Distance Below Threshold are two additional performance
indicators,introduced to assess the positioning error with respect to a predefined threshold
x:

• Time Below Threshold (TBx): The fraction of total positioning time during
which the positioning error is below x meters:

DX(x) ≡ T (X ≤ x) (7.8)

• Distance Below Threshold (DTx): The fraction of the total traveled distance
during which the positioning error is below x meters:

DX(x) ≡ D(X ≤ x) (7.9)

These two indicators provide a practical interpretation of the system’s reliability over
fixed time and distance intervals. This metric is used to evaluate IL performance in terms
of the longevity of the sensor-based methods and to account for drift over time, but this
is not an issue of uncertainty in 5G positioning.

7.3 Experiments and results

The experiments were conducted at the L.I.N.K. test and application center at the
Fraunhofer Institut für Integrierte Schaltungen (IIS) in Nuremberg, Germany, within
a 30×44measurement hall, where smartphone sensor and 5G positioning data collection
was performed using the Qualisys reference positioning system (for data sources, see Sec-
tion 6.2). Section 7.3.1 focuses exclusively on the analysis of 5G positioning data. Sec-
tion 7.3.2 presents experiments based on smartphone-derived datasets, while Section 7.3.3
discusses the outcomes of the correction and filtering procedures based on combined 5G
and smartphone data.

7.3.1 5G UL-TDoA positioning

To assess the performance of 5G Uplink TDoA positioning, a variety of line-Of-Sight
(LOS) and Non-Line-Of-Sight (NLOS) scenarios were tested. The desired measurement
rate is 1 Hz, but this can only be expected in LOS. These scenarios were designed
to reflect typical indoor environments; ranging from narrow corridors with limited or no
signal coverage to open areas where signals from multiple antennas are clearly received. To



62 Chapter 7. Evaluation

recreate these conditions, absorber walls were used to block signals from reaching the User
Equipment (UE) in certain areas. Four different setup of absorber walls were considered,
starting with no wall and increasing to eight absorber walls. For each setup, multiple
sequences (or trajectories) were recorded, with different UE placements (further details
are provided in Section 7.3.2) to capture a broad range of real-life conditions. In planning,
the setups have been designed as shown in Figure 7.1, shown for better understand of the
scenarios. Each trajectory was treated as a separate trial and repetition in evaluating the
5G positioning system. The numerical results of these experiments are presented below.

(a) Without absorber walls (b) 4 absorber walls

(c) 6 absorber walls (d) 8 absorber walls

Figure 7.1: Design layouts for corridor-like environments with varying absorber wall con-
figurations: Orange walls represent 6 m high obstacles, while blue walls rep-
resent 4 m high ones.

The position of the antennas as well as the practical experiment with eight walls (see
details below) can be seen in Figure 7.2. The red antenna is the primary transmitter,
used as the reference for TDoA calculations and the blue antennas are the others. The
antennas are installed at heights ranging from three to six metres.
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Figure 7.2: The position of the antennas

A Experimental setup with no absorber walls

In this experimental setup, 39 trajectories’ data were collected, ranging from short trajec-
tories of a few seconds to a 45 minute trajectory. Selected plots are showing in Figure 7.4.
Metrics of correctness and precision (Table 7.1), named as MAE, standard deviation,
minimum and maximum of errors were measured and the availability metrics, named as
mean loss rate, its standard deviation and range for each repetition (Table 7.2) were also
used for evaluation. Selected plots are showing in Figure 7.4. The grey area indicates
where the reference system is unavailable, so evaluation is not possible.

Figure 7.3: The measurement hall layout without absorber walls.
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The analysis reveals a commendable overall performance, with an average MAE of 0.49
metres and a standard deviation of 0.62 metres when using all available 5G signals in
LOS with a measurement rate of 1 Hz. Notably, several trajectories achieved sub-30 cm
accuracy, underscoring the system’s potential for high-precision applications.

(a) Trajectory 26 (b) Trajectory 37

Figure 7.4: Sample trajectories from experiments conducted without absorber walls, with
error visualized using a color scale from green (low error) to red (high error).
The grey area means no evaluation.

Certain trajectories exhibited significant maximum errors, reaching up to 33.97 meters,
indicating occasional outliers that could appear in signal-based positioning methods. In
a few cases, the reported standard deviation was lower than the MAE value, indicating
that the precision does not necessarily reflect correctness. The consistency of this system-
atic error behavior can highlight the importance of addressing underlying biases in the
positioning system to improve overall accuracy, but it is not the case here.

In terms of availability, the system maintained a high mean update rate of 99.80 Hz, with
an average loss rate of 0.84%. While most trajectories demonstrated near-perfect avail-
ability, some experienced substantial packet loss, with one instance recording a 15.34%
mean loss rate (see the availability metrics for trajectory 21). These findings in LOS
conditions illustrates that, although the 5G positioning system generally offers reliable
and accurate performance, there are instances of variability that warrant the combina-
tion with sensor-based positioning methods to ensure consistency across all operational
scenarios.
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Table 7.1: Correctness and precision in experiments with no absorber walls: MAE, Stan-
dard Deviation, and Min/Max Errors.

# MAE [m] Std. Dev. [m] Min ... Max Error [m]
A1 0.74 0.36 0.01 ... 2.08
A2 0.70 0.62 0.01 ... 33.51
A3 0.66 0.32 0.01 ... 3.92
A4 0.72 0.29 0.01 ... 2.11
A5 0.69 0.26 0.03 ... 2.13
A6 0.84 0.99 0.02 ... 31.15
A7 0.98 1.02 0.02 ... 14.96
A8 0.68 0.32 0.01 ... 3.01
A9 1.42 0.90 0.02 ... 13.09
A10 0.71 0.40 0.01 ... 20.06
A11 0.70 0.43 0.01 ... 13.11
A12 0.85 0.76 0.01 ... 15.64
A13 0.51 0.38 0.00 ... 3.54
A14 0.87 1.40 0.01 ... 13.35
A15 0.53 0.18 0.01 ... 1.22
A16 0.48 0.28 0.01 ... 11.76
A17 0.42 0.17 0.01 ... 0.96
A18 0.47 0.17 0.02 ... 0.95
A19 0.46 0.17 0.02 ... 1.02
A20 0.41 0.16 0.00 ... 1.06
A21 0.38 0.71 0.00 ... 7.55
A22 0.30 0.90 0.00 ... 33.63
A23 0.22 0.39 0.00 ... 29.53
A24 0.27 0.39 0.00 ... 15.56
A25 0.23 0.68 0.00 ... 30.10
A26 0.23 0.12 0.00 ... 0.94
A27 0.25 0.38 0.00 ... 7.13
A28 0.21 0.11 0.00 ... 0.98
A29 0.25 0.40 0.00 ... 33.97
A30 0.24 0.17 0.00 ... 8.42
A31 0.21 0.10 0.00 ... 0.65
A32 0.16 0.30 0.00 ... 27.97
A33 0.27 0.16 0.00 ... 1.04
A34 0.25 0.28 0.00 ... 29.39
A35 0.22 0.34 0.00 ... 16.93
A36 0.23 0.38 0.00 ... 8.54
A37 0.24 0.15 0.00 ... 0.87
A38 0.25 0.24 0.00 ... 25.54
A39 0.21 0.13 0.00 ... 0.96
Ø 0.49 0.62 0.00 ... 33.97
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Table 7.2: Availability in experiments with no absorber walls: Loss and Mean Rate.
# Mean Loss Rate [%] Std. Dev. [%] Min ... Max [%] Mean Rate [Hz]
A1 1.22 3.89 0.00 ... 99.99 99.73
A2 0.69 1.92 0.00 ... 99.99 99.85
A3 1.14 2.76 0.00 ... 99.99 99.75
A4 0.36 1.68 0.00 ... 99.99 99.94
A5 0.32 1.60 0.00 ... 99.99 99.94
A6 0.44 1.77 0.00 ... 99.99 99.91
A7 0.25 1.38 0.00 ... 99.99 99.94
A8 0.26 1.32 0.00 ... 99.99 99.95
A9 0.62 2.38 0.00 ... 99.99 99.87
A10 0.48 2.19 0.00 ... 99.99 99.91
A11 0.47 2.07 0.00 ... 99.99 99.91
A12 0.60 3.24 0.00 ... 99.99 99.94
A13 2.27 8.51 0.00 ... 99.99 99.78
A14 1.21 3.67 0.00 ... 99.99 99.79
A15 0.01 0.85 0.00 ... 99.99 99.99
A16 0.01 0.77 0.00 ... 99.99 99.99
A17 0.01 0.81 0.00 ... 99.99 99.99
A18 0.01 0.75 0.00 ... 99.99 99.99
A19 0.00 0.71 0.00 ... 99.99 100.00
A20 0.01 0.94 0.00 ... 99.99 99.99
A21 15.34 17.71 0.00 ... 73.82 96.11
A22 0.00 0.61 0.00 ... 81.01 99.99
A23 1.07 1.88 0.00 ... 79.75 99.69
A24 1.22 2.34 0.00 ... 86.03 99.64
A25 1.27 2.04 0.00 ... 77.50 99.57
A26 1.18 1.89 0.00 ... 72.53 99.58
A27 0.94 2.13 0.00 ... 77.93 99.76
A28 1.53 2.92 0.00 ... 93.25 99.57
A29 1.38 2.40 0.00 ... 69.10 99.59
A30 1.02 2.35 0.00 ... 80.29 99.71
A31 0.84 1.60 0.00 ... 90.62 99.71
A32 0.73 1.62 0.00 ... 81.46 99.75
A33 0.72 1.87 0.00 ... 76.99 99.81
A34 0.80 1.66 0.00 ... 83.25 99.75
A35 1.47 1.97 0.00 ... 77.33 99.48
A36 1.78 2.54 0.00 ... 66.59 99.38
A37 0.07 0.79 0.00 ... 82.05 99.98
A38 0.24 1.21 0.00 ... 77.73 99.95
A39 0.15 1.01 0.00 ... 82.66 99.97
Ø 0.84 3.74 0.00 ... 99.99 99.80



Chapter 7. Evaluation 67

B Experimental setup with four absorber walls

In this experimental setup, four trajectories’ data were collected, ranging from short
trajectories of a few minutes to a 15 minute trajectory of walking. Selected plots are
showing in Figure 7.5 and evaluation tables in terms of accuracy and availability are then
in Table 7.3 and 7.4 respectively.

(a) Trajectory 1 (b) Trajectory 2

Figure 7.5: Sample trajectories in experiments with four absorber walls, with error visu-
alized using a color scale from green (low error) to red (high error). The grey
area means no evaluation.

The overall results and accuracy metrics, such as a MAE average of 0.42 meters with a
standard deviation of 0.85 meters, are comparable to the LOS scenario. This is due to
the frequent availability of at least three measurements to the transmitters required for
2D position estimation. However, short periods of signal-shadowing can still be observed
in each trajectory (Figure 7.5), and is also evidenced by the low mean loss rate of 0.50%.
This shows a typical signal disappearance in indoor areas, which can be bridged by other
sensor-based methods.

Table 7.3: Correctness and precision in experiments with four absorber walls: MAE, Stan-
dard Deviation, and Min/Max Errors.

# MAE [m] Std. Dev. [m] Min ... Max Error [m]
B1 0.40 0.77 0.00 ... 13.38
B2 0.56 1.21 0.00 ... 28.34
B3 0.29 0.35 0.00 ... 24.36
B4 0.38 0.57 0.00 ... 21.32
Ø 0.42 0.85 0.00 ... 28.34
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Table 7.4: Availability in experiments with four absorber walls: Loss and Mean Rate.
# Mean Loss Rate [%] Std. Dev. [%] Min ... Max [%] Mean Rate [Hz]
B1 0.53 4.00 0.00 ... 84.24 99.93
B2 0.95 6.66 0.00 ... 71.35 99.94
B3 0.26 2.70 0.00 ... 77.63 99.96
B4 0.28 2.80 0.00 ... 66.89 99.97
Ø 0.50 4.34 0.00 ... 84.24 99.95

Γ Experimental setup with six absorber walls

In this experimental setup (See Figure 7.6), six trajectories’ data were collected. Selected
plots are showing in Figure 7.7 and evaluation tables in terms of accuracy and availability
are then in Table 7.5 and 7.6 respectively.

Table 7.5: Correctness and precision in experiments with six absorber walls: MAE, Stan-
dard Deviation, and Min/Max Errors

# MAE [m] Std. Dev. [m] Min ... Max Error [m]
Γ1 2.01 2.86 0.00 ... 20.42
Γ2 0.88 1.85 0.00 ... 23.88
Γ3 0.71 1.32 0.00 ... 12.48
Γ4 0.36 0.41 0.00 ... 4.60
Γ5 0.34 0.34 0.01 ... 4.00
Γ6 0.37 0.30 0.00 ... 3.39
Ø 1.08 2.10 0.00 ... 23.88

Table 7.6: Availability in experiments with six absorber walls: Loss and Mean Rate.
# Mean Loss Rate [%] Std. Dev. [%] Min ... Max [%] Mean Rate [Hz]
Γ1 3.86 15.12 0.00 ... 93.82 99.85
Γ2 1.81 10.69 0.00 ... 84.76 99.91
Γ3 0.25 2.52 0.00 ... 56.71 99.96
Γ4 0.22 1.30 0.00 ... 79.82 99.95
Γ5 6.99 12.21 0.00 ... 78.41 98.38
Γ6 18.27 16.55 0.00 ... 67.00 95.67
Ø 3.08 11.21 0.00 ... 93.82 99.51

The non-reliable signal behavior in NLOS conditions can be seen in Figure Figure 7.7.
While in the example of Trajectory 1 (the worst performance) the position estimation
was lost after a certain period, the shorter Trajectory 4 was able to maintain connectivity
throughout. The error condition observed in Trajectory 4 (the best performance) could not
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Figure 7.6: The measurement hall layout with six absorber walls.

be consistently reproduced, and therefore no definitive conclusion can be drawn, though
the behavior remains noteworthy. As the number of absolute walls increases, accuracy
and availability decrease, as expected, and this can also be seen in the metric values.

(a) Trajectory 1 (b) Trajectory 4

Figure 7.7: Sample trajectories in experiments with six absorber walls, with error visual-
ized using a color scale from green (low error) to red (high error). The grey
area means no evaluation.
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Δ Experimental setup with eight absorber walls

In this experimental setup (See Figure 7.8), seven trajectories’ data were collected. Se-
lected plots are showing in Figure 7.9 and evaluation tables are in Table 7.7 and 7.8
respectively. In this scenario, there is no signal available within the simulated corridors,
which are the most common indoor scenarios. Either in a corridor or in the very last
part of the building, there are parts where there is no signal, but they are large enough
for one to stay and navigate for a while. However, once the user enters an open area,
5G positioning becomes available again. It shows that the correction data source is only
intermittently accessible.

Figure 7.8: The measurement hall layout with six absorber walls.

(a) Trajectory 1 (b) Trajectory 2

Figure 7.9: Sample trajectories in experiments with eight absorber walls, with error visu-
alized using a color scale from green (low error) to red (high error). The grey
area means no evaluation.

Although the experimental evaluation reveals a moderate level of accuracy and high data
availabilitywith an average MAE of 1.42 meters and an average loss rate of 2.67% across
seven trajectoriesthe results should be interpreted with care. While the average loss
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rate is lower than in the previous scenario, this improvement is largely attributed to a
single trajectory (see Trajectory 6 in Table 7.5). It should also be noted that, due to
the controlled laboratory conditions, the connection to the primary transmitter (serving
as the reference for TDoA calculations) could not be lost, in order to prevent a system
restart. Therefore, two-sided corridor configurations could not be tested.

Table 7.7: Correctness and precision in experiments with eight absorber walls: MAE,
Standard Deviation, and Min/Max Errors.

# MAE [m] Std. Dev. [m] Min ... Max Error [m]
Δ1 1.11 1.90 0.00 ... 26.92
Δ2 2.02 3.18 0.00 ... 29.93
Δ3 1.36 2.51 0.00 ... 30.17
Δ4 0.94 1.65 0.00 ... 25.22
Δ5 0.77 1.34 0.00 ... 27.42
Δ6 1.74 2.94 0.00 ... 32.70
Δ7 2.06 2.97 0.00 ... 29.46
Ø 1.42 2.48 0.00 ... 32.70

Table 7.8: Availability in experiments with eight absorber walls: Loss and Mean Rate.
# Mean Loss Rate [%] Std. Dev. [%] Min ... Max [%] Mean Rate [Hz]
Δ1 1.89 9.93 0.00 ... 84.48 99.88
Δ2 3.09 13.50 0.00 ... 85.42 99.90
Δ3 2.11 10.14 0.00 ... 83.21 99.89
Δ4 1.26 8.04 0.00 ... 82.76 99.93
Δ5 0.91 6.08 0.00 ... 81.13 99.92
Δ6 4.60 16.36 0.00 ... 92.97 99.79
Δ7 5.52 17.88 0.00 ... 92.63 99.78
Ø 2.67 12.26 0.00 ... 92.97 99.87
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7.3.2 Data-driven inertial localization

The TAFI model, the proposed data-driven model for estimating user trajectories, using
only inertial sensor values (see Section 6.3 for details), was assessed using various smart-
phone placements under a variety of experimental conditions. This involved a phone in
a swing position, during a call, in the hand or in a pocket, inside a backpack or a bag,
laid on a stroller, and carried by a robotic crane mimicking a moving walkway or escala-
tor configuration (Figure 7.10). These diverse setups demonstrate the IL models ability
to handle the variability of different positions or orientations of UEs, while maintaining
reliable performance. While the dataset includes recordings from two users, where each
tried to perform multiple walking patterns and speeds, expanding the dataset to include
more users could lead to more robust and generalizable results. Whether the phone in
hand gives rise to walking periodic acceleration signals or the phone is mounted on a
stroller with no step-based motion, TAFI model should be able to estimate the displace-
ment trajectory. The output, though, is only a relative trajectory, which drifts slightly
over time. The objective is to maintain trajectory accuracy within an acceptable error
margin... for as long a time as possible, and make the drift and need for correction min-
imized. The reliability is measured with two metrics: Time Below 1-Meter Threshold
(TB1) and Distance Below 1-Meter Threshold (DT1). These metrics reflect the model’s
ability to maintain tracking accuracy, specifically how long and how far it can estimate
motion without exceeding a 1-meter error in time and distance.

Details and configurations can be found in publication B1 (see Appendix C). The dataset
is divided into seen datasamples from the L5IN+ dataset used during training or val-
idationand unseen data, which the model encounters for the first time during position
estimation. These subsets are randomly split in an 80/20 ratio, respectively.

Figure 7.11 shows one of the best performances of TAFI, on the Seen dataset. The
model was able to predict the trajectory perfectly, with almost no drift over the entire
trajectory for about 6 minutes. The evaluation was carried out across the entire dataset,
as no significant difference between the model response in different placements has been
recorded.

The model demonstrates strong performance, maintaining sub-meter accuracy for several
minutes, which makes it well-suited for real-world applications. It also exhibits robustness
across various device placements. Although TAFI incorporates the physics-based feature
inside, combining the leaning approach and know-hows, but it does not perform optimally
in all scenarios. Regular evaluation is required, and in some cases, corrective adjustments
may be necessary.
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(a) Stroller. (b) Handheld (c) Calling (d) Swinging

(e) Robotic crane (f) Backpack (g) Bag (h) Pocket

Figure 7.10: Visualizations for smartphone placements.

The performance on unseen data is remarkable, as it rather stays in 3 meter threshold for
few minutes than 1 meter (See Figure 7.13). The detailed values are shown in Table 7.9
and 7.10 for seen and unseen datasets respectively.
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Figure 7.11: Trajectory 25 from seen dataset.

(a) Trajectory 6 (b) Trajectory 17

Figure 7.12: Sample trajectories from seen dataset.

(a) Trajectory 3 (b) Trajectory 4

Figure 7.13: Sample trajectories from unseen dataset.
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Table 7.9: Accuracy and reliability on seen data in L5IN+ Dataset: ATE, Probabilistic
Errors, and 1 m Thresholds.
# ATE [m] CEP50 [m] CEP90 [m] TB1 [s] DB1 [m]
S1 0.54 0.56 1.11 642 372.68
S2 1.30 1.77 2.55 362 198.70
S3 0.77 1.09 1.58 170 71.48
S4 0.45 0.60 0.88 704 464.80
S5 0.51 0.64 1.20 246 162.67
S6 2.46 3.24 4.96 326 184.15
S7 0.36 0.43 0.77 704 417.60
S8 0.49 0.67 1.09 120 119.50
S9 0.34 0.48 0.71 336 187.94
S10 0.77 0.72 1.81 244 133.40
S11 0.40 0.54 0.81 480 297.19
S12 0.30 0.13 0.99 70 4.48
S13 0.38 0.46 0.76 304 152.35
S14 0.49 0.60 0.99 332 207.00
S15 1.60 1.95 3.33 28 9.93
S16 0.83 0.64 2.04 474 272.46
S17 1.39 1.62 2.82 108 28.61
S18 0.36 0.47 0.81 216 125.03
S19 0.82 1.11 1.58 84 30.25
S20 1.67 1.98 3.53 424 167.47
S21 0.23 0.29 0.50 272 159.16
S22 1.23 1.09 3.00 470 253.30
S23 0.92 1.09 1.92 104 43.52
S24–47 · · · · · · · · · · · · · · ·
Ø 0.66 0.81 2.47 323.87 189.43

Table 7.10: Accuracy and reliability on unseen data in L5IN+ Dataset: ATE, Probabilistic
Errors, and 1 m Thresholds.
# ATE [m] CEP50 [m] CEP90 [m] TB1 [s] DB1 [m]
U1 0.77 1.09 1.85 170 71.48
U2 2.43 0.67 5.20 52 36.10
U3 2.56 0.63 5.19 56 36.69
U4 2.89 3.73 5.99 22 12.54
U5 0.69 0.80 1.51 66 39.47
U6 1.30 1.77 2.55 362 198.70
U7 0.54 0.56 1.11 642 372.00
U8–12 · · · · · · · · · · · · · · ·
Ø 2.24 1.29 4.60 50.80 31.80
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7.3.3 Correction and filtering

The experiments involving the four-step correction and filtering process, detailed in Sec-
tion 6.5, have not yet been published. However, Publications C1, C2, and C3 collectively
demonstrate the potential and effects of these methods, as discussed in Section 5. One
of the main reasons for the lack of publication is the limitation of the test environment
in L5IN+ dataset and the experiences in the measurement hall. Although absorber walls
were used effectively to analyze 5G signal behavior, their limited number restricted the
experimental setup’s ability to evaluate map-matching techniques, such as long corridors
connected to open areas. As a result, map-matching functions could not be thoroughly
tested on the L5IN+ dataset. While sparse location correction could still be applied on
its own, the full combined correction experiment was not feasible within this dataset.

On the other hand, the L5IN project (see Section 4) setup provided a different opportu-
nity. Although it lacked a millimeter-accurate reference system, it incorporated an UWB
system using Uplink TDoA positioning method as a reference. With UWB positions were
recorded at a frequency of 1 Hz and considered as reference trajectory, and used every
20 seconds in the the correction algorithm which was combined with a map-matching
approach to shape the evaluation process. The data collection for these experiments was
conducted using a dedicated smartphone application, by six members of the project team,
independently and without direct involvement or supervision from the algorithms devel-
oper (the dissertation author). This setup was designed to provide an overview of the
results and the practical effectiveness of the correction algorithm, helping to determine
whether the proposed method could reliably achieve its intended objectives. Selected tra-
jectories are illustrated in Figure 7.14, showcasing eight different correction events. The
estimated trajectories are shown in blue. The distance between the reference trajectory,
provided by the UWB, and the estimated trajectory, obtained from the filter, is defined
as the positioning error, which is illustrated in the color bar.

In Trajectory 5, and even more clearly in Trajectory 16, it becomes evident how sparse
position updates can effectively correct both the user’s pose (position and heading). A
similar observation can be made in Trajectory 17, where, despite an initial heading error
of 180 degrees, the correction mechanism is able to realign the trajectory shortly after-
ward, once it has been called. However, certain challenges persist, particularly during
initialization and navigation periods without correction signals. This is apparent in Tra-
jectory 4, where the lack of correction data results in significant drift. In this case, the
map-matching algorithm is unable to recover the trajectory once the user enters a signal-
shadowed area. Trajectory 23 demonstrates how the correction mechanism can generate a
smooth path by integrating IMU-based inertial localization with sparse position updates.
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In contrast, relying solely on Uplink TDoA signals can cause unrealistic jumps in the
trajectory, in addition to high energy consumption and limited coverage. The calculated
metrics for all evaluated trajectories, including those mentioned above, are summarized
in Table 7.11.

(a) Trajectory 4 (b) Trajectory 5

(c) Trajectory 9 (d) Trajectory 16

(e) Trajectory 17 (f) Trajectory 23

Figure 7.14: Selected visualization of corrected trajectories with green dot as start point,
and error visualized using a color scale from green (low error) to red (high
error). The estimated trajectories are shown in blue.
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Overall, the results show that using sparse location data for correction can effectively
support the trajectory, enabling seamless continuation of navigation. The achieved accu-
racyreflected in an erorr of less than 2 meters for 50% of the time, is adequate for typical
pedestrian navigation scenarios. Considering the real-world use of smartphones and the
semi-real-time calculation of corrections directly on the device, the proposed approach
demonstrates both practicality and efficiency. As long as sparse location data remains
available, the correction mechanism consistently performs as intended, underscoring the
reliability and effectiveness of the method.

Table 7.11: Accuracy and precision of corrected random trajectories: MAE, Standard
Deviation, and Min/Max Errors.

# MAE [m] Std. Dev. [m] Min Error [m] Max Error [m] CEP50 [m] CEP90 [m]
1 1.67 1.39 0.02 13.29 1.45 2.91
2 2.24 3.43 0.00 23.64 1.08 4.93
3 1.64 1.16 0.03 5.90 1.35 3.27
4 12.47 11.55 0.04 39.93 9.25 32.58
5 1.87 1.16 0.03 5.00 1.72 3.65
6 1.17 0.88 0.00 4.59 0.94 2.29
7 1.19 0.90 0.03 4.60 0.96 2.66
8 1.91 1.62 0.01 6.49 1.36 4.46
9 2.04 1.58 0.01 6.43 1.36 4.68
10 1.65 1.33 0.02 8.81 1.28 3.41
11 2.05 1.28 0.01 8.42 1.83 3.69
12 3.04 2.66 0.07 11.58 2.28 7.77
13 8.35 7.85 0.15 17.91 2.20 17.00
14 1.10 0.72 0.07 4.02 1.00 2.04
15 1.01 0.71 0.00 2.62 0.96 1.99
16 1.14 0.72 0.06 3.79 1.06 2.05
17 9.24 7.15 0.89 21.95 7.67 21.86
18 1.20 1.11 0.04 6.15 0.95 2.01
19 1.42 0.98 0.02 5.32 1.16 2.65
20 2.39 1.53 0.45 7.30 2.02 4.56
21 1.46 0.60 0.40 3.15 1.40 2.28
22 1.44 0.89 0.07 4.88 1.36 2.48
23 5.14 7.34 0.06 21.57 1.90 20.88
24 1.80 1.70 0.07 7.70 1.22 3.89
25 1.48 0.80 0.05 5.99 1.35 2.50
Ø 2.80 2.44 0.10 10.04 1.96 6.50





8 Conclusion and Outlook
Indoor Positioning System (IPS) often suffer from sensor drift over time, making a re-
liable indoor localization technology long-awaited. In recent years, hopes have turned
toward Artificial Intelligence (AI) and the capabilities of 5G networks to deliver a Global
Navigation Satellite System (GNSS)-comparable solution for indoor environments. Such
advancements could enable a wide range of mobile location-based services, improve safety
in industrial and public spaces, support augmented reality applications, and analysis based
on the collection of location history.

A promising direction lies in the combination of data-driven methods, particularly recent
breakthroughs using Transformer networks, and inertial sensors such as accelerometers
and gyroscopes. These combinations have shown potential for accurately estimating rel-
ative positions over longer period of time. Simultaneously, 5G has emerged not only as
a high-speed communication platform but also as a powerful enabler of real-time data
transfer and potential positioning capabilities. Together, these technologies could mark a
significant step forward in engineering geodesy and geoinformatics domains.

In one hand, existing data-driven models, along with their training datasets, offer a way
to mitigate the sensor drift issue by leveraging deep neural networks. Considering the use
case of pedestrian indoor navigation using smartphones, human motion, characterized
by natural patterns measurable through physics-based models and inertial sensor data,
can be effectively analyzed through the know-how obtained in the field and measurable
movement based on the acceleration and rotation values. However, such insights have
often been neglected in current data-driven solutions. This omission has sometimes led to
unpredictable model behavior and reliance on deeply layered neural network architectures
that make the learning process and predicted values difficult to interpret and explain.

On the other hand, the field of 5G positioning is still in a research phase and faces
several challenges, such as dealing with multipath signals and the extraction of reliable
measurements from raw signal data. While 5G positioning standards remain open, the
actual implementation is largely in the hands of manufacturers, making the development
process somewhat monopolized. As a result, progress has been limited, with only a few
players controlling access to the technologies. For instance, positioning techniques like
Uplink Time Difference of Arrival (TDoA), serving as a baseline for both 4G and 5G, have
only recently become available from a single manufacturer. Other advanced 5G-specific
positioning methods remain unimplemented and out of reach for many researchers.

Due to these limitations, collaboration with partner research institutes became neces-
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sary. Before tackling technical research questions, organizational and logistical challenges
had to be resolved. Through collaborative efforts, it has been possible to design real-
world use cases, evaluate system performance in controlled environments, and publicly
share everything from inputs to details and results. The investigations in this research
primarily aim to move closer to a GNSS-comparable solution for indoor spaces by com-
bining the most promising state-of-the-art researches and technologies. Initially, these
approaches, data-driven IL, and 5G Uplink TDoA positioning evaluation, were stud-
ied independently. Later, they were integrated through filtering techniques to balance
their respective strengths and compensate for individual shortcomings. The outcomes of-
fer valuable insights and demonstrate practical potential for researchers, developers, and
those interested in advancing 5G and AI technologies for human-centric applications, espe-
cially in pedestrian localization and navigation. From this broader investigation, aligned
with the research objectives and key questions, three main aspects, explored through
publications, can be highlighted:

• Evaluation of 5G positioning in human centric applications

As part of the early national efforts to explore the capabilities of 5G networks
across Germany, a public, web-based simulation tool was developed. This was fol-
lowed by the collection, evaluation, and public release of 5G positioning datafrom
raw signal measurements to estimated positions. The investigations revealed that
5G networks are indeed capable of providing useful signals in indoor environments.
However, when focusing specifically on 5Gs positioning potential, several impor-
tant lessons emerged that should guide research and development, and network
design.

One key takeaway is the importance of single-anchor positioning. This involves
implementing and extracting Angle of Arrival (AoA) in combination with other
ranging techniques such as Time of Arrival (ToA), and is crucial for both industrial
and public applications of 5G positioning. Positioning should be considered an
optional and value-added service, and must be able to compete financially with
existing alternatives like Ultra-Wideband (UWB) beacon systems or even freely
available Wireless Local Area Network (WLAN)-based positioning methods. This
is why its particularly attractive to design private campus networks that not only
support communication and real-time data transfer for a wide range of users, but
also offer positioning as an additional feature, without requiring users to install
multiple dedicated antennas solely for localization purposes.

To be effective for pedestrian use cases, 5G positioning can just focus on delivering
high-quality location data at key points within buildings, such as entrances and
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floor transitions. Providing accurate position initialization in these areas is essen-
tial to enable seamless and reliable pedestrian navigation indoors. The rest can
be covered with autonomous approaches and correction mechanisms. By deliver-
ing sparse yet strategically placed positioning updates, 5G can become a valuable
enabler for the future of indoor navigation technologies.

• Improving the data-driven inertial localization approaches

Building on recent advances in Transformer-based data-driven networks, this work
contributes to the global effort to design and develop neural models that make in-
ertial localization both long-lasting and suitable for near real-time applications
on wearable devices such as smartphones and smartwatches. To be practical for
these platforms, the models must be lightweight and efficient, ensuring compat-
ibility with limited computational resources. This has led to the integration of
physics-based features with raw sensor data in a compact, non-redundant format;
an approach made possible by the capabilities of Transformer architectures; cover-
ing sensor calibration requirements. The proposed model, Transformer Automatic
Features Interaction (TAFI), introduces this innovation by significantly reducing
the complexity found in many state-of-the-art networks. While TAFI does not
outperform existing benchmarks in terms of accuracy metrics, it offers a valuable
trade-off between model size, interpretability, and performance.

Evaluation of the model within a novel framework, built upon international stan-
dardization efforts, has demonstrated its potential. However, for broader adoption,
the complexity of such models must be further reduced to allow seamless deploy-
ment across a wide range of smartphones. One of the key lessons from these
experiments is the importance of model explainability. Understanding the causes
of failure and being able to ensure consistent performance over extended periods
are critical to making inertial localization reliable and robust for everyday use.

• Improving the correction and filtering approaches

State estimation algorithms such as Kalman Filtering (KF) and Particle Fil-
ter (PF) have been widely used for decades in the field of mobile mapping and
localization systems. These methods enable effective data fusion and integration
of constraints such as map information to improve localization accuracy. In this
research, however, the approach goes a step further by chaining multiple methods.
It first ensuring reliable detection of when corrections are actually needed, and
then applying them optimally using as few correction numbers as possible. These
correction sources, often infrastructure-based, should inherently provide sparse
location data and must be used strategically.
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To the best of the author’s knowledge, KF and PF remain among the most prac-
tical and compatible solutions for wearable devices. They have been thoroughly
tested across a wide range of real-time experiments and have consistently demon-
strated their effectiveness in live environments. Their practical reliability is well-
established. A key lesson learned through this work is that more complex algo-
rithms and tools should only be applied when necessary. The fact that a more
powerful tool exists does not justify its use if a simpler solution already solves the
problem efficiently. Compatibility and the intelligent chaining of well-established
algorithms with state-of-the-art technologies should remain a central focus. While
these classical algorithms may appear trivial in the current scientific context, their
thoughtful integration with non-trivial ideas and modern techniques can lead to
meaningful answers to previously unresolved research questions.

Although the effectiveness of the developed methods has already been demonstrated, the
work on the GNSS-comparable IPS cannot be considered as complete, and several aspects
are still to be resolved. Several challenges remain unresolved. This work primarily focuses
on correction data derived from 5G infrastructure. However, as of now, 5G networks
are not yet fully deployed as promised, and many of the positioning features are still
not implemented in public networks. For such systems to be practical and scalable,
access to accurate positioning data from publicly available infrastructure remains a critical
requirement.

Regardless of these technological limitations, advancements in autonomous Inertial Local-
ization (IL) using lightweight data-driven algorithms on smartphones and other wearable
devices continue to open up new possibilities in future. Recent progress in explainable
AI can contribute significantly in this space, especially in improving sensor calibration
and enhancing the reliability of learning-based models. One promising direction is the
3D extension of data-driven IL; to explore whether altitude changes can be estimated
accurately without relying on a barometric sensor. Initialization challenges, particularly
with height and heading estimation using sparse location updates (typically within 2030
meters of accuracy), also remain as next challenges. next works may include exploring
additional sensor integrations, such as cameras or Light Imaging, Detection and Rang-
ing (LIDAR), in combination with 3D building models to address these limitations. The
idea here is to develop a robust understanding of environmental materials using vision-
based data acquisition methods. Such an understanding can also support 5G positioning
and other signal-based localization techniques. 5G positioning offers great potential in
terms of accuracy, where the implementation of methods such as AoA and Phase of Ar-
rival (PoA) could be true game changers. The evaluations presented in this work will be
further extended and shared with the research community to spark broader discussion
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and collaboration.

Privacy and data protection are also important considerations. While pedestrian local-
ization raises valid concerns regarding data security, major smartphone and wearable
manufacturers, as well as social media platforms, are already collecting inertial sensor
data in an industrial scale. These datasets can potentially be used to map environments
or infer user location at a general level. This reality underlines the urgent need for clear
data protection standards and secure frameworks that prevent unauthorized access to
sensitive information. On the other hand, the societal benefits of IPS technologies cannot
be overlooked. Applications tailored for specific user groups, such as indoor navigation
for the visually impaired, localization support for firefighters operating in smoke-filled en-
vironments, or hospital systems designed to deliver timely assistance, highlight the value
of developing targeted solutions rather than one-size-fits-all systems.

Overall, this thesis contributes to improving the efficiency of IMU-based localization sys-
tems, potentially benefiting any mobile platform equipped with such sensors. It demon-
strates how cutting-edge AI and 5G technologies can be effectively integrated into the field
of engineering geodesy and geoinformatics, helping to keep the field relevant, innovative,
and aligned with modern technological developments.
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