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Kurzzusammenfassung

Die Motivation für diese Arbeit ergab sich aus der Tatsache, dass der Energieverbrauch in
Gebäuden im Vergleich zu anderen Sektoren hoch ist und Gebäude aufgrund verschiedener
Fehler oft nicht optimal betrieben werden. Gerade in Nichtwohngebäuden, die mengen-
mäßig nur einen geringen Anteil am gesamten Gebäudebestand ausmachen, ist der Anteil
am Endenergieverbrauch überproportional hoch. Durch die zunehmende Digitalisierung
stehen zwar Messdaten zur Verfügung, diese werden aber noch nicht standardmäßig mit au-
tomatisierten Methoden genutzt, um Verbesserungspotenziale im Gebäudebetrieb zu iden-
tifizieren.

Ziel dieser Dissertation ist es daher, ein Verfahren zur Anomalieerkennung mit hohem
Automatisierungsgrad zu entwickeln. Ein modellbasierter Ansatz mit Parameteridenti-
fikation von multilinearen zeitinvarianten Black-Box Modellen soll Veränderungen in der
Gebäudedynamik durch Klassifizierung der Parameterräume in Sollverhalten und auftre-
tende Anomalien detektieren. Die multilineare Modellstruktur ist in der Lage, die Dynamik
von thermischen Energiesystemen abzubilden, deren physikalische Gleichungen multili-
neare Terme enthalten, und ist daher für die Gebäudemodellierung geeignet. Darüber
hinaus ermöglicht die multilineare Struktur der Modelle die Abbildung in mehrdimen-
sionalen Datenstrukturen, den Tensoren. Dies ermöglicht den Einsatz von Tensordekom-
positionsverfahren, die durch Faktorisierung der Modelle zu einer signifikanten Reduktion
des Speicherbedarfs führen.

Der entwickelte Algorithmus überwindet die komplexe White-Box Modellierung einzelner
Nichtwohngebäude durch die Verwendung von multilinearen Black-Box Modellen, die aus
Messdaten geschätzt werden, und ist somit auf andere Gebäude übertragbar, deren Mess-
daten in Zeitreihen vorliegen. Durch Normalisierungsverfahren der Modellparameter, wird
eine eindeutige Darstellung der Modelle erreicht, die eine Auswertung der Modellpara-
meter zur Anomalieerkennung ermöglicht. Weiterhin wird durch die Normalisierung der
Modellparameter eine Interpretierbarkeit erreicht, indem der Einfluss eines Signals auf den
aktuellen Zustand des Modells direkt an dem Wert eines Parameters abgelesen werden kann.
Die Skalierbarkeit auf große Gebäude ist durch die Reduktion der Modelle durch die Tensor-
dekompositionsverfahren in Verbindung mit der Normalisierung gegeben, da diese zu einer
effizienten Speicherung und Berechnung führt.
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Als Methoden zur Parameteridentifikation werden die Schätzung der Modellparameter in
voller Tensordarstellung mit der direkten Schätzung der dekomponierten normalisierten
Parameter verglichen. Die Schätzung der vollen Tensoren hat den Vorteil, dass in dieser
Darstellung die Kostenfunktion in den Parametern linear ist und somit effiziente Standard-
methoden der linearen Algebra verwendet werden können. Allerdings ist dieser Weg nicht
skalierbar, da jedes zusätzliche Signal zu einem exponentiellen Anstieg der Modellpara-
meter führt, was die Anwendung auf Gebäudedaten unmöglich macht. Der direkte Weg
zur Identifikation der reduzierten Modellparameter in dekomponierter und normalisierter
Form, wie sie später zur Anomaliedetektion verwendet werden, weist ein nichtlineares Op-
timierungsproblem auf. Ein neuer iterativer Optimierer, der speziell für die faktorisierte
multilineare Modellstruktur entwickelt wurde und effiziente Least-Squares-Methoden ver-
wendet, liefert gute Ergebnisse sowohl in Bezug auf die benötigte Rechenzeit als auch auf
den erreichten Fehler zwischen Modell und Messdaten.

Zur Anomalieerkennung werden die mit aktuellen Messdaten identifizierten Modellpa-
rameter mit Hilfe von Klassifizierungsmethoden in nominales und anomales Verhalten
getrennt. Hierzu sind klassifizierte Trainingsdaten erforderlich, mit Hilfe derer der Klas-
sifizierer trainiert wird. Das Einstellen der Empfindlichkeit des Klassifizierungsmodells
ist durch zwei freie Parameter möglich, wobei weniger unerkannte Anomalien mit mehr
Fehlalarmen einhergehen. Der Algorithmus zur Erkennung von Anomalien wird mit ver-
schiedenen Datensätzen von Systemen zur Heizung, Lüftung und Klimatisierung evaluiert.
Hierbei zeigen sich gute Ergebnisse für Anomalien, wie geöffnete Fenster, festhängende
Lüftungsklappen und zugesetzte Ventile.



Abstract

The motivation for this work arose from the fact that the energy consumption in buildings
is high compared to other sectors, and that buildings are often not operated optimally due
to various deficiencies. In particular, the share of final energy consumption is dispropor-
tionately high in non-residential buildings, which represent only a small part of the total
building stock. Although measurement data are available due to increasing digitalization,
it is not yet used as a standard with automated methods to identify potential for improve-
ment in the building operation. The aim of this thesis is therefore to develop a method for
anomaly detection with a high degree of automation. A model-based approach with param-
eter identification of multilinear time-invariant black-box models is used to detect changes
in building dynamics by classifying the parameter spaces into nominal behavior and anoma-
lies. The multilinear model structure is capable of representing the dynamics of thermal
energy systems whose physical equations contain multilinear terms and is therefore suitable
for building modeling. In addition, the multilinear structure of the models allows them to be
mapped into multidimensional data structures called tensors. This enables the use of tensor
decomposition methods, which lead to a significant reduction in memory requirements by
factorization.

The developed algorithm overcomes the complex white-box modeling of individual non-
residential buildings by using multilinear black-box models estimated from measured data
and is therefore transferable to other buildings for which measured time-series data are
available. By normalizing the model parameters, a unique representation of the models is
achieved, allowing the model parameters to be evaluated for anomaly detection. In addition,
the normalization of the model parameters provides interpretability in that the influence of
a signal on the current state of the model can be read directly from the value of a parameter.
Scalability to large buildings is achieved by reducing the models using tensor decomposition
methods in conjunction with normalization, resulting in efficient storage and computation.

For parameter identification, the estimation of the model parameters in the full tensor rep-
resentation is compared to the direct estimation of the decomposed normalized parameters.
The estimation of full tensors has the advantage that in this representation the cost function
with respect to the parameters is linear and thus efficient standard linear algebra methods
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can be used. However, this method is not scalable, as each additional signal leads to an ex-
ponential increase in the model parameters, making it impossible to apply to building data.
The direct way to identify the reduced model parameters in decomposed and normalized
form, as used later for anomaly detection, presents a nonlinear optimization problem. A new
iterative optimizer, specifically developed for the factorized multilinear model structure and
using efficient least squares methods, provides good results both in terms of computational
time and error between model and measured data.

For anomaly detection, the model parameters identified with current measurement data are
separated into nominal and anomalous behavior using classification methods. This requires
classified training data, which is used to train the classifier. Two free parameters can be
used to tune the classification model between undetected anomalies and false alarms. The
anomaly detection algorithm is evaluated with different data sets from HVAC systems. This
shows good results for anomalies such as open windows, stuck dampers, and blocked valves.
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Chapter 1

Introduction

1-1 Motivation

The final energy demand for heat generation accounted for almost 50 % of Germany’s
total final energy demand in 2022 and is therefore a significant sector in the topic of climate
protection by energy conservation. Over 35 % of the heating demand was consumed for space
heating and hot water production in buildings and for lighting. The German government
has set targets to reduce the energy demand of buildings and to switch to sustainable energy
sources, in order to achieve a climate-neutral building stock by 2050, see BMWK (2022);
Bürger et al. (2020).

The existing energy saving potential in the area of energy supply to buildings could be
better exploited by monitoring building energy systems. There are already many modern
buildings that collect and store large amounts of data. However, these are rarely used to
optimize the energy performance of the buildings. The goal of this research is to develop
a new method for anomaly detection in building energy systems, which detects anomalies
in the ongoing operation of the buildings based on available measurement data in order to
identify optimization potential in the energy supply. The following key questions arise:

• How can the structure of a mathematical building model be generated automatically
on the basis of measured data?

• How can the parameters of this structured model be determined?

• How can anomalies in building operation be detected with the help of a model identified
in this way?

For this purpose, the mathematical model structure of the building is generated in the form of
parameter sets. If anomalies occur during operation, the continuously generated parameter
sets will deviate from those of error-free operation and will be detected. The very time-
consuming and costly manual modeling is not necessary due to this generic approach of
anomaly detection from measured data, which is a major advantage of this method.
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Within the framework of the EU project mySmartLife, which is currently being carried out
in Hamburg, research is being conducted into solutions for smart cities with a focus on
the digitalization of energy supply, Pajares (2024). In the course of this, a platform for
storing and evaluating large amounts of data from energy systems is planned. Due to the
increasing digitalization of the building sector and the associated storage in data centers,
large amounts of data (Big Data) are accumulating on servers, which can only be used
meaningfully by automated evaluations. The BMBF-funded third-party project SONDE
addresses the potential for energy savings through supervision and optimization of buildings
during operation, (Schnelle and Lichtenberg, 2024). Through the project partners, access to
the building control system (BMS) of buildings is possible, so that large amounts of data are
available for the evaluation of developed methods of this thesis. In addition, it is possible to
artificially generate data sets under predefined conditions using test rooms equipped with
measurement technology.

1-2 State of research

In the following section, an overview of previous research in the topics relevant to this PhD
thesis on tensors and decomposition methods, multilinear systems, and anomaly and fault
detection is given. These findings are used, linked and extended within this PhD thesis.

Buildings can be considered as thermal energy systems whose dynamic behavior is described
by thermal power balances, in which polynomials (e.g., of temperatures and volume flows)
occur. This dynamic behavior is nonlinear and can therefore only be represented with
sufficient accuracy by linear models in the vicinity of the operating point. Therefore, linear
models are not suitable as global models. State space models describe the dynamic behavior
of systems with the help of differential or difference equations. The class of multilinear state-
space models extends the linear ones in that in the first order differential equations, in addition
to linear terms, multiplications of states and inputs (e.g. temperatures and volume flows)
are also allowed, (Pangalos et al., 2015). This structure fits the described heat flow balance of
heating systems. In Pangalos et al. (2013) it was shown that thermal energy systems can be
classified in the class of multilinear time-invariant (MTI) models. As shown in Figure 1-1,
a model class is available which allows further structures than the linear model class, but
cannot be arbitrarily complex as nonlinear systems can be. The parameters of the multilinear
models can be represented as tensors, i.e. multidimensional arrays, due to their multilinear
structure. In order to easily account for the individual differences of buildings in modeling,
component-based approaches to model heating systems were developed, (Pangalos, 2016).

The number of parameters of MTI models increases exponentially with each additional
signal (input, state), so that models of large systems with many signals can no longer be
meaningfully represented with full rank of the underlying tensor. Approximation methods
are necessary to reduce the number of parameters. Tensor decomposition methods are ideal
for this purpose, since they preserve the multilinear structure with a reduced number of
parameters and an adjustable accuracy. In Kruppa (2018), it is investigated how tensor de-
composition methods can be applied to MTI models and revealed their benefits on controller
design. Here, it was shown that applying tensor decomposition methods to MTI models
led to a reduction in memory requirements. In addition, a Matlab library MTI Toolbox was
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Figure 1-1: Presentation of the different model classes, see Kruppa (2018)

developed to provide functions for model building and simulation of MTI models in tensor
decomposition, (Kruppa, 2017b).

In recent years, tensors and tensor decomposition have become an increasing focus of re-
search. In Kolda and Bader (2009), Canonical Polyadic decomposition and Tucker decom-
position were introduced and studied in various mathematical applications. Numerical
algorithms for using tensor decompositions have been developed and made available in
Matlab libraries. Other tensor decomposition methods such as Tensor Train Decomposition
and Hierarchical Tucker Decomposition have been presented and studied in Oseledets (2013)
and Grasedyk et al. (2013).

Anomaly and fault detection methods are widely used today. In Isermann (1997) different
methods for parameter-based and non-parameter-based fault detection are summarized,
which can be applied to linear and nonlinear models. Especially in the automotive industry,
reliable methods for automated fault detection have existed for a long time. There is also a
trend toward increased use of model-based fault diagnosis algorithms in the building sector.
For example, in Sewe (2018) fault detection in building systems using parity equations was
investigated. In recent years, the development of neural networks, especially for pattern
recognition, has increased in many areas of research and application. Neural networks for
anomaly detection in building systems have been discussed in Borda et al. (2023) and Himeur
et al. (2023), but the challenge of interpretability and explainability of the decision generated
by artificial intelligence is a common issue, (Carabantes, 2020; De Bruijn et al., 2022) with
which many research papers are concerned, but is hardly found for anomaly detection in
building systems yet, (Gugliermetti et al., 2024).

First applications of fault diagnosis with tensor decomposition methods were performed
with model-based approaches in Müller-Eping (2020) using qualitative models. Qualitative
models can be used for fault detection, but they also have disadvantages, e.g. a high memory
requirement, Müller-Eping (2020). Signal-based methods with tensorized monitoring data
and model-based methods for fault diagnosis using multi-linear models and linear subspace-
based parameter identification of building energy systems for fault detection have been
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compared in Sewe et al. (2019).

Based on the existing research on CP decomposition of MTI models and their application
to building energy systems, the resulting advantages will be exploited. In particular, the
reduction in memory and concomitant reduction in computational effort through the appli-
cation of tensor decomposition methods is essential for large building systems. Likewise, the
assignment to the class of multilinear systems allows a sufficiently accurate representation
without too much complexity. In contrast to previous work, the focus shall be on the de-
velopment of algorithms for fault detection of building energy systems and their automated
application to different buildings without complex modeling of the components. Black-box
models without structural information will be developed through parameter identification
methods and these will be made available through anomaly detection algorithms to optimize
buildings.

1-3 Research questions

The scientific interest is focused on the development of new tensor-based methods for fault
and anomaly detection of building energy systems based on measurement data, which could
later be used to optimize the energy demand of buildings. In order to ensure the broad
applicability of such methods, their suitability for practical use should already be taken into
account during their development. As little prior information about the building data as
possible should be required, as the manual input of this data is always costly. This brings
the class of so-called black-box identification methods into focus, which, for the reasons
mentioned above, will be supplemented in this thesis by another method for multilinear
modeling.

For this purpose, MTI models in decomposed tensor representation are to be used. The
memory demand reduction shown in other works with accompanying reduction of compu-
tational requirements by using decomposed models is very attractive in the case of large data
sets. When modeling complex building energy systems as a non-decomposed MTI model,
the number of model parameters in full tensor structures increases exponentially with each
added state or input.

The anomaly detection methods developed in this work shall be based on parameter identi-
fication methods of black-box models. Black-box modeling refers to model building without
structural information of the buildings. Using given input signals and measured values of
the output signals, the dynamics of the system is identified by parameter identification. For
this purpose, the output variables of the applied models are compared with the measured
values from the buildings and the residuals are minimized by an optimization algorithm. The
parameter identification methods will be applied to multilinear structures in decomposed
tensor form to produce a nominal parameter set in Canonical Polyadic (CP) decomposition.
For anomaly detection, it is to be tested whether deviations from the nominal state can be
detected using the decomposed parameter sets. If it is possible to successfully apply this
method for anomaly detection of the available demo buildings, it can be transferred to any
other buildings without much effort due to the choice of black-box modeling, without struc-
tural information of the buildings. This is a major advantage over other methods that require
elaborate modeling of individual components.
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Since there are no studies on the optimization problem of parameter identification of reduced
MTI models for anomaly detection, it must first be investigated which class of mathematical
optimization problems this parameter identification problem belongs to. For example, if the
optimization problem of parameter identification of MTI models were convex under certain
conditions, global minima could be found numerically reliably and easily, and existing very
effective methods as in Boyd and Vandenberghe (2009) could be used for the solution. This
in turn would bring advantages by reducing computation time and memory requirements.
If this is not the case, an optimizer must be found that can handle the multilinearity of the
models and is also computationally efficient.
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Figure 1-2: Anomaly detection with multilinear parameter identification from data, own
illustration

Figure 1-2 illustrates two principal approaches to anomaly detection through parameter
identification of MTI models, starting from original measurement data stored in a data
matrix D. In path a, a full-rank MTI model T in tensor representation is estimated from
the measurement data and subsequently decomposed using CP decomposition. Path b
represents a direct approach. It uses the data matrix to estimate the decomposed parameters
of the MTI model directly, expressed as factor vectors λ with a predefined rank-r. Path c
describes the process of computing a diagnostic decision in building operation by analyzing
the decomposed parameters.

The knowledge objectives justified in this section can be formulated as the following research
questions:

a) How can an MTI model T be computed from the data matrix D?

b) How can a decomposed model (λ) be computed directly from the data matrix D?

c) How can the parameters of the decomposed model be implemented and applied for
automated anomaly detection in building energy systems?
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1-4 Outline

The thesis is structured as follows: In Chapter 2 fundamentals are given. There are introduc-
tions to methodological rudiments as anomaly detection methods and existing parameter
identification methods followed by an introduction to tensors, tensor decomposition and
the MTI models in this tensor representation. At the end of Chapter 2, information about
modern buildings and their data collection structure is given, before a simple mathematical
model for buildings is derived. In Chapter 3 a new reduced normalized modeling approach
is developed from polynomials and adapted to MTI models. The normalized MTI models are
given in full representation and in a structured sparse representation, which allows a further
reduction of the storage amount. Finally, methods for transformation such as scaling and
discretization are given. In Chapter 4 different approaches for parameter identification of
the new normalized MTI model framework are derived. Here, a new specialized alternating
least squares algorithm for parameter identification of normalized MTI models is developed
and tested. In Chapter 5, an algorithm for anomaly detection using the model parameters
as residuals and evaluating them with classification techniques is derived and tested on
a sample data set of supervised data. In the following application chapter Chapter 6 the
developed algorithm for automatic anomaly detection is evaluated with five different data
sets of clustered simulation and real measurement data with anomalies in the HVAC system
of buildings followed by an unsupervised data set of an office building. The summary and
outlook of this thesis are given in Chapter 7.



Chapter 2

Fundamentals

In the rapidly evolving field of building management, the ability to detect anomalies from
measurement data has become a critical component of efficient and safe operations. This
chapter provides a comprehensive overview of the diverse landscape of anomaly detection
methods in building systems, spanning traditional manual approaches, rule-based systems,
and sophisticated automated techniques. Among automated techniques, a distinction exists
between theory-based methods and data-driven approaches. The focus here is primarily on
data-driven approaches that generate models from empirical data, as this should also form the
basis for the algorithm proposed later for recognizing anomalies. These models necessitate
robust parameter identification techniques. To establish a solid foundation for understanding
these techniques, existing parameter identification methods will be introduced, providing
essential context for data-driven anomaly detection. Subsequently, attention will shift to a
specific model class utilized later in this work: the multilinear time-invariant (MTI) model.
The basic principles of MTI are introduced, which sets the stage for understanding the idea
of how to use these models for effective anomaly detection in building systems.

2-1 Methodological rudiments

In this section, the methodological foundations necessary for the development of an anomaly
detection algorithm for building systems using multilinear parameter identification are pre-
sented. Therefore, the current state of anomaly detection in building systems is presented
first, followed by existing parameter identification methods. At the end of the section, tensors
and decomposition methods are introduced for the subsequent model approach with MTI
models. This knowledge serves as a basis for further concepts and applications, which are
dealt with in the following chapters.

2-1-1 Anomaly detection

Fault and anomaly detection for diagnostics are broad fields in engineering. However, in the
past the main focus was on safety-related applications, such as in the automotive industry,
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in aircraft operations and in safety-related process engineering. Nowadays, more attention
is being paid to energy-related issues, which means that diagnosis during operation is also
becoming increasingly important in building automation. Particularly in the design phase
of buildings, a great emphasis is placed on energy efficiency. However, the planned values
for energy efficiency in modern office buildings are not achieved during operation, as the
building is not operated at the optimum level, (David et al., 2017). This is where anomaly
detection becomes important in order to detect and avoid problems in building operation.

What are anomalies?

A definition of the term ‘anomaly’ can be found in Chandola et al. (2009). There an anomaly
is described as any pattern in the data that does not fall within a previously defined range
of normal behavior. It is important for anomaly detection that the deviating behavior is of
interest to the analyst. Therefore, anomaly detection is distinguished from noise detection.
Noise refers to deviations in the measured data that interfere with the further processing
and analysis of the data, but do not cause a real anomaly or error in the system and are
therefore not of interest in anomaly detection. Various challenges arise in anomaly detection,
which mainly result from the fact that a normal behavior of the system must first be defined,
in order to be able to recognize the anomaly later as a deviation from normal behavior.
Normal behavior can lie in a wide range, and the boundaries between normal and abnormal
behavior cannot be precisely separated. In addition, the definition of normal behavior varies
greatly from application to application, so that algorithms developed to detect anomalies
cannot be directly transferred to other applications. Furthermore, the availability of data
labeled as normal and abnormal is often difficult, which makes training and validation of
the algorithms difficult. It can also happen that noise in the measured values is similar to
an anomaly when analyzing the data, which can lead to false alarms. Depending on the
availability of training data, different anomaly detection modes can be operated. Supervised
anomaly detection can be performed if labeled data is available for both the nominal and
abnormal building operation. If labeled data is available only for the normal behavior, but
not for the abnormal behavior, the technique is called semi-supervised. For the third case,
where the analyst is faced with a lack of any labeled data, unsupervised techniques are
needed, (Chandola et al., 2009).

Anomaly detection points to abnormal behavior, which can be a technical fault somewhere
in the building, similar to fault detection or other undesirable behavior. Anomalies can also
occur due to manual intervention by users in the operation of the building. This is different
from fault isolation, where the location of the fault is isolated. Fault identification goes
even further by determining the size of the fault, (Isermann, 1994). Anomaly detection does
not point directly to the faulty component, but is mostly easier and faster. It helps to find
symptoms that can be used for further diagnosis or investigation, (Shi and O’Brien, 2019).

The different approaches to anomaly and fault detection can be found in Figure 2-1, showing
methods listed in Neumann et al. (2011), Rehault et al. (2015) and Isermann (2005). As shown,
they can be divided into signal-based and model-based techniques. Most of the techniques
find application in fault detection and anomaly detection problems for different engineering
domains. They are described in the following section, with application examples for anomaly
detection in building systems.
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Figure 2-1: Anomaly and fault detection methods, adapted from Müller-Eping (2020)

Signal-based methods

The primary distinction is that model-based approaches rely on input-output models of
the system, while signal-based techniques utilize measurement data directly for diagnostic
decisions. In signal-based methods, the symptoms of occurring faults are reflected in the
measurement data, allowing fault decisions to be made based on these symptoms and prior
knowledge of the fault-free system (Gao et al., 2015). In the field of building automation,
the state of the art in modern buildings with monitoring capabilities primarily comprises
the first two categories: manual and rule-based anomaly detection. These techniques can be
named as simple signal-based approaches. The manual methods involve visual monitoring
of measured signals through graphical representation and rule-based use simple rules. Some
examples which are described in detail in Müller-Eping (2020), are summarized below.

The collected measurement data can be plotted over time using time series plots. By visually
examining these time series, expert knowledge can be used to identify significant deviations
of the measured variable from the expected values. Typically, these evaluations are suitable
for smaller measurement series and a few data points, as they quickly become confusing
with large data sets. Possible errors that can be detected are those that have a direct effect on
the values of a measured variable. These include implausible measurements due to sticking
or failed sensors, or atypical measurement ranges due to missing sensor calibration.
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Unlike simple time series plots, carpet plots can be used over long periods of time. The
strength of this type of plot lies in its ability to visualize patterns in the measured variable
under investigation. In building monitoring applications, carpet plots can be used to display
temperatures as a function of date and time, for example. Temperatures are typically dis-
played as a third dimension with a color legend. This results in patterns that can be quickly
recognized and can give an indication of the thermal comfort of a room over the year.

Another visual method is the visualization in so-called scatter plots. Here, the measured
values are not plotted over time, but against each other. This results in point clouds that
can be analyzed manually. If, for example, the outdoor temperature is plotted against the
required heating power, the result is a scatter plot that would probably show that higher
heating power is required at lower outdoor temperatures. With these scatter plots and
expert knowledge, bands of typical behavior can be generated so that abnormal behavior
outside these defined bands can be detected, (Müller-Eping, 2020).

In Müller-Eping (2020), the advantages and disadvantages of the methods described for
manual and visual monitoring for error detection are mentioned. The advantage is that
the methods are easy to use, as implementation does not require extensive programming
knowledge. Additionally, the evaluation of the plots is intuitive, but it requires a high level
of system knowledge. Furthermore, for more complex buildings with many data points, the
methods are time-consuming and therefore difficult to implement for visually analyzing all
data. One limitation of visual evaluation is that errors affecting system dynamics and that
cannot be directly read from individual values or data curves may go unrecognized. These
include errors that change the time constants of the buildings. An example of such an error
is a changing slope of the cool-down curve, in response to certain input signals.

In addition to the manual methods, as shown in Figure 2-1, there are also automated methods
for anomaly and fault detection in addition to the purely manual, visual methods. Among
the methods that can be assigned to the state of the art, however, are only the rule-based
methods. These include pure limit checking and expert systems. Limit checking is a commonly
used method where thresholds are defined inside controllers to define a range for each
data point, within which the measured values should move in the nominal case. An error
is triggered automatically above and below these limit values. For critical failures, limit
checking performs well, e.g. for fire alarms or carbon monoxide alarms, but has difficulties
in other areas, (Shi and O’Brien, 2019). As an example, an outdoor temperature sensor is
listed in Müller-Eping (2020), whose values typically only move within plausible limits for
a specific location. If these deviate significantly, it can be assumed that there is an error
within the temperature sensor. It is clear from this example that simple limit values cannot
always be applied, as there can be large differences in the nominal ranges over the seasons,
making it difficult to detect an actual error. Similar to limit checking, trend checking is easy
to implement, as it uses the first derivative of the measurement to define nominal trends for
the measurement data. For many applications, simple rules for limit value monitoring and
trend checking are not sufficient, so these are supplemented by so-called expert systems. This
is done by implementing conditions in a form that is known as "if-then-else" formulations.
As an example of this, we can consider the temperature within a boiler. Limit values for
the temperature must be set differently in heating mode than in night setback or summer
operation. Rules are required here that take into account the operating states (heating mode,
cooling mode, etc.) and the times of use.
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More advanced methods are not common in the field of building systems and can therefore be
regarded as research-relevant methods. These include model-based methods, such as white-
box and black-box modeling, and advanced signal-based methods. Signal-based methods are
available for the time domain and for the frequency domain. In the time domain common
methods are to investigate the features of the signals by analyzing the mean, standard
deviation, trends, peaks, slope, magnitude or phase of the data, while in the frequency
domain a common practice is to use spectrum analysis, such as discrete Fourier transform.
Both approaches are already known and used for real-time applications in power converters,
mechanical components of systems or asynchronous motors as a comprehensive review
by Gao et al. (2015) shows, but are, so far, less common in building technology.

Model-based methods

This section focuses on model-based methods, as a basic overview of model-based methods
for diagnosis and fault detection is necessary to understand the anomaly detection approach
developed later in this thesis. For model based fault or anomaly detection a dynamic
input-output model of the system or process is needed, which represents the system behavior.
If models are available, Gao et al. (2015) gives different approaches for the model based fault
detection. One is a deterministic method, where the constructed model is simulated in
parallel with the real system and receives the same input. The output of the system is then
compared with the output of the model and the residual signal r is built from the output
deviations. The diagnosis decision is then made on the basis of these residuals. Similar to
this approach, observer based fault detection uses an observer, who is running in parallel to
the system. The error between the model and the system output is fed back to the observer.
The observer can be designed, such that the residual signal for fault detection is more
sensitive to faults than to measurement noise and disturbances, (Frank and Wunnenberg,
1989; Isermann, 2006; Zhang et al., 2016). Besides deterministic fault detection, statistical
fault diagnosis methods are developed, where a Kalman filter is constructed similar to the
observers. Here the corresponding residual signal is investigated with statistical methods,
such as generalized likelihood, χ2 testing and hypothesis test to check the likelihood or
probability of an occurred fault, (Gao et al., 2015).

Another approach was first proposed by Baskiotis et al. (1979) and is based on system
identification. The idea is that the model parameters of the nominal behavior differ from
those of the faulty behavior. Therefore, the model structure must first be known as well as
the parameters of the nominal behavior. The actual parameters are then estimated online
during the operation of the system. The difference between the actual obtained parameters,
and the nominal system parameters is then used as residuals for fault diagnosis. This method
is reviewed in Isermann (2005); Simani et al. (2013) and is especially straightforward, if the
model parameters are directly related to physical coefficients.

Other fault diagnosis methods that have been described in recent years for building applica-
tions are summarized in Rogers et al. (2019) and Kim and Katipamula (2018). The generation
of residuals with parity equations should also be added, which provides a simple option for
fault detection, especially for linear state-space models. It was described in Isermann (2006)
and used in Sewe (2018) in an application to fault detection in buildings. Qualitative fault
detection in building systems was applied in Müller-Eping (2020) using stochastic automata,
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dealing with the evaluation of discrete probability distributions of quantized signals. What
all model-based fault diagnosis methods have in common is that they first require a model
of the occupied process or system. As shown in Figure 2-1, the model-based methods can
be divided into white-box, gray-box and black-box methods. This distinction is made on the
basis of the different procedures for creating the models.

White-box methods for fault detection use, for example, linear or nonlinear state-space
models of the system, which are based on physical equations that describe the behavior
of the system. These equations are typically differential or difference equations and form
an equation system where the parameters represent physical parameters such as material
properties like density, heat capacity, resistance or dynamic coefficients like time constants.
In general, a white-box representation

ẋ = f (x,u), (2-1)
y = g(x,u), (2-2)

x(0) = x0 (2-3)

describes the system dynamics through the state transition vector function f . In this way,
the behavior of the state derivative ẋ can be expressed as a function of the input vector u
and the state vector x. The output vector function g describes the behavior of the output
vector y depending on the state vector and the input vector. All signals are time-dependent,
(Lunze, 2014). A linear system in state-space representation therefore has a linear state and
output equation with

ẋ = Ax + Bu, (2-4)
y = Cx +Du, (2-5)

x(0) = x0, (2-6)

where parameter matrices A,B,C,D contain the model dynamics.

A more general representation can be achieved by multilinear models, which are introduced
in Lichtenberg (2011) and described in detail in subsubsection 2-1-4. Multilinear dynamics
can be given, e.g., by

ẋ = f0 + f1x1 + f2x2 + f3x1x2, (2-7)
y = g1x1 + g2x1u, (2-8)

x(0) = x0, (2-9)

for a second order MTI model with one input.

To create a white-box model of a building is therefore a tedious process, that requires a lot of
knowledge about the construction of the building. This includes the geometry of the building
envelope, as well as detailed information about the components and the plant technology,
which is used.

This is where the problems of white-box modeling become apparent: even for simple systems,
complex analyses of the theoretical background may be necessary. Nevertheless, pure white-
box models are often not precise enough, as not all processes that take place within a real
system are known. In addition, the creation of theoretical white-box models for complex
systems can be very time-consuming and therefore expensive.
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Black-Box Models, on the other hand, do not require any information about the building or
the system components in general, but they do require detailed experimental data in the form
of historical input and output data of the system operation. The name "black-box" refers to
the fact that the internal structure of the system is unknown or not of interest. The dynamic
behavior is identified by system identification methods using the input and output data. A
black-box model is therefore always an approximation of the original input-output behav-
ior, generated with an assumption on the model structure, Isermann and Münchhof (2011).
The identified parameters are generally not mapped to real system properties or physi-
cal coefficients. This leads to the problem, that the model parameters of black-box mod-
els cannot be interpreted, so that the results of black-box methods are not comprehensi-
ble to users. In recent years, this problem has increasingly become the focus of research,
Carabantes (2020); De Bruijn et al. (2022). Apart from this drawback, black-box models have
significant advantages over white-box models. One important advantage is that the same
identification algorithms can be applied to different input-output data. Thus, if a suitable
algorithm is available, the effort and time required to generate black-box models is low.
Depending on the application, the accuracy and thus the size of the model can be adjusted.
Black-box models are often more accurate when it comes to identifying the input-output
behavior as accurately as possible, Isermann and Münchhof (2011). However, the availabil-
ity of the individual system’s data is required, so only models for operating systems can
be generated. There are several approaches for system identification methods. Machine
learning algorithms, such as neural networks, are often used to create black-box models.
Other approaches, such as subspace identification methods, are based on system theory. The
different methods of parameter identification are discussed in more detail in the following
section.

In addition to pure white-box and black-box models, there are many gradations called gray-
box models. Light gray-box models for example, contain the physical law behind the models,
from which the differential equations can be derived, but use measurable signals in addition
to estimate unknown parameters. Dark gray-box models include the main physical rules
for the system, but the model structure is unknown, and the measured signals are used to
identify the structure and the parameters, (Isermann and Münchhof, 2011).

2-1-2 Parameter identification

Black-box and gray-box modeling uses available signals from the input and output data
of the systems to be represented by a model. The parameters of these models are initially
unknown and must be estimated using signal-based methods for system identification. In
system identification, there are a variety of methods for parameter identification that have
specific advantages and areas of application. Some well known techniques for dynamical
systems are summarized below. A fundamental distinction of the introduced parameter
identification methods in four categories for direct parameter estimation methods, iterative
optimization methods, subspace-based methods and neural networks is made.

Parameter estimation

In direct parameter estimation for linear and nonlinear static models, the straightforward
and well known least squares method based on linear regression is available, if the models
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are linear in the parameters, and was formulated already by Gauss in 1821 and 1823. The
aim is to fit a model best to the N observations of measurements. Later the linear regression
methods were adapted to use it for parameter estimation of dynamic processes with difference
equations, which are linear in the parameters, (Kalman, 1958).

In the following the least squares method for linear discrete-time models is introduced,
according to Isermann and Münchhof (2011). Given is the linear time-invariant difference
equation

yu(k) + a1yu(k − 1) + . . . + amyu(k −m) = b1u(k − d − 1) + . . . + bmu(k − d −m), (2-10)

where yu is the model output, u is the input signal, k is the actual time step, m is the model
order and d is the dead time of the system, which describes how many time steps the input
u(k− d) needs to affect the output y(k). The model parameters are given with a1, . . . , bm. If the
measured output y(k) are used instead of the model output yu(k), rearranging (2-10) gives

y(k) + â1(k − 1)y(k − 1) + . . . + âm(k − 1)yu(k −m)−

b̂1(k − 1)u(k − d − 1) − . . . − b̂m(k − 1)u(k − d −m) = e(k), (2-11)

where e(k) is an equation error at time k. An error occurs due to the use of the measured output
instead of the real output and the assumed parameters â1, . . . , b̂m instead of real parameters.
This can be interpreted as the model one-step prediction ŷ(k|k − 1) of the system output y(k)
from the previous available measurement y(k − 1) and can be therefore expressed as

ŷ(k|k − 1) = −â1(k − 1)y(k − 1) − . . . − âm(k − 1)yu(k −m)+

b̂1(k − 1)u(k − d − 1) + . . . + b̂m(k − 1)u(k − d −m). (2-12)

By setting up a data vector

ψT(k) =
(︂
−y(k − 1) . . . −y(k −m)|u(k − d − 1) . . . u(k − d −m)

)︂
(2-13)

and a parameter vector

θ̂
T
(k) =

(︂
â1 . . . âm|b̂1 . . . b̂m

)︂
, (2-14)

as is usual in least squares methods, (2-12) can be expressed by

ŷ(k|k − 1) = ψT(k)θ̂(k − 1). (2-15)

The notation VT is used for the transpose of V. It follows from (2-11) and (2-1-2), that the
equation error is

e(k) = y(k) −ψT(k)θ̂(k − 1) (2-16)

and a system of N+1 equations can be set up for time steps k = m+d,m+d+1, . . . ,m+d+N. To
identify the 2m parameters from the equation system, at least the same number of equations
is required, which means that N ≥ 2m− 1. The equation system can then be stacked together
in matrix form

yT(m + d +N) = ψ(m + d +N)θ̂(m + d +N − 1) + e(m + d +N) (2-17)



2-1 Methodological rudiments 16

The sampled data for y and u are stacked in the output vector yT
∈ RN+1 and the data

matrix ψ(m + d +N) ∈ R(N+1)×2m, see Isermann and Münchhof (2011), to construct an error
vector eT

∈ RN+1. To identify the parameters in θ the quadratic cost function

J = eT(m + d +N)e(m + d +N) (2-18)

needs to be minimized, which can be done by setting the first order derivative

dJ
dθ

⃓⃓⃓⃓⃓
= −2ψT(y −ψθ) = 0 (2-19)

to zero and the parameter vector

θ̂ =
(︂
ψTψ

)︂−1
ψTy (2-20)

can be calculated using the inverse of the matrix ψTψ and the vector ψTy, as explained in
detail in Åström and Eykhoff (1971).

For a more general method, where the values of e(k) need to be weighted by different weights,
the cost function (2-18) changes to

J = eTQe(m + d +N), (2-21)

where Q is a symmetric positive-definite weighting matrix, (Isermann and Münchhof, 2011).
The parameter vector is then obtained with

θ̂ =
(︂
ψTQψ

)︂−1
ψTQy. (2-22)

Linear Regression in general is a basic statistical method for modeling linear relationships
between variables. This method, described by Groß (2003), is easy to implement and widely
used in MATLAB, Python (Scikit-learn) and Excel. It is often used in data analysis and
predictive modeling, for example to predict energy consumption in buildings based on
historical data, (Alshibani, 2020). On the basis of this, there are many extended methods, such
as the least squares method for dynamic systems described above. Based on this method, the
Instrumental Variables (IV) (Huffel and Vandewalle, 1989; Söderström and Mahata, 2002; Guo
and Small, 2016) and Total Least Squares (TLS) (Huffel and Vandewalle, 1989) and (Kommenda
et al., 2020) were developed and implemented in Fortran77,(Van Hueffel, 1988).

Finally, there is the Structured Full-Rank MTI method, which is used for multilinear system
identification. This method was used for a gray-box approach for multilinear full-rank
models in the application for building systems, (Sridharan et al., 2020).

Iterative optimization

Iterative optimization methods are parameter identification methods, which are available for
nonlinear systems and attempt to fit the model output to the measured data by minimizing a
defined cost function in a sequence of iterations, (Isermann and Münchhof, 2011). As a cost
function any even function can be chosen. A typical cost function is the weighted squared
error sum

J(θ, e) = e′Qe (2-23)
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where e is a vector of the error between the measurement and the model output and θ is
the set of model parameters, which are estimated to minimize the cost function. With Q a
weighting of the values of e is possible. In nonlinear iterative optimization processes it is also
possible to determine additional constraints. This can be stability criteria of the resulting
model or boundaries for the parameter space. The general formulation of the nonlinear
optimization problem is then given by

min
θ

J(θ)

s.t. g(x) ≤ 0 (2-24)
h(x) = 0.

This notes that the cost function J(θ), which is called the objective function should be mini-
mized by adapting the parameter vector θ and subject to (s.t.) the inequality and equality
constraints, defined in g(θ) and h(θ). An initial guess of the parameter vector θ is needed as
a starting point. Depending on the formulation of the model, this can be derived from data
sheets or from previous identifications. If the parameters are completely unknown, it is also
possible to select a random initial value.

Many optimization methods work iteratively and the next investigated parameter vector can
be described by

θ(k + 1) = θ(k) + αs(k). (2-25)

Here the starting point is the so called minimizing sequence for k = 0, 1, . . .. The search vector s(k)
indicates the direction in which the algorithm progresses, while the parameter α determines
the step size in this direction. The aim is to reach the optimal point x∗.

To terminate the iterative process some criteria are needed. One is e.g. set by the condition
that an optimum of the unconstrained function should be reached, which is fulfilled when
the gradient

∇J(θ) =
(︂
∂J(θ)
∂θ

)︂
= 0 (2-26)

equals a vector of zeros. To make sure that at that point a minimum (at least a local) of the
cost function is reached the Hessian matrix

∇
2J(θ) =

(︂
∂2 J(θ)
∂θT∂θ

)︂
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∂2 J(θ)
∂θT∂θ

· · ·
∂2 J(θ)
∂θT

1∂θ1

...
...

∂2 J(θ)
∂θT

1∂θp
· · ·

∂2 J(θ)
∂θT

p∂θp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2-27)

is positive definite. In constrained optimization the two conditions may not be reached
exactly. Therefore, termination criteria, such as a minimum update step or a minimum im-
provement of the cost function can be added as

∥θ(k + 1) − θ(k)∥ ≤ ϵθ J(θ(k)) − J(θ(k + 1)) ≤ ϵJ. (2-28)

There are many different algorithms for iterative optimization, including one-dimensional
ones for functions that depend on only one variable, such as the point estimation algorithm or



2-1 Methodological rudiments 18

the golden section search. For problems where the objective function J depends on a vector of
design variables, multidimensional algorithms are available, including the Newton-Raphson
algorithm as well as the Gaussian Newton and Levenberg-Marquardt algorithms, all listed in
Isermann and Münchhof (2011). The interior-point methods from Nocedal and Wright (2006)
are particularly suitable for constrained optimization problems, especially with inequality
constraints. The Prediction Error Method (PEM) is also used here, which minimizes the
prediction errors by solving a nonlinear least squares problem to estimate the model param-
eters, Ljung (2002). Implementations are available in MATLAB and Python. Besides the
iterative optimization methods, which bring some disadvantages in high computational cost
and duration, subspace methods are introduced next, which are especially for the state and
parameter identification of linear state space models available.

Subspace methods

A widely used numerical method is the Numerical Subspace State Space System Identifica-
tion (N4SID) for estimating the parameter matrices of linear state space models. This method
was described in Van Overschee and De Moor (1993), Jansson and Wahlberg (1996) and
Van Overschee and De Moor (1996) and is based on subspace methods. Subspace methods
are used to identify state-space models when only the input and output data are available.
The exclusive use of robust linear algebra tools, such as SVD, QR decomposition, matrix
projection and subspace angles, is an advantage over iterative optimization methods. The
identified models are not unique as state measurements are not required and are estimated
together with the order of the model during the identification process. The decomposition of
the Hankel matrix from input and output data is used in N4SID to extract the features of the
state-space model. Implementations of this method are available in various programming
languages, such as MATLAB and the System Identification Package for Python (SIPPY). In
Sewe (2018) it is shown how the N4SID can be used to estimate the model parameters of
multilinear building models. Multi-linear means a combination of several linear models and
thus differs fundamentally from multilinear models, which allow multiplications of states
and input signals.

Another similar method is Multivariable Output Error State Space (MOESP), which is also used
for the subspace identification of linear state space models. This method was described by Ja-
maludin et al. (2013). MOESP is particularly useful for modeling multivariable systems, such
as those found in many areas of engineering, where multiple input and output variables need
to be considered simultaneously. Contrary to N4SID, MOESP uses orthogonal subspace pro-
jection in the Hankel matrices, which results in better performance of the MOESP algorithm,
especially with noisy data.

The Canonical Variate Analysis (CVA) is another subspace method for fitting state space mod-
els suitable for linear state-space models and nonlinear models, (Larimore, 1990). CVA is
available in MATLAB and Python (Scikit-learn) and offers a robust way to analyze systems
with multiple variables. Besides the introduced subspace methods for state and parameter
estimation, other state estimation methods from control theory like the Kalman filter from
Kalman (1960) are available, but not discussed in detail in this section.
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Neural Networks

In contrast to the introduced methods from systems theory, a wide field of machine learning
techniques, such as neural networks, has been developed very rapidly in recent years and
used in many applications for parameter identification and fault diagnosis, see (Borda et al.,
2023). Neural networks should function similarly to biological neuronal connections and
learn behavioral patterns. They are based on a mathematical description of a neuron, (Is-
ermann and Münchhof, 2011). The interconnection of individual neurons creates neural
networks. The neurons are linked in such a way that several layers with parallel neurons are
created: the input layer, the hidden layers and the output layer. Binary, discrete and continu-
ous signals are possible in neural networks. In system identification tasks, these are usually
continuous, while binary signals are mainly used for classification models. The neural net-
works are trained with input and output signals. The identification problem is also solved
by setting up and minimizing a cost function. However, due to the nonlinearity of the mostly
quadratic cost functions of multi-layer networks, the direct methods of parameter estimation
with least-squares methods cannot be applied. Instead, nonlinear methods of iterative opti-
mization must be used. Neural networks based on radial basis function (rbf) can simplify the
cost-intensive optimization to some extent through a linear cost function in the parameters,
as shown in subsubsection 2-1-2 on the Least Squares Support Vector Machines (LS-SVM)
classification. Neural networks are capable of mapping complex nonlinearities. However,
one disadvantage of the black-box structure is the lack of interpretability of the optimization
results, which is important for many engineering applications. In recent years, a large field
of research has opened up that deals with the interpretability of neural networks, (De Bruijn
et al., 2022; Himeur et al., 2023).

The system identification methods for dynamic models described in this section are based
on deterministic parameters and signals. Other methods with stochastic models, such as
the Markov estimation and maximum likelihood methods Young (2015), which are based on
probability distributions of the parameters, also often use iterative optimization methods to
minimize their cost function, but are not discussed in detail here.

Cluster algorithms

In anomaly detection cluster algorithms play an important role, e.g., to cluster the identi-
fied parameters in a class corresponding to nominal data and a class associated with data,
where an anomaly occurred. There are many clustering methods available to cluster data
in different classes, (Xu and Tian, 2015). Binary clustering methods, such as support vector
machines (SVM) classification, see Steinwart and Christmann (2008), cluster the data in two
classes and are therefore applicable for supervised anomaly detection. A specific subclass
of the support vector machines is the Least Squares Support Vector Machines, described in
Suykens et al. (2002). Its advantage is the applicability to large clustering problems, because
the quadratic cost function from standard SVM becomes a linear least squares problem in
the LS-SVM and is therefore faster in computation.
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The support vector classifier determines a class value

y(x) = sgn

⎡⎢⎢⎢⎢⎢⎣ N∑︂
k=1

αkykK(x, xk) + b

⎤⎥⎥⎥⎥⎥⎦ ∈ {−1, 1}. (2-29)

for each value x, by using a training data set {xk, yk}k = 1N. The parameters α and b, can be
determined in the LS-SVM by solving a linear system of equations(︄

0 YT

Y Ω + γ−1I

)︄ (︄
b
α

)︄
=

(︄
0
1

)︄
, (2-30)

where

Ωk,l = ykylφ(xk)Tφ(xl) = ykylK(xk, xl) (2-31)

contains the kernel function and Y =
{︁
y1, y2, ..., yN

}︁
, α = {α1, α2, ..., αN} and 1 = {1, 1, ..., 1} .

Various kernels, such as linear, polynomial, radial-basis-functions (rbf) and others can be
used. The choice of kernel function depends on the data. With the rbf kernels used here

K(xk, xl) = e
−∥xk−xl∥

2

σ2 (2-32)

and with (2-31), there are two parameters, σ and γ, which influence the classification results
and can therefore be used to tune the classifier model.

In the case of semi-supervised anomaly detection, a specific adaptation of the support vector
machine, the one-class support vector machine, can be used, (Li et al., 2003). In this case, the
classifier is trained with nominal data, the boundaries are calculated based on the available
data set. For each new observation, the classifier examines whether the new data is within
that boundary and therefore belongs to the class. Otherwise, the data are outliers.

The model-based anomaly detection methods introduced so far are based on models. How
to identify the parameters of these models is explained in this section as well as a possibility
for classification. A modeling approach with MTI models, which will be used in this work,
will be introduced in the following. First, the multidimensional structures, the tensors, have
to be introduced.

2-1-3 Tensors and decomposition

In this section an introduction to definitions for tensors and tensor decompositions derived
in Kolda and Bader (2009) is given, since they are needed for the tensor representation of
the MTI models, introduced in the next section.

Tensors

Definition 2-1.1. An n-th order tensor is an n-way array

F ∈ RI1×I2×···×In , (2-33)

with elements x(i1, i2, . . . , in) indexed by i j ∈ {1, 2, . . . , I j} for j = 1, . . . ,n, as illustrated on the
left side of Figure 2-2.
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Definitions for mathematical operations with tensors are given, e.g., in Cichocki et al. (2009)
for the contracted product ⟨F |G ⟩ of two tensors. An adaptation to Canonical Polyadic
tensors is given in Kruppa (2018).

Definition 2-1.2. The contracted product of two tensors F ∈ RI1×···×IN×IN+1×···×IN+M and G ∈
RI1×···×IN is given element-wise by

z(k1, . . . , km) = ⟨F |G ⟩1,...N;1,...,N (k1, . . . , km) (2-34)

=

I1∑︂
i1=1

· · ·

In∑︂
in=1

f (i1, . . . , in, k1, . . . , km)g(i1, . . . , in)

with ki ∈ {1, 2, . . . , IN+i} , i = 1, . . . ,M.

Decomposition

An exponentially increasing number of elements with the order of the tensor, makes full
tensors not applicable for computations such as in simulations. This property would lead
to unacceptably high computational time and storage requirements. To avoid this, tensor
decomposition methods, such as Canonical Polyadic (CP), are available, which leads to a large
reduction of complexity and memory requirements, (Kolda and Bader, 2009). The suitability
of CP decomposition for MTI models was demonstrated in Kruppa (2017a). Therefore, this
decomposition was used for further reduction of the MTI models in Jöres et al. (2022) and is
also used here.

Definition 2-1.3. A CP decomposed tensor

X =
r∑︂

k=1

λ(k) · X1(:, k) ◦ ... ◦ Xn(:, k) ∈ RI1×···×In (2-35)

is given by the sum of rank-1 tensors. The outer products, denoted by ◦, of the column
vectors Xi(:, k) of the factor matrices Xi ∈ R

Ii×r result in the rank-1 tensors. The vector λ
contains weighting factors.

Remark: In this thesis, the notation

X = [X1,X2, ...,Xn] · λ (2-36)

from Kruppa (2018) adopted from Domanov and De Lathauwer (2013) is used for CP tensors,
which joins all factor matrices and connects them with a weight vector.

2-1-4 Multilinear models

Because of the multidimensional structure of tensors, they can be used for the representation
of MTI models, which are introduced next.
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f (3, 1, 2)

F1(3, 1) F1(3, r)

F2(1, r)F2(1, 1)

F3(2, r)F3(2, 1)

= + · · ·+

Figure 2-2: CP decomposition of 3-dimensional tensor, see Lichtenberg et al. (2022)

Multilinear time-invariant (MTI) models

Multilinear time-invariant (MTI) models are proposed as a subclass of nonlinear models
in Lichtenberg (2011). Their characteristics are the multilinear transition functions. They were
used for various applications, e.g. for controller design in heating systems in Kruppa (2018);
Lautenschlager (2019) or for applications with hybrid systems inPangalos et al. (2015). In the
following description, outputs are not considered, but states are assumed to be measurable
outputs. In situations, where this is not the case, MTI models can be extended to include
an output function, see Pangalos et al. (2015). The characteristic of MTI models is, that the
right-hand side of the transition function allows all combinations of states and inputs in
addition to linear terms.

Definition 2-1.4. A discrete-time MTI model is given by

x(k + 1) = ⟨F |M(x(k),u(k)) ⟩ (2-37)

where the monomial tensor

M(x(k),u(k)) =
(︄

1
um(k)

)︄
◦ · · · ◦

(︄
1

u1(k)

)︄
◦

(︄
1

xn(k)

)︄
◦ · · · ◦

(︄
1

x1(k)

)︄
(2-38)

with dimensionR×
(n+m)2 has a rank of one. It is computed by the outer product of vectors con-

taining the elements xi, i = 1, . . . , n of the state vector x∈Rn and the elements u j, j = 1, . . . ,m
of the input vector u ∈ Rm in descending order.

All parameters of the state transition equation are stored in the transition tensor F ∈ R2n+m.

The notation R×
(n+m)2 = R

(n+m) times⏟           ⏞⏞           ⏟
2 × 2 × · · · × 2 is used for the dimensions of tensors.

Definition 2-1.5. A continuous-time MTI model is given by

ẋ = ⟨F |M(x,u) ⟩ , (2-39)

which describes the transition function of the first derivative of the state ẋ with the same
structure for the monomial and parameter tensor, as in the previous definition.
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Example 1. An example second order discrete-time MTI in full tensor representation has the
monomial tensor

M(x(k)) =
(︄

1 x1(k)
x2(k) x1(k)x2(k)

)︄
and the transition tensor

F(:, :, 1) =
(︄

f1,1,1 f1,2,1
f2,1,1 f2,2,1

)︄
F(:, :, 2) =

(︄
f1,1,2 f1,2,2
f2,1,2 f2,2,2

)︄
With (2-37) and (2-34) the multilinear discrete time state space system

x1(k + 1) = f1,1,1 + f1,2,1x1(k) + f2,1,1x2(k) + f2,2,1x1(k)x2(k)
x2(k + 1) = f1,1,2 + f1,2,2x1(k) + f2,1,2x2(k) + f2,2,2x1(k)x2(k)

is given.

CP decomposed multilinear models

The full tensor representation of the MTI model has the disadvantage, that with every state
and input the number of tensor elements in the monomial and transition tensor is increasing
exponentially, which makes the models not applicable for large systems. Therefore, the CP
decomposition can be applied to MTI models to achieve a more efficient tensor representation.

Definition 2-1.6. A discrete-time CP decomposed MTI model is given by 2-37 with the
monomial tensor

M(x,u)=
[︄(︄

1
x1(k)

)︄
, · · · ,

(︄
1

xn(k)

)︄
,

(︄
1

u1(k)

)︄
, · · · ,

(︄
1

um(k)

)︄]︄
(2-40)

is a CP decomposed rank-1 tensor of dimension R×
(n+m)2 with the factor vectors of the ele-

ments xi, i = 1, . . . , n of the state vector x ∈Rn and the elements u j, j = 1, . . . ,m of the input
vector u ∈ Rm.

The state transition tensor

F = [Fx1 , · · · , Fxn , Fu1 , · · · , Fum , FΦ] · λ ∈ Rn×(n+m)2 (2-41)

can be represented as a CP tensor of rank r. All parameters are composed in F, and it is as-
sumed that they describe the whole system’s dynamics. In the CP representation, the model
parameters are expressed as factor matrices. For each state and input the corresponding
parameters are represented by matrices Fx1 · · · Fum ∈ R

2×r. In addition, the matrix FΦ ∈ Rn×r

contains the coefficients that determine how each term is assigned to the n state equations.
With the representation of the parameter tensor as CP tensor, it is possible to compute the



2-2 Building systems 24

right-hand side of the state equation by vector and matrix multiplication of the factors and
the monomial vectors

x(k + 1) = FΦ

(︄
λF ⊛

(︄
FT

um

(︄
1

um(k)

)︄)︄
⊛ · · · ⊛

(︄
FT

u1

(︄
1

u1(k)

)︄)︄
⊛

⊛

(︄
FT

xn

(︄
1

xn(k)

)︄)︄
⊛ · · · ⊛

(︄
FT

x1

(︄
1

x1(k)

)︄)︄)︄
. (2-42)

The symbol ⊛ denotes the so-called Hadamard product for element-wise matrix multiplica-
tion, (Kruppa, 2017a).

2-2 Building systems

2-2-1 Requirements and technologies of non-residential new buildings

As mentioned in the introduction, buildings are one of the main energy consumers in Europe.
In the EU, buildings account for about 40 % of total energy consumption and 36 % of CO2
emissions. In Germany, building-related final energy consumption accounts for about 35 %
of total energy consumption. Non-residential buildings account for 34 % of total building
energy use, with space heating being the largest contributor, followed by lighting and air
conditioning, (Becker et al., 2023). For this reason, improving the energy efficiency of build-
ings is a high priority in European policy. By 2050, the entire building stock in the EU is to be
climate-neutral. From 2030, all new buildings must be climate-neutral, and for public build-
ings, this requirement applies from 2028. The average energy consumption in the building
sector is to be reduced by at least 16 % by 2030 and by at least 22 % by 2035. The 16 % of the
worst-performing non-residential buildings must be renovated by 2033. Heating systems
that run on fossil fuels are to be replaced by 2040. From 2025, the installation of pure gas or
oil heating systems will no longer be financially supported; instead, the installation of solar
systems will be mandatory, where technically and economically feasible. The new directive
aims at a detailed strategy for the decarbonization of the building stock. These goals are
part of the EU’s ’Fit for 55’ climate package, which aims to reduce net greenhouse gas emis-
sions by at least 55 % by 2030 compared to 1990 levels, (Europäisches Parlament and Rat der
Europäischen Union, 2024).

With the increasing modernization of buildings and the use of renewable energy sources
and modern heating and cooling technology, it is essential that the various components com-
municate with each other to optimize building operation in terms of energy consumption
and comfort. Estimates suggest that significant energy losses in buildings result from in-
efficient operation and system failures, such that the calculated energy demand values are
not fulfilled. The deviation is defined as the Energy Performance Gap, (Gram-Hanssen and
Georg, 2018). Common problems include incorrectly adjusted heating and cooling systems,
inefficient ventilation control, lighting and appliances left on when not in use, and lack of
system maintenance.

Modern non-residential buildings use a variety of data sources, including energy consump-
tion data for heating, cooling, lighting, etc., indoor temperatures and air quality, occupancy
data, and outdoor climate data. Internet of Things (IoT) Solutions play an important role
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in modern buildings to guarantee the collection of data and the communication of different
components, as depicted in Figure 2-3. Modern buildings use a variety of technologies for
data collection and transmission, such as MQTT (Message Queuing Telemetry Transport),
WLAN, Bluetooth, LoRaWAN, and 5G. A comprehensive approach to data collection, anal-
ysis, and use in buildings should address the integration of different sensors and systems,
the use of appropriate network technologies, scalable cloud solutions or local databases for
data storage, algorithms for pattern recognition and optimization, intuitive dashboards for
building managers and users, automated system optimization, and ensuring cybersecurity
and compliance with privacy policies, (Al Dakheel et al., 2020; Daissaoui et al., 2020).

Sensors and Devices

Communication protocols

Cloud Storage

Diagnostic Algorithms

Visualization

Figure 2-3: Data flow in smart buildings

To make use of the data provided by sensors and devices in diagnostic algorithms, a stan-
dardized naming of data points is helpful. In practice, however, a unified naming scheme
is often missing, as different actors use their own conventions. This complicates automated
evaluation and increases the effort required for external analysis algorithms.

The Buildings Unified Data point naming schema for Operation management (BUDO)
scheme, introduced by (Stinner et al., 2018), provides a standardized naming conven-
tion. It uses a hierarchical structure consisting of five categories: system, subsystem, po-
sition/medium, type, and input/output function. These categories are separated by un-
derscores and dots, and the structure is complemented by an optional free-text section for
organization-specific information.

In Figure 2-4 an example name string from a real building is used to demonstrate, how it
can be transferred in a standardized scheme, like the BUDO scheme. To use all collected
building data for model based diagnostic algorithms, models of the building are needed, as
explained in the next section.
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Level0-s...040_1902:0.44_Flur Ceiling TemperatureAI191

B-HBK_R+FLOOR-044//SEN+T-ROOM_MEA+T

Figure 2-4: Natural language Structuring of data point names

2-2-2 Modeling of building systems

The thermal behavior of a building can be modeled with the law of energy conservation∑︂
Q = 0, (2-43)

with thermal energy

Q = cρVT (2-44)

modeled by a constant value c for the heat capacity, densityρ, the volume V and temperature T
of the medium. By considering the time derivative, the heat flow rate

Q̇ = cρV̇T + cρVṪ (2-45)

results from 2-44 and can be simplified for an air flow with Ṫ = 0 to

Q̇ = cρV̇T. (2-46)

The change of heat, which is stored inside the system, follows to

Q̇ = cρVṪ (2-47)

for systems with constant volume, as buildings, (Pangalos, 2016). If we assume a simple one
zone building approach with one room the change of heat inside the room

Q̇room = Q̇supply − Q̇return − Q̇loss (2-48)

results from the incoming heat flow from the heating system Q̇supply minus the outgoing heat
flow Q̇return and the heat flow caused by losses

Q̇loss = UA∆T = UA(Troom − Tout) (2-49)

through the wall with cross-section A, heat transmission coefficient U, room tempera-
ture Troom and ambient temperature Tout. The heating is provided through the ventilation
system, where air enters with a constant temperature Tsup and volume flow rate V̇air, and
exits with a return temperature Treturn. The ventilation dynamics are modeled as a first order
system with respect to the volume flow rate

V̈air = −
1
τ

V̇air +
ˆ̇Vair

τ
α, (2-50)
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where α ∈ [0, 1] is a control signal for the ventilation system with time constant τ and
maximum volume flow rate ˆ̇Vair.

From these differential equations a second order multilinear state space system

ẋ1 = p1(p2x2 − x1x2) + p3(u1 − x1) (2-51)
ẋ2 = p4x2 + p5u2

can be derived, with state variables x1 = Treturn = Troom and x2 = V̇air. The inputs are given
by u1 = Tout, u2 = α and the parameters are given by

p1 =
1

Vroom
, p4 =

−1
τ
,

p2 = Tsup, p5 =
ˆ̇Vair.

p3 =
UA

cρVroom
,

The output is assumed to equal to the states.

Remark: The first state equation (2-51) of this simplified room model is not in the class of linear
state space models as it consists of a multiplication of the two states and can be therefore
modeled within the multilinear class.

Example 2. The continuous time multilinear state space model from (2-51) is parametrized
with suitable values for a standard room by

ẋ =
(︄

1
100 (20x2 − x1x2) +

(︂
0.2·49

0.33·100

)︂
(u1 − x1)

−1
2 x2 +

525
2 u2

)︄
(2-52)

with initial state x0 =
(︂
20 0

)︂T
and real outside temperature values for Germany in Jan-

uary. By simulating the shown multilinear state space model for 4 days the input output
behavior can be plotted in Figure 2-5. Dependent on the control signal, the volume flow
reaches 100 %, 20 % and 50 % of the maximum flow rate, while the room temperature hovers
around 20 ◦C.

This example multilinear system will be used for showing the different steps from modeling,
over identification to anomaly detection in this thesis.
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Figure 2-5: Simulation of differential equations for room model



Chapter 3

Modeling

In this chapter, a modeling approach is developed that uses the proven structure of mul-
tilinear models, but transforms it into a new, reduced representation. For this purpose,
multilinear polynomials are introduced and normalization forms for the parameter spaces of
the multilinear models are developed on the basis of these polynomials. This serves to obtain
an efficient, unambiguous, and interpretable representation of the models, which is particu-
larly necessary for diagnostic applications. A sparse representation of the normalized models
indicates their dynamic structure, which can be generated using pre-structuring methods.
In addition, transformations of the models are provided in the normalized representation.

3-1 Normalization

3-1-1 Normalized multilinear polynomials

This section presents a discussion of multilinear functions in normalized representations
of factored polynomials, as introduced in reference Jöres et al. (2022). This normalization
of multilinear polynomials can later be transferred to the multilinear time-invariant (MTI)
models.

A multilinear function in the representation of a factored polynomial

f (x) =
r∑︂

k=1

n∏︂
i=1

( f1i,k + fxi,kxi), (3-1)

where xi are the variables of the function and f1i,k , fxi,k ∈ R and fxi,k ∈ R\{0} are the parame-
ters. With i = 1, 2, . . . ,n and k = 1, 2, . . . , r the function has an overall number of 2rn model
parameters, where the integer value r describes the number of summands.

Remark: The general factored polynomial representation is not unique, as shown in the
example

(2 + 3x1) (2 + 4x2) = (4 + 6x1) (1 + 2x2) .
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A visualization of the factors of the polynomial (3-1) in a 2-D Cartesian coordinate system
is possible by creating a vector ( f1 fx)T of the parameters, as depicted in Figure 3-1 with
an example vector. The first component f1 is oriented along the 1-axis, while the second
component fxi is oriented along the x-axis.

0 1
0

1

1

x

θ

h
sinθ

p

z

fx

f1

S1

S2

S3

S4

Figure 3-1: Normalized factor representation, (Jöres et al., 2022)

The intersections S1 to S4 indicate the lengths of the new vectors resulting from the appli-
cation of various normalization techniques, which are explained below. The normalization
techniques presented convert the general factored polynomial into unique representations,
as illustrated in the following example.

Example 3. The example vector from Figure 3-1

1
(︃
2 +

3
2

x
)︃
= 2.5 (cos(0.6435) + sin(0.6435)x) = 3.5

(︃4
7
+

3
7

x
)︃
=

3
2

(︃4
3
+ x

)︃
= 2

(︃
1 +

3
4

x
)︃

can be normalized to the different norms, accordingly to Figure 3-1.

Euclidean norm

By applying the Euclidean 2-norm condition, i.e., the length of the vector must be one, the
new vector is restricted by the unit circle and points in the same direction as the original vector
in Figure 3-1 to the intersection point S2. The intersection points of the 2-norm normalized
vector are obtained by applying the trigonometric functions via sinθ and cosθ. The 2-norm
normalized polynomial

f (x) =
r∑︂

k=1

λθ,k

⎛⎜⎜⎜⎜⎜⎝ n∏︂
i=1

(cosθi,k + sinθi,kxi)

⎞⎟⎟⎟⎟⎟⎠ , (3-2)
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with parameter

θi,k = atan2
(︂

fxi,k , f1i,k

)︂
(3-3)

and length factor

λθ,k =
n∏︂

i=1

√︂
f 2
1i,k
+ f 2

xi,k
, (3-4)

is unique and has r(n+ 1) parameters, which is a large reduction compared to the number of
parameters in (3-1). The function atan2 is the four-quadrant inverse tangent and returns the
angle between the first and the second argument in radians.

Absolute norm

A 1-norm representation is obtained with a similar procedure. Here, the intersection S1 of
the parameter vector with the blue line defines the new parameter vector in the 1-norm
normalized polynomial

f (x) =
r∑︂

k=1

λh,k

⎛⎜⎜⎜⎜⎜⎝ n∏︂
i=1

(1 − |hi,k| + hi,kxi)

⎞⎟⎟⎟⎟⎟⎠ . (3-5)

The 1-axis intercept

hi,k = sign( f1i,k)
fxi,k

| f1i,k | + | fxi,k |
(3-6)

and the new length factor

λh,k =

n∏︂
i=1

sign( f1i,k)
(︂
| f1i,k | + | fxi,k |

)︂
, (3-7)

specify the new parameters of this representation. The function

sign(x) =

⎧⎪⎪⎨⎪⎪⎩1 x ≥ 0
−1 otherwise

(3-8)

takes into account the sign of the first vector component, which would be lost through the
absolute value in the normalization.

For completeness, two further possibilities of normalizing multilinear polynomials are shown
here, as introduced in Jöres et al. (2022).
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Zero representation

The next one results from the limitation of the vertical component to the value one, which is
shown by the orange line and the intersection point S4, and leads to the polynomial

f (x) =
r∑︂

k=1

λz,k

⎛⎜⎜⎜⎜⎜⎝ n∏︂
i=1

(zi,k + xi)

⎞⎟⎟⎟⎟⎟⎠ , (3-9)

with the parameters

zi,k =
f1i,k

fxi,k

and λz,k =

n∏︂
i=1

fxi,k . (3-10)

In this representation, the zeros of each factor of the polynomial are easily found through the
connection xi,k = −zi,k.

Sparse representation

Another so-called sparse representation is based on the time-constant form of transfer function
and is given by the last intersection S3 with the green line in Figure 3-1. It fixes the 1-axis
coordinate to one, which leads to the representation

f (x) =
r∑︂

k=1

λk

⎛⎜⎜⎜⎜⎜⎝ n∏︂
i=1

(1 + pi,kxi)

⎞⎟⎟⎟⎟⎟⎠ , (3-11)

with the parameters

pi,k =
fxi,k

f1i,k

and λk =

n∏︂
i=1

f1i,k , (3-12)

for all f1 j,k , 0. For the special case of f1i,k = 0, the factor vector is parallel to the xi-axis
resulting in pi,k →∞.

In this case, the polynomial factors without a constant part are not treated as in (3-12), but a
new index j is introduced for them and (3-11) changes to

f (x) =
r∑︂

k=1

λk

∏︂
j

x j

∏︂
i

(1 + pi,kxi) , (3-13)

with the adjusted factors λk =
∏︁

i f1i,k

∏︁
j fx j,k .
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3-1-2 Normalized MTI models

In this work, the parameters of multilinear models shall be used for further purposes as
for diagnosis. Therefore, a unique representation is required which is not given in the
general Canonical Polyadic (CP) MTI representation as the next example shows.

Example 4. Consider the multilinear rank-1 state equation

x1(k + 1) = 2 + 2x1(k) + x2(k) + x1(k)x2(k) (3-14)

which is not unique in the CP representation from Definition 2-1.6 as it can be represented
with the CP parameter tensor

F =
[︄(︄

1
1

)︄
,

(︄
2
1

)︄
,
(︂
1
)︂]︄
=

[︄(︄
1
1

)︄
,

(︄
1

0.5

)︄
,
(︂
2
)︂]︄
=

[︄(︄
0.5
0.5

)︄
,

(︄
1

0.5

)︄
,
(︂
4
)︂]︄
, (3-15)

which gives with (2-42) the state equation as factored polynomial

x1(k + 1) = 1(1 + 1x1(k))(2 + x2(k)) = 2(1 + 1x1(k))(1 + 0.5x2(k)) = 4(0.5 + 0.5x1(k))(1 + 0.5x2(k)).

To overcome this ambiguity, normalization methods as proposed in subsection 3-1-1 for
multilinear functions and introduced in Lichtenberg et al. (2022) for implicit MTI models
and used in Schnelle et al. (2022); Jöres et al. (2022) for explicit MTI models with low rank
can help. In the following, all equations are derived in discrete-time representation. As the
structure of the right-hand sides of the transition function is similar for continuous-time MTI,
a transmission to continuous-time MTI is possible.

Definition 3-1.1. A normalized CP decomposed (CPN) model is given by (2-37)

x(k + 1) =
⟨︂˜︁F |M(x,u)

⟩︂
, (3-16)

with (2-40) and transition tensor

˜︁F = [︂˜︁Fz1 ,˜︁Fz2 , . . . ,˜︁Fzn+m ,˜︁FΦ]︂ , (3-17)

where z = (x1, x2, . . . , xn, u1, u2, . . . ,um)T
∈R(n+m) holds all states and inputs in a vector and

has l-normalized columns k = 1, . . . , r

||˜︁Fi(:, k)||l = 1, (3-18)

for all i = 1, . . . , (n +m) factor matrices and ˜︁FΦ in its last factor matrix.

The Absolute-value norm (1-norm) and Euclidean norm (2-norm) are used in (3-18) for CPN
models by

∥˜︁Fi(:, k)∥1 =
2∑︂

j=1

|˜︁Fi( j, k)| = |˜︁Fi(1, k)| + |˜︁Fi(2, k)| = 1 , (3-19)
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and

∥˜︁Fi(:, k)∥2 =

⌜⃓⃓⎷ 2∑︂
j=1

˜︁Fi( j, k)2 =

√︂˜︁Fi(1, k)2 +˜︁Fi(2, k)2 = 1 . (3-20)

by a column-wise normalization of the i = 1, 2, . . . ,n +m factor matrices Fi.

The computation of (2-42) shows that the right-hand sides of CP decomposed MTI from Def-
inition 2-1.6 consist of polynomials like (3-1). Therefore, it follows that computing the next
state of an MTI model can be done in the form of normalized factored polynomials (3-2)
to (3-9) in the different norm representations. This can be derived from the corresponding
normalized parameter tensors of (3-17) as shown for the 1-norm and 2-norm in the following.

The transition tensor of a 2-norm CPN model (3-16) within the tensor framework is then
given by (3-17) with the angles (3-3) as

F̃|2 =
[︄(︄

cosθ1,1 . . . cosθ1,r
sinθ1,1 . . . sinθ1,r

)︄
,

(︄
cosθ2,1 . . .
sinθ2,1 . . .

(3-21)

cosθ2,r
sinθ2,r

)︄
, · · · ,

(︄
cosθn+m,1 . . . cosθn+m,r
sinθn+m,1 . . . sinθn+m,r

)︄
, F̃Φ

]︄
In 1-norm the transition tensor is built by applying (3-6)

F̃|1 =
[︄(︄

1 −
⃓⃓⃓
h1,1

⃓⃓⃓
. . . 1 −

⃓⃓⃓
h1,r

⃓⃓⃓
h1,1 . . . h1,r

)︄
,

(︄
1 −

⃓⃓⃓
h2,1

⃓⃓⃓
. . .

h2,1 . . .
(3-22)

1 −
⃓⃓⃓
h2,r

⃓⃓⃓
h2,r

)︄
, · · · ,

(︄
1 −

⃓⃓⃓
hn+m,1

⃓⃓⃓
. . . 1 −

⃓⃓⃓
hn+m,r

⃓⃓⃓
hn+m,1 . . . hn+m,r

)︄
, F̃Φ,

]︄
where hi, j = ˜︁Fi(2, j) with i = 1, ...,n + m and j = 1, ..., r is obtained from (3-6) and represents
the entire tensor due to the norm condition. All columns are normalized except the columns
of ˜︁FΦ(:, j) = λkFΦ(:, j) (3-23)

with the original length stored in the column vector λ = (λ1, λ2, . . . , λr)T from the specific
norm (3-7) or (3-4).

This representation shows that each factor matrix ˜︁Fi ∈ R
2×r from i = 1, . . . ,n + m of the

parameter tensor ˜︁F|l of an CPN model can be represented by a single parameter vector

˜︁F|1i = hi =
(︂
hi,1, hi,2, . . . , hi,r

)︂
∈ R1×r (3-24)

or ˜︁F|2i = θi =
(︂
θi,1, θi,2, . . . , θi,r

)︂
∈ R1×r (3-25)

from which the missing element can be reconstructed using the norm condition (3-19)
or (3-20), as proposed in Lichtenberg et al. (2022). With (2-42), the next state can be computed
from the normalized factor matrices from F̃|1 or F̃|2 .
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Remark: To build all multilinear models in normalized representation only the right half of
the coordinate system is needed, if the non-normalized factor Fϕ allows also negative values.
Expressing the parameter vectors from the left half plane is in fact possible by those of the
right half plane by

ϕ
(︁
− f1 + fxx

)︁
= −ϕ

(︁
f1 − fxx

)︁
Therefore, the norm condition (3-18), where per definition only positive norms are allowed
is valid, which concerns the ˜︁Fi(1, j) = 1 −

⃓⃓⃓
hi, j

⃓⃓⃓
parameters in (3-22). The original sign of

the Fi(1, j) parameter is considered with the sign function (3-8) inside the new ϕ value. For
the angle representation in Euclidean norm, this means, that positive angles 0 ≤ θ ≤ π are
sufficient to represent all possible MTI through

ϕ (cos(−θ) + sin(−θ)x) = ϕ (cos(θ) − sin(θ)x)

= ϕ (− cos(π − θ) − sin(π − θ)x)

= −ϕ (cos(π − θ) + sin(π − θ)x) .

Example 5. The multilinear state equation from Example 2 can be represented in CP decom-
posed multilinear models from the expanded state equation as described in Kruppa (2018)
by

ẋ1 = −0.0705x1 + 0.0629x2 − 0.0029x1x2 + 0.0705u1
ẋ2 = − 0.5x2 + 262u2

Fx1 = FTr =

(︄
0
1

1
0

0
1

1
0

1
0

1
0

)︄
Fx2 = FV̇ =

(︄
1
0

0
1

0
1

1
0

0
1

1
0

)︄
Fu1 = FTout =

(︄
1
0

1
0

1
0

0
1

1
0

1
0

)︄
Fu2 = Fα =

(︄
1
0

1
0

1
0

1
0

1
0

0
1

)︄
Fϕ =

(︄
1
0

0
1

1
0

1
0

0
1

0
1

)︄
λ = (−0.0705 0.0629 −0.0029 0.0705 −0.5 262)

Using (3-6) and (3-7) in (3-23), the right-hand side of the CP represented state equation can be
reduced to a 1-norm normalized representation (3-16). With (3-5) and (3-24) the same model
is represented by

ẋ1 = −0.0705(1−1+1x1)+0.0629(1−1+1x2)−0.0029(1−1+1x1)(1−1+1x2)+0.0705(1−1+1u1)
ẋ2 = −0.5(1−1+1x2) +262(1−1+1u2)
hTr = ( 1 0 1 0 0)
hV̇ = ( 0 1 1 0 0)
hTout = ( 0 0 0 1 0)
hα = ( 0 0 0 0 1)˜︁Fϕ =

(︄
−0.0705

0
0.0629
−0.5

−0.0029
0

0.0705
0

0
262

)︄
(3-26)
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Remark: By including λ in the matrix ˜︁FΦ and storing only the needed second row of all
parameter matrices˜︁Fi in one matrix˜︁F|l = (h1, . . . ,hn+m)T, the normalization step saves almost
half of the parameters needed to represent exactly the same model. It is then also possible
to reduce the rank of the model by combining the column two and five of the CP matrices,
because they both select the same term x2 for both state equations.

As the implementation of a CP tensor is proposed in Bader et al. (2019) and used in
Kruppa (2017b) as a MATLAB struct, the CPN representation shows advantages in stor-
age demand and simulation time, because it reduces the number of parameters and uses
standard numeric matrices. Table 3-1 shows this comparison for the model from Example 5.

Table 3-1: Performance of CPN format

CP MTI CPN MTI
Order 2 2
Inputs 2 2
Number of parameters 66 30
Storage demand 824 Bytes 240 Bytes
Simulation time 0.2625 s 0.0089 s

The described normalization of the MTI model transforms it into a unique representation
and also leads to a reduction in the number of parameters. Nevertheless, this depends on the
rank of the models. For minimal representations, a limitation of the rank is proposed below.

Limited rank CPN models

A limitation of the rank of the CP transition tensor F, creates a subclass of the MTI models,
which is presented next, Schnelle et al. (2022).

Definition 3-1.2. A Rank-1 CPN MTI model is given by (3-16), with a rank-1 transition tensor

˜︁F = [f̃x1 , · · · , f̃xn , f̃u1 , · · · , f̃um , f̃Φ, ] · λ , (3-27)

consisting of the vector

f̃Φ = (ϕ1 ϕ2 · · · ϕn)T
∈ Rn , (3-28)

and the factor vectors f̃u j ∈ R
2 and f̃xi ∈ R

2, which are normalized to one with any
norm ||f̃u j || = ||f̃xi || = 1.

Remark: Due to the norm condition, all information is given by one value per factor, therefore

it is possible to store all parameters in one vector f̃ =
(︂
θ1, θ2, ..., θn+m

)︂T
≡

(︂
h1, ..., hn+m

)︂T
∈ Rn+m,

with (3-21) or (3-22). The second element can be reconstructed, if needed by the norm condi-
tion. In this minimal representation the total number of parameters is 2n+m, as the transition
tensor can be substituted by n+m angles θi in the Euclidean norm or elements hi in Absolute
norm of the factors f̃u j and f̃xi and n elements of f̃Φ.
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Example 6. The 1-norm normalized CP transition tensor of a second order MTI with one
input

˜︁F = [︄(︄
1/4
3/4

)︄
,

(︄
0
1

)︄
,

(︄
1/2
1/2

)︄
,

(︄
1
2

)︄]︄
· 8

gives with the monomial

M(x, u) =
(︄

1
x1

)︄
◦

(︄
1
x2

)︄
◦

(︄
1
u

)︄
and (2-42) (︄

x1(k + 1)
x2(k + 1)

)︄
=

(︄
1
2

)︄ (︄
8 ⊛

(︄(︂
1/4 3/4

)︂ (︄ 1
x1(k)

)︄)︄
⊛

⊛

(︄(︂
0 1

)︂ (︄ 1
x2(k)

)︄)︄
⊛

(︄(︂
1/2 1/2

)︂ (︄ 1
u(k)

)︄)︄)︄
,

which leads to the state space model

x1(k + 1) = x2(k) + u(k)x2(k) + 3x1(k)x2(k) + 3u(k)x1(k)x2(k)
x2(k) = 2x2(k) + 2u(k)x2(k) + 6x1(k)x2(k) + 6u(k)x1(k)x2(k)

Remark: With some abuse of notation, an alternative minimal representation of the CPN is
given by the 2-norm with its angles θi from (3-3) and ϕ from (3-4) by[︄

tan−1
2 (3/4, 1/4) , tan−1

2 (1, 0) , tan−1
2 (1/2, 1/2) ,

(︄
4.47
8.94

)︄]︄
.

It becomes clear that no different structures are possible in the right-hand sides of the state
space models when the rank is limited to 1. The rank-1 limitation reduces the complexity but
also has the disadvantage that all n states can only differ by a constant factor, which restricts
the dynamics. For states with differing dynamic characteristics the diagonal normalized
rank-n MTI model from Schnelle et al. (2022) is introduced in the following.

Definition 3-1.3. A Diagonal Rank-n CPN MTI model is given by (3-16) and (3-17) and has
a diagonal matrix

˜︁FΦ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0
...
...
. . .

...
0 0 · · · λn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ Rn×n (3-29)

and normalized factor matrices ˜︁Fui ∈ R
2×n and˜︁Fxi ∈ R

2×n.

Remark: Similar to the rank-1 models, diagonal rank-n models have a fixed number of param-
eters that fully describe the dynamics of the model. The factor matrices ˜︁Fi contain n(n +m)
parameters and the matrix ˜︁FΦ contains n diagonal elements λi.
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Example 7. A second order diagonal normalized rank-n MTI model with state equation

x(k + 1) =
(︄
2x2(k) + 2u(k)x2(k) + 2x1(k)x2(k) + x1(k)x2(k)u(k)

x1(k)u(k) + x1(k)x2(k)u(k)

)︄
can be represented in CP tensor framework as

˜︁F|1 = [︄(︄
2/3 0
1/3 1

)︄
,

(︄
0 0.5
1 0.5

)︄
,

(︄
0.5 0
0.5 1

)︄
,

(︄
2 0
0 1

)︄]︄
,

which leads to the next state equations(︄
x1(k + 1)
x2(k + 1)

)︄
=

(︄
6 0
0 2

)︄ (︄
(1 − 1/3 + 1/3x1) (x2) (1 − 1/2 + 1/2u)

(x1) (1 − 1/2 + 1/2x2) (u)

)︄
.

The following section will introduce a sparse representation for MTI models, which is a
suitable representation especially for large systems.

Normalized rank-r sparse representation

Since large systems typically have a number of states that depend on only a few other signals,
rank-r sparse MTI models are a suitable representation from Schnelle et al. (2023).

Definition 3-1.4. A Normalized rank-r sparse MTI model is given by (2-37) and (3-17) with
the sparse matrix

Θ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
θ1,1 θ1,2 · · · θ1,r
θ2,1 θ2,2 · · · θ2,r
...

... · · ·
...

θm+n,1 θm+n,2 · · · θm+n,r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ R(n+m)×r, (3-30)

including the nonzero elements θi, j in the 2-norm representation, with j = 1, 2, .., r
and i = 1, 2, ...n +m, which indicate an influence of a certain signal j (state or input) on
the next state and the˜︁Fϕ ∈ Rn×r. A similar parameter matrix is given for the 1-norm with

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
h1,1 h1,2 · · · h1,r
h2,1 h2,2 · · · h2,r
...

... · · ·
...

hm+n,1 hm+n,2 · · · hm+n,r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ R(n+m)×r. (3-31)

Proposition 1. If the parameter tensor ˜︁F of an MTI model is in CP representation and normalized,
the computation of the contracted product in the state equation

x(k + 1) =
⟨︂˜︁F |M(x(k),u(k))

⟩︂
, (3-32)
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is possible in the matrix form of a polynomial representation

x(k + 1) =˜︁Fϕ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∏︁n+m

i=1 (cosθi,1 + sinθi,1 · zi(k))∏︁n+m
i=1 (cosθi,2 + sinθi,2 · zi(k))

...∏︁n+m
i=1 (cosθi,r + sinθi,r · zi(k))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3-33)

for the 2-norm or according to the same principle, but with (3-5) for the 1-norm representation
with (3-31). The vector z = (x u)T

∈Rn+m comprises all state and input signals.

Proof. With

˜︁F = [︂˜︁Fz1 ,˜︁Fz2 , . . . ,˜︁Fzn+m ,˜︁FΦ]︂ , (3-34)

it follows from (2-42) that

x(k + 1) =
⟨︂˜︁F |M(x(k),u(k))

⟩︂
(3-35)

=˜︁Fϕ (︄(︄˜︁FT
z1

(︄
1
z1

)︄)︄
⊛ · · · ⊛

(︄˜︁FT
zn+m

(︄
1

zn+m

)︄)︄)︄
. (3-36)

Inserting the elements of the CP parameter factor matrices gives

x(k + 1) =˜︁Fϕ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
˜︁Fz1(1, 1) ˜︁Fz1(2, 1)˜︁Fz1(1, 2) ˜︁Fz1(2, 2)
...

...˜︁Fz1(1, r) ˜︁Fz1(2, r)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(︄

1
z1

)︄⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ⊛ · · · ⊛
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
˜︁Fzn+m(1, 1) ˜︁Fzn+m(2, 1)˜︁Fzn+m(1, 1) ˜︁Fzn+m(2, 1)

...
...˜︁Fzn+m(1, 1) ˜︁Fzn+m(2, 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(︄

1
zn+m

)︄⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3-37)

=˜︁Fϕ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
˜︁Fz1(1, 1) · 1 +˜︁Fz1(2, 1)z1˜︁Fz1(1, 2) · 1 +˜︁Fz1(2, 2)z1

...˜︁Fz1(1, r) · 1 +˜︁Fz1(2, r)z1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ⊛ · · · ⊛
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
˜︁Fzn+m(1, 1) · 1 +˜︁Fzn+m(2, 1)zn+m˜︁Fzn+m(1, 2) · 1 +˜︁Fzn+m(2, 2)zn+m

...˜︁Fzn+m(1, 1) · 1 +˜︁Fzn+m(2, 1)zn+m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3-38)

With the norm condition (3-20), (3-21) can be inserted to

x(k + 1) =˜︁Fϕ
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cosθ1,1 · 1 + sinθ1,1z1
cosθ1,2 · 1 + sinθ1,2z1

...
cosθ1,r · 1 + sinθ1,rz1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ⊛ · · · ⊛
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cosθn+m,1 · 1 + sinθn+m,1zn+m
cosθn+m,2 · 1 + sinθn+m,2zn+m

...
cosθn+m,r · 1 + sinθn+m,rzn+m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (3-39)

Since the Hadamard product⊛denotes element-wise multiplication, (3-39) simplifies to (4-10).
□

Remark: Proposition 1 is shown for the Euclidean (2-norm) CPN. Obviously, a similar
representation is also possible for the absolute norm (1-norm) using (3-19). Here the elements
of the factor matrices are given by (3-22).

The following example from Schnelle et al. (2023) shows the usage of sparse MTI models.
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Example 8. The second order model with three inputs

x1(k + 1) = 1 + x1(k) + 2x2(k) + 2x1(k)x2(k)
x2(k + 1) = 2u2(k)u3(k) + 2u1(k)u2(k)u3(k)

is considered, which can be expressed in normalized rank-2 representation using the full
parameter matrix

Θ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
arctan2(1, 1) 0
arctan2(2, 1) 0

0 arctan2(1, 1)
0 arctan2(2, 0)
0 arctan2(1, 0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

˜︁Fϕ = ⎛⎜⎜⎜⎜⎝ √

12 + 12
√

22 + 12 0
0

√

12 + 12
√

22 + 02
√

12 + 02

⎞⎟⎟⎟⎟⎠ . (3-40)

The zeros inΘ are structurally significant for the model. Only the non-zero elements indicate
an existing influence of one signal on the next states. Known zero entries thus decrease
the number of parameters. This is important for a parameter identification problem. An
approach on pre-defining the model structure is introduced next.
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3-1-3 Structured MTI models

The sparse representation from the previous section shows, that the parameters of CPN
models can be stored efficiently and that the zeros in the sparse matrix are of structural
importance. This is even more important if we consider big systems with many data points.
By assuming an influence of every signal on each state huge black-box models would be the
result. This would be difficult for parameter identification and further use of the models, e.g.
for diagnostic purposes, due to large memory requirements and long computation times.

Automated data point mapping is desirable in modeling for many applications, but it
requires knowledge of data point types and their relationships, which is often lacking
(Wang et al., 2018). A pre-structuring approach is proposed in the next section to reduce
the number of data points considered in modeling by identifying or neglecting possible
dependencies of data points on the examined states, (Schnelle et al., 2023).

Natural language processing dependency matrix

natural language processing (NLS) can be used to support the modeling of building systems
by analyzing the names of monitoring data points. If the data points follow a standardized
naming convention, such as the Buildings Unified Data point naming schema for Opera-
tion management (BUDO) scheme or similar approaches (see Stinner et al. (2018)), specific
components of the names can be used to group related data points. However, in real-world
applications, naming is often inconsistent, as different installers use their own conventions.
In such cases, natural language processing methods, as discussed by Hirschberg and Man-
ning (2015) and applied by García (2022), can help identify meaningful words and patterns
in the names. This enables automatic grouping of data points and supports the modeling of
sparse CPN models.

The notation(zi → z j) is used in the following for an existing influence from one signal zi on
another signal z j.

A possible procedure for model structuring with NLS is proposed in Algorithm 1.

Algorithm 1 Natural Language Pre-Structuring (NLS), Schnelle et al. (2023)

1. Sorting data points in states and inputs

2. Building clusters with possibly dependent data points

3. Saving the structure in a Boolean sparse adjacency matrix Gs ∈ Rn×(n+m), with

Gs = (gs ji) with
{︃gs ji = 1 for zi → z j

gs ji = 0 else (3-41)

4. Building sub models for each state

5. Combining sub models in sparse representation using (3-30)
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u1 u2 u3 u4

x1 x2

Figure 3-2: Signal dependency graph

Remark: It is essential to distinguish between states and other signals (inputs, set points,
disturbances). In good naming schemes the type is detectable by NLS, in other cases expert
knowledge is needed.

Example 9. Using the signal dependency graph of Figure 3-2, which determines the influence
of signals x1 to u4 to the states x1 and x2, the model structure can be transferred in a sparse
adjacency matrix

Gs =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x1(k) x2(k) u1(k) u2(k) u3(k) u4(k)

x1(k+1) 0 0 ∗ ∗ ∗ 0
x2(k+1) ∗ ∗ 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∈ Rn×(n+m).

In this matrix, the Boolean TRUE marks all non-zero entries (denoted by ∗) indicating an
existing influence of the signal on the next state. FALSE entries (0) are structural zeros,
representing no dependency and can be fixed for a subsequent parameter identification of
the CPN parameters.

In this context the Boolean matrix decomposition method described in Wicker et al. (2019)
can be utilized to decompose Gs. The decomposition gives the structure of Fϕ and ΘT for
the sparse representation from Definition 3-1.4. An approximation in the diagonal rank-n
framework Definition 3-1.3 is achieved, as shown in the following by an example:

Example 10. The Boolean decomposition of the adjacency matrix of Example 9 is given with
some abuse of notation given by

Gs =

(︄
∗ 0
0 ∗

)︄ (︄
0 0 ∗ ∗ ∗ 0
∗ ∗ 0 0 0 0

)︄
.

The nonzero entries are denoted with ∗. Only these need to be identified by parameter
identification.

Alternative structuring methods are required for cases where NLS cannot be applied. If
white-box models are available, Schnelle et al. (2023) proposes exporting the model structure
for black-box CPN models from the Jacobian of a white-box model.

In the previous section the meaning of zero parameters in the adjacency matrix as well as in the
parameter matrix of CPN models became clear. In order to generate further interpretation of
the parameters for later diagnostic applications, these are examined in the following section.
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3-1-4 Investigation of normalized parameters

The normalized representation of the multilinear models provides unique parameters, as
discussed in subsection 3-1-2, which is essential for using these model parameters for diag-
nosis.

The uniqueness of the parameters of a polynomial for arbitrary state variable values is
achieved by the normalization in subsection 3-1-1. This section discusses how normalization
influences the uniqueness and interpretability of an MTI model.

Figure 3-3 shows how the function value f (x) = 1 − |hx| + hxx of one factor of the multilinear
polynomial behaves depending on the state variables x and on the parameters hx in 1-norm
representation. With regard to the uniqueness of the parameters, it can be seen that the
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Figure 3-3: Contour function value of 1-norm factor

contour lines 0 ≤ f (x) ≤ 1 are reached with one positive parameter as well as one negative
parameter for some variable values in the range −1 ≤ x ≤ 1. The 1-contour line is a special
case, as it is reached for state values x = 1 independent of the parameter’s positive value and
for state values x = −1 independent of the parameter when negative. These restrictions in
uniqueness are only valid for constant variable values, as the following small example shows

f (x) =
(︃
1 −

⃓⃓⃓⃓⃓
1
2

⃓⃓⃓⃓⃓
+

1
2

x
)︃
=

(︃
1 −

⃓⃓⃓⃓⃓
−

1
3

⃓⃓⃓⃓⃓
−

1
3

x
)︃
=

3
5

for x =
1
5

f (x) =
(︃
1 −

⃓⃓⃓⃓⃓
1
2

⃓⃓⃓⃓⃓
+

1
2

x
)︃
,

(︃
1 −

⃓⃓⃓⃓⃓
−

1
3

⃓⃓⃓⃓⃓
−

1
3

x
)︃

for x =
1
5
+ ϵ
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Figure 3-4: Function value of 1-norm factor

with ϵ ∈ R\{0}. As the same function value is reached with one negative and one positive
parameter, a constraint for non-negative parameter estimation can be considered later.

From the direct multiplication of the parameter with the variable in (3-5), interpretability of
the parameters is assumed, which is discussed in the following. Figure 3-4 shows that the
function value of one factor of the polynomial depends on a constant part, namely 1 − |hx|

and a variable part hxx. In the norm-1 representation, the maximum value for −1 ≤ x ≤ 1 is
reached when 1 − |hx| + hxx = 1 (see Figure 3-3). For parameters hx → 0, the function value
(example red dashed line in Figure 3-4) has a large proportion of the absolute part (black
dashed line), while the variable part tends towards zero. Since one is the neutral element
in multiplication, the entire state equation will not be influenced by the state variable in the
factor when hx = 0. In the direction of parameters with large magnitude, the influence of the
variable part on the function value increases, while the absolute part decreases. The slope
of the variable part depends on the value of the state variable. In general, the sum of the
absolute and the variable part decreases and therefore differs more from one with increasing
magnitude of parameters, as the example red dashed line for x = 0.5 shows.

It follows that the parameters of a 1-norm normalized MTI are interpretable: The function
value of one polynomial factor is influenced by the variable x inside the factor depending
on the magnitude of the parameter hx. Applying this knowledge to state tracking in an
MTI model in normalized polynomial representation allows the following statement: The
influence of a signal (input variable or state variable) on the next input value increases with
increasing magnitude of the parameter.
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For the 2-norm representation, the contour lines in Figure 3-5 show the function value of
one factor f (x) = (cos(θx) + sin(θx)x) of the polynomial (3-2). The splitting in the absolute
part cos(θx) and variable part sin(θx)x is illustrated in Figure 3-6. The general shape is similar
to that of the 1-norm representation. The "1-line" contour in Figure 3-5 is also reached at
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Figure 3-5: Contour function value of 2-norm factor

parameter value θx = 0 for all possible state values. In direction of the horizontal axis, the "1-
line" contour is not parallel to the horizontal axis as in the 1-norm representation. Therefore,
in 2-norm representation there is no variable value x, where the function value is independent
of the parameter θx. Similar to the case in 1-norm representation, the representation is not
unique for single constant values of the variable x, because two parameter values result in
the same function value. For function values with contour lines 0 ≤ f (x) < 1 the ambiguity
is given with a pair of one negative and one positive parameter. For function values with
contour lines 1 < f (x) < 2 the ambiguity occurs for parameter pairs, which are either both
positive or both negative and for contour lines with function values f (x) ≥ 2 no ambiguity
occurs.

To look at the interpretability of the parameters in 2-norm representation, Figure 3-6 gives
the example line for x = 0.5 to show how it is composed by the absolute and the variable
part. It is noticeable, that the variable part f (x) = sin(θx)x = 0 for parameter θx = 0. The
curves for the variable part are increasing depending on the variable value x with increasing
parametersθx. The absolute part (dashed black line) is decreasing with increasing magnitude
of θx. In direction of negative parameters both parts are decreasing. The sum of these two is
the function value, which is denoted for x = 0.5 with the red dashed line. Interestingly, the
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Figure 3-6: Function value of 2-norm factor

value one, which is the neutral element in multiplication, is reached twice for two positive
parameters. The first time, the curve hits the one is for zero parameter, where the variable
part has no influence and the second time is with parameter θx = 0.92, where the one is
achieved with a similarly high proportion of the absolute and the variable part. It should be
noted that this ambiguity only applies to variables that remain constant, e.g. for x = 0.5.

The uniqueness and interpretability generally discussed in this section is shown below using
an example.

Example 11. Consider the model of the example heated room from subsection 2-2-2 in CPN
representation from Example 5. To investigate the interpretability of CPN parameters, the
values of the parameter vector hTout are varied by a scaling factor a. In Figure 3-7, it is shown
how the signals are influenced by the varying parameter. It is obvious that only the first
state (return temperature) depends on the varying parameter. It can be clearly seen, that the
parameter defines the dependency of the first state (Tr) on the first input Tout, which is the
outside temperature. If the parameter is zero (a = 0), the return temperature does not depend
on the outside temperature, which becomes visible because it is not following the shape of
the outside temperature signal at all. With an increase of the corresponding parameter, the
shape of the state signal follows more and more the shape of the outside temperature signal.
This occurs due to the increasing variable part of the factor, which contains the outside
temperature signal in the first state equation (3-26). On the other hand, smaller parameters
lead to higher absolute parts. This affects the polynomial term and increases the dependency
on the other signals of the term, which is in this example the second state (V̇air).
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The example shows the interpretability of the CPN parameters, which is later useful for
anomaly detection applications.
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Figure 3-7: Example for interpretability of parameters

Remark: The ambiguity for constant variables is important for the identifiability of MTI
models in CPN format. If the identified parameters are later used for diagnosis, uniqueness
is important. Therefore, it should be considered not to use signals with low excitation and
constant signals during the parameter identification procedure for the anomaly detection
algorithm proposed later.

Remark: The uniqueness in the parameters for the polynomial factors including excited
signals, can be transferred to the diagonal rank-n representation of the CPN MTI models.
Rank-1 models are not suitable for systems with several states. An investigation of higher
rank models is not carried out here. It is obvious that it is possible to add and subtract equal
proportions in the rank-r data, which can lead to ambiguity.

As indicated, MTI models can be in continuous-time representation, which is needed when
they are derived from differential equations. In most cases, discrete-time representations are
needed when measurements are used for identification. The following section describes how
to convert the continuous representation into a discrete time representation.
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3-2 Transformation

In this section transformation of MTI models is proposed in CPN representation. First, it is
shown, how a continuous-time CPN MTI can be transformed into a discrete-time represen-
tation. The second part of this section gives a possibility to scale a CPN MTI, such that the
states stay within a given bound.

3-2-1 Discretization of normalized MTI models

The description of physical systems can be done with differential equations, which results
in continuous-time state-space models as shown in subsection 2-2-2. In continuous-time
models, the signals are given at every time t ∈ R. If real data should be used for simulation,
it is usually not available at every time, but the input signals and output measurements
are collected by digital computers at discrete-time steps with a given sampling time. There
are several methods available to approximate continuous-time differential equation systems
with discrete-time difference equations to use in discrete-time state space models. The Euler
forward method is applied to CP decomposed MTI models in Kruppa (2018) and is used
here to develop a procedure for the CPN MTI models.

The continuous-time MTI model

ẋ(t) =
⟨︂˜︁Fc |M(x(t),u(t))

⟩︂
(3-42)

with ˜︁Fc ∈ Rn×(n+m)2, holds all transition parameters of the continuous-time model and should
be converted in a discrete-time representation

x(k + 1) =
⟨︂˜︁Fd |M(x(k),u(k))

⟩︂
(3-43)

with the converted parameter tensor ˜︁Fd ∈ R
n×(n+m)2.

The time derivative of the continuous state at a specific sample time can be approximated by
the difference equation

ẋ(t) ≈
x(k + 1) − x(k)

Ts
. (3-44)

Therefore, the next state at time step k + 1 is computed with

x(k + 1) ≈ Tsẋ(kTs) + x(k). (3-45)

To translate this into the normalized CP representation, the addition of the state is done by

x(k + 1) = Ts
⟨︂˜︁Fc |M(x(k),u(k))

⟩︂
+

⟨︂˜︁Fx |M(x(k))
⟩︂
, (3-46)

where the parameter tensor ˜︁Fx ∈ Rn×n2 adds the terms of the state from the monomial
tensor M(x(k)) ∈ Rn2 of the states.

Remember that in the normalized CPN representation the parameters can be stored in a
reduced way inside matrices of all vectors of the second components of the normalized CP
factors Fx1 , Fx2 , ...,Fxn , Fu1 , Fu2 , ...,Fum and an unnormalized matrix Φ = λ˜︁Fϕ. This leads to
the following proposition of the discretization of 1-norm normalized continuous-time MTI
models directly with the normalized factor matrices H ∈ R(n+m)×r.
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Proposition 2. The transition parameter matrices of the discrete-time MTI model

Hd =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ Hc

Hx

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3-47)

and

Φd =
(︂
TsΦc Hx

)︂
(3-48)

can be built by the original continuous-time factor matrix stacked together with a new factor ma-
trix Hx = In for the selection of the states and 0 ∈ {0}m×n is a filling zero matrix.

Proof. With the computation of the CPN MTI in the polynomial matrix form from Proposi-
tion 1, with

Hd =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0

0
0 0 1
0 0

0 0

Hc

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3-49)

and

Φd =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0

0
0 0 1

TsΦc

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (3-50)

the discrete-time state equation in 1-norm representation using (4-10) is given by

x(k + 1) =
r∑︂

j=1

ϕd(:, j)

n+m∏︂
i=1

(1 − |hd(i, j)| + hd(i, j)zi). (3-51)

By splitting the summation to

x(k + 1) =
rc∑︂

j=1

ϕd(:, j)

n+m∏︂
i=1

(1 − |hd(i, j)| + hd(i, j)zi) +
rc+1+n∑︂
l=rc+1

ϕd(:,l)

n∏︂
q=1

(1 − |hd(q,l)| + hd(q,l)zq), (3-52)

gives with rc equals the rank of Hd the same function as in (3-45).

□

Remark: The discretization is shown in 1-norm representation here, for 2-norm the diagonal
ones in (3-49) have to be replaced with π2 , as sin π2 = 1, to get the discretized CPN in Euclidean
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norm.
Remark: The concatenation of the matrices does not lead to a minimal representation of the
discretized MTI model. If there is already a column with a single one in the first n rows of
the continuous-time normalized factor matrix Fc, no further identical columns need to be
added. Both columns can be combined by keeping only one in Fd and adding the values of
both columns inΦd.

Example 12. The continuous-time example from Example 2 can be approximated using a
discrete-time representation by

x1(k + 1) = Ts (−0.0705x1(k) + 0.0629x2(k) − 0.0029x1(k)x2(k) + 0.0705u1(k)) + x1(k)
x2(k + 1) = Ts (−0.5x2 + 262u2) + x2(k)

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 1 0 0 1 0
0 1 1 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Φ =

(︄
Ts
−0.0705

0
0.0629
−0.5

−0.0029
0

0.0705
0

0
262

1
0

0
1.

)︄ ()

With Ts = 1 h and the concatenation of the identical columns in F, the rank of the model can
be reduced to

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 1 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Φ =

(︄
0.9295

0
0.0629

0.5
−0.0029

0
0.0705

0
0

262

)︄
The discretized model is simulated with a sampling time of one hour. The result of the approx-
imation of the states is plotted in Figure 3-8, where the difference between the continuous-time
model and discrete-time model is especially visible during periods of rapid changes in short
time, but approximates the main dynamics of the system.

3-2-2 Scaling of normalized MTI models

Data collected from different physical signals with different units typically have different
operating ranges, and their values can vary greatly. To avoid numerical problems, e.g. in
parameter identification, the signals should be scaled to a defined interval, such as ∈ [l, u].
To work with the scaled signals while preserving the same dynamical behavior, the models
can be transformed by linear state and input transformation with

zi = aizi + bi (3-53)

and

żi = a−1
i (żi − bi), (3-54)
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Figure 3-8: Discretized simulation of room example

with

ai =
zi,l − zi,u

zi,l − zi,u
(3-55)

bi = zi,l − zi,lai (3-56)

where zi ∈ [zi,l, zi,u] is the original signal within the original operation range and zi ∈ [zi,l, zi,u]
is the scaled signal within the new interval. The index l and u stands for the lower bound
and the upper bound and i = 1, ...,n + m. An approach to scale the MTI system in tensor
representation is proposed in Kruppa (2018) and is used here for the adaptation of the
normalized CPN representation.

Proposition 3. A transformed MTI system in CP representation using (2-37) is given by

ẋ =
⟨︂

F
⃓⃓⃓
M(x,u)

⟩︂
. (3-57)

In CP representation, the scaled parameter tensor

F =
[︂
Fz1
, Fz2
, ...,Fzn+m

,Φ
]︂

(3-58)

with factor matrices

Fzi
=

(︄
1 bi
0 ai

)︄ (︄
Fzi

1
0

)︄
(3-59)
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and

Φ = diag
i=1,...,n

(a−1
i )

(︂
Φ −b

)︂
, (3-60)

where b = (b1, b2, ..., bn+m)T and Fzi are the factor matrices of the original system. Normalizing F
using (3-19) or (3-20) yields the normalized scaled factor matrix ˜︁F andΦ.

Proof. To scale the normalized MTI system

ẋ =
r∑︂

j=1

Φ(:, j)
n+m∏︂
i=1

(︁
Fi(1, j) + Fi(2, j)zi

)︁
(3-61)

with the scaling factors a = (a1, a2, ..., an+m) and b to the scaled MTI system

ẋ =
r∑︂

j=1

Φ(:, j)
n+m∏︂
i=1

(︂
Fi(1, j) + Fi(2, j)zi

)︂
, (3-62)

where Fi(2, j) is the second element in the j-th column of the normalized and scaled i-th
factor matrix andΦ:, j is the j-th column of the scaledΦ-matrix, (3-53) and (3-60) are inserted
into (3-62) to

ẋ = diag
i=1,...,n

(a−1
i )

⎛⎜⎜⎜⎜⎜⎜⎝ r∑︂
j=1

Φ(:, j)
n+m∏︂
i=1

(︂
Fi(1, j) + Fi(2, j)(aizi + bi)

)︂
− b

⎞⎟⎟⎟⎟⎟⎟⎠ . (3-63)

By multiplying out the inner brackets and rewriting it follows

ẋ =
r∑︂

j=1

diag
i=1,...,n

(a−1
i )Φ(:, j)

n+m∏︂
i=1

(︂
Fi(1, j) + Fi(2, j)bi + Fi(2, j)aizi

)︂
− diag

i=1,...,n
(a−1

i )b. (3-64)

The scaled factor matrices are built by (3-59) to

Fi =

(︄
1 bi
0 ai

)︄ (︄
Fzi

1
0

)︄
=

(︄
Fi(1, 1) + Fi(2, 1)bi . . . Fn+m(1, r) + Fi(2, r)bi 1

Fi(2, 1)ai . . . Fi(2, r)ai 0

)︄
(3-65)

and

Φ = diag
i=1,...,n

(a−1
i )

(︂
Φ −b

)︂
. (3-66)

By inserting Fi andΦ into (3-62), (3-57) is fulfilled and the MTI system is scaled within the
given bounds. □

The new scaled CP factor matrices can be normalized with (3-19) or (3-20).

Example 13. The discretized MTI model from Example 12 with zi ∈ [min(zi),max(zi)] is
transformed into a scaled MTI model where zi ∈ [0, 1]. The simulation results of the scaled
MTI model are shown in Figure 3-9. The dynamical behavior is the same as in the original
model, but the signals are staying within the new boundaries.
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Chapter 4

Black-box parameter identification

Building white-box models of multilinear systems is trivial, if the differential equations and
their parameters are known, as shown in Example 2. With less prior knowledge about the
system, gray-box models need to be identified using multilinear parameter identification
algorithms, which are rarely found in literature yet, (Sridharan et al., 2020). Efficient black-
box algorithms for multilinear state space model identification, as they are available for
linear systems, e.g. with the n4sid methods from Van Overschee and De Moor (1993) are
in research state, (Sridharan et al., 2020). As shown in the previous chapter, the multilinear
time-invariant (MTI) models can be represented in a full tensor representation or in a de-
composed tensor representation, which leads to a normalized polynomial description in a
further reduced form. A multilinear system identification method for Tensor Train matrices
is proposed in Batselier et al. (2018), which cannot be adapted to the Canonical Polyadic (CP)
decomposition used in this thesis. Thus, a new parameter identification approach for multi-
linear models is developed in this chapter. In the following, two MTI model representations
are used to develop and investigate a parameter identification procedure for both the full
tensor representation and the decomposed normalized representation.

4-1 Parameter identification for MTI models

In the black-box parameter identification approach chosen here, all parameters and structural
information of the model are unknown. The only constraint is the model class of normalized
discrete-time MTI models. Historical or experimental data, such as input signals and state
measurements, are assumed to be available.

The general procedure of linear or nonlinear parameter identification from monitoring data
is given in Isermann and Münchhof (2011). To identify the model parameters that are
mapped in the parameter tensor F of an MTI in any representation, the procedure illustrated
in Figure 4-1 is used, (Schnelle et al., 2022). In this case, the state variables x̃(k) are the variables
measured at discrete times k = 0, 1, . . . ,N in the building, while x(k) represents the calculated
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Figure 4-1: Parameter identification for MTI models

state variables of the normalized CP decomposed (CPN) MTI model from Definition 3-1.1.
An error vector

e(k) = x(k) − x̃(k) (4-1)

is computed at each time step k as the deviation between the measured states and the model
in order to obtain an error sum

E =
N∑︂

k=1

e′(k)Q e(k) , (4-2)

from the weighted error squares. The matrix Q can be chosen as the identity matrix in the
case of uniform weighting, which is suitable if all state and input data is scaled within an
interval [0, . . . , 1], as described in subsection 3-2-2.

The input u to the plant is also used as input for the MTI model, while the task is to minimize
the error e between the measured state vector x̃ and the model state x to estimate the transition
tensor F of the low-rank MTI model, as shown in Problem 4-1.1.

Problem 4-1.1. Fixed rank MTI parameter identification, (Schnelle et al., 2022)

Given:

• State measurements x̃(k) for k = 0, 1, . . .N

• Input variables u(k) for k = 0, 1, . . .N−1

• rank r

Find:

• fixed-rank r parameter tensor F represented as

• normalized CP factors ˜︁Fi and weightingΦ
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to minimize the squared error sum (4-2) by

min˜︁Fi,Φ
E. (4-3)

The result is a parameter set of a normalized CP decomposed MTI model that captures
the dynamics of the nominal building behavior with unique and interpretable parameters,
which are essential for anomaly detection, see subsection 3-1-4. For solving the optimization
problem different methods are discussed in the next sections.

4-2 Estimation of full tensor MTI models from data

This section investigates how the parameters of an MTI model in full tensor representation
can be identified from the building data. To convert the full parameter tensor into the desired
form of a CPN MTI for further use in anomaly detection, it must then be decomposed and
normalized. At the end of the section, the optimization problem and its scalability are
discussed.

4-2-1 Solving system of multilinear equations

The parameter identification of the parameters of a multilinear model in full tensor repre-
sentation from Definition 2-1.4 is straightforward. As the resulting state equations are linear
in the parameters, standard methods from linear algebra can be used. A multilinear state
space model

x(k + 1) = ⟨F |M(x(k),u(k)) ⟩ ,

from (2-37) contains constants, the states and inputs and all multilinear combinations of states
and inputs multiplied each by one parameter of the parameter tensor F. This ends up in a
system of n multilinear polynomials with 2n+m summands and an overall number of n2n+m

parameters. To identify the parameters of the model a sequence of at least n2n+m time steps k
is needed, to build an overdetermined system of equations. The Least Squares method (2-12)
to (2-22) is used to minimize the error between the model and the measurement data.

By unfolding the tensor F to a matrix F of dimensionRn×2n+m
the linear optimization problem

can be written as

min
F
∥X −MFT

∥ , (4-4)

where

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x̃1(1) x̃2(1) . . . x̃n(1)
x̃1(2) x̃2(2) . . . x̃n(2)
...

... . . .
...

x̃1(N) x̃2(N) . . . x̃n(N)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ RN×n (4-5)



4-2 Estimation of full tensor MTI models from data 57

contains all N next state measurements and

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
m(x(0),u(0))
m(x(1),u(1))

...
m(x(N − 1),u(N − 1))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ RN×2n+m
(4-6)

is a matrix of all elements of the monomial matrix of the MTI for the time steps k = 1, ...,N
with

m(u(k), x(k))=
(︄

1
um(k)

)︄
⊗ · · · ⊗

(︄
1

u1(k)

)︄
⊗ · · · ⊗

(︄
1

xn(k)

)︄
⊗ · · · ⊗

(︄
1

x1(k)

)︄
∈ R2n+m, (4-7)

where the Kronecker product ⊗ gives all monomial elements for one time step in a vec-
tor, (Lichtenberg et al., 2022). To solve for the parameters in F, standard methods from linear
regression, see Groß (2003) can be used to rewrite (4-4) in the form of (2-22) and solve

F = (MTM)−1MTX. (4-8)

To illustrate the procedure of full tensor MTI parameter identification a second order MTI
system is used in the example given next.

Example 14. The state equation of a second order multilinear model

x(k + 1) =
(︄

f1,0 + f1,1x1(k) + f1,2x2(k) + f1,3x1(k)x2(k)
f2,0 + f2,1x1(k) + f2,2x2(k) + f2,3x1(k)x2(k)

)︄
has 2 · 22 parameters fi, j with i = 1, 2 and j = 0, . . . , 3. To solve the linear equation for the
parameters, the state measurement for the last N >= 8 time steps are used to build the system
of linear equations⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1(k + 1) x2(k + 1)
x1(k + 2) x2(k + 2)
...

...
x1(k +N) x2(k +N)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 x1(k) x2(k) x1x2(k)
1 x1(k+1) x2(k+1) x1x2(k+1)
...

...
...

...
1 x1(k+N−1) x2(k+N−1) x1x2(k+N−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1,0 f2,0
f1,1 f2,1
f1,2 f2,2
f1,3 f2,3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 0

As specified in Problem 4-1.1, the MTI parameters are required in a normalized decom-
posed representation. In order to use them later for anomaly detection in real buildings, a
memory-reduced form and the uniqueness and interpretability of the CPN parameters are
required. Therefore, the identified parameters from the full tensor format are decomposed
with the cp_als from Kolda and Bader (2009), which performs an alternating least squares
optimization to decompose a full tensor into a CP tensor with fixed rank. The normalization
is done with (3-6) and (3-4) to gain the representation from (3-16).
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4-2-2 Investigation of optimization problem

To investigate the MTI identification algorithm described above, the simulation data from
the original differential equations of the room from Example 2 is used. The identification of a
full tensor MTI model is performed with the method from subsection 4-2-1 using (4-4) to (4-8)
in MATLAB. In order to minimize numerical errors, which can occur when the magnitude of
different signals differs greatly, the data of the input signals and the state variables are scaled
in the interval 0 ≤ x ≤ 1 and 0 ≤ u ≤ 1 first with (3-53).

As shown in Figure 4-2, the identified full tensor MTI model tracks the states, i.e. the
room temperature Tr (sub figure 3) and the volume flow signal of the air unit V̇air (sub
figure 4) without visible deviations. As described before, an MTI model in CP decomposed
and normalized form is required for the further use in anomaly detection, therefore, the
full tensor MTI model is decomposed with cp_als algorithm, see Bader et al. (2019), to a
rank r = 6 representation and normalized in norm-1 representation with the procedure
described in subsection 3-1-2. The result of simulation data of the identified CPN MTI model
in comparison to the original data is shown in Figure 4-3. The model represents the state
values (Tr and V̇air) still very well. Small deviations between the data (solid line) and the
model (dashed line) are mainly visible between 30 and 40 hours of simulation.

Where the full tensor identification by simply solving a system of linear equations is straight-
forward, the tensor decomposition with cp_als is a complex optimization problem, (Kolda
and Bader, 2009) To investigate the results of the cost function of the solutions, the identifica-
tion is repeated 100 times. The mean cost and standard deviation of the squared error (4-4)
are depicted in Table 4-1 for the full tensor solution and the cp_als solution. The distribution
of the cp_als solution is illustrated in Figure 4-4. It is notable that the full tensor solution
achieves the same error for across 100 observations, with almost zero standard deviation,
while the solution of the normalized CPN MTI model shows a distribution of error results.
The shape of the distribution is exponentially decreasing with the highest number of obser-
vations in the smallest error interval of 0 to 0.1. In addition, individual outliers can be found
for larger error sums, up to 2.

Method Error mean Standard deviation
Full tensor 6.3841e-15 7.9284e-31
CP tensor 0.1201 0.2018

Table 4-1: Error metrics for tensor identification methods
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Figure 4-2: Full tensor MTI identification
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Figure 4-3: Full tensor to norm-1 CPN MTI identification
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Figure 4-4: Cost function distribution for full tensor to norm-1 CPN MTI identification

4-2-3 Scalability

To use the prescribed parameter identification procedure for anomaly detection in building
systems, it needs to be scalable for big buildings. The full tensor identification is, on one
hand, easy to compute but has the disadvantage that the number of parameters grows
exponentially, with every state and input, as demonstrated in Figure 4-5.

0 10 20 30 40 50 60 70 80 90 100
n

100

105

1010

1015

1020

1025

1030

1035

N
u
m

b
er

of
p
ar

a
m

et
er

s

Figure 4-5: Scalability of full parameter tensor
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This results in big models, which lead to high memory demand and computational costs, thus
restrict the method to smaller systems. A second limitation is that the system of equations
needs to be overdetermined to get unique solutions for all parameters. Therefore, the amount
of data needs to be large enough to fulfill the criteria of overdetermination. With growing
number of states and inputs, the hours of collected data increases also exponentially. For
the identification of a fifth order model with 160 parameters, at least 2.7 days of data with a
one-minute sampling interval are needed, and the identification of a 15th order model would
require already 342 days of sampling data and would have 491520 parameters, see Table 4-2.
A standard laptop with 16 GB RAM would run out of memory by trying to create a full
tensor MTI model with 27 states or inputs. Therefore, full tensor identification is not suitable
for large models and decomposed methods need to be developed as shown in the following
section.

Table 4-2: Full tensor optimization
Order Parameter Bytes Data in hours Data in days Data in years

2 8 64 0.133 0.00556 1.52e-05
5 160 1280 2.67 0.111 0.000304
10 10200 81900 171 7.11 0.0195
15 4.92e+05 3.93e+06 8190 341 0.935
27 3.62e+09 2.9e+10 6.04e+07 2.52e+06 6890
50 5.63e+16 4.5e+17 9.38e+14 3.91e+13 1.07e+11

100 1.27e+32 1.01e+33 2.11e+30 8.8e+28 2.41e+26
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4-3 Estimation of decomposed MTI models from data

The identification of MTI parameters in the full tensor representation achieves good results for
small models but is not applicable to larger systems. Therefore, a parameter identification
method is developed that optimizes the parameters of the reduced normalized CP MTI
(CPN) model directly from the data. First, a standard nonlinear algorithm is used and then
compared with a newly developed specialized alternating least squares algorithm.

4-3-1 Solution and investigation with standard algorithms

The direct identification of the parameters of the decomposed normalized model is the
desired option due to the exponential growth in the number of parameters of the non-
decomposed MTI approach, shown in Figure 4-5. First, the optimization is performed
with standard nonlinear optimizers in MATLAB to study the optimization problem. To
identify the parameters of the normalized MTI model (3-16) with the method described
in Problem 4-1.1, various nonlinear optimization methods are available. To identify the
parameters in normalized representation, a nonlinear optimization method with bounded
parameter values is required. MATLAB provides the constrained optimization function
fmincon for nonlinear optimization in the Optimization Toolbox, (MathWorks, 2023b). The
optimization problem from Problem 4-1.1 can be rewritten as

min
hi,Φ

E such that lb ≤ hi ≤ ub, (4-9)

with lb = 0, ub = 1, to ensure a solution with 1-norm normalized model parameters. To
compute the error e from (4-1), the model states

x(k + 1) =Φ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∏︁n+m

i=1 (1 − |hi,1| + hi,1zi(k))∏︁n+m
i=1 (1 − |hi,2| + hi,2zi(k))

...∏︁n+m
i=1 (1 − |hi,r| + hi,rzi(k))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4-10)

are generated according to Proposition 1. Most of the options of the algorithm are set to the
MATLAB default parameters, see Table 4-3.

Table 4-3: Parameter table for fmincon algorithm

Parameter Value
Algorithm Interior point
Max Function Evaluations 3000
Objective Limit -1.0000e+20
Optimality Tolerance 1.0000e-06
Step Tolerance 1.0000e-10
Maximum Iterations 3000
Constraint Tolerance 1.0000e-06

If the optimization problem is convex, convex optimization methods could be used. This
fact is examined below:
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Figure 4-6: Cost function value E with varying initial parameters

Assumption 1. The optimization problem (4-3) is convex.

To check the assumption, the necessary condition for convex functions, that all local minima
coincide with the global minimum, is tested experimentally. For this purpose, the opti-
mization problem from Problem 4-1.1, using the nonlinear MATLAB fmincon optimizer, is
initialized with varying initial parameters

H0 = H + ϵH01(n+m)×R (4-11)
Φ0 =Φ + ϵΦ1n×R,

where 1i× j is a matrix of ones with dimension (i × j) and ϵF0 = ϵΦ = −1,−0.9, ..., 0, 0.1, ..., 1
varies with each new run of the algorithm. The matrices H andΦ are the exact parameters
of the 1-norm CPN MTI model derived from the multilinear function to fit the data. For the
identification, the data from Example 2 is used to identify a rank-6 MTI model. The costs
achieved from (4-3) are plotted in Figure 4-6 against ϵ.

Contradiction: The objective function results in different values when the optimization is
initialized with different initial conditions. Thus, local minima do not coincide with the
global minimum and the Assumption 1 is contradicted. It is apparent that the optimization
problem for all CPN MTI models is not convex. This optimization problem has a global
minimum, which is reached when the initial parameter set matches the parameter set of the
multilinear system derived from differential equations.



4-3 Estimation of decomposed MTI models from data 64

4-3-2 Alternating least squares algorithm

The connection between the multilinear model class and tensors enables the use of the full
range of tensor algebra, including decomposition and normalization techniques, which can
significantly reduce computational costs and improve efficiency. Parameter identification
with the described nonlinear standard optimizers is inefficient due to the lack of adaptation
to the multilinear models. For this reason, an efficient algorithm is developed in this thesis
and used in Schnelle and Lichtenberg (2024) specifically for the specific structure of a nor-
malized CP decomposed MTI models. The alternating least squares algorithm is already
widely used for the factorization of matrices and has been adapted for the decomposition
of CP tensors, see Kolda and Bader (2009), and to system identification of MIMO Volterra
systems in Batselier et al. (2017). In the following, an alternating least squares (ALS) algo-
rithm for normalized MTI models is proposed. For better comprehension, the algorithm is
first described with a rank-1 limitation, and later adapted to rank-n models.

Rank-1 alternating least squares algorithm

A rank-1 multilinear state equation is represented as the factorized polynomial

x(k + 1) = ( fi,1 + fi,2zi(k))
J(n+m−1)∏︂

j=J(1)

(1 −
⃓⃓⃓
f j
⃓⃓⃓
+ f jz j(k))Φ, (4-12)

where the second part of the equation is normalized as shown in subsection 3-1-2 and fi,1
and fi,2 are free parameters of a decomposed, non-normalized multilinear model from (2-41).
The index i addresses one single dimension out of the n + m dimensions of the parameter
tensor

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(︄
1 −

⃓⃓⃓
f1
⃓⃓⃓

f1

)︄
,

(︄
1 −

⃓⃓⃓
f2
⃓⃓⃓

f2

)︄
· · · ,

(︄
fi,1
fi,2

)︄
,

(︄
1 −

⃓⃓⃓
fi+1

⃓⃓⃓
fi+1

)︄
, · · · ,

(︄
1 −

⃓⃓⃓
fn+m

⃓⃓⃓
fn+m

)︄
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Φ1
...
Φn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4-13)

in CP representation from (2-41). The index j ∈ J = (1, 2, ...i − 1, i + 1, ...,n + m) includes all
other fixed parameters, except for the free parameters with the current index i. By fixing all
but one dimension, the multilinear state equation can be expressed as a linear equation

x(k + 1) =
(︂∏︁J(n+m−1)

j=J(1) (1 −
⃓⃓⃓
f j
⃓⃓⃓
+ f jz j(k))Φ

∏︁J(n+m−1)
j=J(1) (1 −

⃓⃓⃓
f j
⃓⃓⃓
+ f jz j(k))Φzi(k)

)︂
V (4-14)

with the vector of free parameters

V =
(︄

fi,1
fi,2

)︄
∈ R2×1. (4-15)
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Defining a vector of all next state measurements

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1(k + 1)
x2(k + 1)
...

xn(k + 1)
x1(k + 2)
x2(k + 2)
...

xn(k + 2)
...

x1(k +N)
x2(k +N)
...

xn(k +N)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R(nN)×1, (4-16)

for time steps k = 1, 2, . . . ,N leads to a linear overdetermined system of equations

X = UV (4-17)

with

U=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∏︁J(n+m−1)
j=J(1)

(︂
1 −

⃓⃓⃓
f j

⃓⃓⃓
+ f jz j(k)

)︂
Φ

∏︁J(n+m−1)
j=J(1)

(︂
1 −

⃓⃓⃓
f j

⃓⃓⃓
+ f jz j(k)

)︂
Φzi(k)∏︁J(n+m−1)

j=J(1)

(︂
1 −

⃓⃓⃓
f j

⃓⃓⃓
+ f jz j(k + 1)

)︂
Φ

∏︁J(n+m−1)
j=J(1)

(︂
1 −

⃓⃓⃓
f j

⃓⃓⃓
+ f jz j(k + 1)

)︂
Φzi(k + 1)

...
...∏︁J(n+m−1)

j=J(1)

(︂
1 −

⃓⃓⃓
f j

⃓⃓⃓
+ f jz j(k +N)

)︂
Φ

∏︁J(n+m−1)
j=J(1)

(︂
1 −

⃓⃓⃓
f j

⃓⃓⃓
+ f jz j(k +N)

)︂
Φzi(k +N)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4-18)

which is a matrix of dimension U ∈ RnN×2 and contains the constants given by the multilinear
polynomial of fixed parameters and states. This results in a separation of the variable V from
the constants U.

The number of time steps N >= 2r must be chosen sufficiently large to obtain an overdeter-
mined system with k = 1, 2, ...,N linear equations

x(k + 1) = U(k, :)V + e(k), (4-19)

where the error e(k) represents the difference between the measured state and the function
value of the one-step prediction.

The optimization problem consists of minimizing the quadratic error sum

E = eTe = ∥X −UV∥2 (4-20)

and can be solved using the standard linear least squares method (2-22) by solving

V = (UTU)−1UTX. (4-21)
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To apply the idea of alternating least squares to the parameter identification problem for the
normalized parameters of a discrete time MTI, the index i of the free parameter dimension
alternates between 1 and n+m. The optimization problem 4-20 is solved for the parameters of
the free dimension and then its index changes to the next dimension as shown in Algorithm 2.

At the end of an iteration, which involves the successive solution of n+m systems of equations,
the algorithm switches to the n+m+1-th dimension to solve the parameters inΦ. The matrix

Uϕ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∏︁n+m

j=1 (1 −
⃓⃓⃓
f j
⃓⃓⃓
+ f jz j(k))

...∏︁n+m
j=1 (1 −

⃓⃓⃓
f j
⃓⃓⃓
+ f jz j(k +N))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4-22)

then contains the constants from the fixed parameters of all other n+m dimensions of F and
the error

E = ∥χ −UΦΦT
∥

2
F (4-23)

with

χ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
xT(k)

xT(k + 1)
...

xT(k +N)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∈ RN×n, (4-24)

with xT(k) = (x1 . . . , xn) is minimized according to (4-21). The ∥ · ∥F denotes the Frobenius

norm for element-wise least squares: ∥Y∥F =
√︂∑︁

i, j y2
i, j. This is important because the state

matrix χ has n columns. The minimization of E is performed by solving n separate estimation
problems Φ1...n = U+

Φ
X1...n and is again done with the pseudo inverse U+

Φ
= (ΦTΦ)−1ΦT,

(Groß, 2003).

Algorithm 2 CPN-ALS Algorithm
procedure CPN-ALS(Z,R)

initialize F
repeat

for i = 1...,n +m do
V = Fi
minV ∥X −UV∥
normalize columns of V
updateΦ,F

end for
minΦ ∥χ −UΦΦT

∥F
return F

until maximum iterations exhausted or no improvement

Remark: For a restriction to non-negative parameters, the optimization problem from Algo-
rithm 2 changes to

min
V
||X −UV||, where vl ≥ 0



4-3 Estimation of decomposed MTI models from data 67

with l = 1, 2 and V = (v1 v2)T. This can be solved with non-negative least squares, (Lawson
and Hanson, 1995), and is available in MATLAB.

Rank-n alternating least squares algorithm

The ALS algorithm explained in the previous section for rank-1 MTI models can be extended
to any rank-n MTI models in normalized CP representation. Expression (4-12) generally
yields a rank-r representation

x(k + 1) =
R∑︂

r=1

⎛⎜⎜⎜⎜⎜⎜⎝(Fi(1, r) + Fi(2, r)zi(k))
J(n+m−1)∏︂

j=J(1)

(︂
1 −

⃓⃓⃓
F j(2, r)

⃓⃓⃓
+ F j(2, r)z j(k)

)︂
Φ(:, r)

⎞⎟⎟⎟⎟⎟⎟⎠ , (4-25)

where the factor matrices Fi with i = 1, . . . , n +m and F j with j ∈ J = {1, 2, . . . , n +m}\{i} have
the dimensions R2×R and are normalized to the 1-norm andΦ ∈ Rn×R.

The optimization problem is similar to the rank-1 approach by minimizing (4-20), where the
vector

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Fi(1, 1)
Fi(2, 1)
Fi(1, 2)
Fi(2, 2)
...

Fi(1,R)
Fi(2,R)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R2R×1 (4-26)

contains all 2 · R free parameters of the i−th factor matrix. The matrix of fixed constants

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∏︁J(n+m−1)
j=J(1) (1 −

⃓⃓⃓
F j(2, 1)

⃓⃓⃓
+ F j(2, 1)z j(k))Φ(:, 1) · · ·

∏︁J(n+m−1)
j=J(1) (1 −

⃓⃓⃓
F j(2, 1)

⃓⃓⃓
+ F j(2, 1)z j(k+N))Φ(:, 1)∏︁J(n+m−1)

j=J(1) (1 −
⃓⃓⃓
F j(2, 1)

⃓⃓⃓
+ F j(2, 1)z j(k))Φ(:, 1)zi(k) · · ·

∏︁J(n+m−1)
j=J(1) (1 −

⃓⃓⃓
F j(2, 1)

⃓⃓⃓
+ F j(2, 1)z j(k+N))Φ(:, 1)zi(k+N)∏︁J(n+m−1)

j=J(1) (1 −
⃓⃓⃓
F j(2, 2)

⃓⃓⃓
+ F j(2, 2)z j(k))Φ(:, 2) · · ·

∏︁J(n+m−1)
j=J(1) (1 −

⃓⃓⃓
F j(2, 2)

⃓⃓⃓
+ F j(2, 2)z j(k+N))Φ(:, 2)∏︁J(n+m−1)

j=J(1) (1 −
⃓⃓⃓
F j(2, 2)

⃓⃓⃓
+ F j(2, 2)z j(k))Φ(:, 2)zi(k) · · ·

∏︁J(n+m−1)
j=J(1) (1 −

⃓⃓⃓
F j(2, 2)

⃓⃓⃓
+ F j(2, 2)z j(k+N))Φ(:, 2)zi(k+N)

... · · ·
...∏︁J(n+m−1)

j=J(1) (1 −
⃓⃓⃓
F j(2,R)

⃓⃓⃓
+ F j(2,R)z j(k))Φ(:,R) · · ·

∏︁J(n+m−1)
j=J(1) (1 −

⃓⃓⃓
F j(2,R)

⃓⃓⃓
+ F j(2,R)z j(k+N))Φ(:,R)∏︁J(n+m−1)

j=J(1) (1 −
⃓⃓⃓
F j(2,R)

⃓⃓⃓
+ F j(2,R)z j(k))Φ(:,R)zi(k) · · ·

∏︁J(n+m−1)
j=J(1) (1 −

⃓⃓⃓
F j(2,R)

⃓⃓⃓
+ F j(2,R)z j(k+N))Φ(:,R)zi(k+N)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4-27)

expands to the dimensionRnN×2R. The optimization problem from Algorithm 2 can be solved
with (4-21).

Example 15. The parameters of a second order multilinear state equation system(︄
x1(k + 1)
x2(k + 1)

)︄
=

(︄
Φ(1)(F1(1) + F1(2)x1(k))(F2(1) + F2(2)x2(k))
Φ(2)(F1(1) + F1(2)x1(k))(F2(1) + F2(2)x2(k))

)︄
(4-28)

can be expressed in a rank-1 CP tensor

F =
[︄(︄

F1(1)
F1(2)

)︄
,

(︄
F2(1)
F2(2)

)︄
,

(︄
Φ(1)
Φ(2)

)︄]︄
. (4-29)
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Using the CPN-ALS algorithm to identify the parameters, the following steps are performed:

1. Initialize F2 andΦwith random numbers

2. Solve for F1 by rearranging (4-28) to UV with

U =Φ
(︂
(F2(1) + F2(2)x2(k)) x1(k)(F2(1) + F2(2)x2(k))

)︂
,

V =
(︄
F1(1)
F1(2)

)︄

3. Solve system of linear equations for time steps (k = 1 . . .N) with (4-20) and update F

4. Solve for F2 by rearranging (4-28) to UV with

U =Φ
(︂
(F1(1) + F1(2)x1(k)) x2(k)(F1(1) + F1(2)x1(k))

)︂
,

V =
(︄
F2(1)
F2(2)

)︄

5. Solve linear equation system for time steps (k = 1 . . .N) with (4-20) and update F

6. Solve forΦ by rearranging (4-28) to

UΦ =
(︂
(F1(1) + F1(2)x1(k))(F2(1) + F2(2)x2(k))

)︂
andΦ and solve (4-23)

7. Repeat steps 2. to 6. until convergence

4-3-3 Evaluation and comparison of Identification Methods

To compare the standard nonlinear MATLAB optimization algorithm with the new ALS
algorithm for parameter identification, which is adapted to the structure of the normal-
ized CPN MTI models, the identification time and the values of the cost function are com-
pared with each other. In order to determine a distribution and an average value of these
two variables, both algorithms are executed 100 times again using the data from Example 2.
The default values from MATLAB are used as option parameters, as defined in Table 4-3.

The CPN-ALS algorithm is initialized with randomly generated parameters. The standard
MATLAB algorithm is initialized with the Genetic-Algorithm from the Global Optimization
toolbox, (MathWorks, 2023a). Random initialization is not possible here because the algo-
rithm terminates if the cost function is undefined. This happens when the model becomes
unstable with the random parameters and exceeds the maximum limit for double-precision
values (1.8 × 10308). The results are shown in Figure 4-7. It can be seen that the cost function
and identification time values for the CPN-ALS and for the nonlinear fmincon algorithm
scatter between minimum and maximum values, due to non-convexity. The CPN-ALS algo-
rithm achieves mean cost values of 0.14, which is half of the mean cost values of the fmincon
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Figure 4-7: Comparison of identification result over identification time

algorithm (0.28). The difference in the identification time is even clearer with a mean identi-
fication time of 0.72 seconds for the CPN-ALS algorithm compared to 23.85 seconds for the
standard algorithm.

Although the initialization for the CPN-ALS algorithm is done randomly, the cost function
distribution in Figure 4-8 shows low variability. Most observations reached a cost function
value in the bin of 0.1 < E <= 0.2 and are therefore only marginally worse than the cost
function distribution of the full tensor solution in combination with the cp_als algorithm in
Figure 4-4. The simulation of the state values with the identified model from the CPN-ALS
algorithm is shown in Figure 4-9 and follows the original data very well. The CPN-ALS
algorithm is implemented in the MTI-Toolbox for MATLAB, see Lichtenberg et al. (2024).

Based on the promising results of investigation and evaluation of the new CPN-ALS algo-
rithm in this chapter, it is considered useful for identifying normalized CPN MTI models
and is therefore used later for the anomaly detection in building systems with real data.
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Figure 4-9: Identification result for CPN-ALS identification



Chapter 5

Anomaly detection

As described earlier, the parameters of the normalized multilinear time-invariant (MTI)
models are intended to be used as normalized CP decomposed (CPN) parameters for the au-
tomatic detection of anomalies in building operation. The identification of these parameters
from building data was developed in the previous chapter. In the following, a method is
developed and evaluated to detect time intervals in which building behavior deviates from
nominal operation, based on the identified parameters. For this purpose, residuals are first
generated, which are then used in a second evaluation step to produce the output of the
anomaly detection algorithm.

5-1 Residual generation

5-1-1 Residuals from CPN Parameters

The detection of anomalies should be based on the generation and evaluation of residuals.
To achieve this, residuals must first be computed over the entire time series of building
measurements under analysis. Residuals are generally defined as deviations from expected
values. In this context, the residuals are derived directly from the CPN parameters of the
identified MTI. To this end, two methods for generating residuals from CPN parameters are
developed below.

Sequential residual generation

In sequential residual generation, the CPN factors of the parameter tensor F̂(k) of an MTI
model are generated for each sequence

(k), (k + 1), . . . , (k +N) (5-1)
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with N input and state measurements of the time interval

(k −N), (k −N + 1), . . . , (k − 1). (5-2)

The algorithm then waits until the next sequence of measurements contains N time steps of
new data before identifying the parameter tensor F̂(k+ 1) at k = N, 2N, 3N, . . . . The sequence
length N must be sufficiently large to allow for the identification of a total of r(n + m)
parameters.

This length is therefore dependent on the selected identification algorithm. In order to
guarantee an overdetermination of the equation system, it must comprise at least > 2n+m

time steps for the full tensor identification, while theoretically only at least r(n + m) time
steps are necessary for the alternating least squares (ALS) algorithm. However, it should be
noted that the dynamics of the system must be reflected in the chosen sequence in order to
be able to identify unique parameters that generate meaningful residuals. For noisy data, it
is recommended to choose N ≫ r(n +m).

Each parameter set identified in this way represents the current system behavior of the single
sequence of data used. Residuals are generated by comparing these different parameter sets
obtained from the different sequences. With sequential residual generation, a new residual
can only be generated, and a diagnostic decision about the system behavior can only be made
if enough new data is available for the entire length of the new sequence. In an online or
real-time application, this means that an anomaly, even if it occurs right at the beginning of
the new sequence, can only be detected after N new data points have been collected. In order
to be able to make a diagnostic decision about the current system behavior at any point in
time, the generation of moving horizon residuals is described below.

Moving horizon residual generation

The moving horizon residual generation for anomaly detection in building systems is devel-
oped in Schnelle et al. (2022). The approach takes up the idea of moving horizon estimation
(MHE), as used in state estimators, e.g. in control engineering Ganesh et al. (2021) and
anomaly detection in buildings Awawdeh et al. (2024). For this purpose, a window is placed
over the measured values, which has a fixed number of time steps and moves forward by one
time step after each new time step to obtain the next CPN factors of MTI parameter tensors

F̂(k), F̂(k + 1), . . . , F̂(k +N) ∀k ∈ R+ (5-3)

of the state and input measurements of time steps from (5-2). With each new time step,
the optimization problem is solved again to determine the current model parameters. The
moving time horizon N ≫ n+m should again be chosen large enough to identify meaningful
parameters. In order to use the identified parameters for anomaly detection, the difference
between the parameter tensor F of the nominal system behavior and the parameter tensor F̂
of the currently identified system behavior at each time step gives a residual. Solving a
new optimization problem at each new time step incurs significant computational effort.
Furthermore, a large number of residuals is generated and must be evaluated. Since the
focus of this work is on reducing the number of parameters for efficient computation and
memory savings, a restriction to low-rank models for residual generation is investigated
next.
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5-1-2 Low-rank limitation

The uniqueness of the CPN parameters has been discussed in terms of rank-1 MTI models
and is therefore also given for each of the n state equations of the diagonal rank-n CPN MTI
model of Definition 3-1.3. The exact representation of most MTI models is not low-rank.
Nevertheless, rank-1 MTI models may be able to approximate the main dynamics of build-
ing systems with sufficient accuracy to use their rank-1 parameters for anomaly detection.
Therefore, the advantage of small model size and the important property of uniqueness for
anomaly detection can be used here. To demonstrate how the dynamics of energy flow
systems, such as those found in buildings, can be approximated by a rank-1 MTI model,
the example from Example 2 is used. As shown in Example 5, the exact representation
in the discretized representation is rank-6. To identify rank-1 CPN parameters for the two
state equations from simulation data, Algorithm 2 is used. In the diagonal rank-n MTI
representation from Definition 3-1.3, the state-space model is expressed with(︄

xTr(k + 1)
xV̇air

(k + 1)

)︄
=

(︄
ϕ1 0
0 ϕ2

)︄ (︄∏︁n+m
i=1 (1 − |Hi,1| +Hi,1zi)∏︁n+m
i=1 (1 − |Hi,2| +Hi,2zi)

)︄
(5-4)

with the vector of states and inputs z =
(︂
Troom V̇air Tout α

)︂T
and the parameter matrix

HT =

(︄
hTroom,1 hV̇air,1 hTout,1 hα,1
hTroom,2 hV̇air,2 hTout,2 hα,2

)︄
. (5-5)

The parameters are identified using the simulation data of the discretized and scaled rank-6
model from (12). The result of the rank-1 approximation for the first state, Tr, is shown
in Figure 5-1. The main dynamics of the system are approximated by the model, but the
error between the simulated state and the measurement is clearly higher than in the rank-6
approximation of Example 5.

To evaluate whether the rank-1 parameters can reflect differences in dynamics despite the
visible error between the model and the data, a parameter in the model equation from
Example 2 that affects the dynamics of the system is altered. Changing the heat transfer
coefficient U, affects the losses through the wall. The value of the heat transfer coefficient is
changed from the original U = 0.2 to U ∈ [0.2, 0.4, 0.6, 0.8] in four successive sequences. For
each sequence, the CPN parameters of the diagonal rank-1 model are identified in norm-1
representation using the ALS Algorithm 2. To avoid random identification results, which
can occur due to random initialization and due to hitting local minima in the non-convex
optimization problems, each identification of each sequence is performed 50 times. As an
example, the distribution of the parameter hTout of the first state equation for xTroom is shown
in Figure 5-2.

It can be seen that with the rank-1 constraint, the distribution of the parameters is barely
scattered, despite the non-convex optimization problem of CP decomposed MTI models. The
parameter is determined 45 times within a bin of width 0.05. In a few cases, the parameters
are randomly distributed over values between 0.15 and 0.6. Furthermore, it can be clearly
seen that the parameter values vary depending on the heat transfer coefficient. The higher
the heat transfer coefficient, the larger the parameter associated with the input of the external
temperature signal. This results in the interpretability of the parameter values derived from
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Figure 5-1: Rank-1 approximation of room example
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Figure 5-2: Rank-1 parameter hTout histogram for heat transmission coefficient U

the model identification. The heat transfer coefficient affects the losses through the exterior
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wall, which of course also depend on the outside temperature. If the heat transfer coefficient
is higher, the thermal permeability of the wall is also higher and the external temperature has
a greater influence on the internal temperature than at low heat transfer coefficients. This
result again demonstrate the interpretability of the parameters, which play an important
role in anomaly detection. If the influence of a parameter on the state changes noticeably
from one sequence to the next, there is an anomaly, and the changing parameter provides an
indication of the part of the system where the anomaly has an effect.

In Figure 5-3 it is shown how the changed heat transfer coefficient affects the other rank-1
parameters of the first state equation. The mean values of the 50-times parameter identifi-
cation of the simulation data sequences with heat transmission coefficients between U = 0
and U = 1 are shown. It should be emphasized that the slope of the parameter hTout al-
ready shown is steepest as the heat transmission coefficient increases. The parameter hTr ,
which belongs to the room temperature state, and the parameter hα, which belongs to the
control signal of the supply air, do not change. The influence of the supply air flow, which is
expressed by the parameter hV̇air

, increases slightly.
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Figure 5-3: Influence of heat transmission coefficient U on rank-1 parameter identification

5-1-3 Robustness of low-rank residuals

In this section, we will examine how robust the residual generation by the method presented
in subsubsection 5-1-1 and subsubsection 5-1-1 is against white noise. For this purpose, the
data of the example model from Example 2 is used in discrete norm-1 CPN representation
from Example 12 to generate multiple sequences of state data. The signal-to-noise ratio (S/N)
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is defined as the ratio between the signal to the noise in Decibel and can be used as a
metric for noisy signals. The first data sequence remains unchanged, while a white noise
with a S/N = 40 dB to S/N = 18 dB of the noiseless state signals is applied to the noisy
sequences. The parameters of each sequence are then estimated using sequential parameter
identification of the diagonal rank-1 CPN model from (5-4). To receive a distribution of
results, the parameter identification is again performed 50 times for each sequence.

Figure 5-4 shows histograms of the parameter identification results for the noise-free and
noisy signals, illustrating how the distribution of the 50 identification runs changes with the
signal-to-noise ratio.
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Figure 5-4: Rank-n parameter estimation depending on noise

It can be seen that noise up to a signal-to-noise ratio S/N = 30 dB has no effect on the results
of the parameter values. In addition, the noise is barely noticeable in the location of the
parameter distribution. At S/N = 25 dB, the noise is visible in the parameter distribution
of hTout and hϕ, but the majority of all identified parameters are still in the same bin as without
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noise. The scatter increases at a S/N = 20 dB for the other parameters as well, although
almost all observations still lie within an interval of 0.3. At S/N = 18 dB, the frequency
distributions flatten out. To provide intuition about the magnitude of noise at S/N = 100dB
and S/N = 20dB, the noisy state signals are depicted in Figure 5-5. The findings of this section
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Figure 5-5: State signals in case of noise

on the generation of residuals using the CPN MTI parameters can be summarized as follows:

• The dynamics of simple multilinear systems seem to be sufficiently represented in
diagonal rank-n approximation to use their parameters for anomaly detection.

• A change of a parameter in the exact state equation confirms the idea of interpretability,
since the influence of the outside temperature on the room temperature can be read
directly from the corresponding parameter.

• Identification of CPN parameters remains robust against white noise in state measure-
ments. Noticeable effects only occur in the presence of very noisy signals.

The results from the investigations in this section confirm the idea that the low-rank CPN
MTI parameters are suitable for the use in anomaly detection. To evaluate residuals from the
actual parameters an evaluation approach, using classification algorithms, is described next.
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5-2 Residual evaluation

In order to evaluate the classification result, a confusion matrix is introduced, which contains
with

• True positive anomalies (TP)

• False negative anomalies (FN)

• True negative nominals (TN)

• False positive nominals (FP)

the four states. The overall accuracy is given with

PA = 100
TP + TN

TP + FN + TN + FP
, (5-6)

in Starovoitov and Golub (2020)

The identification of parameters for residual generation in section 5-1 produces multidimen-
sional clouds of CPN parameter sets from MTI models, which approximate the dynamic
behavior of the system at different points in time. The residuals are derived by evaluating
the values of various parameter sets within these clouds. To interpret the large number of
parameters, classification methods can be applied. Binary classifiers, such as Least Squares
Support Vector Machines (LS-SVM) from Suykens et al. (2002) and two-class k-means clus-
tering from Hartigan and Wong (1979), introduced in subsubsection 2-1-2, are particularly
suitable for distinguishing between normal and abnormal system behavior.

The LS-SVM classifier requires supervised training data and typically assigns a class label y
to each parameter set x. The classification depends on the choice of a kernel function. Various
kernels, such as linear, polynomial, radial-basis-functions (rbf) and others, can be used. The
appropriate kernel function depends on the data. The radial basis function (rbf) kernels
used in this study, in combination with the LS-SVM from (2-31) have two free parameters, σ2

and γ, which influence the classification results. These parameters can function as tuning
parameters to adjust the sensitivity of the classification model. In the following analysis,
the influence of these two tuning parameters on the anomaly detection result is investigated
using an example data set containing nominal and anomalous data. The data is provided
by the University of Applied Sciences in Augsburg and was generated inside the SONDE
Project, (Schnelle and Lichtenberg, 2024). The data set contains simulation data of a seminar
room over one year. The simulated anomaly is an open window of different intensity and
duration, which occurs several times over the year.

The data set contains two state variables: room temperature and radiator return temperature.
Additionally, it includes three input data signals: radiator supply temperature, radiator flow
rate, and outdoor temperature. Each signal is sampled with a 15-minute sampling interval.
The data is used to identify the CPN parameter of a 2-norm normalized rank-1 MTI from
Definition 3-1.2 using the parameter identification procedure described in section 4-3, with
the nonlinear parameter identification algorithm from subsection 4-3-1. To obtain parameter
sets for each day and each night of the year, the sequential parameter identification as outlined
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in subsubsection 5-1-1 is used with a horizon N of 12 hours. From the identified parameter
sets, four intervals, evenly distributed over the year, are selected for training. The training
data set covers 10 % of the test data set for the year as marked by the blue shadowed parts
in Figure 5-7. The LS-SVM classifier was trained using the training data set by mapping
the parameter sets θ of the training period with a class value y (minus one for anomalous
behavior or plus one for nominal behavior). The trained LS-SVM model was then fed with
the parameter sets for the entire year and generated a classification result for each day and
each night of the year.
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and σ2 = 0.01
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Figure 5-7: Classification result γ = 2
and σ2 = 0.01

Table 5-1: Confusion matrix σ2 = 0.01 and γ = 1
Classified state

Positive (P) Negative (N)

R
ea

ls
ta

te Positive (P) 5/46 (TP) 41/46 (FN)

Negative (N) 0/683 (FP) 683/683 (TN)

Three different combinations of the parameter pairs σ2 and γ were implemented to investi-
gate the effects of these two parameters on the classification and anomaly detection result.
In the first case, the classification and the anomaly detection are investigated for values
of σ2 = 0.01 and γ = 2. The classification result of the training data is shown in Figure 5-6 in a
two-dimensional projection of the five-dimensional parameter space. This parameter space
includes the parameters related to the room temperature (the first state) and the heating
volume flow (an input to the system). The two-dimensional representation cannot accu-
rately represent the exact position of the class boundaries within the parameter space, but
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provides insight into the effect of the two tuning parameters. It can be observed that the
very small value for σ2, in combination with an average value for γ, leads to the formation of
a narrow class boundary around each individual training point labeled as anomalous. The
high weighting of the correct classification of each training point is determined by the low
value of σ2. The corresponding anomaly detection result for the entire year shows the effects
of these narrow class boundaries: only the anomalies within the training set are recognized
as such. Presenting the results in a confusion matrix supports the evaluation. This provides
information about the four possible categorizations of a classification result. These include
the true positive (TP) and true negative (TN) events for correctly classified anomalies and
nominals as well as the false positive (FP) for nominals incorrectly classified as anomalies
and the false negative (FN) for anomalies incorrectly classified as nominals. The first pair
of σ2 and γ values results in the confusion matrix from Table 5-1, which reports five true pos-
itives, 41 false negatives, zero false positives and 683 true negatives. This outcome indicates
overfitting of the SVM to the training set, resulting in poor performance when applied to
new data.

In the second case, where σ2 = 0.1 and γ = 20, the strong influence of each training point
overlaps with the effect of the large γ, which affects the smoothness of the class boundaries.
The result shown in Figure 5-8, is again a region of the anomaly class around the anomalous
training points, but the boundaries are less narrow than in the first case. As a result of this
classification, it can be seen in Figure 5-9 that, although more anomalies over the entire year
were classified correctly (18, see Table 5-2), there are also many false alarms (40) because
nominal events were misclassified as anomalies.
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Figure 5-9: Classification result γ = 20
and σ2 = 0.1

The third pair of values, σ2 = 5 and γ = 1.5, shows a different pattern for the two-dimensional
classification in Figure 5-10. The weighting of the distance of each individual training param-
eter to the support vector of the correct class is small, due to the larger value of σ2. The result
of this classification is, that the LS-SVM is not fitted to all training points. Some training
parameters for anomalous behavior lie further out and in between other nominal parame-
ters and are therefore evaluated as outliers. The anomaly class appears in the lower-right
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Table 5-2: Confusion matrix σ2 = 0.1 and γ = 20
Classified state

Positive (P) Negative (N)

R
ea

ls
ta

te Positive (P) 18/46 (TP) 28/46 (FN)

Negative (N) 40/683 (FP) 643/683 (TN)

region and does not include all anomalous training parameters. The result generated by the
trained LS-SVM using the full-year data is illustrated in Figure 5-11. While some anomalies
were detected, not all training parameters within the training periods are classified correctly.
This is a result of underfitting. There are four correctly classified anomalies over the year,
see Table 5-3 and three nominals are misclassified.
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Figure 5-10: SVM classification γ = 5
and σ2 = 1.5
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Figure 5-11: Classification result γ = 5
and σ2 = 1.5

Table 5-3: Confusion matrix σ2 = 5 and γ = 1.5
Classified state

Positive (P) Negative (N)

R
ea

ls
ta

te Positive (P) 4/46 (TP) 42/46 (FN)

Negative (N) 3/683 (FP) 680/683 (TN)
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Figure 5-12: True Positive (γ, σ2)

The three pairs of example values show the influence of the tuning parameters in the LS-SVM.
It is evident that σ2 has an inversely proportional effect on the weighting of the distances of
the training points to the support vectors, while increasing γ values increases the smoothness
of the class boundaries. The combination of the two free parameters is therefore a trade-off
between smoothness and accuracy, leading to an anomaly detection result with a trade-off
between false alarms and undetected anomalies.

To thoroughly examine the impact of the two tuning parameters, a study was conducted
across wider ranges 0.01 ≤ σ2

≤ 20 and 0.1 ≤ γ ≤ 20. The results are visualized in four
diagrams (Figure 5-12, Figure 5-13, Figure 5-14, Figure 5-15), depicting the percentages of
the four states from the confusion matrices as a result of the five-dimensional classification
problem.

The analysis reveals two primary trends. The first can be observed in the range of small
values [σ2 < 4, γ < 5]. The rate of correctly detected anomalies (true positive rate) increases
along the diagonal as both γ and σ2 increase, and remains high for further increases in γ.
In a similar pattern, the misclassified anomalies, known as false negatives, decrease. The
second trend shows that as γ and σ2 decrease, the rate of correctly detected nominal values
(true negative rate) improves in a similar pattern to the decrease of misclassified nominals
(false positive rate). The optimal classification aims to maximize both true positive and
true negative events. However, these variables are inversely related to each other, which
represents a conflict of objectives. Enhancing anomaly detection (true positives) leads to
more false alarms (false positives), while reducing false alarms reduces anomaly detection
performance.
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Figure 5-13: True Negative (γ, σ2)
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Figure 5-14: False Negative (γ, σ2)
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Figure 5-15: False Positive (γ, σ2)

The optimal overall classification accuracy lies at an intermediate point, balancing these com-
peting factors. This study identifies the optimal values as γ = 5 and σ2 = 2.8, representing a
compromise between effective anomaly detection and minimizing false alarms. The classi-
fication model achieves its best performance with 23 correctly identified anomalies and 681
correctly classified nominal events, as detailed in Table 5-4. According to the accuracy pre-
sented in (5-6), the total number of correctly classified events is 704, resulting in an overall
accuracy of 96.6 %. This high accuracy rate reflects the model’s robustness in distinguishing
between anomalous and nominal events, with only a small fraction of misclassifications in
both categories.

Table 5-4: Confusion matrix σ2 = 2.8 and γ = 5
Classified state

Positive (P) Negative (N)

R
ea

ls
ta

te Positive (P) 23/46 (TP) 23/46 (FN)

Negative (N) 2/683 (FP) 681/683 (TN)

The residuals generated as described in section 5-1 must be reliable in order to decide
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whether a current system behavior is nominal or anomalous and whether an alarm should
be triggered or not. This can only be the case if the previous identification problem was
able to determine unique parameters of the normalized MTI. The actual impact of errors
in building data and whether these can be detected using the described method through
residuals of the parameters is evaluated in the following chapter using representative errors
in building data.



Chapter 6

Application

In this chapter the developed automated anomaly detection algorithm is evaluated by apply-
ing it to three different types of data. The main difference between the data are the distinction
between supervised and unsupervised data sets. The latter poses the difficulty that there
is no information available on whether the system was in nominal operation or whether
anomalies occurred. Hence, there is no training data for the classification model. In the
first section of this chapter, supervised data sets containing nominal data and a single type
of anomaly are used. The second section uses standard data sets available from various re-
search institutes that contain multiple supervised failures. Finally, it is discussed whether the
algorithm evaluated in this way could also be applied to unsupervised data. This question
is examined using real measurement data from a large office building.

6-1 Application to supervised data sets - single anomaly

In this section, the developed parameter identification and anomaly detection algorithm is
tested with two different sets of building monitoring data. Both data sets consist of supervised
data with a single type of anomaly. The first data set contains real measurement data from a
test office building, while the second data set contains simulation data of a digital twin of a
seminar room.

6-1-1 Test office building

The following data set contains real measured data of a test office room in a laboratory that is
used for different test cases for operation and monitoring tests in buildings and for multilinear
time-invariant (MTI) modeling and anomaly detection in Schnelle et al. (2022). This is
described in this section. The room is equipped with a heating and cooling unit implemented
as heating and cooling panels, a ventilation system and internal loads representing technical
equipment and people. The people are represented by dummies with internal heating
units and the possibility of autonomous movements. The test office building is shown in
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Figure 6-1: Test office room as demonstrator, (Schnelle et al., 2022)

Figure 6-1. Sensors are installed in and around the test office space to collect data such as
air temperatures, water temperatures, volume flow signals, and occupancy sensor data to
identify dummy movement. Control signals and set points are also collected.

Five monitored data points are used to estimate a black-box model of the nominal system
behavior, including the supply temperature Tsup and control signal V̇air of the heating panels
and the volume flow of the ventilation system Csup. These are used as inputs for the subse-
quent model building procedure. It is assumed that the states are measurable and consist
of ∆Troom, which is the difference between the inside temperature and ambient temperature
around the room as well as the return temperature of the heating panel, Tret. A second
order MTI model is built as the block diagram in Figure 6-2 shows.

MTI

u1 : Tsup

u2 : V̇air

u3 : Csup

x1 : ∆Troom

x2 : Tret

Figure 6-2: Block diagram of the test office room, (Schnelle et al., 2022)

The selection of the data points thus leads to a model with n = 2 states and m = 3 inputs,
which is modeled with (3-16). The monomial tensor

M(x,u) =
[︄(︄

1
∆Troom

)︄
,

(︄
1

Tret

)︄
,

(︄
1

Csup

)︄
,

(︄
1

V̇air

)︄
,

(︄
1

Tsup

)︄]︄
∈ R×

52

consists of the variables while the transition tensor F ∈ R×
62 merges all parameters. In

Euclidean normalized rank r = 1 decomposition, the normalized CP decomposed (CPN)
representation has (2n + m)r = 7 parameters, therein the five angles θi and two weighting
values of ˜︁Fϕ.

To prevent numerical problems, all data are normalized within the interval [0, 1], which
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additionally allows the choice of the identity matrix as the weight Q for the cost function
evaluation (4-2) in the optimization problem (4-3) for parameter identification.

The second step is to identify a nominal rank-1 MTI model from Definition 3-1.2 from
data using Problem 4-1.1 and the nonlinear standard optimization algorithm, described
in subsection 4-3-1. The comparison of the measured and simulated state data in Figure 6-3
shows that the identified model is able to represent the behavior of the room.
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Figure 6-3: Measured and simulated states of the test room, (Schnelle et al., 2022)

To test the anomaly detection algorithm with this real data, an open door allowing cold air to
enter from the outside was implemented as an anomaly. The resulting data set contains 600
minutes of data sampled at one-minute intervals, as shown in Figure 6-4.
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Figure 6-4: Input and state measurement of test office, (Schnelle et al., 2022)
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The gray shaded interval k = 300, . . . , 360 is where the anomaly occurred.

With a moving horizon of 30 minutes, current parameter tensors ˜︁F in the form of the nor-
malized angles θi and the n weighting elements λi of ˜︁FΦ of an n-diagonal MTI model from
Definition 3-1.3 are estimated using the method proposed in subsubsection 5-1-1.

The subsequent residual evaluation is performed with a Least Squares Support Vector Ma-
chines (LS-SVM) with radial basis function (rbf) kernel of the LS-SVMlab Matlab toolbox
by De Brabanter et al. (2010). The classifier tries to find a hyperplane to separate the nominal
parameters from the parameters of the anomalous behavior. For this purpose, the parameter
angles θi, 1, which describe the first state equation are entered into the classification model.
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Figure 6-5: Rank-1 MTI Anomaly Detection (λ <= 0.7), (Schnelle et al., 2022)

The two-dimensional plots in Figure 6-5, Figure 6-6 and Figure 6-7 plot the parameters θ∆Troom

corresponding to the first state against the parameters θCsup corresponding to the heating
control valve input. Since the interval of anomalous behavior is known, these parameters
are marked with cyan stars, while the nominal parameters are marked with black squares.
In this data example the LS-SVM classification model is not tuned using the free parameters.
Instead, the aim here is to investigate how the weighting factor λi in the factor ˜︁Fϕ affects the
classification result and how this can be used to tune the classification.

In general, it can be seen that the length factor is crucial for the result of anomaly detection,
since no separation of anomalous and nominal behavior is possible for very small values
of λ ≤ 0.7 in Figure 6-5. Similarly, the LS-SVM classifier cannot draw a clear class boundary
between anomalous and nominal regions when considering the parameter point clouds of
the parameter sets with remarkably large weighting factors λ ≥ 1.6 in Figure 6-7. For
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Figure 6-6: Rank-1 MTI Anomaly Detection (0.7 < λ < 1.6), (Schnelle et al., 2022)

the remaining parameter sets with 0.7 < λ < 1.6, a clear separation of the two classes is
possible. Almost all anomalous parameter sets are correctly separated here. No parameters
are misclassified as anomalies, which is a requirement for anomaly detection algorithms in
HVAC systems.

It follows that the lengthλplays an instrumental role in anomaly detection. The identification
of reasonable parameters, which are useful for diagnostic purposes, is rendered impossible
when the values of λ are exceedingly low. Low weighting parameters in MTI models indicate
that the changes in the measurements are too minor. It should be noted that persistent
excitation is also relevant for parameter identification of multilinear models. Conversely,
very high values ofλ can be mapped to events with high rates of change of the measurements,
such as outliers or other rare events.

The conclusion is that the parameter λ also serves as a tuning parameter. Due to the previous
restriction of the weighting factor, models that are not meaningful for diagnosis because of the
data quality are excluded from the classification. In order to avoid parameters being wrongly
classified into the anomaly class when the system excitation is too low, as in Figure 6-5, a
diagnostic result is omitted for these time steps. Triggering false alarms should be avoided.
This also applies to uncertain events that indicate a measurement outlier.

By further investigation, the magnitude of the parameter values in Figure 6-6 allows an
interpretation. The magnitudes in the nominal class are either high along the vertical θCsup

axis or along the horizontal θ∆Troom axis or show high values in both directions. This indicates
a high dependency of the next state either on the control signal of the heating valve or on
the previous state of the room temperature difference. In the anomaly class, the parameters
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Figure 6-7: Rank-1 MTI Anomaly Detection (λ >= 1.6), (Schnelle et al., 2022)

show different magnitudes. Here the influence of the cool air entering the room is dominant
and neglects the influence of the Csup and ∆Troom, whose parameters lie at zero angles for
a large part of the points. The direct interpretation of the results by the magnitude of the
parameter angles is possible due to the CPN representation of the MTI.

The temporal representation of the classified events over the time step k in Figure 6-8 shows

50 100 150 200 250 300 350 400 450 500
k

Nominal

Anomaly

Classification
Anomaly

Figure 6-8: Detection of anomaly or nominal behavior, (Schnelle et al., 2022)

that no false alarms are triggered by the algorithm. The open door anomaly is detected
after 15 minutes due to the moving horizon. For inertial systems such as buildings, the time
difference between anomaly occurrence and detection is acceptable, (Schnelle et al., 2022).
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6-1-2 Seminar Room

The second example data set used to evaluate the presented anomaly detection algorithm for
supervised data with a single type of anomaly consists of simulation data from a digital twin
of a seminar room at the University of Applied Sciences in Augsburg, Germany, (Heinrich
et al., 2022). Similar to the previous data set, it provides three input signals (Tsupply, V̇supply
and Toutside) and two state signals (Troom, Treturn), resulting in an MTI model structure similar to
the block diagram shown in Figure 6-2. The performance of the anomaly detection algorithm
using this data set was presented in Schnelle et al. (2023).

A rank-1 approximation of a CPN MTI model from Definition 3-1.2 is identified with the
Problem 4-1.1 with nonlinear optimizer, as in subsection 4-3-1. Unlike the previous case,
the parameter identification algorithm uses sequentially sampled data sets, as described in
subsubsection 5-1-1. The time horizon window is set to one day and the sampling time of
the simulation data is 15 minutes, giving a set of 2n +m parameters per simulated day. An
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Figure 6-9: Parameter Classification, (Schnelle et al., 2023)

identification procedure optimizes the CPN MTI model from data using the Euclidean norm
representation. The nonlinear identification method from subsection 4-3-1 is again applied
to identify a normalized rank-1 MTI from data using Problem 4-1.1. The LS-SVM classifier
is trained with the parameter results θi,1 of the first seven days, containing six nominal and
one anomaly day. Subsequently, the rest of the daily parameter sets of the 1.5 months of
data, including six further unknown anomalies, is fed into the trained classification model.
A two-dimensional view of the seven-dimensional classification problem is given over the
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Figure 6-10: Results Anomaly Detection, (Schnelle et al., 2023)

dimension θV̇supply
and θTroom in Figure 6-9.

A similar result is obtained as in the previous data set. In the class of anomaly behavior, the
angle parameters of θV̇supply

are small, indicating that the supply air volume flow has little
influence on the room temperature state in case of a window opening anomaly, which can
be explained by the heat loss through the window.

In total, six of the seven implemented anomalies are detected, as depicted in Figure 6-10.
Only one, on April 12th, was not detected by the algorithm. This can be explained by the
high outside temperature in Southern Germany on that day, which was close to the indoor
temperature and therefore had no effect on the room temperature even when the window
was open.
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6-2 Application to standard data sets - several anomalies

The following standard data sets are provided by the Lawrence Berkeley National Labora-
tory. They were produced to evaluate and validate fault detection and diagnostic methods
for Heating, Ventilation and Air Conditioning (HVAC) systems in buildings, (Granderson
and Lin, 2019).

6-2-1 HVAC system with faulty valves and ducts

System and data

The fault data set was produced by Drexel University and provides simulation data of a
small commercial building in Iowa. The building has three air handling units (AHUs), each
serving four zones of the building. One of the air handling unit (AHU)s is used as a test
system. The system contains two fans to supply and exhaust air to and from the zones.
The supply air flow is generated from an outdoor air flow and a recirculation air flow is
generated from the return air flow. A preheater is installed for the outdoor air flow. The
mixed flow of recirculated and fresh air is either heated by a heating coil or cooled by a
cooling coil, both controlled by control valves. Ducts are installed to carry the air to and from
the conditioned zones. The return air flow is divided into an exhaust flow and a recirculation
flow. The exhaust and fresh air flows are controlled by dampers. The data set includes 17
measurement signals of temperature and pressure measurements and set points, control
signals for valve and damper positions and fan speed. An additional signal indicates the
occupied mode status and the fault ground truth indicates the presence of faults.

The system is controlled in two different modes. One is the occupied day mode and the
other is the unoccupied mode. In the occupied mode, the temperature of the conditioned
zones is maintained within an interval 70-72°F. A minimum fresh air flow is set to 40 %.
The cooling and heating valves are controlled depending on the outdoor temperature and to
maintain the zone temperature set points. The supply fan is equipped with a static pressure
control to maintain a static pressure. In the unoccupied night mode, 100 % of the return air
is recirculated and the chiller and heater valves are completely closed. The data set contains
simulation data for error-free operation and for scenarios with several anomalies in the
system with different error intensities. The faults are simulated for stuck and leaking heating
and cooling coils and stuck outside air dampers, by manually overwriting the control signals.
All faults last for an entire day. The data are not continuous but contains 25 non-consecutive
days over a two year period, including 13 anomalies.

Anomaly detection evaluation

The evaluation of the anomaly detection algorithm with the given data set is done with the
sequential parameter identification from subsubsection 5-1-1 for residual generation and the
residual evaluation with LS-SVM, described in section 5-2. The data is causally ordered in
inputs and states, with the mixed air temperature and the return air temperature defined as
states. The model structure is generated by using linear correlation analysis. All data points
with a correlation of 0.1 ≤ c < 1 to the states and with a correlation c < 1 to each other are
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Data Point Name Description Unit/Type
Supply Air Temperature Measured AHU supply air temperature °F
Outdoor Air Temperature Measured AHU outdoor air temperature °F
Mixed Air Temperature Measured AHU mixed air temperature °F
Return Air Temperature Measured AHU return air temperature °F
Supply Air Fan Status AHU supply air fan status boolean
Return Air Fan Status AHU return air fan status boolean
Supply Air Fan Speed Control Signal AHU supply air fan speed range 0 to 1
Return Air Fan Speed Control Signal AHU return air fan speed range 0 to 1
AHU: Cooling Coil Valve Control Signal Control signal for AHU cooling coil valve range 0 to 1
AHU: Supply Air Duct Static Pressure Measured AHU supply air duct static pressure psi
Occupancy Mode Indicator Indicator if the system operates in occupied mode boolean
Fault Detection Ground Truth Indicator if there is a fault present during the day boolean

Table 6-1: Data point list for DREXEL test data set, (Granderson and Lin, 2019)

used for the identification of the CPN MTI model. The correlation analysis is used to filter
out constants, identical data points and data points with no influence on the state over the
whole period. Constants and identical data points would lead to ambiguous parameters
and are not useful for diagnostic purposes. With the correlation analysis, 11 measurement
signals are chosen for the parameter identification, see Table 6-1.

Algorithm 2 is used as parameter identification method for non-negative alternating least
squares (ALS) to identify a diagonal rank-n model from Definition 3-1.3. As the implemented
faults last for an entire day, the identification horizon is set to 24 hours. The sampling
time is set to 5 minutes. With the chosen data points from Table 6-1, the monomial is of
dimension M ∈ R×

(2+9)2 and the model has n · 11 = 22 parameters in the normalized transition
matrix H from (3-31).

To investigate the occurrence of undetected anomalies and false alarms, the tuning of sec-
tion 5-2 is applied. The results of the classification with LS-SVM over the ten-dimensional
parameter clouds for the state xAir_mixed are clustered into nominal and anomalous behavior.
Three nominal and three anomalous days were used to train the LS-SVM classifier, resulting
in 24 % of the total data set, as shown by the blue shaded part in Figure 6-11.

28
/08

/20
07

29
/08

/20
07

30
/08

/20
07

31
/08

/20
07

01
/09

/20
07

02
/09

/20
07

05
/09

/20
07

06
/09

/20
07

12
/02

/20
08

06
/05

/20
08

07
/05

/20
08

08
/05

/20
08

15
/05

/20
08

27
/08

/20
08

28
/08

/20
08

29
/08

/20
08

30
/08

/20
08

31
/08

/20
08

01
/09

/20
08

04
/09

/20
08

05
/09

/20
08

11
/02

/20
09

06
/05

/20
09

07
/05

/20
09

08
/05

/20
09

date

Nominal

Anomaly

anomaly
training
classification

Figure 6-11: Anomaly detection result for DREXEL test data set
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Figure 6-12: Correct positive detections for DREXEL test data set

The true positive anomalies and true negative nominals are shown in Figure 6-12 and in Fig-
ure 6-13. Here, the anti-proportionality of undetected anomalies and false alarms is clear,
as with decreasing σ2 and increasing γ false alarms decrease with increasing undetected
anomalies. The total percentage of correctly detected events is shown in Figure 6-14. The
accuracy of over 80 % of all events covers a wide range of tuning parameters, but similar to
the test case in section 5-2, the boundaries where the tuning parameters are either very small
or very large, lead to the most incorrectly detected events. The values of the best results and
the direction of more false alarms seem to be data and training-dependent and not general.
The best result is achieved with σ2 = 1 and γ = 8 with over 85%. The result of the anomaly
detection with tuned LS-SVM over the measurement period is shown in Figure 6-11. The
tuning is done to avoid false alarms. False alarms are usually undesirable as they are costly
if the operator has to send the facility manager or an engineer to each alarm. Although the
training only covers a short period, all nominal cases are clustered correctly and 10 out of 13
anomalies of various types were identified.
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Figure 6-13: Correct negative detections for DREXEL test data set
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Figure 6-14: Accuracy for DREXEL test data set
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6-2-2 HVAC system with temperature sensor bias

System and Building

The second set of standard data for the evaluation of fault diagnosis algorithms is provided by
the Pacific Northwest National Laboratory (PNNL) as simulated monitoring data of a large
office building model. The simulation of the data is done with a model using a combination
of building simulation in EnergyPlus and engineering simulation of the HVAC system in
the Modelica tool Dymola, (Granderson and Lin, 2019). The building has three floors. On
each floor there are five zones served by a single-duct AHU with variable air volume (VAV)
system. The heating and reheating coils are supplied by a natural gas boiler. A central chiller
provides chilled water for cooling. The studied AHU system is located in the middle floor
and includes components, such as supply and return air fans, cooling and heating coils, and
control valves. For recirculation and fresh air outdoor air (OA) and return air (RA) dampers
are installed. The control system is installed similarly to the previous data set, distinguishing
between an occupied and an unoccupied mode. The occupied mode is scheduled from
Monday to Saturday from 6 am to 8 pm. In this mode, the supply air temperature is
modulated to 55◦ F. Heating and cooling are controlled by the zone temperature, with the
heating and cooling flow rates modulated by the valve positions. In unoccupied mode, the
supply fan is off, the OA damper is closed, and a system cycle is turned on and off to maintain
the zone temperature within the unoccupied mode temperature limits. The data set provides
set points, control signals, and sensor measurements including temperature signals, damper
and valve positions, duct pressure, and fan speed. The data set provides 188 days of faulty
and fault-free data. The fault in this data set is a temperature bias of ±1◦F to ±4◦F in the
outdoor temperature sensor measurement.

Anomaly detection for sensor bias test data set

The anomaly detection for the second standard data set is similar to the procedure for the
first data set. To preprocess the data, correlation analysis is used to filter out the data points
that are not correlated with the states or are almost identical. The list of eleven data points
used for parameter identification is shown in Table 6-1. The ground truth is used for training
and evaluation.

Identification is performed using the non-negative ALS algorithm from subsection 4-3-2 with
a one-day sequential horizon to identify the parameters H and ˜︁Fϕ in 1-norm representation
of the diagonal rank-n MTI from Definition 3-1.3 with 5-minute sampled data. The data
are causally sorted into states and inputs by defining the mixed air temperature and the
return air temperature as states. To check whether the second order rank-2 CPN model can
represent the data, an identified parameter set for a daily sequence is used for parameter
identification of the CPN model. The result of the rank-2 approximation compared with the
real data is shown in Figure 6-15. The figure shows the result for one day of test data used
for identification, and 16 days of evaluation data. The rank-2 MTI model is able to represent
the main dynamics and the magnitude of the state signal.

For the anomaly detection result, the LS-SVM classifier is tuned with 25 % of the daily
identified parameter sets of nominal and anomalous days. Then, all 188 daily parameter
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Figure 6-15: Rank-1 identification of sensor bias test data set

Table 6-2: Confusion matrix for sensor bias test data set
Classification state

Positive (P) Negative (N)

R
ea

lS
ta

te Positive (P) 119/162 (TP) 43/162 (FN)

Negative (N) 12/27 (FP) 15/27 (TN)

sets are given to the LS-SVM classifier. The result of correctly and incorrectly classified
events is shown in Table 6-2. The total percentage of correctly classified events is 71.28 %.
The classification of the events over time is shown in Figure 6-16. It can be seen that many
anomalies are classified well, even those that were not in the training set but in the nominal
case, most events outside the training set are misclassified, which triggers many false alarms.
The result shows that the anomaly detection algorithm with LS-SVM classification is not able
to reliably distinguish between the anomalous and nominal behavior by classifying the daily
identified parameter sets for this standard data set with the outdoor temperature sensor
failure. The temperature bias of ±1◦F to ±4◦F degrees does not seem to have a significant
influence on the system dynamics that differ from the nominal case. One reason may be the
difference in disturbance intensity. A temperature difference of one degree between measured
and actual value is within the accuracy range of standard outdoor temperature sensors, as
they are often affected by changing weather conditions, such as solar irradiation and wind
exposure, leading to measurement bias. The binary classifier is not able to discriminate
between faulty and nominal behavior hen trained on error intensities between one and four
degrees.
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Figure 6-16: Anomaly detection result for sensor bias test data set

6-2-3 Flexlab test cell data with HVAC system anomalies

System and Data

The third standard data set is provided by the Lawrence Berkeley National Laboratory
(LBNL) in the FLEXLAB test facility. The FLEXLAB facility is a laboratory for collecting
experimental data on building systems. FLEXLAB is equipped with planned internal loads
similar to those found in real commercial buildings. The FLEXLAB test cell is served by a
single-zone AHU. The main components of the AHU are again heating and cooling coils,
valves and dampers for outside fresh air, recirculated air and exhaust air. The control
sequence varies between occupied and unoccupied mode. In occupied mode, the zone
temperature is maintained by modulating the heating coil valve between a minimum and
maximum temperature set point based on demand. The outdoor air control depends on the
mode. In economizer mode, when the outdoor temperature is 3.6 ◦F lower than the return
air temperature, the outdoor and exhaust air dampers are 100 % open and the return air
damper is closed. In unoccupied mode, the zone air temperature is modulated by heating
and cooling in the same way as in occupied mode, and the conditioning is deactivated when
the set point (±3.6◦F) is reached. The supply fan runs at minimum speed, which is 10 %.

The data set contains data from the summer season, with fault and fault-free scenarios. The
faults occur in September and concern stuck and leaking outdoor air dampers and heating
and cooling coils. All faults again last for an entire day.

Identification and Anomaly Detection

For the identification of the diagonal rank-n CPN MTI model from Definition 3-1.3 using
this data set, the same procedure was applied as for the previous two data sets. Based on
the correlation analysis, nine data points were selected for model identification, as listed
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in Table 6-3. Using the sequential identification approach described in subsubsection 5-1-1,
a CPN MTI model was estimated for each day with the algorithm presented in Algorithm 2.

Data Point Name Description Unit/Type
Supply Air Temperature Measured AHU supply air temperature °F
Outdoor Air Temperature Measured AHU outdoor air temperature °F
Mixed Air Temperature Measured AHU mixed air temperature °F
Return Air Temperature Measured AHU return air temperature °F
Supply Air Fan Speed Control Signal AHU supply air fan speed range 0 to 1
Outdoor Air Damper Control Signal Control signal for AHU outdoor air damper range 0 to 1
Return Air Damper Control Signal Control signal for AHU return air damper range 0 to 1
Cooling Coil Valve Control Signal Control signal for AHU cooling coil valve range 0 to 1
Heating Coil Valve Control Signal Control signal for AHU heating coil valve range 0 to 1
Fault Detection Ground Truth Indicator if there is a fault present during the day boolean

Table 6-3: Data point list for FLEXLAB (Granderson and Lin, 2019)

The result of the simulated versus the measured first state (return air temperature) of
the CPN MTI model with normalized data to the interval ∈ [0 1] is plotted in Figure 6-17.
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Figure 6-17: Identification result for FLEXLAB data

It shows a high similarity for the identification interval (19/09/17) as well as for the testing
interval (20/09 -24/09/17) between the model and the measurements. The performance of the
anomaly detection algorithm using LS-SVM is illustrated in Figure 6-18 and shows a good
performance with only one false alarm and one undetected fault.
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Figure 6-18: Anomaly detection result for FLEXLAB data

6-3 Application to not clustered data sets of real buildings

In this section, the anomaly detection algorithm evaluated in the previous sections on clus-
tered monitoring and simulation data from a single building zone is tested on monitoring
data from a real large office building. The main difference and the main challenge is that a
large number of unsorted data points are available, but no monitored data labeled as nominal
and anomalous behavior. The large amount of unsorted data cannot be used directly, but
must first be structured, as described below.

Building and Data

The building under consideration is an office building in Hamburg. It is mainly used as a
coworking space for young companies. The building has an area of 7317 m2 spread over
five levels. The basement contains creative offices, laboratories and studios, while the other
levels are used as coworking spaces with large open spaces and smaller offices and project
rooms. The building uses smart building technology with sensor technology and network
protocols to collect and upload weather data and indoor environment parameters, such
as temperatures, CO2 levels and humidity. In addition to measured values, the building
management system (BMS) provides other signals such as set points, control signals and
operating modes of the HVAC system. Occupancy schedules and occupancy sensors are
used in the control system to operate the offices and halls based on actual demand and
additional data points are available. A total of 17,000 data points are recorded, collecting
time series data from the entire building operating system. In order to use this data, pre-
processing and data preparation is required. The structure of the data has to be identified in
order to use it for modeling, as described in the next section.

Identification and anomaly detection

For model identification the sparse representation of the CPN MTI from (4-10) is used, as in
unstructured full representation the parameter matrix would have 17, 000 diagonal entries
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in ˜︁FΦ and 17, 000 × 17, 000 parameters in the normalized parameter matrix H, even for the
limited diagonal rank-n MTI model from Definition 3-1.3. Since it is very unlikely that every
data point has an influence on any other data point in that building a structured sparse MTI
model from subsubsection 3-1-2 is used. Furthermore, this assumption would lead to huge
models, which would require large storage capacities and computing times, a structured
sparse MTI model from subsubsection 3-1-2 is used. For structuring the natural language
processing (NLS), as proposed in Algorithm 1, is performed. With the implementation
from García (2022), it was able to structure the data in a dependency matrix, which shows
less than 50 dependent data points per state. With the diagonal rank-n CPN MTI, each row
of the parameter matrix (3-30) represents a submodel for a state; several rows can be used
together to create submodels for individual zones or rooms. To neglect duplicate data points
or data points showing low excitation or constant values, the linear correlation is used again,
as described in section 6-2.
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Figure 6-19: Identification result of first state x1

To evaluate the new parameter identification method using Algorithm 2, a second order
submodel for one room of the office building was identified using the ALS optimizer
for CPN MTI. Figure 6-19 shows how the identified model represents the measured data of
the first state, which is the room temperature. The first day was used as identification data
and the next three shown days were used for testing. As it can be seen, the automatically
identified structured black-box MTI model with rank limitation is able to represent the main
dynamics of the room temperature behavior.

Remark: To avoid numerical problems with data points with a large deviation in magnitude,
all data for the identification process are scaled to the unit interval [0, 1] and then rescaled
for comparison.

Figure 6-20 shows the results for the second state, the CO2 sensor measurement. Here, the
deviation between the measured and simulated states is larger, especially on the second
simulated day. The identified MTI model for one day is not sufficient to represent the
changing dynamics of the CO2 values for different days. This can be explained by the fact that
the one-day identification did not take into account all possible state and input trajectories.
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Figure 6-20: Identification result of second state x2

In addition, the simple occupancy and presence data do not provide any information about
the number of people in a room.

To test the anomaly detection algorithm the data were identified for every day over four
months in winter. The sampling time was 15 minutes. As no supervised data were available
for that building, LS-SVM cannot be used for separation of the parameter sets showing
nominal and anomalous behavior. The k-means clustering, see Hartigan and Wong (1979),
provides a method to separate a data set into a predefined number of classes. As no training
is needed for that method, it is used to test whether it can indicate a possible anomaly during
these months. The result of the multidimensional cluster decision is plotted over two weeks
in Figure 6-21. Two parameter sets are separated in the second cluster on January 5 and
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Figure 6-21: Unsupervised clustering result

January 6. Because of the lack of training data, this result cannot be evaluated directly.
By analyzing the used data in Figure 6-22, it is noticeable that from January 5, the room
temperature (blue line) drops significantly below the temperature set point (orange line).
This could actually be anomalous behavior that the algorithm has detected. However, from
January 7, the algorithm assigns the nominal cluster again, although the deviation between
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Figure 6-22: Data plot for unsupervised data

room temperature and set point still exists. The untrained model may therefore not be
directly suitable for generating an anomaly detection result. It could display a first guess,
which could be evaluated and then used as a training data set for LS-SVM.



Chapter 7

Conclusion

7-1 Summary

In this thesis, an anomaly detection method for building systems during their operation
is presented using parameter identification of low-rank multilinear models. Chapter 2
first introduces methods for anomaly detection, distinguishing between signal-based and
model-based methods. Model-based black-box and gray-box methods require parameter
identification methods for the model estimation, which are also explained. Furthermore,
multidimensional data structures (tensors) and the Canonical Polyadic (CP) tensor decom-
position are introduced as well as the multilinear time-invariant (MTI).

Chapter 3 develops a normalized representation of the normalized CP decomposed MTI
models and examines the significance of the normalized model parameters. It is shown
that the influence of a signal on the state at the next time step can be read directly from the
parameters. In addition, normalization prevents arbitrary linear parameter combinations
from representing the same multilinear models and thus lays the foundation for using the new
unique model parameters for anomaly detection of multilinear normalized rank-1 models.
The sparse representation and prior model structuring allow scaling to large models, which
are based on multiple signals.

Chapter 4 deals with the parameter identification of multilinear models. Two different ap-
proaches are examined. First, a two-step approach of parameter identification of multilinear
models is presented, where the full parameter tensor is identified and then brought into the
desired representation by decomposition and normalization. Due to the form of the mul-
tilinear equations, which are linear in the parameters, a straightforward solution using the
least squares method from linear algebra is possible. However, the number of parameters
increases exponentially with each additional state or input, meaning that this method is not
scalable. Subsequently, the direct identification of the normalized CP decomposed reduced
parameter matrices is developed. An analysis shows that the decomposed optimization
problem is non-convex. To solve the optimization problem, a standard nonlinear optimizer
is first used, which shows large computation times. Subsequently, a specific optimizer for
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the CP decomposed MTI models is developed using an alternating least squares method,
which achieves a significant reduction in the optimization time and also a slight improvement
in the optimization error.

Chapter 5 then describes an algorithm for anomaly detection by examining the model pa-
rameters of the MTI models. A moving horizon or sequential identification of the model
parameters using time series data, collected in buildings, is proposed. Residuals of the pa-
rameters are then evaluated with existing clustering algorithms to generate a binary anomaly
detection result (anomalous/nominal). Due to the uniqueness of the model parameters re-
quired for anomaly detection, an example is used to show how a rank-n model can be
approximated for a heated room despite the strong limitation of the model dynamics and
that a certain robustness against white input noise is given. A tuning procedure is described
and investigated with simulation data of a different room, which shows that the sensitivity
of the classification model can be tuned between undetected anomalies and false alarms.

The application of the developed anomaly detection algorithm is examined in Chapter 6.
Different example data sets are used to evaluate how multilinear rank-1 parameter identifi-
cation can approximate the monitoring data from building systems. The application to two
standard data sets with different faults and fault intensity in the HVAC systems showed
good performance, while a bias in the outside temperature sensor from a third standard
data set were detected insufficiently. Two more data sets with window/door openings as
anomalies were used. One with simulation data from a white-box digital twin and one from
real measured data from a test office. Both showed good results. At the end, an example
with unsupervised measurement data from a big office and coworking building were used.
Here the anomaly detection could not be evaluated, but the interpretation of the identified
parameters were reasonable.

7-2 Outlook

Modeling and Identification: The whole algorithm is assuming states as measurable outputs
and therefore only the state transition equation is considered in the modelling and identi-
fication procedure. Extending the algorithm to output equations would take into account
potentially noisy measurements. In the modeling of normalized MTI models the structure
of the output equation is known, but the parameter identification procedure would have
to be adjusted to estimate the non-measurable states in addition to the parameters. State
estimators are not available for the multilinear model class yet. Furthermore, the anomaly
detection could be extended to rank-n normalized CP decomposed (CPN) MTI parameters.
This could help to reduce the approximation error and represent the dynamics of the building
more accurately. Anomalies that only change the dynamic behavior of the building to a small
extent could thus be detected more easily, but the problem of ambiguous models and how
they affect the classification process should be investigated.

Classification: For unsupervised anomaly detection without the availability of training data,
different classification methods could be evaluated. There are methods e.g. for one class
classification or unsupervised outlier detection, which could not be investigated in this
work. Furthermore, a training for multiple classes could be investigated to train different
operation modes as for different seasons. This could also lead to training specific anomalies
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and detecting them later in the application phase. This could eventually extend the given
algorithm into a fault detection and identification algorithm.

Application: In order to use the developed algorithm for online anomaly detection in real
buildings, training data and an evaluation phase are needed to assess whether the alarms
generated by the classification model indicate real anomalies. Since training data is not
always available, one could investigate whether the nominal parameters of the normalized
multilinear models of one building resemble those of another building of similar construction
and use. If this is the case, a trained classification model could be transferred for initialization
and further tuned during the operation of the specific building.
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