
Universität für
Baukunst und Metropolenentwicklung

Henning-Voscherau-Platz 1
20457 Hamburg

Aufbau eines

photogrammetrischen Messsystems

mit Raspberry-Pi-Kameras als

Low-Cost-Sensoren

für die Aufnahme von kleinen Objekten

Geodäsie und Geoinformatik

Masterthesis
Sommersemester 2024

Florian Timm

Abgabedatum: 28. Oktober 2024

mit Korrekturen vom 09. Februar 2026

Verfasser
Florian Timm

E-Mail: florian.timm@hcu-hamburg.de / info@florian.timm.de

Erstprüfer

Prof. Dr.-Ing. Thomas Kersten

HafenCity Universität Hamburg

Henning-Voscherau-Platz 1, 20457 Hamburg

E-Mail: thomas.kersten@hcu-hamburg.de

Zweitprüfer
Dipl.-Ing. Kay Zobel

HafenCity Universität Hamburg

Henning-Voscherau-Platz 1, 20457 Hamburg

E-Mail: kay.zobel@hcu-hamburg.de

Sofern keine andere Quelle in der Bildunterschrift genannt wird, handelt es sich bei den

Abbildungen um eigene Darstellungen. Diese dürfen unter Namensnennung weiterver-

wendet werden.

I

Kurzzusammenfassung

Die Photogrammetrie ermöglicht die Erstellung von 3D-Modellen unter Zuhilfenahme

relativ einfacher Technik. Allerdings ist der Zeitaufwand für die Aufnahme der Bilder

oft hoch, sodass sich diese Methode nicht für die Erfassung einer großen Anzahl von

Objekten eignet, beispielsweise für die Digitalisierung von Museumsbeständen. Systeme,

die auf mehreren fest installierten Kameras basieren, verwenden in der Regel hochwertige

Kameras. Dies führt jedoch zu einem signifikanten Anstieg der Hardwarekosten.

Im Rahmen dieser Arbeit erfolgt eine Untersuchung des Lösungsansatzes, mehrere

kostengünstige Kameras zu verwenden, die fest auf einem Rahmen montiert sind. Den

Kern dieser Untersuchung bildet der Aufbau eines photogrammetrischen Messsystems für

kleine Objekte, welches aus Raspberry-Pi-Kameras besteht. Im Rahmen der Entwicklung

ist die Programmierung einer Schnittstelle zur Synchronisation der Kameras sowie die

Entwicklung einer Möglichkeit zur Kalibrierung der Kameras vorgesehen. In einem

nächsten Schritt wird die Genauigkeit der Erfassung überprüft. Das Endergebnis soll

im Idealfall einem photogrammetrischen Laien ermöglichen, schnell und ohne lange

Einarbeitungszeit 3D-Modelle in ausreichender Auflösung und Qualität zu erzeugen.

Abstract
Photogrammetry enables the creation of 3D models using relatively simple technology.

However, the time required to capture the images is often high, meaning that this

method is not suitable for capturing numerous objects, for example when digitizing

museum collections. Systems based on several permanently installed cameras generally

use high-quality cameras. However, this results in a significant increase in hardware

costs.

This thesis investigates the solution of using several low-cost cameras mounted on a

fixed frame. The core of this investigation is the construction of a photogrammetric

measurement system for small objects, which consists of Raspberry Pi cameras. The

programming of an interface to synchronize the cameras and the development of a way

to calibrate the cameras are planned as part of this. The next step will be to check the

accuracy of the recording. Ideally, the end result should also enable a photogrammetric

layman to generate 3D models in acceptable resolution and quality quickly and without

a long familiarization period.

Inhaltsverzeichnis

1. Einleitung 1

1.1. Motivation . 1

1.2. Konzept . 2

1.3. Stand der Technik und Forschung . 3

2. Photogrammetrische Grundlagen 5

2.1. Abbildung . 6

2.1.1. Innere Orientierung . 6

2.1.2. Äußere Orientierung . 8

2.1.3. Abbildungsgleichung . 8

2.2. Bilder . 11

2.2.1. Überlappung und Bildinhalte 11

2.2.2. Position und Ausrichtung der Kamera 11

2.2.3. Belichtung . 11

2.2.4. Fokussierung und Schärfentiefe 12

2.3. Skalierung/Maßstab . 13

2.4. Verknüpfungs- und Passpunkte . 14

2.4.1. Zielmarker . 14

2.4.2. Merkmalsextraktion . 15

2.5. Verknüpfung von Bildern . 16

2.5.1. Rückwärtsschnitt . 16

2.5.2. Vorwärtsschnitt . 17

2.5.3. Relative Orientierung . 18

2.6. Bündelblockausgleichung . 18

2.7. Multi-View-Stereo . 19

2.8. Mesh-Generierung . 19

2.9. Texturierung . 20

3. Aufbau des Messsystems 22

3.1. Kameras . 22

3.2. Rahmen . 24

3.3. Beleuchtung . 25

III

Inhaltsverzeichnis

3.4. Kommunikation und Datenübertragung 27

3.5. Energieverteilung . 27

3.6. Kostenbetrachtung . 29

4. Voruntersuchungen 31

4.1. Überprüfung der Kameraauflösung . 31

4.2. Änderung der Kamerakonstante durch Fokussierung 32

4.3. Änderung der Verzeichnung durch Fokussierung 34

4.4. 3D-Modell aus Fokusstacking . 35

4.5. Überprüfung der Kamerasynchronität 37

5. Software-Entwicklung 38

5.1. Anforderungsanalyse . 38

5.1.1. Anwendungsfallmodellierung . 38

5.1.2. Funktionale Anforderungen . 39

5.1.3. Schnittstellen . 39

5.1.4. Nicht-funktionale Anforderungen 40

5.2. Anwendungsentwurf . 40

5.2.1. Domänen-Klassendiagramm . 40

5.2.2. Programmablauf . 41

5.3. Implementierung . 41

5.3.1. Module auf den Raspberry-Pi-Computern (Python) 43

5.3.2. Desktop-Schnittstelle (Java) . 48

5.3.3. Konfiguration . 49

6. Systemkalibrierung 51

6.1. Maßstab und Passpunkte . 51

6.2. Kamerakalibrierung . 51

7. Untersuchungen zur Genauigkeit und Systemaufbau 54

7.1. Referenzdaten . 54

7.2. Vorgehen zur Genauigkeitsüberprüfung 56

7.2.1. Erwartete Genauigkeit . 56

7.2.2. Verwendete Parameter . 58

7.3. Genauigkeitsüberprüfung des 3D-Modells 60

7.3.1. Durchführung . 60

7.3.2. Ergebnisse . 60

7.4. Nutzung eines Drehtellers . 62

7.4.1. Durchführung . 62

7.4.2. Ergebnisse . 63

IV

Inhaltsverzeichnis

7.5. Evaluation der Kameraanzahl . 64

7.5.1. Durchführung . 64

7.5.2. Ergebnisse . 66

7.6. Zusammenfassung . 68

8. Fazit und Ausblick 69

Glossar 72

Akronyme 73

Literaturverzeichnis 74

Abbildungsverzeichnis 78

Tabellenverzeichnis 80

Anhang 81

A. Bedienungsanleitung 82

A.1. Anwendungsbereich . 82

A.2. Menü-Struktur der Weboberfläche . 82

A.2.1. Capture Data . 82

A.2.2. View Data . 83

A.2.3. Status . 83

A.2.4. System-Control . 83

A.3. Inbetriebnahme . 84

A.4. Software-Einrichtung . 84

A.5. Kalibrierung . 85

A.6. Durchführung . 85

A.6.1. ... mit Netzwerkverbindung . 86

A.6.2. ... ohne Netzwerkverbindung . 86

A.7. Weiterverarbeitung . 87

A.7.1. Agisoft Metashape . 87

A.7.2. OpenDroneMap . 87

A.8. Wartung . 88

A.9. Fehlerbehebung . 88

A.9.1. Kameras sind nicht erreichbar 88

A.9.2. Bilder zu hell/zu dunkel . 89

A.10.Zugangsdaten . 89

V

Inhaltsverzeichnis

B. Kurzbedienungsanleitung 90

B.1. Agisoft Metashape . 90

C. Quick Guide 92

C.1. Agisoft Metashape . 92

D. Teileliste 94

D.1. Mechanische Bauteile . 94

D.2. Elektronische Bauteile . 95

VI

1. Einleitung

Im Rahmen dieser Arbeit wurde ein Photogrammetrie-System auf Basis von Raspberry-

Pi-Kameras entwickelt. Das System soll es ermöglichen, kleine Objekte bis etwa 40 cm

mit geringem finanziellem und personellem Aufwand zu erfassen und daraus 3D-Modelle

zu erstellen.

Die folgenden Abschnitte geben einen Überblick über die Motivation und das Konzept

der Arbeit und stellen den bisherigen Stand der Technik und Forschung dar.

1.1. Motivation

In Museen besteht vielfach der Wunsch, den Bestand an Exponaten zu digitalisieren,

beispielsweise um diese online in virtuellen Ausstellungen zu präsentieren. Entspre-

chende Handreichungen des Deutschen Museumsbundes legen auch die Digitalisierung

als 3D-Modelle nahe, verweisen aber auf den großen Aufwand und Formatprobleme

(vgl. Deutscher Museumsbund e. V., 2022, S. 43). Neben der reinen Präsentation der

Bestände ist auch die Dokumentation und Erforschung der Exponate von Interesse.

Beispielsweise durch Naturkatastrophen, Brände und bewaffnete Konflikte können Kul-

turgüter jederzeit verloren gehen oder beschädigt werden. Die Digitalisierung ermöglicht

es, diese Objekte zu bewahren und der Öffentlichkeit zugänglich zu machen. Neben der

vorsorglichen Digitalisierung ist aber auch die schnelle Erfassung von Objekten nach

einem Schadensfall wichtig (vgl. Deutsches Archäologisches Institut, 2024).

Weiterhin besteht in vielen weiteren Bereichen der Bedarf, dreidimensionale Modelle

einfach und kostengünstig zu erfassen, beispielsweise in der Archäologie, der Spiele- und

Filmindustrie für die 3D-Modellierung oder auch der Industrie zur Entwicklung und

Qualitätskontrolle (vgl. Luhmann, 2023, S. 37f).

1

1. Einleitung

1.2. Konzept

Das zu entwickelnde System soll dabei von Laien mit kurzer Einarbeitungszeit bedienbar

sein. Dazu ist eine weitgehende Automatisierung der Schritte erforderlich. Auch ein

eigener Nachbau des Systems soll einfach möglich sein. Um Lizenzkosten zu sparen,

ist die Möglichkeit der Nutzung von Open-Source-Software zu prüfen. Das System soll

kleine Objekte in einer Größenordnung bis etwa 40 cm Durchmesser erfassen können.

Nach einer Analyse der Anforderungen an ein solches System ist die Entwicklung eines

Prototyps vorgesehen, welcher aus mehreren Kameras besteht, die auf einem Rahmen

montiert sind. Die Anordnung der Kameras erfolgt dabei so, dass eine Erfassung des

Objektes aus verschiedenen Blickwinkeln gewährleistet ist. Die Kameras sind dabei

synchron auszulösen und die Daten anschließend automatisch zu übertragen, sodass

eine direkte Verarbeitung der Aufnahmen zu einem 3D-Modell erfolgen kann.

Zur Untersuchung möglicher Optimierungen des Systems ist - neben der eigentlichen

Entwicklung und Genauigkeitsuntersuchung - eine Analyse der Anzahl der Kameras auch

unter Nutzung eines Drehtellers vorgesehen. Ziel ist die Identifikation von Potenzialen

zur Senkung der Hardwarekosten oder alternativ zur Steigerung der Auflösung und

Genauigkeit.

Zusammengefasst sollen folgende Anforderungen erfüllt werden:

1. Erfassung von kleinen Objekten bis etwa 40 cm Durchmesser

2. automatisierte Erfassung der Bilder

3. automatisierte Übertragung der Bilder

4. automatisierte Verarbeitung der Bilder zu einem 3D-Modell

5. einfache Bedienbarkeit

6. geringe Kosten

7. einfacher Nachbau

8. Nutzung von Open-Source-Software

9. Transportmöglichkeit/Nutzung in anderen Ländern

10. Möglichkeit zur Erweiterung

2

1. Einleitung

1.3. Stand der Technik und Forschung

Der Ansatz, Kameras auf einem festen Rahmen zu montieren, Bilder aufzunehmen und

anschließend automatisiert 3D-Modelle auf Basis von Photogrammetrie zu erzeugen, ist

bereits weit verbreitet und erprobt. Hauptsächlich unterscheiden sich diese im Vergleich

zu dem hier untersuchten Ansatz in der Wahl der Kameras und der Zielgruppe. Häufig

werden hochwertige Kameras verwendet, die jedoch entsprechend hohe Kosten in der

Anschaffung verursachen.

Bereits Anfang der 1990er Jahre wurde ein modulares System von Leica entwickelt,

das die Objekterfassung mittels mehrerer Digitalkameras ermöglichte, das sogenannte

Leica POM. Dieses System wurde für industrielle Anwendungen entwickelt, beispielsweise

für die Qualitätskontrolle von Bauteilen. Es ermöglicht die flexible Nutzung verschiedener

Kamerasysteme, Drehteller und Lichtquellen. Wie bei dem hier geplanten System werden

die Daten ebenfalls automatisch übertragen und verarbeitet. Auch können bereits einige

Punkte automatisch gemessen werden. Ähnlich wie das aktuelle System TubeInspect

(vgl. Bösemann, 1996) von Hexagon - dem Mutterkonzern von Leica und AICON - nutzt

es jedoch kein Structure-from-Motion (SfM) zur Erstellung der 3D-Modelle, sondern

Kantendetektion und anschließenden Bildvergleich. Hierfür wird das Objekt von hinten

beleuchtet und die Kanten erfasst. Die Genauigkeit des Systems wird mit 0,1 mm

angegeben. (vgl. Luhmann, 1990)

Auch Raspberry-Pi-Kameras wurden bereits in der Photogrammetrie eingesetzt,

beispielsweise bei dem Projekt Pi3DScanner. Dieses verfolgt das Ziel, ein kostengünstiges

Photogrammetrie-System auf Basis mehrerer Raspberry-Pi-Kameras zu entwickeln. Der

Ansatz ist ähnlich, jedoch kommerziell und aufgrund der Nutzung einer größeren Anzahl

von Kameras höherpreisiger als das hier geplante Vorhaben. Zudem liegt der Fokus, wie

bei den meisten Projekten dieser Art, auf der Erfassung von größeren Objekten oder

Personen. (vgl. Garsthagen, 2021)

An der HafenCity Universität wurde 2015 ein Innenraum-Erfassungssystem entwi-

ckelt, das auf Basis einer Raspberry-Pi-Kamera und einem Laserentfernungsmessgerät

arbeitet. Hierbei wurde auch die Genauigkeit der Kameras untersucht und die Mög-

lichkeit der Kalibrierung geprüft. Bei dem verwendeten, älteren Raspberry Pi Camera

Module v2 handelt es sich jedoch um eine Kamera mit Fixfokus, wodurch die Ka-

librierung vereinfacht ist (siehe Abschnitt 3.1). Hier wurde dennoch ein instabiler

Bildhauptpunkt festgestellt, dass Genauigkeitspotenzial nach Simultankalibrierung aber

mit einer Spiegelreflexkamera vergleichbar bezeichnet. (vgl. Kersten et al., 2016b)

3

1. Einleitung

Ansätze für die Erfassung von kleineren Objekten in Kombination von Raspberry-

Pi-Kamera-Modulen sind bisher nicht bekannt. Problematisch ist hierbei die geringe

Schärfentiefe im Makrobereich (vgl. Unterabschnitt 2.2.4). Dieses Problem tritt auch

bei höherwertigen Kameras und noch kleineren Objekten auf, bei denen ein Abblenden

des Objektivs nicht mehr für ausreichend Schärfentiefe sorgt. Auch im Bereich der

Mikroskopie ist dieses Problem weit verbreitet. Clini et al. (2016) zeigt hier eine Lösung

durch die Nutzung von Fokusstacking, bei der mehrere Bilder mit unterschiedlichen

Fokussierungen aufgenommen und anschließend zusammengefügt werden. Dieser Ansatz

wurde auch in dieser Arbeit geprüft.

Der Einsatz von Structure-from-Motion (SfM) – die automatische Erstellung von

3D-Modellen aus Bildern (siehe Kapitel 2) – wurde für die Erfassung von Kulturgütern

bereits 2012 an der HafenCity Universität untersucht (vgl. Kersten et al., 2012). Hierbei

wurden bei der Erfassung von Objekten verschiedener Größenordnungen wie Gebäude

oder kleine Artefakte zum Teil Ergebnisse erzielt, welche mit Laserscannern vergleichbar

sind. Manche Testobjekte, vor allem mit texturarmen Oberflächen, führten jedoch zu

unbrauchbaren Ergebnissen, aber eine stetige Verbesserung der Software war schon

damals absehbar. Auch die Nutzung von Open-Source-Software wurde bereits untersucht.

Genauigkeitsuntersuchungen von Nikolov & Madsen (2016) an der Universität Aalborg

zeigten schon bessere Ergebnisse, jedoch war auch hier je nach Software bei einigen

Objekten keine Erzeugung des 3D-Modells möglich, beispielsweise bei glänzenden oder

texturlosen Oberflächen.

In der praktischen Arbeit zur Dokumentation von Kulturgütern ist Structure-from-

Motion (SfM) bereits angekommen. Bei archäologischen Grabungen ist die Nutzung

zur Dokumentation der Grabungsflächen inzwischen üblich (vgl. Reinhard, 2013). Hier

hat sich SfM als Ergänzung zur Tachymetrie und als Alternative zum Laserscanning

durchgesetzt.

Auch der Einsatz zur Rettung von mobilem Kulturgut wird geprüft. Das Projekt Kul-

turGutRetter des Deutschen Archäologischen Instituts und des Technischen Hilfswerks

hat sich zum Ziel gesetzt, durch verschiedene Gefahren wie Naturkatastrophen und

Kriege bedrohte Kulturgüter zu dokumentieren und nach Möglichkeit zu retten. Dabei

wird auch SfM als mögliche Technik zur Dokumentation von mobilen und immobilen

Kulturgütern genannt (vgl. Busen & Wedekind, 2023, S. 48). Dazu wird ein mobiles

Rettungslabor eingesetzt, das als Luftfracht zum Einsatzort transportiert werden kann.

Für die Basisdokumentation der mobilen Kulturgüter wird bisher eine Fotobox mit einer

Kamera eingesetzt. Die Systeme befinden sich noch in der Entwicklung, sodass eine

Integration von SfM denkbar ist. Die Bedienung ist hier durch Fachpersonal vorgesehen.

(vgl. Deutsches Archäologisches Institut, 2024)

4

2. Photogrammetrische Grundlagen

Dieses Kapitel beschreibt die notwendigen Bedingungen und die Grundlagen der Re-

konstruktion des Objektes als 3D-Modell. Hierfür wird Photogrammetrie in Form einer

Structure-from-Motion-Pipeline genutzt. Der allgemeine Ablauf ist in Abbildung 2.1

dargestellt. Grau dargestellte Schritte werden nicht von der entwickelten Software aus

Kapitel 5, sondern von externer Software durchgeführt.

Verknüpfungs-
punkte

Bilder

SIFT

Orientierte BilderPasspunkt-
Koordinaten

orientierter
Bildverband

Passpunkte

Mesh 3D-Modell

manuelle Verknüpfung

SIFT-Detektion

Detektion codierter Marker

SIFT-Matching

RANSAC
Rückwärtsschnitt

Vorwärtsschnitt

Bündelblock-
ausgleichung

Vermaschung Texturierung

Abbildung 2.1.: Ablauf der Bildauswertung mittels Structure-from-Motion (SfM), nach
Luhmann 2023, S. 492

Zunächst werden die Bilder aufgenommen (siehe Abschnitt 2.2). Hierbei ist wich-

tig, dass sich die Bildinhalte überlappen. Die Bilder werden dann verknüpft, indem

identische Punkte in den Bildern identifiziert werden (siehe Abschnitt 2.4). Aus den

identifizierten Punkten werden dann die Positionen und Ausrichtung der Kameras und

5

2. Photogrammetrische Grundlagen

Verknüpfungspunkte in einem lokalen Koordinatensystem ohne bekannten Maßstab be-

rechnet. Die so erzeugten Daten werden anschließend in einer Bündelblockausgleichung

gemeinsam optimiert (siehe Abschnitt 2.6). Durch die Nutzung von bekannten Größen,

beispielsweise kalibrierten Maßstäben, kann dieses System transformiert werden.

2.1. Abbildung

Grundlage der Photogrammetrie ist die Abbildungsgleichung. Diese beschreibt die Ab-

bildung eines Punktes im Raum auf dem Sensor beziehungsweise dem Film. Umgekehrt

kann mit ihrer Hilfe aus der Position eines Punktes in einem Bild, ähnlich einer Messung

mit einem Theodolit, die Richtung des Punktes in Relation zu der Kamera bestimmt

werden. Die Abbildungsgleichung ist abhängig von der inneren und äußeren Orien-

tierung der Kamera. Die innere Orientierung beschreibt die Abbildungseigenschaften

der Kamera, die äußere Orientierung die Position und Ausrichtung der Kamera. Im

Folgenden wird zuerst auf die innere und äußere Orientierung eingegangen, bevor die

Abbildungsgleichung selbst vorgestellt wird.

2.1.1. Innere Orientierung

Die innere Orientierung beschreibt die Abbildungseigenschaften der Kamera auf mathe-

matische Weise. Parameter sind hierbei die Lage des Bildhauptpunktes, die Kamera-

konstante sowie die Parameter, die die Verzeichnung beschreiben. (vgl. Luhmann, 2023,

S. 179f)

Normalerweise wird die Kamera hierbei vereinfacht als Lochkamera unter Verwendung

der Zentralperspektive betrachtet (siehe Abbildung 2.2). Als Projektionszentrum O′

wird hierbei der Punkt beschrieben, durch den alle Bildstrahlen geradlinig laufen. Sein

Lot auf dem Sensor wird als Bildhauptpunkt H ′ bezeichnet und beispielsweise durch

seine Lage in Pixeln oder Mikrometern beschrieben. Durch eine schiefe optische Achse

kann dieser vom Mittelpunkt des Sensors abweichen. Die Kamerakonstante c beschreibt

idealisiert den Abstand des Projektionszentrums zum Sensor. (vgl. Luhmann, 2023, S.

177)

Als Verzeichnung wird die Abweichung der Abbildung von der idealen Lochkamera

bezeichnet. Diese kann durch die Nutzung von Linsen oder durch die Bauweise der

Kamera entstehen. Die Verzeichnung wird in radialer und tangentialer Verzeichnung

unterschieden. Die radiale Verzeichnung beschreibt die Verschiebung der Bildpunkte zur

Bildmitte hin. Dieser Punkt wird Symmetriepunkt genannt und muss nicht zwangsläufig

mit dem Bildhauptpunkt zusammenfallen, für die Korrekturen wird dies jedoch üblicher-

6

2. Photogrammetrische Grundlagen

Abbildung 2.2.: Abbildung des Lochkamera-Modells mit Spiegelung am Projektions-
zentrum (rot), nach Hartley & Zisserman (2004, S. 154), Beschriftung
nach Luhmann (2023, S. 177)

weise so angenommen. Die tangentiale Verzeichnung beschreibt die Verschiebung quer

zur radialen Richtung. Am wichtigsten ist hierbei die radial-symmetrische Verzeichnung,

da diese die größte Auswirkung hat. Sie entsteht durch den nicht symmetrischen Aufbau

des Objektivs vor und hinter der Blende. Die radial-asymmetrische und die tangentiale

Verzeichnungen entstehen hauptsächlich aus einer Dezentrierung und Schiefstellung der

Linsen zur optischen Achse. (vgl. Luhmann, 2023, S. 178)

Jede Einstellung der Kameraoptik verändert die innere Orientierung und jede Kame-

ra, selbst in derselben Modellreihe, unterscheidet sich in ihren Parametern. Änderungen

können sich sowohl durch Umfokussierung oder die Nutzung eines optischen Zoom

ergeben, als auch durch einen mechanisch instabilen Aufbau der Kameras oder Erwär-

mung und der damit verbundenen Ausdehnung. Daher sollten die Bilder normalerweise

möglichst mit nur einer Kamera mit festen Einstellungen (Brennweite, Fokus, Blende,

Objektiv) aufgenommen werden. Änderungen der Empfindlichkeit (ISO-Zahl) oder

Belichtungszeit sind unproblematisch für die innere Orientierung, da hierbei die Ab-

bildungseigenschaften der Kamera nicht verändert werden. (vgl. Luhmann, 2023, S.

176)

Die genaue Bestimmung der inneren Orientierung, auch Kalibrierung genannt, kann

während der Messung beispielsweise als Parameter in der Bündelblockausgleichung

erfolgen. Je nach Anzahl der Kameras und Stabilität der inneren Orientierung sind

hier verschiedene Varianten möglich. Bei stabilen Kameras wird ein Parameter-Satz

pro Kamera für eine ganze Messreihe ausgeglichen, bei instabilen Kameras kann die

Kalibrierung jedes einzelnen Bildes notwendig werden. (vgl. Luhmann, 2023, S. 181f)

7

2. Photogrammetrische Grundlagen

2.1.2. Äußere Orientierung

Die äußere Orientierung beschreibt die Lage der Kamera im Raum und ihre Ausrichtung.

Sie wird durch die Position des Projektionszentrums und die Richtung der optischen

Achse beschrieben. Die Position wird hierbei durch 3D-Koordinaten beschrieben, in der

Nahbereichsphotogrammetrie oft in einem lokalen System. Die Richtung der optischen

Achse wird mit der Rotation der Kamera zu diesem Koordinatensystem beschrieben,

beispielsweise durch eine Rotationsmatrix, eulersche Winkel oder Quaternionen. Durch

die Nutzung von Passpunkten oder bekannten Koordinaten der Kamera kann die äußere

Orientierung bestimmt werden. (vgl. Luhmann, 2023, S. 273ff)

Die Darstellung der Rotation der Kamera als Quaternionen hat den Vorteil, dass

diese dann mit nur vier Parametern in eine Bündelblockausgleichung eingeht. Bei der

Nutzung der Rotationsmatrix hätte man hier neun bzw. acht unabhängige Parameter.

Die Nutzung von eulerschen Winkeln hat den Nachteil, dass hier ein sogenannter

Gimbal-Lock auftreten kann, bei dem zwei Achsen zusammenfallen und die Rotation

nicht mehr eindeutig bestimmt werden kann. (vgl. Luhmann, 2023, S. 63)

2.1.3. Abbildungsgleichung

Die Abbildung eines Punktes auf einem Bild wird durch die Abbildungsgleichung

beschrieben. Hierfür gibt es verschiedene Schreibweisen. In der Matrizenrechnung

besteht diese aus der Multiplikation der homogenen Punktkoordinaten X mit der

Projektionsmatrix P (Gleichung 2.1). P ergibt sich aus der Kalibrier- oder Kameramatrix

K, der Rotation R und dem Vektor zum Projektionszentrum X0 (Gleichung 2.2).

Die Kalibriermatrix wiederum besteht aus der Kamerakonstante und der Lage des

Bildhauptpunktes (Gleichung 2.3, nach Hartley & Zisserman, 2004, S. 244 und Luhmann,

2023, S. 290).

Die äußere Orientierung ist durch die Matrix [R|X0] beschrieben (Gleichung 2.4).

Diese besteht aus der Rotationsmatrix R und dem Vektor zum Projektionszentrum

X0. Die Rotationsmatrix beschreibt die Ausrichtung der Kamera im Raum, das Pro-

jektionszentrum beschreibt die Position der Kamera bzw. des Projektionszentrums im

Raum.

8

2. Photogrammetrische Grundlagen

x′ = P · X (2.1)

P = K · [R|X0] (2.2)

K =



















cx 0 x′

0

0 cy y′

0

0 0 1



















(2.3)

[R|X0] =



















r11 r21 r31 X0

r12 r22 r32 Y0

r13 r23 r33 Z0



















(2.4)

mit x′ : Bildkoordinate

P : Projektionsmatrix

X : Homogene Punktkoordinaten

K : Kalibrier- oder Kameramatrix

R : Rotationsmatrix

X0 : Vektor zum Projektionszentrum

cx, cy : Kamerakonstante in x- und y-Richtung

x′

0, y′

0 : Lage des Bildhauptpunktes in x- und y-Richtung

rmn : Parameter der Rotationsmatrix

Grundlage dieser Formel ist das Lochkamera-Modell (siehe Abbildung 2.2). Dabei

wird rechnerisch das Bild an dem Projektionszentrum in den Objektraum gespiegelt

(rot im Bild). Dadurch kann mit einem aufrechten Bild gerechnet werden.

Darüber hinaus spielen die Verzeichnungsparameter. Diese können in die Abbildungs-

gleichung integriert werden, in dem x′ durch ∆x′ korrigiert wird. (vgl. Luhmann, 2023,

S. 277)

9

2. Photogrammetrische Grundlagen

x′ = P · X + ∆x′ (2.5)

∆x′ = ∆xrad + ∆xtan + ...

mit ∆x′ : Verzeichnung

∆xrad : radial-symmetrische Verzeichnung

∆xtan : tangentiale Verzeichnung

Die Verzeichnung wird meist mit den Parametern k1 bis k4 für die radial-symmetrische

Verzeichnung und p1 und p2 für die tangentiale Verzeichnung bezeichnet. Die Faktoren

stellen dabei die Parameter einer Taylor-Reihe dar. Sie basieren auf dem Kameramodell

von Brown (1971, S. 859) und denen von ihm vorgestellten Formeln (Gleichung 2.6 und

2.7).

∆xrad = k1 r2 + k2 r4 + k3 r6 + k4 r8 (2.6)

∆yrad = k1 r2 + k2 r4 + k3 r6 + k4 r8

∆xtan = p1 (r2 + 2 x̄2) + 2 p2 x̄ ȳ (2.7)

∆ytan = 2 p1 x̄ ȳ + p2 (r2 + 2 ȳ2)

r =
√

x̄2 + ȳ2

x̄ = x′ − x′

0

ȳ = y′ − y′

0

mit r : Abstand des Punktes zum Bildhauptpunkt

x′, y′ : Bildkoordinaten

x̄, ȳ : Abstand von Bildhauptpunkt in x- bzw. y-Richtung

k1, k2, k3, k4 : radial-symmetrische Verzeichnungsparameter

p1, p2 : tangentiale Verzeichnungsparameter

Diese Parameter werden so beispielsweise auch in Photogrammetrie- und Computer-

Vision-Software wie Agisoft Metashape, OpenDroneMap und OpenCV genutzt.

10

2. Photogrammetrische Grundlagen

2.2. Bilder

Die Berechnung der Position eines Objektes im Bild ist nur möglich, sofern der Punkt

in mindestens einem weiteren Bild abgebildet ist. Die Genauigkeit der Berechnung ist

vom Schnittwinkel dieser beiden Strahlen abhängig. Um möglichst gute Grundlagen zur

Verfügung zu haben und die innere und äußere Orientierung gut berechnen zu können,

müssen diese Bilder einige Bedingungen erfüllen - auf diese wird hier eingegangen.

2.2.1. Überlappung und Bildinhalte

Da die Bilder durch identische Punkte verbunden werden, müssen sich die Bildinhalte

überlappen und gemeinsame Punkte in den Bildern identifiziert werden. Die automa-

tische Detektion von identischen Punkten ist auf verschiedene Weisen möglich: Entweder

durch die Nutzung von codierten und uncodierten Passpunkten oder über eine Merk-

malsextraktion. Für letzteres muss die Oberfläche genügend Textur bzw. Struktur

aufweisen. Detailliert wird in Abschnitt 2.4 hierauf eingegangen. (vgl. Luhmann, 2023,

S. 478)

2.2.2. Position und Ausrichtung der Kamera

Damit die Schnitte der Bildstrahlen optimal und die Tiefeninformationen möglichst

genau sind, müssen die Kameras gleichmäßig um das Objekt verteilt sein. Bilder, die

vom gleichen Standpunkt aufgenommen wurden, sind oft nur ungenau verknüpfbar.

Daher empfiehlt es sich, Bilder aus verschiedensten Richtungen zu machen, also bei der

manuellen Photographie um das Objekt herumzugehen und eine Mehrbildaufnahme im

Rundum-Verband zu erzeugen. (vgl. Luhmann, 2023, S. 170)

Entsprechend müssen die Kameras gleichmäßig um das Objekt positioniert werden

und dabei auch an die Form des Objektes wie Einschnitte anpassbar sein.

2.2.3. Belichtung

Um identische Punkte in den Bildern identifizieren zu können, müssen die Bilder eine

gleichmäßige Beleuchtung aufweisen. Hierfür sollte es vermieden werden, dass Schatten

auf das Objekt fallen. Eine gleichmäßige Beleuchtung kann durch die Nutzung von

mehreren Lichtquellen erreicht werden. Auch sollte keine Blendwirkung entstehen, die

durch direkte Sonneneinstrahlung oder Reflexionen entstehen kann. Die Belichtung der

einzelnen Bilder sollte möglichst identisch sein, damit später auch eine zusammenhän-

11

2. Photogrammetrische Grundlagen

gende Texturierung möglich ist. Da die Objekte und die Kameras sich während der

Aufnahme nicht bewegen, kann die Belichtungszeit verlängert werden, um Rauschen

durch eine zu hohe Sensorempfindlichkeit zu vermeiden und so die Bildqualität zu

erhöhen.

2.2.4. Fokussierung und Schärfentiefe

Um genaue Punktwolken erzeugen zu können, muss das Objekt scharf abgebildet

werden. Die Kameras müssen dafür entsprechend fokussiert sein. Jedoch wird durch

die Fokussierung auch die innere Orientierung verändert. Normalerweise wird daher

auf eine Umfokussierung verzichtet und mittels der Blende (kleine Blendenöffnung) die

Schärfentiefe erhöht, sodass ein großer Bereich scharf abgebildet wird. Dieses ist aber

bei vielen einfachen Kameras wie dem verwendeten Raspberry Pi Camera Module 3

nicht möglich.

Der Schärfebereich ergibt sich aus der Größe des tolerierbaren Unschärfekreises auf

dem Sensor. Bei digitalen Kameras wird dieser durch die Pixelgröße bestimmt. Nach

Luhmann (2023, S. 148f) berechnet sich die Schärfentiefe nach folgender Formel:

t = ah − av (2.8)

av =
a

1 + K

ah =
a

1 − K

K =
k(a − f)u′

f 2

mit t : Länge des Schärfebereichs

av, ah : vordere bzw. hintere Grenze der Schärfentiefe

a : fokussierte Dingweite

k : Blendenzahl

f : Brennweite

12

2. Photogrammetrische Grundlagen

Die Schärfentiefe des Raspberry Pi Camera Module 3 ist in Abbildung 2.3 für einen

Unschärfekreis von drei Pixeln dargestellt (Plot der Gleichung 2.8). Es zeigt sich, dass

die Schärfentiefe im verwendeten Makrobereich relativ klein ist. Problematisch ist dies

vor allem bei größeren Objekten, die hierdurch näher an die Kameras rücken, aber durch

ihre Größe eine größere Schärfentiefe benötigen. Ein Lösungsansatz durch Kombination

mehrerer Aufnahmen wird in Abschnitt 4.4 untersucht.

Abbildung 2.3.: Schärfentiefe in Abhängigkeit von der fokussierten Entfernung

2.3. Skalierung/Maßstab

Die Skalierung eines rein photogrammetrisch bestimmten 3D-Modells ist nicht bekannt,

da die Berechnungen nur auf Richtungen ohne Längenangaben basieren - es ist im

mathematischen Sinne ähnlich dem realen Körper. Daher werden Referenzen in Form

einer bekannten Länge benötigt, um die Skalierung zu bestimmen. Alternativ können

auch Passpunkte (siehe Abschnitt 2.4) mit bekannten Koordinaten verwendet werden

oder im Falle von Mehrkamerasystemen bekannte äußere Orientierungen der Kameras.

(vgl. Luhmann, 2023, S. 546)

13

2. Photogrammetrische Grundlagen

2.4. Verknüpfungs- und Passpunkte

Um die einzelnen Bilder verknüpfen zu können, werden identische Punkte zwischen zwei

oder mehr Bildern benötigt. Diese können klassisch manuell erfasst werden, jedoch ist

dies schon bei kleineren Projekten sehr zeitaufwändig. Daher wird meist die Möglichkeit

genutzt, automatisch Verknüpfungspunkte zu erzeugen. Hierfür gibt es unterschiedliche

Methoden, die im Folgenden vorgestellt werden.

2.4.1. Zielmarker

Es gibt verschiedenste Formen von Markern, die automatisch erfasst werden können.

Grob unterschieden werden kann in codierte und nicht codierte Zielmarker. Beispiele

für nicht codierte sind einfache kreisförmige Klebepunkte oder Marker, die aus Linien

bestehen und ihren Mittelpunkt durch dessen Schnitt definieren. Vorteilhaft ist jedoch

die Verwendung von codierten Zielmarken. Hier können die Punkte direkt zugeordnet

werden, sodass keine weitere Filterung und Berechnung zur Zuordnung notwendig ist.

(vgl. Luhmann, 2023, S. 535ff)

Zielmarken nach Schneider

Eine Form der codierten Zielmarken sind die Marker nach Schneider. Diese bestehen aus

mehreren konzentrischen Kreisen (siehe Abbildung 2.4a) und werden dementsprechend

als Concentric circular coded target (CCCT) bezeichnet (vgl. Liu et al., 2021). Die

Mitte des Markers wird durch den gemeinsamen Mittelpunkt der Kreise definiert (vgl.

Schneider & Sinnreich, 1992). Vorteilhaft ist, dass die Marker auch bei unscharfen Bildern

erkannt werden können und ihr Zentrum manuell identifiziert werden kann, beispielsweise

zum Aufmaß mit einem Tachymeter. Sie haben sich daher als Standardmarker in der

Photogrammetrie etabliert und werden zum Beispiel von Agisoft Metashape verwendet.

ArUco-Marker

Eine andere Variante der codierten Verknüpfungspunkte sind die sogenannten ArUco-

Marker (siehe Abbildung 2.4b). Diese werden häufig für die Orientierung bei Augmented-

Reality-Anwendungen genutzt. Jede Ecke kann hierbei automatisch im Subpixelbereich

identifiziert werden, sodass ein erkannter Marker vier Verknüpfungspunkte liefern kann.

Wenn deren (lokale) Koordinaten und die innere Orientierung bekannt sind, kann mit

nur einem Marker die äußere Orientierung bestimmt werden. (vgl. Luhmann, 2023, S.

545)

14

2. Photogrammetrische Grundlagen

(a) CCCT nach
Schneider & Sinnreich (1992),
aus Agisoft Metashape

(b) ArUco-Marker,
generiert mit OpenCV (2023)

Abbildung 2.4.: Codierte Passpunkte

Nachteilig zeigte sich in den Untersuchungen des Fokus (siehe Abschnitt 4.2), dass

die Ecken nicht eindeutig identifiziert werden können, wenn die Aufnahme unscharf

ist. Durch ihre Verwendung in Augmented-Reality-Anwendungen sind viele kostenfreie

Bibliotheken für ihre Erkennung verfügbar, sodass beispielsweise OpenCV (2023) ArUco-

Marker identifizieren kann.

2.4.2. Merkmalsextraktion

Ohne das Anbringen von Markern können Verknüpfungspunkte erzeugt werden. Hierfür

wird Merkmalsextraktion verwendet, beispielsweise Scale-Invariant Feature Transform

(SIFT), welches hier stellvertretend kurz vorgestellt wird. Es liefert Verknüpfungspunkte

aus Mustern auf den photographierten Oberflächen. Es ist meist nicht notwendig,

explizit Marker an dem aufzunehmenden Objekt anzubringen, sofern seine Oberfläche

nicht strukturlos ist (glatte weiße Wände etc.).

Zur Erkennung von Merkmalen setzt SIFT auf die Detektion von Kanten. Diese

werden in verschiedenen Stufen einer Bildpyramide erkannt und ihre Extrema berechnet.

Sie werden anschließend weiter ausgedünnt, beispielsweise über den Kontrast. Sofern ein

möglicher Marker identifiziert wurde, wird eine Beschreibung erzeugt. Diese erfolgt durch

Analyse der Helligkeitsabweichungen zu den Nachbar-Pixeln und wird an der stärksten

15

2. Photogrammetrische Grundlagen

Abweichung ausgerichtet. Hierdurch wird die Beschreibung dann richtungsunabhängig.

Mit den Beschreibungen kann dann die Übereinstimmung von zwei Markern in zwei

Bildern identifiziert werden, auch wenn diese zueinander gekippt oder gedreht sind. (vgl.

Luhmann, 2023, S. 484f)

2.5. Verknüpfung von Bildern

Durch die beschriebenen Verfahren und die hieraus entstandenen Verknüpfungspunkte

können die Bilder miteinander verknüpft werden. Da die Kamerapositionen am Rahmen

veränderlich sind und die Montage auch keine ausreichend genaue Fixierung garantiert,

können die bekannten Positionen aus vorherigen Messungen maximal als Näherungswerte

genutzt werden. Die genaue Bestimmung der Position und Ausrichtung - die äußere

Orientierung - muss daher mindestens für die verschobenen oder gedrehten Kameras

neu berechnet werden. Gleiches gilt für neue Verknüpfungspunkte, für die noch keine

Koordinate bekannt ist. Die verwendeten Methoden, die zur Verknüpfung der Bilder

beitragen, werden im Folgenden vorgestellt: der Rückwärts- und Vorwärtsschnitt sowie

die relative Orientierung.

2.5.1. Rückwärtsschnitt

Sofern Koordinaten von Passpunkten bekannt sind, können die Positionen und Ausrich-

tungen der Kameras berechnet werden. Hierfür wird der sogenannte Rückwärtsschnitt

genutzt. Die Berechnung erfolgt auf Basis der Abbildungsgleichung, die die Position

eines Punktes in einem Bild in Beziehung zur Kamera setzt. Für die Berechnung selbst

gibt es verschiedene Methoden. Verwendet wurde hier der von OpenCV genutzte Ansatz

von Lepetit et al. (2008) in Kombination mit einem RANSAC-Ansatz.

Durch die Nutzung des RANSAC-Ansatzes können veränderte Passpunkte identifiziert

und als Ausreißer markiert werden. Hierzu werden mehrere Stichproben der Punkte

gewählt, die Berechnung durchgeführt und die Lösung gewählt, zu denen die meisten

Punkte passen. (vgl. Luhmann, 2023, S. 134)

Abbildung 2.5a zeigt die geometrischen Grundlagen des Rückwärtsschnittes. Es

müssen mindestens 3 Passpunkte (P1 − −P3) mit Koordinaten bekannt und im Bild

sichtbar sein. Außerdem muss die innere Orientierung bei Verwendung von nur drei

Passpunkten bekannt sein. Die Position der Punkte P ′

1 − −P ′

3 wird dann bestimmt und

16

2. Photogrammetrische Grundlagen

ergibt im Beispiel 6 Koordinatenkomponenten (jeweils x′ und y′). Durch Berechnungen

– auf die hier nicht weiter eingegangen und auf entsprechende Literatur verwiesen wird –

kann dann die Position (drei Parameter) und Ausrichtung (drei Parameter) der Kamera

bestimmt werden. (vgl. Luhmann, 2023, S. 284)

P₁

P'₁

P₂

P'₂

P₃

P'₃

(a) Rückwärtsschnitt, nach
Luhmann 2023, S. 284

P'

P''

(b) Vorwärtsschnitt, nach
Luhmann 2023, S. 339

Abbildung 2.5.: Geometrische Grundlagen des Rückwärts- und Vorwärtsschnittes

2.5.2. Vorwärtsschnitt

Um wiederum aus einem Stereopaar mit bekannter innerer und äußerer Orientierung

Punktkoordinaten zu berechnen, wird der Vorwärtsschnitt genutzt. Abbildung 2.5b zeigt

die geometrischen Grundlagen des Vorwärtsschnittes. Es werden die Bildkoordinaten

der Punkte P1 und P2 benötigt, die im Bild sichtbar sind. Die Position des Punktes P

wird dann berechnet. Wie bereits in Abschnitt 2.1 erwähnt, kann jeder Punkt im Bild

durch die innere Orientierung als Horizontal- und Vertikalrichtungsmessung interpretiert

werden. Durch die äußere Orientierung kann diese ins übergeordnete System überführt

werden. Hieraus ergibt sich dann zur Berechnung der Position P ein räumlicher Schnitt

zweier (windschiefer) Geraden (vgl. Luhmann, 2023, S. 95).

Mit dem Vorwärtsschnitt können neben markierten Verknüpfungspunkten auch die

Neupunkte, die mittels SIFT oder ähnlicher Bilderkennungsalgorithmen erkannt wurden,

berechnet werden. Dadurch kann eine dünne Punktwolke erzeugt werden, welche dann

bei der Bündelblockausgleichung (siehe Abschnitt 2.6) genutzt werden kann. Da die

Berechnung bereits bei Bildkoordinaten aus zwei Bildern überbestimmt ist und oft

Punkte in mehr Bildern abgebildet sind, bietet sich die Nutzung einer Ausgleichung

auch schon bei der Bestimmung an. (vgl. Luhmann, 2023, S. 385)

17

2. Photogrammetrische Grundlagen

2.5.3. Relative Orientierung

Wenn keine Passpunkte vorhanden sind und durch zum Beispiel ArUco-Marker keine

lokalen Passpunkt-Koordinaten erzeugt werden können, kann die Bildorientierung

auch in einem lokalen System erfolgen. Hierbei wird die relative Orientierung der

Bilder zueinander bestimmt. Eines der Bilder wird als Ursprung des Systems festgelegt

(Projektionszentrum in (0,0,0) und die optische Achse in z-Richtung). Die Position und

Ausrichtung des zweiten Bildes wird dann relativ zu diesem bestimmt. (vgl. Luhmann,

2023, S. 316)

Die klassische Variante der relativen Orientierung ist die Bestimmung der Essenziel-

len Matrix, welche identische Punkte in einem Bild mit denen in einem anderen Bild

in Beziehung setzt. Diese kann aus der inneren Orientierung und der Fundamentalma-

trix berechnet werden, welche wiederum aus den Bildkoordinaten von mindestens 8

Verknüpfungspunkten berechnet werden kann. (vgl. Luhmann, 2023, S. 328ff)

Mittels Einzelwertzerlegung kann dann aus der Essenziellen Matrix die Rotation

und Translation des zweiten Bildes bestimmt werden. (vgl. Hartley & Zisserman, 2004,

S. 275)

Alternativ kann mit der Homographie die relative Orientierung über eine Ebene, die

in beiden Bildern abgebildet wird, bestimmt werden. Dieser Fall tritt beispielsweise bei

der Verwendung von flächenhaften Kalibriermustern auf. Die Homographie beschreibt

die Abbildung einer Ebene auf eine andere Ebene. Sie wird durch eine 3x3-Matrix

beschrieben, die die Transformation der Punkte beschreibt. Für die Bestimmung werden

nur 4 Verknüpfungspunkte benötigt, die in beiden Bildern sichtbar sind und auf einer

Ebene liegen. Die innere Orientierung der Kamera wird hierbei nicht benötigt. (vgl.

Hartley & Zisserman, 2004, S. 33ff).

Aus der Homographie kann zusammen mit der inneren Orientierung die Rotation

und Translation des zweiten Bildes bestimmt werden. (vgl. Malis & Vargas, 2007, S. 74)

2.6. Bündelblockausgleichung

Mittels Bündelblockausgleichung können die grob mit den vorher genannten Verfahren

bestimmten Positionen und Drehungen in einer Ausgleichung optimiert werden. Hierzu

gehen alle Parameter der Bilder und die Positionen der Passpunkte in die gemeinsame

Ausgleichung ein. Grundlage der Ausgleichung ist die in Unterabschnitt 2.1.3 beschrie-

bene Abbildungsgleichung. Als Ergebnis erhält man die ausgeglichenen Parameter und

Genauigkeitsangaben für diese. (vgl. Luhmann, 2023, S. 343ff)

18

2. Photogrammetrische Grundlagen

Neben der Optimierung der Parameter hat die Bündelblockausgleichung auch den

Vorteil, dass instabile Kameras, wie sie in diesem Projekt verwendet werden, simultan

kalibriert werden können. Hierbei werden die inneren und äußeren Orientierungen der

Kameras gemeinsam optimiert. Die in vorherigen Untersuchungen festgestellten, jedoch

nicht genauen Parameter der Kameras werden hierbei als Näherungswerte genutzt

und die endgültigen Parameter erst durch die Ausgleichung bestimmt. Es ist daher

unkritisch, wenn sich die Parameter der Kameras im geringen Rahmen zwischen den

Aufnahmen verändern. (vgl. Luhmann, 2023, S. 357f)

2.7. Multi-View-Stereo

Die dünne Punktwolke aus dem Vorwärtsschnitt und der anschließenden Bündelblock-

ausgleichung kann durch das Multi-View-Stereo-Verfahren zu einem 3D-Modell erweitert

werden. Hierbei werden jeweils Bildpaare gebildet und die Disparitäten, also die Verschie-

bung des Objektes in der Abbildung, bestimmt. Diese sind abhängig von der Entfernung

des Objektes. Bei einem unendlich weit entfernten Objekt tritt keine Disparität auf (vgl.

Luhmann, 2023, S. 313). Die Disparitäten können dann in Tiefeninformationen umge-

rechnet, gemittelt und zu einem Tiefenbild zusammengefasst werden. (vgl. Luhmann,

2023, S. 505)

2.8. Mesh-Generierung

Bis zu diesem Schritt besteht das Modell nur aus einzelnen Punkten, die keine Oberfläche

ergeben. Um ein geschlossenes 3D-Modell zu erhalten, muss eine Oberfläche generiert

werden. Hierfür wird ein Mesh-Generierungsverfahren genutzt, welches die Punktwolke

in Dreiecke unterteilt. Es gibt verschiedene Verfahren, die sich in der Art der Untertei-

lung und ihrem Umgang mit Einzelpunkten unterscheiden. Meistens wird hierbei die

Punktwolke auch gefiltert, um Ausreißer und nicht notwendige Punkte zu entfernen.

OpenDroneMap nutzt beispielsweise die Screened Poisson Surface Reconstruction zur

Vermaschung und Filterung. (vgl. Toffanin, 2019, S. 52f)

Abbildung 2.6 zeigt beispielhaft eine Ecke aus einer Punktwolke vor und nach der

Vermaschung. Gut zu erkennen ist, dass die Anzahl der Punkte reduziert wurde und die

Oberfläche durch Dreiecke angenähert wurde, jedoch sich die äußeren Konturen nicht

verändert haben.

19

2. Photogrammetrische Grundlagen

(a) Ungefilterte Punktwolke (b) 3D-Mesh mit gefilterten Punkten

Abbildung 2.6.: Vermaschung der Punktwolke

Die Screened Poisson Surface Reconstruction ist ein Verfahren, das auf der Poisson-

Gleichung basiert. Diese Gleichung beschreibt die Beziehung zwischen einer Funktion und

ihrer Ableitung. Bei der Screened Poisson Surface Reconstruction wird diese verwendet,

um die Oberfläche zu glätten und zu interpolieren. Dabei werden die Punkte in eine

Gitterstruktur überführt und die Oberfläche durch die Lösung der Poisson-Gleichung

bestimmt. Dieser Ansatz berücksichtigt auch die Ausrichtung der Punkte, um eine

genauere Rekonstruktion der Oberfläche zu erzielen. (vgl. Kazhdan et al., 2006)

2.9. Texturierung

Abschließend wird das Modell texturiert. Hierfür werden die Bilder, die zur Erstellung

des Modells genutzt wurden, auf das Modell projiziert. Außerdem werden Helligkeits-

und Farbunterschiede der Bilder ausgeglichen. (vgl. Toffanin, 2019, S. 54f)

Vorteil der Texturierung ist, dass das Modell meist realistischer wirkt und fehlende

Informationen, beispielsweise fehlende Punkte, überdeckt werden können. Nachteilig ist,

dass die Texturierung hierdurch auch Informationen verdeckt. So kann bei einem nur

schattierten Modell die Struktur des 3D-Modells deutlich besser erkannt werden (vgl.

Luhmann, 2023, S. 702). Beispielhaft ist dieses in Abbildung 2.7 an dem später auch

für die Überprüfungen (siehe Kapitel 7) verwendeten Testkörper dargestellt. Dieser hat

auf der Rückseite (rechts im Bild) einige Einkerbungen, welche im texturierten Modell

(siehe Abbildung 2.7b) kaum erkennbar sind. Im ausschließlich schattierten Modell

(siehe Abbildung 2.7a) sind diese hingegen deutlich sichtbar.

20

2. Photogrammetrische Grundlagen

(a) 3D-Modell ohne Textur (b) 3D-Modell mit Textur

Abbildung 2.7.: 3D-Modell ohne und mit Textur

21

3. Aufbau des Messsystems

Entsprechend der im Kapitel 2 beschriebenen Anforderungen an ein photogrammetri-

sches Messsystem wurden die Komponenten ausgewählt.

Die Kameras sollten eine hohe geometrische Auflösung und möglichst stabile innere

Orientierung aufweisen. Außerdem sollen sie während einer Messkampagne nicht in

ihrer Lage zueinander verändert werden, damit die äußere Orientierung größtenteils

gleich bleibt. Daher ist ein stabiler Rahmen notwendig, an welchem die Kameras

verdrehsicher angebracht werden können. Kleinere Restfehler in den Orientierungen

können mit der Bündelblockausgleichung ausgeglichen werden. Um Ungenauigkeiten

durch Bewegungen zu verhindern, müssen die Kameras möglichst zeitgleich auslösen.

Daher ist eine gemeinsame Steuerung und Kommunikation zwischen den Kameras

notwendig. Außerdem sollen alle Bilder auf das Steuerungssystem übertragen werden,

hierfür wird eine Form der Datenübertragung benötigt. Damit die Bilder möglichst

schattenfrei ausgeleuchtet werden, sollte Beleuchtung mit eingeplant werden. Außerdem

muss die Energieversorgung der einzelnen Kameras sichergestellt sein.

In diesem Kapitel wird der Aufbau des Messsystems beschrieben und die Auswahl

der Komponenten begründet.

3.1. Kameras

Als Kameras wurde das Raspberry Pi Camera Module 3 verwendet, welches jeweils

von einem Raspberry Pi Zero W gesteuert wird. Im Vergleich zu anderen günstigen

Kameras wie Webcams oder der ESP32 CAM haben die Kameras eine hohe geometrische

Auflösung von 12 Megapixeln und dennoch mit 1,4 µm relativ große Pixel (px) (Raspberry

Pi Foundation, 2023), was im subjektiven Eindruck eine sehr gute Bildqualität ergibt.

Andere Kameramodule für den Raspberry Pi wurden in Tabelle 3.1 verglichen.

Das Camera Module v1 entfiel als Möglichkeit, da die Kamera einen Mindestabstand

von einem Meter benötigt. Hiermit müsste der Aufnahmebereich für die Objekte auf

über zwei Meter vergrößert werden. Die HQ- und GS-Kameras haben kein Objektiv

mitgeliefert, sodass hier die Kosten für ein Objektiv hinzukommen würden. Das Camera

Module v2 hat eine geringere Auflösung und auch eine geringere Bildqualität bei

22

3. Aufbau des Messsystems

gleichem Preis wie das Module 3. Außerdem ist die Fokussierung nur manuell möglich,

was die Automatisierung derselben verhindert. Das Camera Module 3 Wide hat zwar ein

größeres Sichtfeld, jedoch damit auch eine geringere Auflösung auf dem Objekt. Vorteil

ist der geringe Mindestabstand. Da das Camera Module 3 besser verfügbar und etwas

günstiger war, wurde sich für dieses Modell entschieden, was einen guten Kompromiss

aus Auflösung, Bildqualität und Preis darstellt.

Tabelle 3.1.: Vergleich der möglichen Kameramodule für den Raspberry Pi (Raspberry
Pi Foundation, 2023)

Preis
Sensor-

auflösung

Pixel

[µm]
Fokus

Brennweite

[mm]
Sichtfeld Blende

Camera Module v1 $25 2592 × 1944 1,40 fix 1 m - ∞ 3,60 54° x 41° F2.9

Camera Module v2 $25 3280 × 2464 1,12 manuell 10 cm - ∞ 3,04 62° x 49° F2.0

Camera Module 3 $25 4608 x 2592 1,40 motorisiert 10 cm - ∞ 4,74 66° x 41° F1.8

Camera Module 3 Wide $35 4608 x 2592 1,40 motorisiert 5 cm - ∞ 2,75 102° x 67° F2.2

HQ Camera $50 4056 x 3040 1,55 manuell

GS Camera $50 1456 x 1088 3,45 manuell

Nachteil und Vorteil zugleich ist, dass die Kamera über einen Autofokus verfügt, der

aber auch elektronisch gesteuert manuell fokussieren kann. Dieser verschlechtert die

Stabilität der inneren Orientierung und wurde daher im Kapitel 4 analysiert. Da die

Bilder im Makrobereich zwischen 0,1 und 1 m aufgenommen werden und die Kameras

keine Veränderung der Blende ermöglichen, ist die Schärfentiefe vergleichsweise niedrig.

Hierauf wurde in den Untersuchungen in Abschnitt 4.4 genauer eingegangen.

Ein weiterer Vorteil der Lösung mit einzelnen Raspberry-Pi-Computern besteht

darin, dass hierdurch bereits die einzelnen Kameraeinheiten parallel zur Datenübertra-

gung Aufgaben wie das Identifizieren von Passpunkten übernehmen können. Durch die

Parallelisierung dieses Schrittes ist eine Reduktion der Berechnungszeit zwischen den

Aufnahmen zu erwarten. Zudem ermöglicht die Nutzung von leitungslosen Netzwerkver-

bindungen zur Steuerung eine Skalierung des Systems sowohl hinsichtlich der Anzahl

der Kameras als auch der Abstände zwischen den Kameras.

Die Anzahl der Kameras für den Prototyp wurde zusammen mit der Art des Rahmens

(siehe Abschnitt 3.2) definiert. Hierzu wurde der Rahmen mit seinen Kameras in

der 3D-Visualisierungssoftware Blender modelliert und einzelne Bilder der möglichen

Kamera-Positionen gerendert. Im Anschluss wurden die Bilder in Agisoft Metashape

zur Berechnung eines 3D-Modells verwendet. Dabei wurde evaluiert, ob die Berechnung

möglich ist und wie gut die Abdeckung des Testobjektes ist. Das virtuelle Modell des

23

3. Aufbau des Messsystems

Systems wurde darüber hinaus genutzt, um Visualisierungen für die Bedienungsanleitung

zu erstellen (siehe Anhang A). Eine Verwendung in der Websoftware zur visuellen

Überprüfung der berechneten Kamera-Positionen wurde geprüft, aber nicht umgesetzt,

da die Erkennbarkeit schlechter als erwartet und somit der Mehrwert gering war.

3.2. Rahmen

Der Rahmen muss möglichst stabil sein, damit die Kameras sich nicht in ihrer Lage

verändern können. Jedoch sollte das System weiterhin transportabel - also nicht zu

schwer - und veränderbar bleiben, um beispielsweise Kameras für Messreihen in ihrer

Lage zu verändern. Der Aufbau aus genormten Bauteilen bietet sich an, um hier

ggf. den Nachbau einfach ermöglichen zu können. Außerdem sollte der Rahmen auch

demontierbar sein, damit er transportiert werden kann.

Als mögliche Materialien kamen Holz, Stahl und Aluminium infrage. Aufgrund

der einfachen Bearbeitung und der Standardisierung wurde sich für Aluminiumprofile

entschieden. Diese gibt es in verschiedenen Ausführungen mit Nuten an den Seitenflächen,

sodass eine einfache Montage, aber ebenso eine Demontage zu Transportzwecken, möglich

wird. Außerdem sind diese sehr stabil bei leichtem Gewicht.

(a) Unter Nutzung
eines Drehtellers

(b) Rahmen mit
Boden-Versteifung

(c) Endgültiger Entwurf mit
seitlichen Versteifungen

Abbildung 3.1.: Verschiedene Entwurfsideen, modelliert mit Blender

Es wurden verschiedene Varianten geprüft, die in Abbildung 3.1 dargestellt sind. Der

erste Entwurf (siehe Abbildung 3.1a) sah weniger Kameras und die zwingende Nutzung

eines Drehtellers vor, dies wurde jedoch verworfen, weil dieser nicht der Anforderung

einer schnellen Erfassung entsprochen hätte und auch der Anforderung der kurzen

Einarbeitungszeit widersprechen würde. Der zweite Entwurf (siehe Abbildung 3.1b) sah

bereits die Nutzung von 8 Kamera-Hauptrichtungen vor, was für gute Schnittwinkel

sorgt. Für die Aussteifung wurde hier ein Boden vorgesehen. Dies ist jedoch nachteilig,

da das System dann beispielsweise nicht mehr über große, nicht bewegliche Objekte

24

3. Aufbau des Messsystems

herüber gestülpt werden könnte. Gerade bei empfindlichen Objekten wäre dies aber

vorteilhaft. In der dritten Variante (siehe Abbildung 3.1c) wurde dann die Versteifung

in den Seitenwänden umgesetzt. Durch die Konstruktion mit Eckwürfeln sowie der

Bildung von dreieckigen Strukturen und dem Einbau von eckaussteifenden Platten mit

Scheibenwirkung, wurde die Stabilität der Verbindungen erhöht. Abbildung 3.2b zeigt

den fertigen Rahmen vor Einbau der Platten und der Technik.

(a) Kamera-Winkel (b) Aluminium-Rahmen

Abbildung 3.2.: Alu-Bauteile des Rahmens

Die Kameras wurden mit einem 90◦-Winkel am Rahmen montiert, um diese weiterhin

noch vertikal schwenken zu können. Abbildung 3.2a zeigt einen der Winkel, der an den

Aluprofilen befestigt wird (noch ohne entsprechende Befestigungsbohrungen).

3.3. Beleuchtung

Um möglichst gute Aufnahmen zu erzeugen, sollte das Objekt ausreichend und gleichmä-

ßig ausgeleuchtet sein. Eine dunkle Umgebung verlängert die Belichtungszeit, wodurch

die Gefahr von unscharfen Aufnahmen steigt. Schlecht ausgeleuchtete Bereiche (un-

gleichmäßige Ausleuchtung) verursachen verstärktes Rauschen in diesen Bildbereichen.

Problematisch ist bei der Beleuchtung, dass die Kameras ggf. auch die Lichtquellen mit

aufnehmen, wodurch Linsenreflexionen oder ein Ausbrennen der Bildbereiche möglich

ist. Außerdem störend sind fremde Lichtquellen, die Schatten werfen oder die Belichtung

der Kameras beeinflussen können.

Es wurde sich für einzeln steuerbare LED-Lichtstreifen als Lichtquelle entschieden

(siehe Abbildung 3.3a). Diese können einfach an den Aluprofilen montiert werden und

ermöglichen es, einzelne Bereiche abzuschalten, beispielsweise um Blendwirkungen zu

vermindern. Außerdem können hiermit verschiedene Lichtfarben eingestellt werden, um

25

3. Aufbau des Messsystems

(a) Schattenarme Beleuchtung durch
LED-Streifen

(b) Farbige Beleuchtung zur
Statusmeldung

Abbildung 3.3.: Beleuchtung

Statusmeldungen zu ermöglichen (siehe Abbildung 3.3b) oder ggf. die Farbgebung des

Objektes zu beeinflussen. Die Steuerung erfolgt über einen Raspberry Pi 4, der auch

die Steuerung der Kameras übernimmt. Die LED-Streifen verfügen hierfür pro drei

LEDs über einen integrierten Schaltkreis vom Typ WS2811. Dieser ermöglicht es, jedem

Dreier-Verbund über ein proprietäres Steuerprotokoll eine eigene Farbe und Helligkeit

zuzuweisen (vgl. Worldsemi, 2012). Für die Implementierung der Steuerung wurde die

Bibliothek rpi-ws281x verwendet, die eine einfache Ansteuerung der LED-Streifen

ermöglicht (siehe auch Absatz 5.3.1).

Für diffuseres Licht von außen kann ein halbtransparenter, weißer Stoff über den

Rahmen gespannt werden. Hierfür wurde aus weißem Baumwollstoff eine entsprechende

Haube genäht (siehe Abbildung 3.4a), welche durch zwei mittels Reißverschluss ver-

schließbaren Eingriffmöglichkeiten weiterhin das Einlegen von Objekten durch die Seite

oder das Verstellen von Kameras ermöglicht (siehe Abbildung 3.4b). Diese sorgt für

eine gleichmäßigere Ausleuchtung durch Reflexion im Inneren, verhindert Reflexionen

an Glasscheiben etc. und vermindert Blendwirkungen durch externe Lichtquellen.

26

3. Aufbau des Messsystems

(a) geschlossene Stoffhülle (b) geöffnete Stoffhülle

Abbildung 3.4.: Stoffhülle zur Verminderung von Reflexionen und Blendwirkungen

3.4. Kommunikation und Datenübertragung

Die Kommunikation zwischen den Raspberry-Pi-Computern erfolgt über WLAN. Hierfür

ist ein Mini-WLAN-Router mit im System verbaut worden. Vorteil dieser Lösung ist,

dass hier keine weiteren Leitungen außer der Energieversorgung zu den einzelnen

Raspberry Pi Zero W benötigt werden und es auch möglich wäre, die gleiche Hard-

und Software für ein größeres System ohne Änderungen zu nutzen. Nachteilig ist die

Verbindungsgeschwindigkeit, gerade im Hinblick auf die Synchronisierung der Kameras.

Diese Problematik soll aber durch entsprechende Programmierung der Software möglichst

klein gehalten werden.

Als weitere Datenleitung wird eine Steuerleitung für die LED-Streifen benötigt.

Über diese werden die einzelnen LED-Gruppen angesteuert. Hier wird die gleiche

Zwillingslitze wie für die Energieverteilung (siehe Abschnitt 3.5) verwendet. Die Leitung

ist in Abbildung 3.6 in Abschnitt 3.5 grün dargestellt.

3.5. Energieverteilung

Alle Raspberry-Pi-Computer werden mit 5 V betrieben. Der Raspberry Pi Zero W

mit Kamera hatte dabei in Messungen einen maximalen Stromverbrauch von 270 mA

aufgezeigt, der Raspberry Pi 4 kann bis zu 1,5 A unter Last verbrauchen. Hieraus

ergibt sich ein Gesamtstromverbrauch von maximal rund 8 A. Für den Raspberry Pi

4 wurde ein eigenes 15-Watt-Netzteil eingeplant und für die 24 Raspberry Pi Zero W

ein gemeinsames 35-Watt-Netzteil. Versuche zeigten jedoch, dass der Leistungsbedarf

27

3. Aufbau des Messsystems

Abbildung 3.5.: Energieverteilung zu den einzelnen Raspberry Pi Zero

kurzfristig höher ausfallen kann, sodass die Raspberry Pi Zero W, die am meisten von

Spannungsabfällen betroffen sind, zum Absturz gebracht wurden, wenn alle Kameras

gleichzeitig auslösten. Nachdem die Last sicherheitshalber auf zwei weitere Netzteile

verteilt wurde, lief das System zuverlässig.

Als Leitungsmaterial wurde Zwillingslitze mit 0,75 mm2 verwendet. Der relativ

hohe Leitungsquerschnitt soll für einen geringen Spannungsabfall sorgen. Durch die

Verwendung von mehreren Netzteilen ist dieser jedoch nun nicht mehr notwendig. Hier

würde sich nun ein geringerer Querschnitt anbieten, auch um eine einfachere Verbindung

zu den Raspberry Pi Zero W zu ermöglichen. Diese wurden aufseiten der Zero W verlötet

und in den Verteilerdosen mit Federkraftklemmen verbunden (siehe Abbildung 3.5).

Die Energieversorgung der Beleuchtung erfolgt über ein 12-Volt-Netzteil mit 3,5 A

Ausgangsleistung. Auch hier wurde Zwillingslitze zur Verteilung zwischen den einzelnen

Holmen genutzt.

Der WLAN-Router wird ebenfalls mittels 5-Volt-Gleichspannung betrieben. Hier

war ein entsprechendes USB-Netzteil mitgeliefert.

Alle Netzteile werden von einer zentralen Steckdosenleiste mit 230-Volt-Netzspannung

versorgt. Sie sind für eine Wechselspannung zwischen 100 und 230 V ausgelegt, sodass

mit einem entsprechenden Adapter eine Nutzung in anderen Ländern möglich wäre.

Die gesamte Energieverteilung ist der Abbildung 3.6 zu entnehmen. Rote Verbindungen

stellen hierbei 12-Volt-Leitungen dar, blaue 5-Volt-Leitungen und schwarze die 230-Volt-

Leitungen. Grüne Verbindungen sind Datenleitungen (Steuerleitung LED-Streifen).

28

3. Aufbau des Messsystems

WLAN-
Router

Netzteil
5V

Rasp. 4
8 GB

Rasp. Pi
Zero W

Rasp. Pi
Zero W

Rasp. Pi
Zero W

LED-Streifen
6x

Rasp. Pi
Zero W

Rasp. Pi
Zero W

Rasp. Pi
Zero W

LED-Streifen
6x

Rasp. Pi
Zero W

Rasp. Pi
Zero W

Rasp. Pi
Zero W

LED-Streifen
6x

Rasp. Pi
Zero W

Rasp. Pi
Zero W

Rasp. Pi
Zero W

LED-Streifen
6x

Rasp. Pi
Zero W

Rasp. Pi
Zero W

Rasp. Pi
Zero W

LED-Streifen
6x

Rasp. Pi
Zero W

Rasp. Pi
Zero W

Rasp. Pi
Zero W

Rasp. Pi
Zero W

Rasp. Pi
Zero W

Rasp. Pi
Zero W

Rasp. Pi
Zero W

Rasp. Pi
Zero W

Rasp. Pi
Zero W

LED-Streifen
6x

LED-Streifen
6x

LED-Streifen
6x

Netzteil
5V

Netzteil
5V

Netzteil
5V

Netzteil
5V

Netzteil
12V

Abbildung 3.6.: Schematische Darstellung der Energieverteilung (blau: 5 V; rot: 12 V;
schwarz: 230 V; grün: Daten)

3.6. Kostenbetrachtung

Der Titel dieser Arbeit verweist bereits darauf, dass eine kostengünstige Lösung gesucht

werden sollte. Während der Konzeption und des Baus des Systems wurde entsprechend

auf ein möglichst gutes Preis-Leistungs-Verhältnis geachtet. Eine Auflistung der Ein-

zelposten ist in Anhang D aufgeführt. Die Gesamtkosten betrugen rund 1900 Euro.

Die Kosten für die Softwareentwicklung bzw. der Zeitaufwand dafür sind hier nicht

berücksichtigt.

Den größten Teil der Kosten machen die Kameras und die zugehörigen Raspberry-

Pi-Computer aus. Wie schon in Abschnitt 3.1 erwähnt, kostet ein Kameramodul etwa

30 Euro. Hierzu kommen noch 18 Euro für den Raspberry Pi Zero W. Mit Gehäuse und

Speicherkarte ergeben sich so rund 60 Euro pro Kamera. Für den Prototypen wurden

24 Kameras verwendet, somit entfallen hierauf grob 1400 Euro und damit über drei

Viertel der Gesamtkosten. Die Anzahl der Kameras wird daher in Abschnitt 7.5 auf ihr

Einsparpotenzial hin untersucht.

Andere elektronische Bauteile verursachten Kosten von rund 200 Euro. Hierzu zählen

der Raspberry Pi 4, die Netzteile, der WLAN-Router, die LED-Streifen und die Lei-

tungen. Der Rahmen aus Aluminiumprofilen mit Schrauben und Leitungshalterungen

kostete rund 250 Euro. Für die Stoffhülle wurden etwa 20 Euro ausgegeben.

29

3. Aufbau des Messsystems

Ein nicht zu unterschätzender weiterer Kostenfaktor ist die für den Bau benötigte

Zeit. Für den Prototypen wurden, zusammengerechnet rund 2-3 Wochen benötigt. Diese

Zeit könnte durch Nutzung von mehr fertigen Bauteilen oder Automatisierung verkürzt

werden, dieses würde jedoch wieder höhere Materialkosten zur Folge haben. Auch die

Softwareentwicklung, die hier nicht berücksichtigt wurde, verursacht Kosten, die jedoch

nicht direkt in die Hardwarekosten einfließen und - Pflegeaufwand nicht berücksichtigt -

eher einmaliger Natur sind.

30

4. Voruntersuchungen

Vor und während des Aufbaus des eigentlichen Messsystems wurden einige Voruntersu-

chungen durchgeführt. Diese dienten dazu, die Machbarkeit des Systems zu prüfen und

die notwendigen Schritte zu ermitteln und zu optimieren. Hauptsächlich ging es hierbei

um die Ermittlung der Kamerakonstanten und der Verzeichnung der Kamera. Auch

die Möglichkeit der Erstellung eines 3D-Modells durch Fokusstacking wurde untersucht.

Die einzelnen Untersuchungen werden im Folgenden kurz vorgestellt.

4.1. Überprüfung der Kameraauflösung

These Die Angabe der Auflösung in Pixeln täuscht bei günstigen Kameras über die

tatsächliche Auflösung hinweg.

Ziel Die tatsächliche Auflösung der Kamera soll ermittelt werden. Hierbei spielt neben

der reinen Anzahl der Pixel (px) auch die Qualität des Objektivs der Kameras eine

Rolle.

Vorgehen Es wurden Bilder von einem Siemensstern unter verschiedenen Belichtungs-

situationen und Entfernungen aufgenommen (Beispielaufnahme siehe Abbildung 4.1a).

Anschließend wurde die Größe des Unschärfekreises ermittelt und die Linienauflösung

und -größe hieraus nach Luhmann (2023, S. 161) berechnet. Zum Vergleich wurden

die Bilder auch mit einer hochwertigeren Kamera aufgenommen (Spiegelreflexkamera

Canon EOS 77D mit EF-S 18-55 mm 1:4-5.6 IS STM).

[Auflösungsvermögen] =
[Anzahl Segmente]

π · [Durchmesser Unschärfekreis]

[Liniengröße] =
1

[Auflösungsvermögen]

31

4. Voruntersuchungen

Ergebnis Der Unschärfekreis war durchschnittlich 28 Pixel (px) groß (siehe Abbil-

dung 4.1b). Dies entspricht einer Linienauflösung von 292 Linien pro Millimeter, die

Linienbreite beträgt 0,0034 mm beziehungsweise 2,44 px. Die Linienauflösung ist mit

etwa 80 % der Sensorauflösung sehr hoch. Die Linienbreite in Pixeln entsprach der zum

Vergleich genutzten Spiegelreflexkamera. Sie kann im Maximalfall (beste Auflösung)

2 px betragen, entsprechend je eines weißen und schwarzen Pixels pro Linie.

(a) 100 % (b) 800 %

Abbildung 4.1.: Siemensstern

4.2. Änderung der Kamerakonstante durch Fokussierung

These Die Kamerakonstante einer Kamera ändert sich durch die Fokussierung. Bei

gleich eingestellter Objektdistanz ist die Kamerakonstante näherungsweise gleich.

Ziel Kraus (2004, S. 59) gibt die Gleichung 4.1 für die Bildweite b in Abhängigkeit der

Gegenstandsweite g an. Näherungsweise entspricht die Bildweite der Kamerakonstante

(vgl. Kraus, 2004, S. 59). Die Nutzung der Formel als Näherungswert soll überprüft

werden und eine optimierte Formel für die Raspberry-Pi-Kameras ermittelt werden.

1

f
=

1

g
+

1

b
(4.1)

mit f : Brennweite der Kamera

g : Gegenstandsweite

b : Bildweite

32

4. Voruntersuchungen

Vorgehen Die Änderungen der Parameter wurden in einem Versuch beobachtet.

Hierzu wurde der Raspberry Pi Zero mit montierter Kamera fest vor einem ChArUco-

Kalibriermuster platziert. Das Kalibriermuster besteht aus einer Kombination von

ArUco-Markern und einem Schachbrettmuster (siehe Abbildung 4.2). Durch das Schach-

brettmuster ermöglicht es auch bei unscharfen Bildern eine gute automatische Erkennung

der zu beobachtenden Punkte. Es wurden je 11 Bilder mit unterschiedlichen Fokus-

sierungen von 2 m bis 10 cm aufgenommen. Dieser Vorgang wurde insgesamt viermal

wiederholt, um auch die Wiederholungsgenauigkeit zu ermitteln. Die Bilder wurden

anschließend mit einem Python-Skript unter Nutzung von OpenCV ausgewertet. Hierbei

wurde die relative Veränderung der Kamerakonstante ermittelt und mit dem erwarteten

Wert verglichen. Die relativen Änderungen wurden auf eine Fokusdistanz von 20 cm,

entsprechend einer Fokussierung von 5 Dioptrien (dpt), normiert. Es wurden relative

Angaben genutzt, da noch keine genaue Kenntnis über die tatsächliche Kamerakonstante

bestand.

Abbildung 4.2.: ChArUco-Board mit Fokus auf 5 dpt

Ergebnis Die Ergebnisse sind in einem Box-Whisker-Plot in Abbildung 4.3 dargestellt.

Es zeigt sich, dass die Änderungen der Kamerakonstante durch die Fokussierung linear

zu der Dioptrienzahl (Kehrwert der Gegenstandsweite) sind. Ein lineares Verhältnis

ergibt sich auch mit der im Datenblatt angegebenen Brennweite von 4,74 mm, jedoch

eine etwas flachere Gerade (blau). Die ausgleichende Gerade (rot) ergab eine Brennweite

33

4. Voruntersuchungen

von 6,97 mm (Kamerakonstante bei Fokussierung auf unendlich bzw. 0 dpt). Die Abwei-

chung von 2,23 mm entspricht einer Abweichung von 47 %, was als unrealistisch hoch

eingeschätzt wird. Hier scheinen sich weitere Effekte bemerkbar zu machen, die noch

nicht berücksichtigt wurden. Es wurde daher auch die Verzeichnung weiter untersucht.

0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Fokussierung [dpt]

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

Fa
kt

or
 n

or
m

al
isi

er
t a

uf
 5

 d
pt

Näherungsformel mit f=6.97 mm
Näherungsformel mit f=4.74 mm

Abbildung 4.3.: Box-Whisker-Plot der relativen Veränderung der Kamerakonstante
normalisiert auf eine Fokusdistanz von 20 cm (5 dpt)

4.3. Änderung der Verzeichnung durch Fokussierung

These Durch die Verschiebung der Linsen bei der Fokussierung verändert sich auch

die Verzeichnung der Kamera.

Ziel Die Veränderung der Verzeichnung und eine entsprechende Korrekturformel soll

ermittelt werden.

Vorgehen Der Versuchsaufbau aus Abschnitt 4.2 zur Bestimmung der relativen Ände-

rung der Kamerakonstante blieb bestehen. Es wurden jedoch zusätzlich die Verzeich-

nungen der Bilder ermittelt. Die Verzeichnung wurde mit OpenCV ermittelt und mit

der erwarteten Verzeichnung verglichen.

34

4. Voruntersuchungen

Ergebnis Die Ergebnisse waren nicht zufriedenstellend. Es zeigte sich, dass die Ver-

zeichnung mit nur einer Aufnahme pro Fokussierung nicht ausreichend genau modelliert

werden konnte. Dieses wurde daher erst bei der Kamerakalibrierung weiter untersucht

(siehe Kapitel 6).

4.4. 3D-Modell aus Fokusstacking

These Die Schärfentiefe der Kameras ist gering. Durch Fokusstacking kann ein besseres

3D-Modell erstellt werden.

Ziel Es wird vermutet, dass die geringe Schärfentiefe (siehe Unterabschnitt 2.2.4) die

Qualität der 3D-Modelle begrenzt. Daher soll geprüft werden, ob durch Fokusstacking

die Qualität des 3D-Modells verbessert werden kann.

Vorgehen Mittels eines Python-Skriptes wurden die notwendigen Fokusschritte be-

rechnet, damit der Bereich von 10 cm bis 1 m scharf abgebildet wird. Hierbei wurden

die Werte so bestimmt, dass jeweils die hintere Schärfegrenze ah einer Aufnahme der

vorderen av des nächsten Bildes entspricht. Im Gegensatz zu den Berechnungen in

Unterabschnitt 2.2.4 wurde hier ein Unschärfekreis von 6 px akzeptiert, da ansonsten

die Anzahl der notwendigen Aufnahmen zu groß geworden wäre. Die berechneten Werte

mit ihren Grenzen sind in Tabelle 4.1 aufgelistet und in Abbildung 4.4 dargestellt – die

blauen Striche stellen hierbei die Abdeckung einer Aufnahme dar.

Tabelle 4.1.: Notwendige Fokusschritte für den Bereich von 0,1 bis 1 m

Fokussierung Nahgrenze Ferngrenze

[m] [dpt] [m] [m]

0,11 9,31 0,10 0,12

0,13 7,93 0,12 0,14

0,15 6,53 0,14 0,17

0,19 5,13 0,17 0,23

0,27 3,72 0,23 0,33

0,43 2,30 0,33 0,63

1,15 0,87 0,63 6,66

35

4. Voruntersuchungen

Abbildung 4.4.: Notwendige Fokusschritte, um den Bereich von 10 cm bis 1 m scharf
abzubilden

Anschließend wurden die Bilder mit einem Python-Skript unter Verwendung von

OpenCV automatisiert zu je einem Bild pro Kamera, bestehend aus allen scharf darge-

stellten Bereichen, zusammengerechnet. Dazu wurde jeweils die notwendige Transforma-

tion mittels SIFT (siehe Unterabschnitt 2.4.2) und Homografie berechnet. Die fertigen

Bilder wurden in Agisoft Metashape zur Berechnung eines 3D-Modells genutzt. Wie

bereits in den vorherigen Untersuchungen beschrieben, wurden die Daten mit denen

des Streifenprojektionssystems verglichen.

Ergebnis Die Genauigkeit der Passpunkte bei der Bildverknüpfung in Agisoft Metasha-

pe ließ zuerst ein gutes Ergebnis vermuten. Jedoch waren die Ergebnisse des 3D-Modells

nicht so wie erhofft, die Qualität des 3D-Modells war schlechter als bei einer einzelnen

Aufnahme. Die Flächen des Testobjektes (Testy, siehe Abschnitt 7.1) waren kaum mehr

vorhanden. Nur mit sehr viel manueller Nacharbeit wurde überhaupt ein erkennbares

Ergebnis erzielt. Die Ursache hierfür ist nicht bekannt, aber es wird vermutet, dass

die automatische Zusammenrechnung der Bilder zu vielen Artefakten in den Bildern

geführt hat, sodass die Bilder dann von der SfM-Software nicht genau genug verknüpft

werden konnten. Auch unter Nutzung von kommerziellen Programmen wie Helicon

Focus (verwendet von Clini et al., 2016) und Zerene Stacker waren die Ergebnisse nicht

viel besser. Es wurde daher entschieden, den Ansatz hier nicht weiterzuverfolgen.

36

4. Voruntersuchungen

4.5. Überprüfung der Kamerasynchronität

Eine Anforderung war die simultane Auslösung aller Kameras. Um dies zu überprüfen,

wurden die Kameras auf eine Stoppuhr mit Anzeige von hundertstel Sekunden gerich-

tet und eine Aufnahme entsprechend der automatischen Aufnahme eines 3D-Modells

durchgeführt. Die Bilder wurden anschließend ausgewertet und hieraus das erste und

letzte Bild bestimmt. Dieser Vorgang wurde dreimal wiederholt.

Die Messung zeigte eine Abweichung zwischen dem ersten und letzten Bild von

maximal 0,2 Sekunden. Die Synchronität der Kameras ist damit für den Anwendungsfall

gegeben. Eine Aufnahme von bewegten Objekten ist damit jedoch nicht möglich. Die

Abweichung ist auf die unterschiedlichen Reaktionszeiten der Kameras zurückzuführen.

Ursächlich hierfür ist unter anderem, dass es sich bei dem Betriebssystem der Raspberry-

Pi-Computer nicht um ein Echtzeitbetriebssystem handelt und durch das Multitasking

des Prozessors Ausführungen um eine unbestimmte Zeit verzögert werden können.

Außerdem kann die Netzwerkverbindung das Signal weiter verzögern. Die Daten werden

zwar gleichzeitig an die verschiedenen Kameras abgesendet, aber da auch das WLAN

ein Zeitschlitzverfahren nutzt, werden diese nicht gleichzeitig übertragen.

37

5. Software-Entwicklung

Für die Steuerung der Kameras und die anschließende Berechnung des 3D-Modells muss

eine Steuerungssoftware für das Kamerasystem und eine entsprechende Schnittstelle

zu einer SfM-Software geschaffen werden. Die Entwicklung erfolgte hauptsächlich in

Python in Form von Prototyping. Dieses Kapitel beschreibt die Anforderungen an die

Software (siehe Abschnitt 5.1) und die zu implementierenden Anwendungsfälle (siehe

Unterabschnitt 5.1.1). Abschließend wird die Implementation (siehe Abschnitt 5.3)

erarbeitet.

Der Quellcode ist dem Git-Repository unter https://github.com/FlorianTimm/

PhotoBox zu entnehmen. Die Software wurde unter der MIT-Lizenz veröffentlicht, sodass

sie frei genutzt und weiterentwickelt werden kann.

5.1. Anforderungsanalyse

Die notwendigen Anforderungen an das System wurden aus Kapitel 1 und 2 abgelei-

tet und in diesen Abschnitt in Form von Anwendungsfällen und eines Lastenheftes

aufgezeichnet. Sie wurden in funktionale und nicht-funktionale Anforderungen unter-

teilt. Die funktionalen Anforderungen beschreiben, was das System leisten soll, die

nicht-funktionalen Anforderungen beschreiben, wie das System arbeiten soll.

5.1.1. Anwendungsfallmodellierung

Entsprechend der benötigten Schritte aus Kapitel 2 und Abbildung 2.1 wurden die

Anwendungsfälle, die die Benutzeroberfläche ermöglichen soll, im Anwendungsfall-Dia-

gramm in Abbildung 5.1 zusammengetragen. Entsprechend der Anforderung einer

einfach gehaltenen Bedienung des Systems, ist die Anzahl der verschiedenen Anwen-

dungsfälle gering. Hauptanwendungsfall ist die Erzeugung eines 3D-Modells, welches in

mehrere Unterfälle unterteilt ist, je nach verwendeter SfM-Software. Es soll aber auch

möglich sein, Teilschritte dieser Anwendungsfälle wie das Aufnehmen der Bilder, das

Identifizieren der Passpunkte oder das Verbinden der Kameras manuell auszulösen.

38

5. Software-Entwicklung

Bedingung:
Kameras gefunden

Kameras
finden/prüfen

Passpunkte
finden/prüfen

Anwender

3D-Modell
erzeugen

(Metashape)

3D-Modell
erzeugen

(OpenDroneMap)

Bilder
machen

«includes»

«includes»

«includes»

Abbildung 5.1.: Anwendungsfall-Diagramm

5.1.2. Funktionale Anforderungen

F1 Die Kameras sollen zeitgleich und möglichst verzögerungsfrei auslösbar sein.

F2 Die Steuerung soll unabhängig von anderen Geräten möglich sein, beispielsweise

per Tastensteuerung.

F3 Der Status des Systems soll einfach erkennbar sein - auch ohne Anschluss eines

Computers.

F4 Es sollen Passpunkte automatisch gefunden und für die Bestimmung der äußeren

Orientierung genutzt werden.

F5 Die Bilder sollen scharf und fokussiert sein.

F6 Die Belichtung soll automatisch erfolgen, jedoch die Helligkeit der Bilder identisch

sein.

5.1.3. Schnittstellen

S1 Die Daten sollen intern gespeichert werden.

S2 Eine Speicherung auf tragbaren Speichermedien wie USB-Sticks soll möglich sein.

S3 Eine direkte Übertragung an eine SfM-Software soll möglich sein.

39

5. Software-Entwicklung

5.1.4. Nicht-funktionale Anforderungen

N1 Die Erfassung soll ohne weitere Hardware möglich sein. Das System soll unabhängig

von Netzwerkanschlüssen etc. sein.

N2 Jegliche (Daten-)Kommunikation soll über WLAN erfolgen.

5.2. Anwendungsentwurf

Der Anwendungsentwurf legt die grundlegenden Strukturen der Software fest. Hierbei

wird festgelegt, welche Module benötigt werden und wie diese miteinander kommu-

nizieren. Diese Struktur wird einmalig festgelegt und bildet die Grundlage für die

Implementierung.

5.2.1. Domänen-Klassendiagramm

Aus den für die Berechnungen des 3D-Modells benötigten Daten wurde das Domänen-

Klassendiagramm aus Abbildung 5.2 erzeugt. Dieses zeigt vor allem die Abhängigkeiten

der einzelnen Datensätze untereinander. Es bildet hiermit die Grundlage für die Da-

tenschnittstellen der einzelnen Komponenten zueinander und den jeweils benötigten

Datensätzen.

Zur Berechnung eines 3D-Modells werden die innere und äußere Orientierung der

Kameras benötigt (vgl. Kapitel 2). Da die innere Orientierung der Kameras insta-

bil ist, reichen hier Näherungswerte. Entsprechend wurde diese nicht wie üblich pro

Kamera, sondern nur pro Modell festgehalten. Die Klasse CameraModel hat daher

neben dem Namen Attribute für die Parameter der inneren Orientierung in Form

einer Geradengleichung abhängig von der Fokussierung. Jede Kamera hat dann (pro

Messung) eine Position (Point3D) und drei Drehwinkel, hierdurch wird die äußere

Orientierung im Modell abgebildet. Um die Passpunktpositionen festzuhalten, wird das

Objekt PasspointPosition verwendet. Dieses speichert die Position des Passpunktes

in den Bildern der Kameras als Point2D und die Position im Raum als Passpoint.

Außerdem verweist die Klasse auf das entsprechende Bild (Image), welches wiederum

auf die Kamera (Camera) verweist. Die Klasse Image hält des Weiteren die Attribute

für den Dateinamen und die genutzte Fokussierung.

40

5. Software-Entwicklung

Passpoint

id: text

CameraModel

name: text
f0: float
cx0: float
cy0: float
k0: float
p0: float
fx: float
cxx: float
cyx: float
kx: float
px: float

Point2D

x: float
y: float

Point3D

z: float

PasspointPosition

image: Image
position: Point2D
passpoint: Passpoint

Camera

model: CameraModel
serial: text
position: Point3D
roll: float
pitch: float
yaw: float

Image

camera: Camera
path: text
lensPosition: float

1..*

1

1..* 1

1..*1

1..*1

Abbildung 5.2.: Domänen-Klassendiagramm

5.2.2. Programmablauf

Die Kommunikation innerhalb des Systems ist in dem Ablaufdiagramm in Abbildung 5.3

dargestellt. Eine Auslösung der Kamera erfolgt über den Software-Button in der Desktop-

Software, dem Webinterface oder über einen Taster. Optional werden die Belichtungen

der Kameras synchronisiert und anschließend die Aufnahmen erzeugt. Die Raspberry

Pi Zero W senden die Aufnahmen und die gefundenen ArUco-Marker an den Raspberry

Pi 4. Dieser berechnet die Kamerapositionen und speichert die Daten. Die Desktop-

Software kann die Daten dann herunterladen und an die SfM-Software übergeben, welche

ein 3D-Modell erzeugt. Auf die Details der einzelnen Module wird in Abschnitt 5.3

eingegangen.

5.3. Implementierung

Die Programmierung des Systems erfolgte iterativ. Einzelne Arbeitspakete wurden

in einem Jupyter-Notebook ausprobiert und dann, wenn dieser Schritt erfolgreich

war, in den Gesamtworkflow integriert - teilweise sind diese im Kapitel 4 beschrieben.

Größtenteils wurde der Python-Code objektorientiert und typisiert geschrieben. Die Teile,

die auf einem Desktoprechner ausgeführt werden sollen, wurden in Java geschrieben, da

hier später die Einrichtung auf verschiedenen Rechnern und Plattformen einfacher ist.

41

5. Software-Entwicklung

Capturing an object

 Software-Button

Using software button

Web-Interface

alt: Using web interface

Hardware-Button

alt: Using hardware button

get exposure

exposure settings

set exposure

opt: sync exposure

 take picture

take
picturephoto taken

search
aruco

 downloading

Aruco marker

parallel to each camera

 all pictures taken

filter aruco
 downloading pictures

 aruco marker

 downloading marker
coordinates

 data

 calculate
3d

 3d model

User

Connector
(Desktop)

Master
(Raspberry Pi 4)

Camera
(Raspberry Pi Zero W)

SfM-Software
(Metashape or OpenDroneMap)

Abbildung 5.3.: Ablaufdiagramm zur Kommunikation bei der Aufnahme eines 3D-
Modells

42

5. Software-Entwicklung

5.3.1. Module auf den Raspberry-Pi-Computern (Python)

Die Software auf den Raspberry-Pi-Computern wurde in Python geschrieben. Hierbei

wurde darauf geachtet, dass die Module möglichst unabhängig voneinander sind und

nur über definierte Schnittstellen kommunizieren.

Bibliotheken

Es wurde, wenn möglich, auf fertige Python-Bibliotheken zurückgegriffen. Hierdurch soll-

te der Programmieraufwand verringert und auf bereits getesteten Code gesetzt werden.

Außerdem greifen viele der Bibliotheken wie OpenCV oder NumPy auf hardwarenahe

Berechnungen zurück, sodass der Geschwindigkeitsnachteil von Python nicht weiter ins

Gewicht fällt. Die wichtigsten Bibliotheken sind:

OpenCV ist eine Bibliothek für Bildbearbeitung und maschinelles Sehen. Sie ist weit

verbreitet und bietet viele photogrammetrische Funktionen. Hiermit wurde beispiels-

weise die Detektion von Markern durchgeführt und die Näherungswerte der Kameras

berechnet.

SciPy stellt Methoden für wissenschaftliche Berechnungen bereit, beispielsweise für

verschiedene Formen von Ausgleichungsrechnungen. Sie wurde für die Berechnung der

Bündelblockausgleichung verwendet. Der manuelle Ansatz mit Formeln aus Luhmann

(2023, S. 349ff) unter Nutzung von NumPy alleine war sehr ressourcenlastig. Mit

Unterstützung von SciPy und unter Verwendung der Projektionsgleichung konnte die

Berechnungsdauer stark dezimiert werden.

NumPy bietet Datenstrukturen für Matrizen und Vektoren sowie effiziente Berechnun-

gen mit diesen. Sie wurde beispielsweise für die Berechnung der Kamerapositionen und

die Bündelblockausgleichung genutzt. Außerdem ist NumPy Grundlage für OpenCV

und SciPy.

Flask ist ein Webframework für Python. Es wurde genutzt, um die Weboberfläche

und die Datendownloads bereitzustellen. Hiermit wurde ein Webserver aufgesetzt, der

die Daten der Kameras anzeigt und die Steuerung ermöglicht.

rpi-ws281x ermöglicht die Steuerung der RGB-LEDs. Hierzu wird das in Worldsemi

(2012) beschriebene Steuerprotokoll von der Bibliothek implementiert. Die Steuerung

kann dann mittels einfacher Farbcodes erfolgen.

43

5. Software-Entwicklung

Allgemeine Module

In Abbildung 5.4 werden Klassen dargestellt, die in allen Modulen genutzt werden. Diese

sind verantwortlich für allgemeine Funktionen wie das Logging und das Auslesen der

Konfiguration. Die Klasse Config liest die Konfiguration aus einer Datei aus und stellt

diese zur Verfügung. Logger ermöglicht das Loggen von Informationen und Fehlern in

einer Textdatei, in den Systemprotokollen und/oder die Ausgabe auf dem Terminal bei

manuellem Start. Die Klassen CamSettings und ArucoMarkerPos sind Datenklassen,

die die Einstellungen der Kameras und die Position der ArUco-Marker speichern. Diese

Daten werden zwischen der Master-Steuerung und der Kamera-Steuerung ausgetauscht –

hierdurch wird sichergestellt, dass das erwartete Datenmodell auf beiden Seiten gleich ist.

CamSettings werden dabei vom Raspberry Pi 4 an die Raspberry Pi Zero W gesendet,

um die Kameras zu konfigurieren. ArucoMarkerPos werden von den Raspberry Pi Zero

W an den Raspberry Pi 4 gesendet, um die Position der identifizierten ArUco-Marker

zu übertragen.

common

ArucoMarkerPos

+id: int
+corner: int
+x: float
+y: float

CamSettingsWithFilename

filename: str

CamSettings

focus: float
iso: float
shutter_speed: float
filename: str {optional}

«singleton»
Logger

+log(level, msg, *args, **kwargs)
+info(msg, *args, **kwargs)
+debug(msg, *args, **kwargs)
+warning(msg, *args, **kwargs)
+error(msg, *args, **kwargs)
+critical(msg, *args, **kwargs)
+get(): logging.Logger

«singleton»
Conf

get(): ConfigParser

Abbildung 5.4.: Klassen des Common-Package

Master-Steuerung

Auf einem Raspberry Pi 4 läuft die Gesamtsteuerung des Systems. Dieses stellt Schnitt-

stellen zur Steuerung auf drei verschiedenen Wegen bereit: per Taster, per Weboberfläche

und per Socket-Verbindung. Außerdem stellt es die Daten per Representational-State-

Transfer (REST)-Schnittstelle zur Verfügung. Die Klassen sind in Abbildung 5.5 darge-

stellt.

Das Skript Master wird automatisch bei Systemstart über systemd als Daemon – als

im Hintergrund und dauerhaft laufender Service (vgl. Negus, 2020, S. 369) – gestartet.

Hier ist die Webschnittstelle implementiert. Sie ermöglicht die komplette Steuerung, das

Konfigurieren sowie das Anzeigen und Herunterladen der Bilder. Das Skript instanziiert

außerdem die Klasse Control, welche die hauptsächliche Steuerung übernimmt und

den Kern des Systems darstellt.

44

5. Software-Entwicklung

Die Steuerung per Taster implementiert die Klasse ButtonControl. Sie ermöglicht

einfache Aufgaben wie das Suchen von Kameras, das Aufnehmen von Bildern und die

Aktivierung des Standbys bzw. das Herunterfahren des Systems auch ohne PC durchzu-

führen (Anforderung F2). Die Klasse DesktopControlThread startet, wie der Name

bereits vermuten lässt, als eigenständiger Thread und stellt eine Socket-Verbindung zur

Kommunikation mit der Desktop-Software und die Steuerung hierüber bereit. Einen

weiteren Thread stellt CameraControlThread zur Verfügung. Dieser überwacht das

Netzwerk auf Nachrichten der Kameras und initiiert die entsprechenden Schritte. Die

eigentlichen Verarbeitungsschritte werden in der Klasse Control durchgeführt. Auch

für diese Aufgaben werden zum Teil eigene Threads gestartet, damit die Verarbeitung

parallel erfolgen kann. Beispielsweise wird der Download der Bilder und die Berechnung

von Kamerapositionen in eigenen Threads durchgeführt.

Die Control-Klasse steuert die Aufnahme, sammelt die Daten der einzelnen Kameras

und stellt diese zur Weiterverarbeitung zur Verfügung. Sie sendet eingehende Aufträge

als Broadcast-Nachrichten in das Netzwerk an die Raspberry Pi Zero W mit den Kame-

ras, die dann beispielsweise Bilder aufnehmen. Hierdurch wird die nahezu zeitgleiche

Auslösung gewährleistet (Anforderung F1), die bei einer einzelnen Ansteuerung als

Schleife nicht möglich wäre. Zur Vereinheitlichung der Belichtung kann eine Funktion

aktiviert werden, sodass erst einmal die Belichtung von jeder Kamera berechnet und

diese dann von der Control-Klasse gemittelt wird. Dadurch werden alle Bilder mit

der gleichen Einstellung aufgenommen, sodass keine Helligkeitsunterschiede zwischen

den Aufnahmen bestehen (Anforderung F6). Nach der Aufnahme der Bilder und der

Erkennung der ArUco-Marker werden die Daten von den Raspberry Pi Zero W an

den Raspberry Pi 4 übertragen. Aus den ArUco-Markern wird die äußere Orientie-

rung der Kameras als Näherungswerte bestimmt (Anforderung F4). Die Daten werden

anschließend in einem Archiv gespeichert (Anforderung S1).

Die Datenübertragung an die Desktop-Software erfolgt über die REST-Schnittstelle,

die wieder vom Master-Skript bereitgestellt wird. Alternativ kann auch ein USB-Stick

an den Raspberry Pi angesteckt werden (Anforderung S2) oder die Daten über die

Weboberfläche manuell heruntergeladen werden. Dazu wird bei der Verarbeitung der

Daten geprüft, ob ein USB-Stick angeschlossen ist. Falls dies der Fall ist, wird dieser

gemountet, die Daten kopiert und der Stick wieder ausgehängt, damit dieser (fast)

jederzeit getrennt werden kann. Das Datenformat auf dem USB-Stick und in den

Archiv-Dateien aus der Weboberfläche entspricht dem, welches die Desktop-Software

anlegt. So kann diese die Daten dann auch einladen und weiterverarbeiten.

45

5. Software-Entwicklung

StoppableThread

 __init__(self, *args, **kwargs)
stop(self)
stopped(self): boolean

«Script»
Master

+ conf: ConfigParser
+ app: Flask
+ control: Control

+ static_file(filename:
 PathLike[str] | str) -> Response
+ index() -> str
+ time(time: int) -> str
+ overviewZip() -> str
+ usb_copy(filename: str) -> str
+ overview() -> str
+ search_html() -> str
+ photo_html(id: str = "") -> str
+ stack_html(id: str = "") -> str
+ capture_html(action:
 Literal['photo', 'stack'] = "photo",
 id: str = "") -> str
+ preview() -> str
+ focus(val: float = -1) -> str
+ shutdown_html() -> NoReturn
+ reboot_html() -> NoReturn
+ restart() -> str
+ pause() -> str
+ resume() -> str
+ proxy(host: str, path: str) -> bytes
+ update() -> str
+ aruco() -> str
+ aruco_erg() -> str
+ test() -> str
+ photo_light_html(val: int = 0) -> str
+ status_led_html(val: int = 0) -> str
+ marker_get() -> str
+ marker_post()
+ config_get() -> str
+ config_post() -> str

MarkerCheck

+ __init__(self, marker_coords: dict[int, ArucoMarkerCorners],
 marker_pos: dict[str, list[ArucoMarkerPos]],
 metadata: dict[str, Metadata], cameras: d+ CameraExterior] = {})
+ check(self) -> None
+ recalculate_coordinates(self, cameras: dict[str, dict[str, np.ndarray]],
 t: pd.DataFrame) -> bool
+ get_corrected_coordinates(self) -> dict[int, ArucoMarkerCorners]
+ get_filtered_positions(self) -> dict[str, list[ArucoMarkerPos]]
+ get_cameras(self) -> dict[str, CameraExterior]
+ rotationMatrixToEuler(self, R: np.ndarray) -> np.ndarray
+ isRotationMatrix(self, R: np.ndarray) -> bool

LedControl

+ __init__(self, control: 'Control')
+ switch_off(self)
+ starting(self)
+ waiting(self)
+ status_led(self, val: float = 0) -> None
+ photo_light(self, val: float = 0) -> None
+ running_light(self)
+ get_photo_light_color(self)
+ set_photo_light_color(self, color)

FocusStack

+ findHomography(image_1_kp, image_2_kp, matches) -> npt.NDArray[np.float32]
+ align_images(images: list[npt.NDArray[np.uint8]]) -> list[npt.NDArray[np.uint8]]
+ doLap(image: npt.NDArray[np.uint8]) -> npt.NDArray[np.uint8]
+ focus_stack(unimages: list[npt.NDArray[np.uint8]]) -> npt.NDArray[np.uint8]

DesktopControlThread

__init__(self, control: Control)
run(self)

Control

+ __init__(self, app: Flask) -> None
+ start(self)
+ search_cameras(self, send_search: bool = True) -> None
+ capture_photo(self, action: Literal['photo', 'stack'] = "photo",
+ sync_exposure(self)
+ send_to_desktop(self, message: str) -> None
+ send_to_all(self, msg_str: str) -> None
+ found_camera(self, hostname: str, ip: str) -> None
+ receive_photo(self, ip: str, id_lens: str, filename: str) -> None
+ all_images_downloaded(self, id, folder)
+ zip_and_send_folder(self, id, folder)
+ check_and_copy_usb(self, file)
+ find_aruco(self)
+ receive_aruco(self, data: str) -> None
+ set_marker_from_csv(self, file, save=True) -> None
+ switch_pause_resume(self,)
+ pause(self,)
+ resume(self,)
+ set_time(self, time: int) -> str
+ system_control(self, action: Literal['shutdown', 'reboot']) -> NoReturn
+ update(self,)
+ restart(self,)
+ set_config_from_web(self, config: dict) -> None
+ get_config_for_web(self,) -> dict
+ get_hostnames(self,) -> dict[str, str]
+ get_cams_started(self) -> bool
+ get_leds(self) -> LedControl
+ get_marker(self)
+ is_system_stopping(self)
+ get_cameras(self)
+ get_detected_markers(self)

CameraControlThread

__init__(self, control: Control)
run(self)

ButtonControl

Abbildung 5.5.: Klassen des Master-Package

Kamera-Steuerung

Die Raspberry Pi Zero W übernehmen die Steuerung der Kameras. Hierfür wurde ein

Modul entwickelt, dass die Kameras steuert, die Bilder aufnimmt und anschließend

dem steuernden Raspberry zur Verfügung stellt. Die Klassen sind in Abbildung 5.6

dargestellt.

Das Skript Camera wird automatisch bei Systemstart über systemd als Daemon

gestartet. Es erzeugt dann über Flask eine einfache Weboberfläche, über die die Kameras

konfiguriert und die Bilder betrachtet werden können. Außerdem stellt das Skript auch

die REST-Schnittstelle bereit, über die die Bilder und gefundenen Passpunkte abgerufen

werden können. Die Klasse CameraControl wird vom Skript instanziiert und übernimmt

die eigentliche Steuerung. Sie nimmt die Konfiguration entgegen und setzt diese um. Sie

überwacht das Netzwerk auf Broadcast-Nachrichten der Master-Steuerung und initiiert

die entsprechenden Schritte. Über die gleiche Socket-Verbindung meldet sie auch den

Status an die Master-Steuerung, beispielsweise wenn Bilder aufgenommen wurden oder

die Erkennung der Passpunkte abgeschlossen ist. Die Klasse CameraInterface wird

von CameraControl aufgerufen, bildet einen Adapter für das Kameramodul und kapselt

so die Hardwaresteuerung. Sie nimmt die Bilder auf und speichert diese. Gegebenenfalls

leitet sie die Bilder an die CameraAruco-Klasse weiter, damit diese in einem eigenen

Thread die ArUco-Marker identifizieren kann (Anforderung F4).

46

5. Software-Entwicklung

«Script»
Camera

+ conf: ConfigParser
+ cc: CameraControl

+ static_file(filename: PathLike[str] | str) -> Response
+ web_index()
+ web_pause()
+ web_resume()
+ photo_view()
+ web_shutdown()
+ stream()
+ photo(focus: float = -2)
+ settings(focus: float = -1)
+ preview(focus: float = -2)
+ focus(focus: float = -1)
+ aruco(id: str = "")
+ meta()
+ start_web()

CameraInterface

+ __init__(folder: str)
+ make_picture(settings: CamSettings = {}, preview=False): bytes
+ save_picture(settings: CamSettingsWithFilename,
 aruco_callback: None | Callable[[list[ArucoMarkerPos],
 Metadata], None]): tuple[str, Metadata]
+ aruco_search_in_background_from_file(filename: str,
 metadata: Metadata
 aruco_callback: Callable[[list[ArucoMarkerPos],
 Metadata], None]): None
+ aruco_search_in_background(img: bytes, file: str,
 metadata: Metadata,
 aruco_callback: Callable[[list[ArucoMarkerPos],
 Metadata], None]): None
+ meta(): None | Metadata
+ find_aruco(inform_after_picture: None | Callable[[], None]
 = None): list[ArucoMarkerPos]
+ pause()
+ resume()
+ set_settings(settings: CamSettings): CamSettings
+ focus(focus: float): str

CameraAruco

+ detect_from_rgb(image: bytes): list[ArucoMarkerPos]
+ detect(image: bytes): list[ArucoMarkerPos]

CameraControl

+ __init__()
+ run()
+ photo(settings: CamSettings | str): bytes
+ set_settings(settings: CamSettings | str): CamSettings
+ preview(settings: CamSettings | str = {}): bytes
+ focus(focus: float): str
+ aruco(): list[ArucoMarkerPos]
+ meta():None | Metadata
+ pause()
+ resume()
+ shutdown()
+ say_moin()

Abbildung 5.6.: Klassen des Camera-Package

47

5. Software-Entwicklung

5.3.2. Desktop-Schnittstelle (Java)

Die Desktop-Schnittstelle dient zur Steuerung des Systems und zur automatischen Über-

tragung der Daten an die SfM-Software (Anforderung S3). Sie wurde in Java geschrieben,

um eine einfache Nutzung auf verschiedenen Betriebssystemen zu ermöglichen. Das

Application Programming Interface (API) für Java der SfM-Software Agisoft Metashape

kann im Gegensatz zum Python-API ohne Installation verwendet werden. Die Software

kommuniziert mit dem Raspberry Pi 4 hauptsächlich über eine Socket-Verbindung,

wobei jedoch die Datenübertragung der Bilder vom Raspberry Pi 4 zur Desktop-

Software über die REST-Schnittstelle erfolgt. Neben der Übertragung der Bilder an

die SfM-Software ermöglicht die Software das Starten von Aufnahmen. Ein Screenshot

der Benutzeroberfläche ist in Abbildung 5.7 dargestellt. Die Schnittstellen-Software

unterstützt als SfM-Software aktuell Agisoft Metashape und OpenDroneMap, jedoch

ist die Schnittstelle so gestaltet, dass auch andere Software ergänzt werden könnte.

Abbildung 5.7.: Screenshot der Connector-Software beispielhaft unter Ubuntu 24.04

Die Klassen sind in Abbildung 5.8 dargestellt. Connector stellt hierbei den Ein-

stiegspunkt dar. Die Klasse instanziiert die Benutzeroberfläche ConnectorGui und

übernimmt die Steuerung der Software. Die Klasse PhotoBoxClient wird beim Klick

auf Verbinden von Connector gestartet und übernimmt die Kommunikation mit dem

Raspberry Pi 4. Sie sendet die Steuerbefehle und empfängt die Daten. Außerdem

wird eine Klasse, die das Interface SfmClient implementiert, aufgerufen. Diese Klas-

se stellt die Schnittstelle zur SfM-Software dar. Hierbei wird je nach Auswahl der

48

5. Software-Entwicklung

Software MetashapeClient, OpenDroneMapClient oder DownloadClient instanziiert.

Diese Klasse übernimmt die Kommunikation mit der entsprechenden SfM-Software und

übergibt die Daten. DownloadClient stellt einen Sonderfall dar, hier werden die Daten

nur gespeichert, um sie später weiterverarbeiten zu können.

::OdmApi

#OdmApi(String baseUrl): ctor
#request(String urlPart): JSONObject
#request(String urlPart, Map<String, String>
 parameter): JSONObject
#uploadFile(String urlPart, File file,
 String fileName): JSONObject ::PhotoBoxFolderReader

+PhotoBoxFolderReader(
 Connector connector,
 String projectFolder)
+getCameras(): PbCamera[]
+getImages(): PbImage[]
+getFolderName(): String

domain

+PbCamera
+PbCameraPosition
+PbImage
+PbMarker
+PbMarkerPosition

metashape
odm

photobox

::MetashapeProject

#MetashapeProject(Connector connector,
 String projectFolder)
#run()
+progress(double progress): void
+status(String status): void
+aborted(): boolean::OdmProject

#OdmProject(Connector connector,
 String baseUrl, String destDir)
#run()

::OdmWebHookServer

#OdmWebHookServer(Connector connector,
 OdmClient client)
#run()
#stop()
+handle(HttpExchange t)

::DownloadClient

::ConnectorGui

#ConnectorGui(Connector connector): ctor
#startGui(): void
#setDisconnected(): void
#log(String message): void

«interface»
::SfmClient

+connect(): boolean
+disconnect(): boolean
+processPhotos(String filename): boolean::PhotoBoxClient

+PhotoBoxClient(String host, int port, Connector connector): ctor
+connect(): boolean
+takePhoto(): void
+disconnect(): boolean

::OdmClient

+ODMClient(Connector connector): ctor
#processWebhook(JSONObject json)

::MetashapeClient

+MetashapeClient(Connector connector): ctor

::Connector

+main(String[] args): void
#toggleConnect(): void
#takePhoto(): void
#setHost(String host): void
#setPort(int port): void
#setSoftware(String software): void
#getHost(): String
#getPort(): int
#getSoftware(): String
+log(String message): void
#getDirectory(): File
#setDirectory(File directory): void
#setCalculateModel(boolean selected): void
+getCalculateModel(): boolean

1

1

1
1

1

1
1

1

1

*

1

1

1

*

1

1

11

11

Abbildung 5.8.: Connector-Package

5.3.3. Konfiguration

Neben der eigentlichen Programmierung erfolgten noch verschiedene Konfigurationen,

um das System zu betreiben. Diese sollen hier kurz vorgestellt werden.

WLAN-Router Der WLAN-Router wurde so konfiguriert, dass er ein WPA2-ver-

schlüsseltes WLAN-Netzwerk aussendet. Außerdem wurde er als DHCP-Server einge-

richtet, der den angeschlossenen Geräten automatisch eine IP-Adresse zuweist. Die

IP-Adressen der Raspberry-Pi-Computer wurden fest vergeben, um die Kommunikation

zu erleichtern. Der Router wurde so konfiguriert, dass er optional die Kommunika-

tion zwischen dem Raspberry Pi 4 und einem per Netzwerkleitung angeschlossenen

Desktop-PC zulässt, aber auch eine angeschlossene Internetverbindung durchleitet.

49

5. Software-Entwicklung

Raspberry Pi 4 Der Raspberry Pi 4 wurde so konfiguriert, dass er automatisch das

Skript Master startet. Hierzu wurde ein systemd-Service erstellt, der das Skript beim

Systemstart ausführt. Vorher wird bei Vorliegen einer Internetverbindung geprüft, ob

das Git-Repository eine neue Version der Software zur Verfügung stellt. Falls dies der

Fall ist, wird dieses heruntergeladen und installiert.

Zur Beschleunigung von Softwareupdates des Betriebssystems, wurde ein entspre-

chender apt-Proxyservice eingerichtet. Dieser speichert die heruntergeladenen Pakete

und stellt diese bei Bedarf den Raspberry Pi Zero W zur Verfügung. Hierdurch wird

die Bandbreite des Internetanschlusses geschont und die Updates können schneller

durchgeführt werden.

Raspberry Pi Zero W Die Raspberry Pi Zero W wurden so konfiguriert, dass sie auto-

matisch das Skript Camera starten. Hierzu wurde ebenfalls ein systemd-Service erstellt,

der das Skript beim Systemstart ausführt. Auch hier wurde der bereits beschriebene

Update-Mechanismus eingebaut. Entsprechend der Cache-Konfiguration des Raspberry

Pi 4 wurde hier der apt-Proxyservice als Paketquelle eingerichtet.

50

6. Systemkalibrierung

Für die Berechnung von 3D-Modellen mit korrekter Skalierung sind einige Parameter

zu bestimmen. Neben der Bestimmung der inneren Orientierung der Kameras ist auch

eine Realisierung eines Maßstabes notwendig. Auf die notwendigen Schritte und die

möglichen Fehlerquellen wird in diesem Kapitel eingegangen.

6.1. Maßstab und Passpunkte

Zur Bestimmung der Skalierung (siehe Abschnitt 2.3) wurde sich für eine Kombination

aus Maßstäben und Passpunktkoordinaten entschieden. Die Möglichkeit der festen und

bekannten äußeren Orientierung der Kameras entfiel, da diese projektabhängig bewegt

werden sollen.

Die Passpunkte in Form von ArUco-Markern wurden fest am Rahmen montiert.

Diese sollen später als dauerhafte Realisierung des Maßstabes dienen. Außerdem wurden

kalibrierte Maßstäbe im Objektraum verteilt, welche für die erstmalige Bestimmung der

Passpunktkoordinaten den Maßstab bilden. Zur Unterstützung der Bildverknüpfung

wurden weitere Punkte in Form von Schneider-Markern im Bildbereich verteilt (ähnlich

dem Aufbau in Abbildung 7.3). Anschließend wurden Bilder vom gesamten System mit

einer externen Kamera mit festen Einstellungen aufgenommen. Diese Bilder wurden

dann in Agisoft Metashape verarbeitet und Koordinaten der Passpunkte bestimmt.

Über manuell in Agisoft bestimmte Punkte am Boden des Systems wurde das System

so transformiert, dass der Boden die XY-Ebene darstellt.

6.2. Kamerakalibrierung

Die verwendeten Kameras weisen keine stabile innere Orientierung auf. Daher ist eine

Kalibrierung in Form von festen Parametern nicht möglich. Es wurde die Annahme

verfolgt, dass die innere Orientierung linear von der Fokussierung abhängig ist. Daraus

wurde eine Formel zur Bestimmung von Näherungswerten für die innere Orientierung

in Abhängigkeit der Fokussierung ermittelt.

51

6. Systemkalibrierung

Die eigentliche Bestimmung der inneren Orientierung erfolgt im Betrieb in Form

einer Simultankalibrierung (siehe Unterabschnitt 2.1.1). Die Näherungswerte sollen

dabei als Startwerte dienen.

Vorgehen Es wurden mit fünf verschiedenen Fokussierungen mit jeweils 24 Rasp-

berry-Pi-Kameras Bilder aufgenommen und die Bilder in Agisoft Metashape mittels

ArUco-Markern orientiert, dessen Position aus Abschnitt 6.1 bekannt ist. Außerdem

wurden etwa 100 Schneider-Marker im Bildbereich der Kameras verteilt und als Ver-

knüpfungspunkte benutzt. Es wurden in Metashape jeweils alle Bilder mit der gleichen

Fokussierung als eine Kamera angenommen und die innere Orientierung bestimmt.

Anschließend wurden alle Kameras nochmal einzeln ausgeglichen. Dieses zweistufige

Vorgehen bewirkt, dass die Näherungswerte schrittweise verbessert werden. Ein einstufi-

ges Vorgehen ohne Näherungswerte führte zu falschen Werten. Die innere Orientierung

(vgl. Unterabschnitt 2.1.1) wurde in Form von Brennweite, Bildhauptpunktverschiebung

und Verzeichnung ermittelt, die Ergebnisse in einem Box-Whisker-Plot dargestellt und

eine ausgleichende Gerade berechnet.

Ergebnis Die Ergebnisse sind in Abbildung 6.1 dargestellt. Wie auch schon in der

Voruntersuchung in Abschnitt 4.2 zeigt sich, dass die Kamerakonstante c linear zur Fo-

kussierung ist. Bei der Bildhauptpunktverschiebung x′

0, y′

0 und der radial-symmetrischen

Verzeichnung k1,k2,k3 ist die Abhängigkeit nicht eindeutig. Tabelle 6.1 zeigt die Korre-

lationsmatrix der Näherungswerte. Die Fokussierung und die Kamerakonstante sind

stark korreliert. Die Korrelation der restlichen Parameter ist nur schwach. Es zeigt sich

aber, dass die innere Orientierung durch die Fokussierung stark beeinflusst wird.

Tabelle 6.1.: Korrelationsmatrix der Näherungswerte

Fokus [dpt] c x′

0 y′

0 k1 k2 k3

Fokus [dpt] 1,000 0,901 0,032 -0,128 -0,069 -0,181 0,177

c 1,000 -0,010 -0,211 -0,220 -0,071 0,092

x′

0 1,000 -0,230 0,005 0,005 0,005

y′

0 1,000 0,031 0,023 -0,051

k1 1,000 -0,925 0,866

k2 1,000 -0,985

k3 1,000

52

6. Systemkalibrierung

1 2 3 4 5
Fokus [dpt]

3400

3425

3450

3475

3500

3525

3550

3575

Ka
m

er
ak

on
st

an
te

 c
 [p

x]

c= 26.28 + 3397.25 x
gemäß Datenblatt

1 2 3 4 5
Fokus [dpt]

20

10

0

10

20

30

40

Ha
up

tp
un

kt
 x

′ 0 [
px

]

x′0 = 0.20 + 9.12 x

1 2 3 4 5
Fokus [dpt]

40

30

20

10

0

10

20

Ha
up

tp
un

kt
 y

′ 0 [
px

]
y′0 = 1.23 + 2.48 x

1 2 3 4 5
Fokus [dpt]

0.05

0.00

0.05

0.10

0.15

0.20

Ve
rz

ei
ch

nu
ng

sk
oe

ffi
zie

nt
 k

1

k1 = 0.00 + 0.03 x

1 2 3 4 5
Fokus [dpt]

0.6

0.4

0.2

0.0

0.2

Ve
rz

ei
ch

nu
ng

sk
oe

ffi
zie

nt
 k

2

k2 = 0.02 + 0.10 x

1 2 3 4 5
Fokus [dpt]

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Ve
rz

ei
ch

nu
ng

sk
oe

ffi
zie

nt
 k

3

k3 = 0.03 + 0.27 x

Abbildung 6.1.: Box-Whisker-Plots und ausgleichende Gerade der inneren Orientierung
in Abhängigkeit von der Fokussierung [dpt]

53

7. Untersuchungen zur Genauigkeit

und Systemaufbau

Nach Abschluss der Konstruktion und des Aufbaus des Prototyps, wurden verschiedene

Untersuchungen durchgeführt, um die Genauigkeit des Systems zu überprüfen und die

Anzahl der Kameras zu evaluieren. Hierzu wurden unter anderem Vergleichsmessungen

mit verschiedenen Systemen durchgeführt.

7.1. Referenzdaten

Zum Vergleich standen verschiedene Testobjekte zur Verfügung. Hauptsächlich wurde

ein etwa 14 cm hohes Modell einer Moai-Statue der Osterinsel verwendet, da dieses

Objekt eine gute Textur und viele Details aufweist (siehe Abbildung 7.1a). Neben einem

texturierten Spielzeugdino standen noch zwei weiße Gipsmodelle zur Verfügung: Ein

Abdruck einer Büste Einsteins (siehe Abbildung 7.1b, 15 cm) und ein kerzenartiges

Testobjekt, im folgenden Testy genannt (siehe Abbildung 7.1c, 38 cm). Alle Objekte

wurden bereits in anderen Projekten an der HafenCity Universität verwendet (vgl.

z. B. Kersten et al., 2016a) und sind mit mehreren verschiedenen Systemen vermessen

worden.

Als Referenzwerte wurden in dieser Arbeit die Messungen mit einem Zeiss GOM

ATOS 5 genutzt. Hierbei handelt es sich um ein Streifenprojektionssystem, welches

hauptsächlich in der Industrie zur Vermessung von Bauteilen eingesetzt wird. Streifen-

projektionssysteme arbeiten ebenfalls photogrammetrisch, haben aber den Vorteil, das

sie durch das Projektionssystem auch texturarme Objekte erfassen können. Wie der

Name bereits andeutet, wird ein Streifenmuster auf das Objekt projiziert, welches dann

von mindestens einer Kamera aufgenommen wird. Projektor und Kamera sind auf einer

festen Basis montiert. (vgl. Luhmann, 2023, S. 581f)

54

7. Untersuchungen zur Genauigkeit und Systemaufbau

(a) Moai (b) Einstein (c) Testy

Abbildung 7.1.: Verschiedene Testobjekte

Bei dem verwendeten System werden zwei Kameras eingesetzt, die sich ein massives

Gehäuse mit dem mittig angeordneten Projektor teilen. Je nach verwendeten Messvolu-

men und Objektentfernung beträgt die Genauigkeit etwa 0,01 - 0,03 mm (GDV-Systems

GmbH, 2020). Aufgrund der deutlich höheren erwarteten Genauigkeit des Streifenpro-

jektionssystems, kann davon ausgegangen werden, dass die Messungen deutlich genauer

sind als die des Prototyps und als quasi-wahre Werte angenommen werden können.

Ausnahmen hiervon stellen die Positionen der Verknüpfungspunkte durch kreisför-

mige Marker dar. Diese wurden zur Messung mit dem ATOS 5 angebracht, um die

verschiedenen Aufnahmen zu verknüpfen. Sie werden vom Streifenprojektionssystem

automatisch erkannt, für die Verknüpfung genutzt und die Bereiche im erzeugten 3D-

Modell interpoliert. Dadurch können hier größere Abweichungen entstehen, sofern die

Oberfläche nicht eben ist oder die Dicke der Passpunktmarken nicht korrekt in der

Software des Streifenprojektionssystems angegeben ist.

Die Moai-Figur wurde auch bereits mit einer Spiegelreflexkamera Nikon D90 ver-

messen. Hierbei wurden manuell Bilder aufgenommen, diese mit Agisoft Metashape

ausgewertet und ein klassisches photogrammetrisches Modell erzeugt.

55

7. Untersuchungen zur Genauigkeit und Systemaufbau

7.2. Vorgehen zur Genauigkeitsüberprüfung

Das Vorgehen zur Bewertung der erzeugten Daten unterscheidet sich zwischen den

verschiedenen Untersuchungen kaum. Dieser Abschnitt beschreibt daher allgemein das

Vorgehen und die verwendeten Parameter zur Bewertung der Punktwolken. Außerdem

wird eine Abschätzung der erwarteten Genauigkeit des Systems vorgenommen.

7.2.1. Erwartete Genauigkeit

Die erwartete Genauigkeit kann auf verschiedenen Wegen berechnet werden. Grundlage

ist meistens der Bildmaßstab. Dieser unterscheidet sich je nach Entfernung. Die Entfer-

nung zum Objekt beträgt im Normalfall zwischen 10 und 50 cm. Der Bildmaßstab m

berechnet sich nach Luhmann (2023, S. 171) wie folgt:

m =
h

c
(7.1)

mmin =
100 mm

4,7 mm
= 21,28

mmax =
500 mm

4,7 mm
= 106,38

mit m : Bildmaßstab

h : Abstand zur Kamera

c : Kamerakonstante (4,7 mm)

Für die Bildmessgenauigkeit werden verschiedene Werte in der Literatur erwähnt,

sie liegen je nach Messmethode zwischen 0,05 und 3 px. Für Messung von CCCTs wird

zum Beispiel von Soot et al. (2015) eine Genauigkeit von 0,1 px angegeben. Eigene,

manuelle Messungen ergaben eine Genauigkeit von etwa 1,5 px. Vereinfacht wurde mit

1 px Genauigkeit gerechnet.

Die Bildmessgenauigkeit dx′ wird dann mit dem Bildmaßstab multipliziert und ergibt

die vorläufige Lagegenauigkeit dX (Gleichung 7.2):

56

7. Untersuchungen zur Genauigkeit und Systemaufbau

dx′ = 1 px · 0,0014 mm/px = 0,0014 mm

dX = m · dx′ (7.2)

dXmin = 21,28 · 0,0014 mm = 0,03 mm

dXmax = 106,38 · 0,0014 mm = 0,15 mm

mit dx′ : Bildmessgenauigkeit

dX : Lage-Genauigkeit (Objektraum)

An diesem Wert muss dann noch der sogenannte Design-Faktor q angebracht werden.

Luhmann (2023, S. 174) beschreibt diesen als Parameter der Aufnahmegeometrie und

den auftretenden Schnitten. Dieser liege bei Rundumverbänden zwischen 0,4 und 0,8

und bei Stereoaufnahmen bei 1,5 − 3,0. Daher wird hier vereinfacht für eine grobe

Abschätzung der Faktor weggelassen. Die erwartete Genauigkeit liegt damit deutlich

unter einem Millimeter in der Lage.

s′

px;min = dXmin (7.3)

s′

px;max = dXmax

Die Genauigkeit der Tiefeninformationen ist von dem Verhältnis des Abstandes

der Kameras zur Entfernung abhängig. Zwischen zwei Kamerareihen sind etwa 25 cm

Abstand. Die Genauigkeit der Tiefeninformationen kann daher wie folgt berechnet

werden (Luhmann, 2023, S. 174):

sZ = m
h

b
s′

px (7.4)

sZ;min = 21,28 ·
10 cm

30 cm
· 0,03 mm = 0,02 mm

sZ;max = 106,38 ·
50 cm

30 cm
· 0,15 mm = 0,25 mm

mit sZ : Genauigkeit der Tiefeninformationen

b : Basislinie (hier 30 cm)

57

7. Untersuchungen zur Genauigkeit und Systemaufbau

Die erwartete Genauigkeit und auch die Auflösung der Kameras liegen demnach im

Bereich eines fünftel Millimeters.

7.2.2. Verwendete Parameter

Zum Vergleich der Ergebnisse wurden verschiedene Parameter in den Auswertungen

betrachtet. Diese sind im Folgenden kurz erläutert.

Quasi-wahrer Wert/Fehler

Die Messung mit dem Streifenprojektionssystem ist nach der Genauigkeitsabschätzung

des Prototyps etwa zehnmal genauer. Daher kann das Ergebnis des Streifenprojekti-

onssystems hier als quasi-wahrer Wert angenommen werden (vgl. Höpcke, 1980, S. 43).

Der quasi-wahre Fehler ist nach Höpcke (1980, S. 44, Formel 2-2, siehe Gleichung 7.5)

die Differenz zwischen quasi-wahren Wert und der Beobachtung. Im Fall dieser drei-

dimensionalen Messung wurde der Abstand zwischen einem Punkt der Punktwolke

des Prototyps und der Oberfläche aus der Messung des Streifenprojektionssystems als

quasi-wahrer Fehler angenommen. Punkte innerhalb des Objektes wurden mit einem

negativen Vorzeichen versehen.

l + ε′ = λ′ (7.5)

mit l : Beobachtung

ε′ : quasi-wahrer Fehler

λ′ : quasi-wahrer Wert

Durchschnittlicher Fehler / Mittelwert des quasi-wahren Fehlers

Der durchschnittliche Fehler ist der Mittelwert des Betrages des quasi-wahren Fehlers

(Höpcke, 1980, S. 44, Gleichung 2-4, siehe Gleichung 7.6). Er gibt an, wie stark die

Punktwolke von der Referenz abweicht. Der Mittelwert des quasi-wahren Fehlers (Glei-

chung 7.7) ist eher unüblich, da sich hier positive und negative Abweichungen aufheben.

Da das Vorzeichen mitberücksichtigt wird, zeigt dieser, ob die Punktwolke systematisch

zu groß oder zu klein ist, also ob die Realisierung des Maßstabes ungenau war.

58

7. Untersuchungen zur Genauigkeit und Systemaufbau

t =
1

n

n
∑

i=1

|ε′

i| (7.6)

ε′ =
1

n

n
∑

i=1

ε′

i (7.7)

Mittlerer Fehler

Der mittlere Fehler ergibt sich aus der Quadratsumme des quasi-wahren Fehlers, ge-

teilt durch die Anzahl der Messungen (Höpcke, 1980, S. 45, Gleichung 2-5b, siehe

Gleichung 7.8). Er ist das wichtigste Maß für die Genauigkeit der Punktwolke.

m =

√

√

√

√

1

n

n
∑

i=1

ε2
i (7.8)

Maximaler Fehler

Der maximale Fehler gibt den größten Fehler an, der in der Punktwolke auftritt. Er

zeigt, wie stark die Punktwolke von der Referenz abweicht und ob es Ausreißer gibt.

Punktanzahl

Die Anzahl der Punkte einer Punktwolke alleine ist kein Maß für die Qualität der

Punktwolke. Sie kann zwar als Indikator für die Abdeckung der Oberfläche genutzt

werden, jedoch nicht für die Genauigkeit. Die Anzahl der Punkte wurde daher nur als

zusätzlicher Parameter betrachtet bzw. aufgrund der Einfachheit der Bestimmung als

Hilfsparameter genutzt, welcher durch die beiden folgenden Parameter ergänzt wird.

Abdeckung

Als weiteres Kriterium wurde die Abdeckung der Objektoberfläche mit Punkten be-

wertet. Dazu wurden die Punktwolken auf diejenigen gefiltert, die weniger als einen

Millimeter vom Modell des Streifenprojektionssystems entfernt waren. Diese wurden

dann auf eine Punktdichte von 1 mm Punktabstand reduziert und die Anzahl der

Punkte gezählt. Die Anzahl dieser Punkte wurde mit der genauso bestimmten Anzahl

des Referenzdatensatzes in Beziehung gesetzt. Dadurch konnte die Abdeckung der

Oberfläche bewertet werden. Eine Abdeckung von 100 % bedeutet, dass beide ausge-

dünnten Punktwolken die gleiche Anzahl an Punkten aufweisen und der Datensatz

59

7. Untersuchungen zur Genauigkeit und Systemaufbau

die Oberfläche des Referenzdatensatzes ähnlich gut abdeckt. Kleinere Werte zeigen an,

dass die Oberfläche nicht vollständig erfasst wurde. Durch den Ansatz kann auch eine

Abdeckung von mehr als 100 % erreicht werden, wenn die Punktwolke mehr Punkte

aufweist, als die Referenzdaten.

Richtigkeit

Darüber hinaus wurde die Anzahl der Punkte nach der Ausdünnung bestimmt ohne

Nutzung des zuvor beschriebenen Abstandsfilter. Dieser wurde dann mit der Anzahl der

Punkte unter Nutzung des Abstandsfilters in Beziehung gesetzt. Dadurch konnte der

Anteil der richtig liegenden Punkte unabhängig von der Anzahl der Punkte bewertet

werden. Auch hier bedeutet ein Wert von 100 %, dass alle Punkte richtig bzw. maximal

1 mm von der Oberfläche der Referenzdaten entfernt liegen. Kleinere Werte zeigen an,

dass die Punktwolke Ausreißer enthält.

7.3. Genauigkeitsüberprüfung des 3D-Modells

Um die Genauigkeit der 3D-Modell-Erzeugung zu überprüfen, wurden mehrere Prüf-

körper mit dem Prototyp vermessen. Die Ergebnisse wurden anschließend im Vergleich

zu dem Streifenprojektionssystem und der Aufnahme des Moais mit einer Spiegelreflex-

kamera betrachtet.

7.3.1. Durchführung

Alle drei Testobjekte wurden mit dem Prototyp aufgenommen und die Daten in Agisoft

Metashape verarbeitet. Die modellierte Oberfläche aus dem Streifenprojektionssystem

und die Punktwolke aus dem Prototyp wurden in CloudCompare aufeinandergelegt.

Hieraus wurde anschließend die Differenz und die Genauigkeit berechnet.

7.3.2. Ergebnisse

Die Visualisierung der Differenzen ist in Abbildung 7.2 dargestellt. Es ist zu erkennen,

dass je nach Modell einige Bereiche gar nicht erfasst bzw. deren Genauigkeit deutlich

von der erwarteten abweichen.

60

7. Untersuchungen zur Genauigkeit und Systemaufbau

Moai Beim Moai (siehe Abbildung 7.2a) sind die größten Fehlstellen im Bereich

des Kinns und unterhalb des Bauchs zu erkennen. Abweichungen im Bereich des

restlichen Körpers sind deutlich geringer und liegen im Bereich von 0,21 mm. Sie sind

auf die schlechtere Erfassung der nach unten gerichteten Flächen zurückzuführen. Diese

Bildbereiche sind nur in wenigen Bildern sichtbar und können daher nicht so gut

rekonstruiert werden. Weitere Abweichungen sind im Bereich der Passpunktmarken zu

erkennen - hier ist unklar, welche Daten korrekt sind (vgl. Abschnitt 7.1).

(a) Moai (b) Einstein (c) Testy

Abbildung 7.2.: Differenzbilder verschiedener 3D-Modelle

Einstein Das Modell von Einstein (siehe Abbildung 7.2b) zeigt ebenfalls größere

Abweichungen im Bereich des Kinnes und des Halses. Die Passpunktmarken sind zwar

auch in der Differenzdarstellung erkennbar, jedoch nicht mit so großen Abweichungen

wie beim Moai. Im Gegensatz zum Moai sind die Abweichungen im Bereich des Kopfes

und der Schultern deutlich großflächiger. Gerade die großen weißen, texturarmen Flächen

führen zu schlechteren Ergebnissen.

Testy Das Modell des Testy (siehe Abbildung 7.2c) zeigt ebenfalls die Problematik

der weißen, texturarmen Flächen. Der Körper weist im Gegensatz zur Einstein-Büste

keine Verschmutzungen auf, sodass auch hier keine zusätzliche Textur entsteht. Da

dieser Testkörper allseitig ähnlich aussieht, ist die Zuordnung der Punkte schwierig. Die

Abweichungen sind daher deutlich größer, als bei den anderen Modellen. Ein weiteres

Problem ist die Größe des Körpers, der mit einer Höhe von 38 cm fast das Maximum

dessen darstellt, was mit dem System erfasst werden kann.

61

7. Untersuchungen zur Genauigkeit und Systemaufbau

Die Abweichungen des Moai und der Einstein-Büste liegen in der Größenordnung

der in Unterabschnitt 7.2.1 berechneten Werte und sind nur minimal schlechter, als

die Genauigkeit eines 3D-Modells des Moai, welches photogrammetrisch mit einer

Spiegelreflexkamera Nikon D90 manuell aufgenommen wurde. Durch Kombinationen

von anderen Perspektiven bei der manuellen Aufnahme ist hier die Abdeckung subjektiv

betrachtet besser. Die Ergebnisse sind in Tabelle 7.1 zusammengefasst.

Tabelle 7.1.: Ergebnisse der Genauigkeitsüberprüfung

Durchschnittlicher Mittlerer Maximaler

Fehler Fehler Fehler

Moai −0,024 mm 0,159 mm 2,57 mm

...ohne Bereiche der Marker −0,038 mm 0,140 mm 2,59 mm

...manuell mit Nikon D90 0,255 mm 0,154 mm 1,33 mm

Einstein 0,001 mm 0,356 mm −3,64 mm

Testy −0,047 mm 0,644 mm 11,56 mm

7.4. Nutzung eines Drehtellers

Statt die reelle Zahl der Kameras zu erhöhen, kann auch ein Drehteller genutzt werden,

sodass jede Kamera mehr als ein Bild zur Erfassung des Objektes liefert.

7.4.1. Durchführung

Hierzu wurde ein einfacher manueller Drehteller genutzt (IKEA SNUDDA). Dieser

wurde mit Passpunkten beklebt und weist ansonsten eine texturreiche Naturholzoberflä-

che auf (siehe Abbildung 7.3). Die Daten wurden in Metashape weiterverarbeitet und

die einzelnen Aufnahmeschritte über die Passpunkte und die Punktwolke zusammen-

gerechnet. Die Ergebnisse wurden mit denen des Streifenprojektionssystems und den

Aufnahmen ohne Drehteller verglichen.

62

7. Untersuchungen zur Genauigkeit und Systemaufbau

Abbildung 7.3.: Drehteller mit Moai-Figur im Prototypen (aufgenommen von einem
der verbauten Raspberry Camera Module 3)

7.4.2. Ergebnisse

In Abbildung 7.4 ist das Differenzbild des Moai zu sehen. Es zeigt sich, dass die

Genauigkeit des Modells mit Drehteller deutlich besser ist, als die des Modells ohne

Drehteller (siehe Abbildung 7.2a). Auch ist die visuelle Vollständigkeit deutlich höher,

die nach unten gerichteten Flächen sind ebenfalls erfasst und passen gut zu dem Modell

des Streifenprojektionssystems. Die Anzahl der Punkte hat sich nicht relevant verändert

– im Vergleich zu dem vollständigen Modell der Spiegelreflexkamera zeigt sich, dass

über die Punktanzahl selbst keine sinnvollen Aussagen zur Abdeckung getroffen werden

können.

Abbildung 7.4.: Differenzbild des Moai

63

7. Untersuchungen zur Genauigkeit und Systemaufbau

Der geringe durchschnittliche Fehler ist auf die automatische Anpassung des Maßsta-

bes zurückzuführen. Die Ergebnisse sind in Tabelle 7.2 zusammengefasst.

Tabelle 7.2.: Ergebnisse der unter Anpassung des Maßstabes durchgeführten Genauig-
keitsüberprüfung

Durchschnittlicher Mittlerer Maximaler Punktanzahl

Fehler Fehler Fehler

ohne Drehteller −0,03 mm 0,22 mm 2,0 mm 3,3 Mio.

mit Drehteller −0,03 mm 0,15 mm 1,6 mm 3,4 Mio.

Nikon D90 0,03 mm 0,17 mm 1,2 mm 0,05 Mio.

7.5. Evaluation der Kameraanzahl

Die Kameras machen einen großen Teil des (Kosten-)Aufwands zur Realisierung des

Projektes aus. Es soll daher in diesem Schritt geprüft werden, ob die Anzahl der Kameras

auch reduziert werden kann und die mindestens für die Testobjekte notwendige Anzahl

bestimmt werden. Entsprechend Abschnitt 7.4 wird auch der Einsatz des Drehtellers

statt mehr Kameras geprüft.

7.5.1. Durchführung

Um abzuschätzen, wie viele Kameras für eine gute Genauigkeit notwendig sind, wurden

verschiedene Konfigurationen getestet. Dazu wurde der Moai aus Abschnitt 7.3 verwendet

und in Agisoft Metashape verschiedene Kameras deaktiviert und das 3D-Modell neu

berechnet. Die Ergebnisse wurden wieder mit dem Streifenprojektionssystem ATOS

5 verglichen. Als weitere Parameter wurden die Abdeckung und die Richtigkeit der

Punktwolke bestimmt. Die Verteilung der jeweils genutzten Kameras ist in Abbildung 7.6

dargestellt. Die pink dargestellten Punkte stellen jeweils die aktiven Kameras dar.

Als Ausgleich für fehlende Kameras wurde auch nochmal der Drehteller aus der

vorherigen Untersuchung verwendet und geprüft, wie viele Kameras durch den Drehteller

ersetzt werden können. Die verwendeten Drehungen sind der Tabelle und den Bildern

jeweils in der Form [Anzahl Aufnahmen]×[Betrag der Drehung] zu entnehmen. Die

Drehungen sind zusätzlich auch in Abbildung 7.5 dargestellt. Jeder Strich steht für eine

Aufnahme mit den aktiven Kameras. Beispielsweise zeigt die Abbildung Abbildung 7.5c

zwei Striche auf dem angedeuteten Drehteller. Diese entsprechen zwei Aufnahmen mit

einer Drehung zwischen den beiden Aufnahmen von 1

8
, also hier 45◦.

64

7. Untersuchungen zur Genauigkeit und Systemaufbau

(a) 24 Kameras,
4 × 1

32
-Drehung (rot)

5 × 1
8
-Drehung (blau)

(b) 16 Kameras
keine Drehung

(c) 12 Kameras,
2 × 1

8
-Drehung (blau)

(d) 6 Kameras,
4 × 1

8
-Drehung (blau)

Abbildung 7.5.: Positionierung der Kameras und verwendete Positionen des Drehtellers,
Blick von oben auf das System

65

7. Untersuchungen zur Genauigkeit und Systemaufbau

Zur Bestimmung des Maßstabes wurden die Daten automatisiert bestmöglich an die

Referenzdaten angepasst. Die Passpunkte wurden daher hier nur als Verknüpfungspunkte

genutzt und nicht zur Bestimmung des Maßstabes.

7.5.2. Ergebnisse

Wie zu erwarten nahm die Abdeckung und die Qualität der Punktwolke ab, je weniger

Kameras verwendet wurden. Bei einer Aufnahme mit allen 24 Kameras wurde die

Oberfläche (ohne Boden) zu 93 % abgedeckt (siehe Abbildung 7.6a). Bei einer Aufnahme

mit 18 Kameras (siehe Abbildung 7.6d) waren es nur noch 68 % und bei 12 Kameras

(siehe Abbildung 7.6e) noch 54 %. Schon bei 18 Kameras war der Moai kaum mehr zu

erkennen, bei 12 war die Erkennbarkeit nicht mehr gegeben. Die Anzahl der Kameras

scheint also für dieses Objekt angebracht zu sein, sofern kein Drehteller genutzt wird.

Unter Nutzung des Drehtellers mit einer Drehung um eine Achtel-Drehung konnten

sogar mit nur der Hälfte der Kameras (siehe Abbildung 7.6f) ein ähnliches bzw. sogar

minimal besseres Ergebnis erzielt werden, als bei der einfachen Aufnahme mit 24

Kameras. Bei der Verwendung von nur 6 Kameras in einer Ebene, so wie es eine Option

bei der Planung des Rahmens war, brachte auch die Verwendung des Drehtellers mit

4 Positionen kein brauchbares Ergebnis im direkten Anlauf (siehe Abbildung 7.6g).

Erst durch manuelles mehrfaches Verarbeiten der Daten und die Nutzung weiterer

Passpunkte konnte die Genauigkeit und Abdeckung auf ein ähnliches Niveau wie bei 12

Kameras und zwei Aufnahmen gebracht werden (siehe Abbildung 7.6h) - dafür aber

mit einem deutlich höheren personellen und technischen Aufwand.

Im Vergleich des Parameters der Richtigkeit zeigt sich ein ähnliches Bild: Auch hier

schneiden die Aufnahmen mit wenig Bildern und ohne Drehteller deutlich schlechter ab.

Der Parameter zeigt, dass zwar die Punktwolken immer ähnlich viele Punkte haben,

jedoch der Großteil davon außerhalb der 1-mm-Genauigkeit liegt. Die Aufnahmen mit

Drehteller schneiden hier deutlich besser ab, als die ohne, erreichen aber nicht die

Qualität der Aufnahmen mit 24 Kameras, vor allem nicht der Aufnahmen mit 24

Kameras und Nutzung des Drehtellers.

Die Ergebnisse sind in Tabelle 7.3 zusammengefasst. Zum Vergleich sind auch die

Ergebnisse der Nutzung des Drehtellers mit 24 Kameras aufgeführt - einmal mit feinen

Drehungen von 1

32
(siehe Abbildung 7.6b) und einmal mit groben Drehungen von 1

8
(siehe

Abbildung 7.6c). Abbildung 7.6 zeigt die Abweichungen der jeweiligen Punktwolken

von den Referenzdaten in grafischer Form.

1Details hierzu in Unterunterabschnitt 7.2.2

66

7. Untersuchungen zur Genauigkeit und Systemaufbau

(a) 24 Kameras,
keine Drehung
→ 24 Bilder

(b) 24 Kameras,
4 × 1

32
-Drehung

→ 96 Bilder

(c) 24 Kameras,
5 × 1

8
-Drehung

→ 120 Bilder

(d) 16 Kameras,
keine Drehung
→ 16 Bilder

(e) 12 Kameras,
keine Drehung
→ 12 Bilder

(f) 12 Kameras,
2 × 1

8
-Drehung

→ 24 Bilder

(g) 6 Kameras,
4 × 1

8
-Drehung

→ 24 Bilder

(h) 6 Kameras,
4 × 1

8
-Drehung

→ 24 Bilder + Marker

(i) Skala

Abbildung 7.6.: Abweichungen der jeweiligen Punktwolken von den Referenzdaten

67

7. Untersuchungen zur Genauigkeit und Systemaufbau

Tabelle 7.3.: Ergebnisse mit unterschiedlicher Kameraanzahl und teilweise Nutzung
eines Drehtellers

Art
Kamera-

anzahl
Drehungen Bilder

Mittlerer

Fehler

Maximaler

Fehler
Punktanzahl Abdeckung Richtigkeit

ATOS 5 346830 100,0 % 100,0 %

Automatik 24 1 24 0,18 mm 2,52 mm 628727 93,1 % 99,9 %

Feinschritt 24 4 x 1

32
96 0,14 mm 1,42 mm 758364 100,2 %1 100,0 %

Grobschritt 24 5 x 1

8
120 0,16 mm 1,42 mm 777533 98,8 % 100,0 %

2 von 3 16 1 16 1,20 mm 7,74 mm 596979 68,4 % 70,4 %

jede zweite K. 12 1 12 0,49 mm 4,01 mm 346830 54,9 % 94,1 %

. . . mit Drehung 12 2 x 1

8
24 0,25 mm 1,44 mm 760538 95,7 % 99,8 %

eine Ebene 6 4 x 1

8
24 1,57 mm 1,44 mm 753062 77,8 % 68,6 %

. . . mit Markern 6 5 x 1

8
30 0,29 mm 2,50 mm 640810 94,2 % 98,9 %

7.6. Zusammenfassung

Das System erreichte die vorgesehene Genauigkeit - sie lag je nach Testobjekt bei

0,1 mm - 0,5 mm. Die Anzahl von 24 Kameras war für die meisten getesteten Objekte

ausreichend. Experimente mit weniger Kameras führten schnell zu einer schwachen

Abdeckung des Objektes und somit zu fehlenden Bereichen in der Punktwolke. Der

Einsatz eines Drehtellers kann die Anzahl der notwendigen Kameras reduzieren, jedoch

ist die Verarbeitung der Daten deutlich aufwändiger. Der Einsatz des Drehtellers

zur weiteren Genauigkeitssteigerung ist aber durchaus sinnvoll, wenn die Anzahl der

Kameras nicht erhöht werden kann oder soll.

68

8. Fazit und Ausblick

In dieser Arbeit wurde die Entwicklung und Implementierung eines Systems zur Er-

fassung und Erstellung von 3D-Modellen kleiner Objekte untersucht. Ausgangspunkt

war die Frage, wie man mit geringem finanziellen und personellen Aufwand hochwertige

3D-Modelle erstellen kann, die für den Einsatz in Museen, Archiven oder Bildungsein-

richtungen geeignet sind.

Es hat sich gezeigt, dass es möglich ist ein photogrammetrisches Messsystem auf

Basis von Raspberry-Pi-Kameras zu entwickeln. Die Kameras sind in der Lage, Bilder in

hoher Qualität aufzunehmen und diese an eine zentrale Steuereinheit zu übertragen. Die

Steuereinheit kann die Kameras synchronisieren und die Bilder an eine SfM-Software

übertragen. Durch die 24 Kameras ist eine schnelle Erfassung möglich, ohne das zum

Beispiel ein Drehteller notwendig wird. Untersuchungen der Genauigkeit der 3D-Modelle

zeigten, dass diese bis zu 0,1 mm genau sein können und damit im Bereich von manuellen

photogrammetrischen Aufnahmen mit einer hochwertigen Amateurkamera liegen. Die

Kosten des Systems belaufen sich auf ca. 1900 Euro, was im Vergleich zu professionellen

Systemen sehr günstig ist und nur der Anschaffung einer entsprechenden Kamera zur

manuellen Aufnahme entspricht.

Die Arbeit zeigt wie auch andere Arbeiten in diesem Themengebiet das Potenzial der

Photogrammetrie zur automatischen Erzeugung von 3D-Modellen. Gerade durch die

stetige Weiterentwicklung der Auswertesoftware und der Hardware wird es in Zukunft

möglich sein, noch genauere und schnellere 3D-Modelle zu erstellen. Dadurch werden sich

sehr wahrscheinlich noch weitere Anwendungsfelder für die Photogrammetrie ergeben.

Projekte wie KulturGutRetter (vgl. Deutsches Archäologisches Institut, 2024) nutzen

bereits ähnliche Ansätze zur schnellen fotografischen Dokumentation von mobilen

Kulturgütern. Hier wäre es nur noch ein kleiner Schritt, statt eines einzelnen Bildes

gleich Daten für die dreidimensionale Rekonstruktion zu erfassen.

69

8. Fazit und Ausblick

Der in dieser Arbeit entwickelte Prototyp zeigt zwar das Potenzial der Photogram-

metrie mit einem solchen Kamera- und Passpunktrahmen, jedoch gibt es noch einige

Optimierungsmöglichkeiten. Im aktuellen Entwicklungsstand ist das System aber schon

gut für Ausbildungszwecke geeignet, da es die Funktionsweise der Photogrammetrie

gut veranschaulicht und viele Eingriffsmöglichkeiten bietet. Durch die Verwendung von

Python sollte eine einfache Anpassung des Systems an spezielle Anforderungen möglich

sein.

Versuche mit einem Drehteller haben gezeigt, dass gerade komplexere Objekte von ein

oder zwei zusätzlichen Aufnahmen stark profitieren. Hier könnte die Vorausgleichung der

Kameras so angepasst werden, dass nach einer Drehung die vorberechneten Koordinaten

der Kameras sich auf den Drehteller beziehen, sich also mit dem Teller drehen. Ein

weiterer Schritt in diese Richtung wäre die Nutzung eines motorisierten Drehtellers, der

die Drehung automatisch durchführt. Im einfachsten Fall würde die Drehung ein an

den Raspberry Pi angeschlossener Schrittmotor übernehmen. Der genaue Betrag der

Drehung könnte dann über kodierte Passpunkte photogrammetrisch bestimmt werden.

Die Verwendung von WLAN zur Datenübertragung hat sich als nicht optimal

herausgestellt. Die Übertragungsgeschwindigkeit ist bei dieser Anzahl an Teilnehmern

im Netzwerk gering, sodass die Übertragung der Bilder lange dauert. Eine Übertragung

über LAN wäre hier effektiver, jedoch wäre der Verdrahtungsaufwand deutlich höher

und die Mobilität des Systems eingeschränkt. Da die Raspberry Pi Zero W über keinen

RJ45-Anschluss verfügt, müsste ein zusätzlicher Adapter verwendet werden.

Die Verwendung des Raspberry Pi 4 als Schnittstelle vereinfacht zwar die Bedienung

und ermöglicht die Verwendung des Systems ohne externe Hardware, jedoch ist die

Leistung des Raspberry Pi 4 für die Verarbeitung der Bilder zum 3D-Modell nicht

ausreichend. Bei der Verwendung eines externen Rechners könnte hier eine Desktop-

Software alle Aufgaben übernehmen, die dieser ausführt. Neben der Kostenersparnis

würde dies auch die räumliche Skalierbarkeit des Systems erhöhen und die Komplexität

verringern. Eine andere Variante hiervon wäre die direkte Kommunikation des Systems

mit einem Server mit OpenDroneMap, sodass die Bilder direkt auf dem Server verarbeitet

werden. Hier wäre dann kein leistungsstarker Rechner vor Ort notwendig, dafür jedoch

eine stabile Internetverbindung.

Ein weiterer Punkt ist die Verwendung des Module 3 Wide statt des klassischen

Module 3. Dieses hat einen geringeren Mindestabstand zum Objekt und könnte so bei

gleichem Montagerahmen größere Objekte erfassen. Nachteilig wäre hierbei jedoch, dass

ein noch größerer Schärfentiefebereich notwendig wäre - also dann auch Fokusstacking

notwendig wäre. Zu Beginn des Projekts war die Verfügbarkeit des Module 3 Wide noch

nicht gegeben, sodass das Module 3 verwendet wurde. Außerdem hatte die Nutzung

von Fokusstacking bisher nicht zu den gewünschten Ergebnissen geführt.

70

8. Fazit und Ausblick

Zur besseren Erfassung von Objekten mit einheitlicher Textur könnte die Verwendung

eines LED-Beamers mit Musterprojektion helfen. Hierdurch wäre es mit der Software

möglich, auch Punkte auf der Oberfläche dieser Objekte zu bestimmen. Die Steuerung

des Beamers könnte über den Raspberry Pi 4 erfolgen.

Das System bietet an einigen Stellen noch Optimierungsmöglichkeiten, die beispiels-

weise zur besseren Erfassung von größeren oder texturarmen Objekten führen können.

Insgesamt zeigt sich, dass die Nutzung der Raspberry-Pi-Kameramodule an einem festen

Rahmen schon in dieser Entwicklungsstufe gute Ergebnisse liefert, bei sehr kurzem

personellen Aufwand bei der Erfassung.

71

Glossar

Bildhauptpunkt Punkt, an dem die optische Achse die Bildebene schneidet. 3, 6, 8–10,

52, 72

Bildweite Abstand zwischen der Bildebene und dem Hauptpunkt der Linse, entspricht

der Kamerakonstante, bei Fokussierung auf unendlich ist die Bildweite gleich der

Brennweite. 32

Brennweite Abstand zwischen dem Hauptpunkt der Linse und dem Brennpunkt. 32,

33, 72

Homografie projektive Abbildung einer Ebene auf eine andere, z. B. in zwei Bildern,

siehe Unterabschnitt 2.5.3. 36

innere Orientierung Kalibrierung der Kamera, beinhaltet die Kamerakonstante, Lage

des Bildhauptpunkt und der Verzeichnungskoeffizienten, siehe Unterabschnitt 2.1.1.

6, 7, 12, 14, 16–18, 22, 40, 51, 52

Kamerakonstante auch Kammerkonstante, photogrammetrische Begriff für die Bild-

weite. 6, 8, 9, 32–34, 52, 56, 72, 78

Socket Kommunikationsendpunkt, ermöglicht die Kommunikation zwischen zwei Pro-

zessen. 44–46, 48

Verzeichnung Verzeichnung ist die Abweichung der Abbildung eines Objektes von

der idealen Abbildung. Es gibt verschiedene Arten von Verzeichnungen, siehe

Unterabschnitt 2.1.1 . 6, 7, 9, 10, 31, 34, 35, 52

ähnlich Zwei Objekte sind ähnlich, wenn sie sich in Größe und Ausrichtung unterschei-

den, sich aber durch Drehung, Skalierung und Translation ineinander überführen

lassen. 13

äußere Orientierung Lage und Ausrichtung der Kamera im Raum, siehe Unterab-

schnitt 2.1.2. 6, 8, 11, 13, 14, 16, 17, 22, 40, 45

72

Akronyme

API Application Programming Interface. 48

CCCT concentric circular coded target. 14, 15, 56

dpt Dioptrien. 33, 34, 78

HTTP Hypertext Transfer Protocol. 73

px Pixel. 22, 31, 32, 35, 56, 57

REST Representational State Transfer, Architekturstil für verteilte Systeme, oft in

Verbindung mit Webanwendungen verwendet, basiert auf dem Hypertext Transfer

Protocol (HTTP)-Protokoll, Zustand wird mit übertragen, sodass dieser nicht

gespeichert werden muss. 44–46, 48

SfM Structure-from-Motion. 3–5, 36, 38, 39, 41, 48, 49, 69, 78

SIFT Scale-Invariant Feature Transform, Algorithmus zur Bestimmung von Merkmalen

in Bildern, die invariant gegenüber Skalierung, Rotation und Beleuchtung sind,

siehe Unterabschnitt 2.4.2. 15, 36

VPE Verpackungseinheit. 94, 95

73

Literaturverzeichnis

Brown, Duane C. (1971): Close-range camera calibration. Photogrammetric Engineer-

ing, Band 37(8): S. 855–866, American Society for Photogrammetry and Remote

Sensing, Bethesda, Vereinigte Staaten von Amerika, https://www.asprs.org/wp-

content/uploads/pers/1971journal/aug/1971_aug_855-866.pdf . (letzter Aufruf: 09.

Feb. 2026).

Busen, Tobias; Wedekind, Wanja (2023): KulturGutRetter – Der Umgang mit gebautem

Kulturerbe in Krisensituationen. In: Ziesemer, John (Hg.), Baudenkmale in Konflikten

und Katastrophen - Prävention / Intervention / Nachsorge: Internationale Tagung

auf der denkmal 2022, S. 46–53, Anton H. Konrad Verlag, Weißenhorn, https://www.

icomos.de/data/pdf/ icomos-katastrophen-internet-240208-0221-0934-28.pdf . (letzter

Aufruf: 09. Feb. 2026).

Bösemann, Werner (1996): The Optical Tube Measurement System OLM Photogram-

metric Methods used for Industrial Automation and Process Control. In: Kraus, Karl;

Waldhäusl, Peter (Hg.), XVIIIth ISPRS Congress - Technical Commission V: Close

Range Techniques and Machine Vision, S. 55–58, Washington, D.C., Vereinigte Staaten

von Amerika, https://www.isprs.org/proceedings/xxxi/ congress/part5/55_XXXI-

part5.pdf . (letzter Aufruf: 09. Feb. 2026).

Clini, Paolo; Frapiccini, Nicoletta; Mengoni, Maura; Nespeca, Romina; Ruggeri, Ludovico

(2016): SfM technique and focus stacking for digital documentation of archaeological

artifacts. ISPRS - International Archives of the Photogrammetry, Remote Sensing

and Spatial Information Sciences, Band XLI-B5: S. 229–236, Copernicus GmbH,

Göttingen, doi:10.5194/isprsarchives-XLI-B5-229-2016.

Deutscher Museumsbund e. V. (2022): Handreichung Digitale Grunderfassung.

Berlin, https://www.museumsbund.de/wp-content/uploads/2022/12/handreichung-

digitale-grunderfassung.pdf . (letzter Aufruf: 09. Feb. 2026).

Deutsches Archäologisches Institut (2024): KulturGutRetter. Deutsches Archäologisches

Institut, Berlin, https://www.kulturgutretter.org/projekt/ . (letzter Aufruf: 09. Feb.

2026).

74

Literaturverzeichnis

Garsthagen, Richard (2021): Raspberry Pi 3D Scanner. Zoetermeer, Niederlande, https:

//www.pi3dscan.com/ . (letzter Aufruf: 09. Feb. 2026).

GDV-Systems GmbH (2020): 3D-Scanning. GDV-Systems GmbH, Bad Schwartau,

https://gdv-systems.de/dienstleistungen/messsysteme/3d-scanning.html. (letzter

Aufruf: 09. Feb. 2026).

Hartley, Richard; Zisserman, Andrew (2004): Multiple View Geometry in Com-

puter Vision. Cambridge University Press, Cambridge, Vereinigtes Königreich,

doi:10.1017/CBO9780511811685.

Höpcke, Walter (1980): Fehlerlehre und Ausgleichsrechnung. Walter de Gruyter, Berlin,

doi:10.1515/9783110838206.

Kazhdan, Michael; Bolitho, Matthew; Hoppe, Hugues (2006): Poisson Surface Recon-

struction. In: Polthier, Konrad; Sheffer, Alla (Hg.), Eurographics Symposium on

Geometry Processing, S. 61–70, The Eurographics Association, Eindhoven, Nieder-

lande, ISBN 3-905673-24-X, doi:10.2312/SGP/SGP06/061-070.

Kersten, Thomas; Lindstaedt, Maren; Mechelke, Klaus; Zobel, Kay (2012): Automatische

3D-Objektrekonstruktion aus unstrukturierten digitalen Bilddaten für Anwendun-

gen in Architektur, Denkmalpflege und Archäologie. In: Seyfert, Eckart (Hg.), 32.

Wissenschaftlich-Technische Jahrestagung der DGPF, S. 137–148, Deutsche Gesell-

schaft für Photogrammetrie, Fernerkundung und Geoinformation e.V., Potsdam,

https://www.dgpf.de/ src/pub/DGPF2012.pdf . (letzter Aufruf: 09. Feb. 2026).

Kersten, Thomas; Przybilla, Heinz-Jürgen; Lindstaedt, Maren; Tschirschwitz, Felix;

Misgaiski-Hass, Martin (2016a): Genauigkeitsuntersuchungen handgeführter Scan-

nersysteme. In: Kersten, Thomas (Hg.), Dreiländertagung der DGPF, der OVG

und der SGPF, Band 25, S. 271–287, Deutsche Gesellschaft für Photogrammetrie,

Fernerkundung und Geoinformation e.V., Bern, Schweiz, https://www.dgpf.de/ src/

tagung/ jt2016/proceedings/band_25/dgpf_tagungsband_2016.pdf . (letzter Aufruf:

09. Feb. 2026).

Kersten, Thomas; Stallmann, Dirk; Tschirschwitz, Felix (2016b): Development of a

new low-cost indoor mapping system – system design, system calibration and first

results. ISPRS - International Archives of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, Band XLI-B5: S. 55–62, Copernicus GmbH, Göttingen,

doi:10.5194/isprs-archives-XLI-B5-55-2016.

Kraus, Karl (2004): Photogrammetrie: Geometrische Informationen aus Photographien

und Laserscanneraufnahmen, Band 1. 7. Auflage, Walter de Gruyter, Berlin, ISBN

978-3-11-017708-4, doi:10.1515/9783110908039.

75

Literaturverzeichnis

Lepetit, Vincent; Moreno-Noguer, Francesc; Fua, Pascal (2008): EPnP: An Accurate O(n)

Solution to the PnP Problem. International Journal of Computer Vision, Band 81(2):

S. 155–166, Springer Science and Business Media LLC, New York, Vereinigte Staaten

von Amerika, doi:10.1007/s11263-008-0152-6.

Liu, Yan; Su, Xin; Guo, Xiang; Suo, Tao; Yu, Qifeng (2021): A Novel Concentric

Circular Coded Target, and Its Positioning and Identifying Method for Vision Mea-

surement under Challenging Conditions. Sensors, Band 21(3), MDPI, Basel, Schweiz,

doi:10.3390/s21030855.

Luhmann, Thomas (1990): An integrated system for real-time and on-line applications

in industrial photogrammetry. In: Gruen, A.; Baltsavias, E. (Hg.), ISPRS Commission

V Symposium, S. 488–495, Zürich, doi:10.14463/KXP:1662442289.

Luhmann, Thomas (2023): Nahbereichsphotogrammetrie Grundlagen - Methoden -

Beispiele. 5. Auflage, Wichmann, Berlin, ISBN 9783879077335, https://content-

select.com/de/portal/media/view/640ef3b8-246c-49ab-ad94-48e1ac1b0014 .

Malis, Ezio; Vargas, Manuel (2007): Deeper understanding of the homography decompo-

sition for vision-based control. Research Report RR-6303, INRIA, Sophia Antipolis,

Frankreich, https:// inria.hal.science/ inria-00174036 .

Negus, Christopher (2020): Linux Bible. Bible, 10. Auflage, John Wiley & Sons,

Hoboken, New Jersey, Vereinigte Staaten von Amerika, ISBN 9781119578888,

doi:10.1002/9781119578956.

Nikolov, Ivan; Madsen, Claus (2016): Benchmarking Close-range Structure from Motion

3D Reconstruction Software Under Varying Capturing Conditions. In: Ioannides,

Marinos; Fink, Eleanor; Moropoulou, Antonia; Hagedorn-Saupe, Monika; Fresa, An-

tonella; Liestøl, Gunnar; Rajcic, Vlatka; Grussenmeyer, Pierre (Hg.), Digital Heritage.

Progress in Cultural Heritage: Documentation, Preservation, and Protection, S. 15–26,

Springer International Publishing, Cham, ISBN 978-3-319-48496-9, doi:10.1007/978-

3-319-48496-9_2.

OpenCV (2023): OpenCV. OpenCV team, Palo Alto, Kalifornien, Vereinigte Staaten

von Amerika, https://opencv.org/ . (letzter Aufruf: 09. Feb. 2026).

Raspberry Pi Foundation (2023): Raspberry Pi Documentation - Camera. Raspberry

Pi Foundation, Cambridge, Vereinigtes Königreich, https://www.raspberrypi.com/

documentation/accessories/ camera.html. (letzter Aufruf: 09. Feb. 2026).

76

Literaturverzeichnis

Reinhard, Jochen (2013): Structure from Motion, Drohnen & Co. Neue Wege in der

Dokumentation archäologischer Ausgrabungen. TUGIUM - Jahrbuch des Staatsarchivs

des Kantons Zug, des Amtes für Denkmalpflege und Archäologie, des Kantonalen

Museums für Urgeschichte Zug und der Burg Zug, Band 29: S. 177–188, Regierungsrat

des Kantons Zug, Zug, Schweiz, doi:10.5169/seals-526824.

Schneider, Carl-Thomas; Sinnreich, Kurt (1992): Optical 3-D measurement systems for

quality control in industry. International Archives of Photogrammetry and Remote

Sensing, Band 29: S. 56–59, International Society for Photogrammetry and Remote

Sensing, Washington, D.C., Vereinigte Staaten von Amerika, https://www.isprs.org/

proceedings/xxix/ congress/part5/56_xxix-part5.pdf .

Soot, Matthias; Schulze, Marc; Mulsow, Christian (2015): Untersuchungen zur Ge-

nauigkeit der Kamerakalibrierung über Merkmalspunkte in SfM-Werkzeugen. In:

Luhmann, Thomas; Müller, Christian (Hg.), Photogrammetrie - Laserscanning -

Optische 3D-Messtechnik: Beiträge der Oldenburger 3D-Tage 2015, S. 269–277,

Wichmann, Berlin, https:// tu-dresden.de/bu/umwelt/ geo/ ipf/photogrammetrie/

ressourcen/dateien/ forschung/publikationen/pubdocs/2015/O3D2015Soot. (letzter

Aufruf: 09. Feb. 2026).

Toffanin, Piero (2019): OpenDroneMap: the missing guide. MasseranoLabs LLC, Saint

Petersburg, Florida, Vereinigte Staaten, https://odmbook.com/1/ . (letzter Aufruf:

09. Feb. 2026).

Worldsemi (2012): WS2811 Datasheet. Dalingshan, Dongguan, Guangdong, China,

https://cdn-shop.adafruit.com/datasheets/WS2811.pdf . (letzter Aufruf: 09. Feb.

2026).

77

Abbildungsverzeichnis

2.1. Ablauf der Bildauswertung mittels Structure-from-Motion (SfM), nach

Luhmann 2023, S. 492 . 5

2.2. Abbildung des Lochkamera-Modells mit Spiegelung am Projektionszen-

trum (rot), nach Hartley & Zisserman (2004, S. 154), Beschriftung nach

Luhmann (2023, S. 177) . 7

2.3. Schärfentiefe in Abhängigkeit von der fokussierten Entfernung 13

2.4. Codierte Passpunkte . 15

2.5. Geometrische Grundlagen des Rückwärts- und Vorwärtsschnittes 17

2.6. Vermaschung der Punktwolke . 20

2.7. 3D-Modell ohne und mit Textur . 21

3.1. Verschiedene Entwurfsideen, modelliert mit Blender 24

3.2. Alu-Bauteile des Rahmens . 25

3.3. Beleuchtung . 26

3.4. Stoffhülle zur Verminderung von Reflexionen und Blendwirkungen . . . 27

3.5. Energieverteilung zu den einzelnen Raspberry Pi Zero 28

3.6. Schematische Darstellung der Energieverteilung (blau: 5 V; rot: 12 V;

schwarz: 230 V; grün: Daten) . 29

4.1. Siemensstern . 32

4.2. ChArUco-Board mit Fokus auf 5 dpt 33

4.3. Box-Whisker-Plot der relativen Veränderung der Kamerakonstante nor-

malisiert auf eine Fokusdistanz von 20 cm (5 dpt) 34

4.4. Notwendige Fokusschritte, um den Bereich von 10 cm bis 1 m scharf

abzubilden . 36

5.1. Anwendungsfall-Diagramm . 39

5.2. Domänen-Klassendiagramm . 41

5.3. Ablaufdiagramm zur Kommunikation bei der Aufnahme eines 3D-Modells 42

5.4. Klassen des Common-Package . 44

5.5. Klassen des Master-Package . 46

5.6. Klassen des Camera-Package . 47

5.7. Screenshot der Connector-Software beispielhaft unter Ubuntu 24.04 . . 48

78

Abbildungsverzeichnis

5.8. Connector-Package . 49

6.1. Box-Whisker-Plots und ausgleichende Gerade der inneren Orientierung

in Abhängigkeit von der Fokussierung [dpt] 53

7.1. Verschiedene Testobjekte . 55

7.2. Differenzbilder verschiedener 3D-Modelle 61

7.3. Drehteller mit Moai-Figur im Prototypen (aufgenommen von einem der

verbauten Raspberry Camera Module 3) 63

7.4. Differenzbild des Moai . 63

7.5. Positionierung der Kameras und verwendete Positionen des Drehtellers,

Blick von oben auf das System . 65

7.6. Abweichungen der jeweiligen Punktwolken von den Referenzdaten . . . 67

A.1. Überblick über das System und seine Komponenten (vereinfachtes Ren-

dering) . 82

A.2. Bedienelemente des Systems . 85

A.3. Screenshot der Connector-Software unter Ubuntu 24.04 86

A.4. Anschlüsse des Systems . 88

79

Tabellenverzeichnis

3.1. Vergleich der möglichen Kameramodule für den Raspberry Pi (Raspberry

Pi Foundation, 2023) . 23

4.1. Notwendige Fokusschritte für den Bereich von 0,1 bis 1 m 35

6.1. Korrelationsmatrix der Näherungswerte 52

7.1. Ergebnisse der Genauigkeitsüberprüfung 62

7.2. Ergebnisse der unter Anpassung des Maßstabes durchgeführten Genau-

igkeitsüberprüfung . 64

7.3. Ergebnisse mit unterschiedlicher Kameraanzahl und teilweise Nutzung

eines Drehtellers . 68

D.1. Mechanische Bauteile mit Preisen (Stand: September 2023) 94

D.2. Elektronische Bauteile mit Preisen (Stand: September 2023) 95

80

Anhang

81

A. Bedienungsanleitung

Raspberry Pi Zero W
 mit Camera Module 3

Passpunkt-Marker

WiFi-Router

Drehteller (optional)

Raspberry Pi 4

Tastensteuerung

Abbildung A.1.: Überblick über das System und seine Komponenten (vereinfachtes
Rendering)

A.1. Anwendungsbereich

Ziel des Systems ist es, 3D-Modelle von Objekten bis zu einer Größe von 40 cm Durch-

messer zu erstellen. Die Bedienung soll dabei möglichst einfach und selbsterklärend sein,

um auch Laien die Möglichkeit zu geben, das System zu bedienen.

A.2. Menü-Struktur der Weboberfläche

A.2.1. Capture Data

• Photo - automatische Aufnahme eines Bildes pro Kamera

• Focus-Stack - automatischer Fokus-Stack mit fünf Bildern pro Kamera

82

A. Bedienungsanleitung

• Detect ArUco - automatische Erkennung von ArUco-Markern

• Autofocus - automatische Fokussierung auslösen

A.2.2. View Data

• Overview - Übersicht über alle Kameras

• Preview - Vorschau eines Bildes und Möglichkeit, Einstellungen auszuprobieren

• Photo-Download - Download der Bilder

• ArUco-Marker-Coordinates - Anzeige und Eingabe der Koordinaten der

ArUco-Marker

• Detected ArUco-Marker - Anzeige der Bildkoordinaten der erkannten ArUco-

Marker

A.2.3. Status

• Search - Anzeige der System-Informationen

• Test - Anzeige der Kamerastatus

• Light/Status - Umschalten zwischen Beleuchtung und Statusmeldung

A.2.4. System-Control

• Configuration - Einstellungen für Belichtung und Beleuchtung

• Pause/Resume - Pausieren und Starten der Kameras

• Update - Update der Software

• Restart - Neustart der Software

• Shutdown - Herunterfahren des Systems

• Reboot - Neustart des Systems

83

A. Bedienungsanleitung

A.3. Inbetriebnahme

Beim Aufstellen ist darauf zu achten, dass sich keine stärkeren seitlichen Lichtquellen

um das System herum befinden, wie beispielsweise Fensterflächen. Diese könnten die

Belichtung der Bilder beeinflussen und so die Qualität der 3D-Modelle negativ beeinflus-

sen. Gegebenenfalls muss durch die Stoffhülle oder andere Maßnahmen für Verschattung

oder Streuung des Lichtes gesorgt werden.

Die Berechnung des 3D-Modells erfolgt auf einem externen Rechner. Dafür kann

wahlweise Agisoft Metashape oder OpenDroneMap (NodeODM) genutzt werden. Die

entsprechende Software sowie eine Java-Laufzeitumgebung müssen auf dem Rechner

installiert sein und die Bilder müssen auf diesen übertragen werden. Die Übertragung

kann automatisch über eine Netzwerkverbindung oder manuell per USB-Stick erfolgen.

Für die automatische Übertragung muss die mitgelieferte Verbindungssoftware auf dem

Rechner gestartet sein (siehe Abschnitt A.4).

Das System startet bei Anschluss an eine elektrische Energieversorgung selbstständig.

Da die Gefahr besteht, dass die kamerasteuernden Raspberry Pi Zero Daten verlieren,

wenn die Energieversorgung unterbrochen wird, sollte das System immer ordnungsgemäß

heruntergefahren werden und auf eine zuverlässige Versorgung geachtet werden. Das

Abschalten erfolgt durch langes Drücken auf den roten Taster. Das System fährt dann

selbstständig herunter - erkennbar an dem Erlöschen der LEDs der Raspberry Pi Zero

und der Beleuchtung - und die Energieversorgung kann getrennt werden.

A.4. Software-Einrichtung

Die Software zur Steuerung der Kameras und zur Übertragung der Bilder auf den

Rechner ist in Java geschrieben. Sie kann unter Linux, Windows und MacOS genutzt

werden. Auf dem Rechner muss entsprechend eine Java-Laufzeitumgebung installiert

sein. Für die Nutzung von Metashape muss eine Lizenz vorhanden sein und im selben

Ordner wie die ausführbare jar-Datei abgelegt werden. Für OpenDroneMap muss die

Software in Form von NodeODM auf dem Rechner installiert sein. Alternativ kann

OpenDroneMap auch auf einem externen Rechner installiert sein, der über das Netzwerk

erreichbar ist.

84

A. Bedienungsanleitung

A.5. Kalibrierung

Die letzten Koordinaten der Passpunkte werden im System gespeichert - daher sollten

diese möglichst nicht verändert werden. Falls diese dennoch verändert werden, kann das

System einzelne Veränderungen berechnen und nutzen. Bei Änderung einer Vielzahl

muss das System jedoch extern neu kalibriert werden, beispielsweise durch Bilder mit

einer externen Kamera, wodurch dann die Koordinaten der Passpunkte neu bestimmt

werden können. Eine Kalibrierung mit Bordmitteln ist nicht möglich.

A.6. Durchführung

(a) Nutzung eines Innensechskant-
schlüssels zur Ausrichtung der
Kameras

(b) Drucktaster zur Steuerung des
Systems, z. B. für die Bildaufnahme

Abbildung A.2.: Bedienelemente des Systems

Das System wird gestartet, indem die Energieversorgung hergestellt wird. Die Ka-

meras starten selbstständig und die Beleuchtung wird eingeschaltet. Nach kurzer Zeit

sollten kurz alle LEDs grün leuchten. Falls nicht, sind einige Kameras nicht erreichbar.

Problemlösungen werden im Abschnitt A.9 behandelt. Die Kameras können ggf. durch

Nutzung einen Innensechskantschlüssels neu ausgerichtet werden (siehe Abbildung A.2a).

Eine Bestimmung der neuen Positionen erfolgt selbstständig aus den Passpunkten. Das

Objekt wird mittig, ggf. auf einer Erhöhung im Rahmen positioniert. Ab hier trennen

sich die Wege je nach verwendetem System. Die Bildaufnahme erfolgt in allen Fällen

durch kurzen Druck auf den grünen Taster.

85

A. Bedienungsanleitung

Abbildung A.3.: Screenshot der Connector-Software unter Ubuntu 24.04

A.6.1. ... mit Netzwerkverbindung

Der zu verwendende Rechner wird mit dem System per WLAN (bevorzugt) oder Netz-

werkleitung verbunden. Die Verbindungssoftware wird gestartet und die IP-Adresse

des Systems angegeben. Standardmäßig lautet diese im WLAN 10.0.1.1, per Netzwerk-

leitung muss die IP von einem DHCP-Server festgelegt werden, beispielsweise in dem

der angeschlossene Rechner als DHCP-Server konfiguriert wird. Unter Gnome ist dies

beispielsweise möglich, indem in den Netzwerkeinstellungen die Internetverbindung

des PCs freigegeben wird. Anschließend wird die zu nutzende Software ausgewählt

und die Verbindung hergestellt. Nun können die Bilder aufgenommen werden (grüne

Taste, Abbildung A.2b). Die Bilder werden auf den Rechner übertragen und dort in der

ausgewählten Software weiterverarbeitet. Der Fortschritt ist in der rechten Hälfte der

Verbindungssoftware zu erkennen.

A.6.2. ... ohne Netzwerkverbindung

Alternativ können die Bilder ohne angeschlossenen PC aufgenommen werden und später

weiter verarbeitet werden. Die Bilder werden in allen Fällen auf dem Raspberry Pi 4, der

die gesamte Steuerung übernimmt, gespeichert. Die Bilder können dann von der Website

des Raspberry Pi heruntergeladen werden. Auch ist es möglich, einen USB-Stick in den

USB-Port des Raspberry Pi 4 vor der Bildaufnahme zu stecken (siehe Abbildung A.4b).

Die Bilder werden dann zusätzlich auf den USB-Stick kopiert.

86

A. Bedienungsanleitung

Die Verbindungssoftware unterstützt auch das Laden der Bilder aus einem lokalen

Ordner, beispielsweise aus der ZIP der Website oder dem Ordner auf dem USB-Stick.

Somit kann dann der weitere Workflow analog zum Workflow mit Netzwerkverbindung

durchgeführt und die Bilder weiter verarbeitet werden.

A.7. Weiterverarbeitung

Die Bilder können in der ausgewählten Software weiterverarbeitet werden. Die genaue

Vorgehensweise hängt von der Software ab und wird in diesem Abschnitt grob erläutert.

Für weitere Informationen hierzu ist die entsprechende Bedienungsanleitung der Software

zu konsultieren.

A.7.1. Agisoft Metashape

Sofern in der Schnittstellen-Software aktiviert, wird in Metashape ein Workflow durch-

geführt, in dem die Bilder importiert, die Kameras kalibriert, die Passpunkte gesetzt,

die Modelle berechnet und exportiert werden. Sofern die Funktion nicht aktiviert wird,

wird nur ein Projekt angelegt und die Bilder und Passpunkte importiert. Die weitere

Verarbeitung kann dann manuell erfolgen. Hierbei ist darauf zu achten, die Passpunkte

zu aktivieren, damit deren Koordinaten übernommen werden und der korrekte Maßstab

des Modells gewährleistet ist. Anschließend müssten die entsprechenden Schritte manuell

durchgeführt werden.

1. Haken bei allen Passpunkten und Kameras setzen

2. Ablauf / Fotos ausrichten...

3. Bereich des Modells festlegen

4. Ablauf / Punktwolke erzeugen...

5. ggf. Ablauf / Mesh erzeugen...

6. ggf. Ablauf / Textur erzeugen...

7. Exportieren / Modell exportieren... oder Punktwolke exportieren...

A.7.2. OpenDroneMap

In OpenDroneMap wird ein Prozess gestartet, der die Bilder importiert, die Modelle

berechnet und die Modelle exportiert. Hier sind keine weiteren Eingriffe notwendig und

möglich.

87

A. Bedienungsanleitung

A.8. Wartung

Software-Updates können zu Inkompatibilitäten führen, daher sollten diese erstmal

auf einem zusätzlichen Raspberry Pi ausprobiert werden, bevor diese auf dem System

ausgerollt werden. Sofern ein Software-Update durchgeführt werden soll, kann das

System per RJ45-Stecker über den Router (siehe Abbildung A.4a) mit dem Internet

verbunden werden. Anschließend kann das Update der Software über die Weboberflä-

che durchgeführt werden. Ein Betriebssystemupdate kann per SSH-Verbindung zum

Raspberry Pi 4 durchgeführt werden. Hierfür sind die Zugangsdaten am Ende des

Dokuments zu finden.

(a) Anschluss eines RJ45-Steckers zur
Verbindung mit dem Internet
oder einem PC

(b) Anschluss eines USB-Sticks
zur Datenübertragung

Abbildung A.4.: Anschlüsse des Systems

A.9. Fehlerbehebung

A.9.1. Kameras sind nicht erreichbar

Die Kameras sind nicht erreichbar, wenn die LEDs nicht grün leuchten. Dies kann

verschiedene Ursachen haben. Als erste Maßnahme sollte das System nochmal herunter-

gefahren werden durch einen langen Druck auf die rote Taste. Anschließend wird die

Energieversorgung für einige Sekunden vollständig getrennt und wieder hergestellt. Das

System sollte nun neu starten und die Kameras erreichbar sein.

Falls das noch nicht der Fall ist, hilft ein Blick in das Menü des WLAN-Routers. Hier

sollten in der Übersicht aller Netzwerkgeräte die 24 Kameras, der steuernde Raspberry

Pi 4 und das Gerät, über das der Zugriff erfolgt, aufgezählt sein. Falls das nicht der

Fall ist, muss der fehlerhafte Raspberry Pi Zero an einem Display und einer Tastatur

angeschlossen werden, um den Fehler zu finden.

88

A. Bedienungsanleitung

Falls der Raspberry Pi im Netzwerk zu finden ist, kann sich per SSH mit dem

Raspberry Pi verbunden werden. Zugangsdaten sind die Übersicht am Ende zu entneh-

men.

A.9.2. Bilder zu hell/zu dunkel

Je nach Umgebungslicht können die Bilder zu dunkel oder zu hell sein. Im Normalfall

sollte die Grundeinstellung mit einem Belichtungswert von +1 zu guten Ergebnissen

führen. Falls dies nicht der Fall ist, kann dieses unter Configuration umgestellt werden.

Hier können der Belichtungswert oder die Helligkeit und Lichtfarbe verändert werden.

A.10. Zugangsdaten

Gerät Zugang Benutzer Passwort

WLAN-Netzwerk photobox photogrammetry

Raspberry Pi 4 192.168.1.1:8080 photo box

Raspberry Pi Zero 192.168.2.1-24:8080 photo box

WLAN-Router 192.168.0.1:80 photobox1

89

B. Kurzbedienungsanleitung

Für detaillierte Erklärungen und Problemlösungen lesen Sie bitte die Bedienungsanlei-

tung. Hintergrundinformationen sind der Thesis zu entnehmen.

1. Energieversorgung herstellen, ggf. Steckdosenleiste einschalten

2. Warten bis alle LEDs grün aufleuchten, evtl. mittels kurzem Druck auf Status-

Taste überprüfen

3. Gewünschte Ausgabe anschließen

• Computer per WLAN verbinden

• USB-Stick an Raspberry Pi 4 anschließen

4. Aufnahmeknopf drücken

5. Warten bis alle LEDs grün aufleuchten, Bilder werden übertragen

6. Weiterverarbeitung auf Computer

• automatisch, wenn Computer per WLAN verbunden

• manuell, wenn USB-Stick verwendet

7. System herunterfahren

• Langen Druck auf roten Taster

• Warten bis alle LEDs erlöschen

• Energieversorgung trennen

B.1. Agisoft Metashape

1. Metashape starten

2. Projekt öffnen

3. Haken bei allen Passpunkten und Kameras setzen

4. Ablauf / Fotos ausrichten...

5. Bereich des Modells festlegen

90

B. Kurzbedienungsanleitung

6. Ablauf / Punktwolke erzeugen...

7. ggf. Ablauf / Mesh erzeugen...

8. ggf. Ablauf / Textur erzeugen...

9. Datei / Exportieren / Modell exportieren... oder Punktwolke exportieren...

91

C. Quick Guide

For detailed explanations and troubleshooting, please refer to the user manual (German).

Background information can be found in the thesis (also German).

1. Connect power supply

2. Wait until all LEDs light up green, possibly check by pressing the status button

briefly

3. Connect desired output

• Connect computer via WLAN

• Connect USB stick to Raspberry Pi 4

4. Press the record button

5. Wait until the recording is finished, images are transferred

6. Post-processing on computer

• automatically, if computer is connected via WLAN

• manually, if USB stick is used

7. Shut down system

• Long press on red button

• Wait until all LEDs go out

• Disconnect power supply

C.1. Agisoft Metashape

1. Start Metashape

2. Open project

3. Set checkbox on all control points and cameras

4. Workflow / Align Photos...

5. Define region of the model

92

C. Quick Guide

6. Workflow / Build Point Cloud...

7. If necessary Workflow / Build Mesh...

8. If necessary Workflow / Build Texture...

9. File / Export / Export Model... or Export Point Cloud...

93

D. Teileliste

D.1. Mechanische Bauteile

Bezeichnung Anzahl VPE Preis/VPE Gesamtpreis

Alu-Strebenprofil Nut 6 Typ B 17,5 m 0,1 m 0,44 EUR 77,00 EUR

Eckwürfel 8 1 5,00 EUR 40,00 EUR

90-Grad-Winkel 16 1 1,40 EUR 22,40 EUR

45-Grad-Winkel 16 10 23,00 EUR 46,00 EUR

Hammerkopf-Mutter M4 46 50 11,90 EUR 11,90 EUR

Zylinderschraube M4 46 100 3,80 EUR 3,80 EUR

Scheibe M4 76 100 1,85 EUR 1,85 EUR

Senkkopfschraube M4 30 30 2,45 EUR 2,00 EUR

Mutter M4 24 24 0,59 EUR 0,59 EUR

Linsenkopfschraube M5 18 18 2,32 EUR 2,32 EUR

Mutter M5 18 18 0,88 EUR 0,88 EUR

Scheibe M5 18 18 0,45 EUR 0,45 EUR

Isolierband 1 5 2,98 EUR 2,98 EUR

Schrumpfschlauch 1 1 1,00 EUR 1,00 EUR

Winkelprofil 30 x 50mm 2 m 2 m 23,96 EUR 23,96 EUR

Verteilerdose klein 9 1 0,75 EUR 6,75 EUR

Leitungskanal 10x20 2 2 2,30 EUR 2,30 EUR

Baumwollstoff 3 1 6,00 EUR 18,00 EUR

Klettband 0,4 0,4 0,80 EUR 0,80 EUR

Reißverschluss 3 1 2,00 EUR 2,00 EUR

266,98 EUR

Tabelle D.1.: Mechanische Bauteile mit Preisen (Stand: September 2023)

94

D. Teileliste

D.2. Elektronische Bauteile

Bezeichnung Anzahl VPE Preis/VPE Gesamtpreis

Raspberry Pi Zero W 24 1 17,90 EUR 429,60 EUR

Raspberry Pi Camera 3 24 1 29,15 EUR 699,61 EUR

Raspberry Pi 4 1 1 66,80 EUR 66,80 EUR

RPi Zero Gehäuse + Leitung 24 1 3,60 EUR 86,40 EUR

RPi 4 Gehäuse 1 1 4,60 EUR 4,60 EUR

RPi Netzteil 5V 3A 1 1 8,65 EUR 8,65 EUR

Speicherkarte 32 GB 25 1 5,95 EUR 142,80 EUR

LED-Streifen 1 1 31,10 EUR 31,10 EUR

WLAN-Access-Point 1 1 31,90 EUR 31,90 EUR

Netzteil 12V 3,5 A 1 1 11,70 EUR 11,70 EUR

Netzteil 5V 7 A 3 1 18,20 EUR 54,60 EUR

Buchse für Netzteile 4 1 2,30 EUR 9,20 EUR

Taster 3 1 0,67 EUR 2,01 EUR

Aderendhülsen 1 1 1,20 EUR 1,20 EUR

Hebelklemmen 2 Anschlüsse 10 1 0,47 EUR 4,70 EUR

Hebelklemmen 5 Anschlüsse 18 1 0,85 EUR 15,30 EUR

Hebelklemmen 3 Anschlüsse 16 1 0,50 EUR 8,00 EUR

Litze 2*0,75 mm2 3 10 2,50 EUR 7,50 EUR

Steckdosenleiste 1 1 14,95 EUR 14,95 EUR

1630,62 EUR

Tabelle D.2.: Elektronische Bauteile mit Preisen (Stand: September 2023)

95

	Einleitung
	Motivation
	Konzept
	Stand der Technik und Forschung

	Photogrammetrische Grundlagen
	Abbildung
	Innere Orientierung
	Äußere Orientierung
	Abbildungsgleichung

	Bilder
	Überlappung und Bildinhalte
	Position und Ausrichtung der Kamera
	Belichtung
	Fokussierung und Schärfentiefe

	Skalierung/Maßstab
	Verknüpfungs- und Passpunkte
	Zielmarker
	Merkmalsextraktion

	Verknüpfung von Bildern
	Rückwärtsschnitt
	Vorwärtsschnitt
	Relative Orientierung

	Bündelblockausgleichung
	Multi-View-Stereo
	Mesh-Generierung
	Texturierung

	Aufbau des Messsystems
	Kameras
	Rahmen
	Beleuchtung
	Kommunikation und Datenübertragung
	Energieverteilung
	Kostenbetrachtung

	Voruntersuchungen
	Überprüfung der Kameraauflösung
	Änderung der Kamerakonstante durch Fokussierung
	Änderung der Verzeichnung durch Fokussierung
	3D-Modell aus Fokusstacking
	Überprüfung der Kamerasynchronität

	Software-Entwicklung
	Anforderungsanalyse
	Anwendungsfallmodellierung
	Funktionale Anforderungen
	Schnittstellen
	Nicht-funktionale Anforderungen

	Anwendungsentwurf
	Domänen-Klassendiagramm
	Programmablauf

	Implementierung
	Module auf den Raspberry-Pi-Computern (Python)
	Desktop-Schnittstelle (Java)
	Konfiguration

	Systemkalibrierung
	Maßstab und Passpunkte
	Kamerakalibrierung

	Untersuchungen zur Genauigkeit und Systemaufbau
	Referenzdaten
	Vorgehen zur Genauigkeitsüberprüfung
	Erwartete Genauigkeit
	Verwendete Parameter

	Genauigkeitsüberprüfung des 3D-Modells
	Durchführung
	Ergebnisse

	Nutzung eines Drehtellers
	Durchführung
	Ergebnisse

	Evaluation der Kameraanzahl
	Durchführung
	Ergebnisse

	Zusammenfassung

	Fazit und Ausblick
	Glossar
	Akronyme
	Literaturverzeichnis
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Anhang
	Bedienungsanleitung
	Anwendungsbereich
	Menü-Struktur der Weboberfläche
	Capture Data
	View Data
	Status
	System-Control

	Inbetriebnahme
	Software-Einrichtung
	Kalibrierung
	Durchführung
	... mit Netzwerkverbindung
	... ohne Netzwerkverbindung

	Weiterverarbeitung
	Agisoft Metashape
	OpenDroneMap

	Wartung
	Fehlerbehebung
	Kameras sind nicht erreichbar
	Bilder zu hell/zu dunkel

	Zugangsdaten

	Kurzbedienungsanleitung
	Agisoft Metashape

	Quick Guide
	Agisoft Metashape

	Teileliste
	Mechanische Bauteile
	Elektronische Bauteile

