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In both room and city acoustics, the simulation of sound propagation is still 

challenging. The handling of diffraction is still topic of current research, especially 

the diffraction of higher orders. Due to the large scale of the environment 

compared to the typical wavelengths of sound, Geometrical Acoustic (GA) 

simulation methods are used rather than exact wave theoretical simulation 

methods. These GA methods handle sound as particles instead of waves (wave-

particle dualism as known from optics). Based on this restriction, wave effects such 

as diffraction have to be modelled explicitly.

In this work, a diffraction formulation called Uncertainty relation Based Diffraction 

(UBD) by Stephenson is investigated and extended. The UBD is based on 

Heisenberg's uncertainty relation and the Fraunhofer diffraction theory. The great 

advantage of this formulation is that the straight forward propagation technique of 

particles can be used and integrated as a module in the simulation. However, it will 

be shown that some assumptions of former publications are not well founded, such 

that alternative formulations are presented. Good agreements with the wave 

theoretical reference methods are shown in almost all cases. In addition to former 

publications, the UBD method is extended to 3D. 
Unfortunately, the usage of the UBD diffraction module causes a split-up of 
particles, such that the computation time increases exponentially. To overcome this 
split-up, the reunification of particles is aspired. Quantized Pyramidal Beam Tracing 
(QPBT) and the Sound Particle Radiosity (SPR) aim at this reunification. It will be 
shown that SPR is both more efficient and more accurate than QPBT. However, the 
memory effort of the SPR yields a major bottleneck. First optimizations to decrease 
the memory effort will be presented to overcome this issue.
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1. Introduction

1.1. Motivation

Today, the exposure of people to noise is one of the most serious problems[BLs95]
since it affects the human mental health to a rising extend. In Germany, 54% of the
people are disturbed and annoyed by traffic noise, 34% by railway noise and 23% by
aircraft noise[RJBJ13]. Here, the Bundesimmissionsschutzgesetz [BIm02] was intro-
duced to protect humans and animals from harmful environmental effects. Since 2002,
the environmental noise directive[END02] calls for the monitoring of noise and the
creation of action plans in Europe. For the creation of such noise maps, the very sim-
plified sound propagation models, e.g., [ISO96, VDI88, VDI97, DIN02, DIN06, dVV05,
RLS90, Sch03] are currently applied. These are implemented in different commer-
cial software products, such as CadnaA[CADa], IMMI [IMM],Predictor-LimA[LIM] and
SoundPLAN [Sou]. However, these applied estimation methods have to be improved to
prevent exceeds of law restrictions. On the contrary, more accurate simulation methods
can even reduce costs in the planning stage.

On the other hand, more advanced sound propagation models exist in the field of room
acoustics. These models can be separated into wave theoretical approaches and meth-
ods of Geometrical Acoustic (GA). The first group handles sound as waves, whereas
the second group assumes sound to propagate as energy particles according to the
wave-particle duality[Gre01]. Due to their complexity, the wave theoretical simulation
methods can only be applied to small frequencies and/or small volumes. GA simula-
tions, such as the Sound Particle Simulation Method (SPSM) or Beam Tracing (BT),
propagate sound along straight lines starting at the sound sources to the receivers.
The methods of GAs are applicable to larger volumes, such as a large concert hall,
or even whole cities. Different programs are known that make use of the GA simu-
lation methods, e.g., CATT [CAT], ODEON [ODE], EASE[EAS], CadnaR[CADb] and
RAVEN [RAV]. Due to the huge range of relevance, GA simulation methods can be
applied to both room acoustics and urban noise prognosis.

Traditionally, the GA simulation methods handle only specular reflections and, hence,
wave effects like scattering of sound at rough surfaces or diffraction around corners
have to be modeled explicitly. While the introduction of scattering is investigated quite
well[CDD+06], the development of a general diffraction model is still focus of current
research. Especially the problem of higher order diffractions and their combinations
with arbitrary reflections is still unsolved. In urban environments, however, sound
propagation paths caused by higher order diffraction are most dominant – often times
even the only possible propagation paths between a sound source and a receiver. This
is further illustrated in Fig. 1.1).
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source
receiver

?

?

?

?

buildings

sound propagation path

Figure 1.1.: Sound propagation paths between a sound source and a receiver around
two obstacles might be possible only by higher order diffraction (after
Stephenson[Ste04]).

Here, another major problem is to identify the most relevant sound propagation
paths, because it is not clear which sound propagation paths (denoted by question
marks in Fig. 1.1) yield relevant contributions to the sound field. In order to find
these sound propagation paths, the straightforward approach of GA simulations meth-
ods can be used directly instead of taking all tedious combinations into account. Due to
the straightforward detection technique of SPSM and BT, a diffraction module based
on the uncertainty relation[Ste04] seems to be a promising solution to handle diffrac-
tion, since it can be combined with these methods. Unfortunately, the Uncertainty
relation Based Diffraction (UBD) causes a recursive split-up of particles and, thus, a
massive exponential increase of the Computation Time (CT). A reunification of these
particles is therefore inevitable. The GA simulation methods Sound Particle Radios-
ity (SPR)[Ste01, Ste03b] and Quantized Pyramidal Beam Tracing (QPBT)[Ste96, Ste04]
have been first proposed by Stephenson and allow this reunification. In addition to his
thesis, an unpublished and extended version handles the methods in more detail[Ste03a].
In order to find the most efficient and most accurate method, both methods are im-
plemented for the first time, such that analytical, statistical and numerical comparison
can be carried out.
Taking all these considerations into account, the two main goals of this thesis are:

Efficient algorithm with reunification: A GA simulation method has to be formulated
that is capable of handling higher order diffraction in combination with reflections.
Since the derivation of such a new simulation method goes along with detailed statistical
and numerical analysis, the main part of this work is restricted to 2D to reduce the
geometrical complexity. However, it is also shown that the algorithms can be extended
to 3D.

Extended UBD diffraction model: Highly interconnected with the derivation of an effi-
cient algorithm is the investigation of the UBD module. The theory was already defined
by Stephenson[Ste10a], but many general questions remain, which have not been an-
swered yet. Thus, no validation of the diffraction module in combination with reflections
is available up to now. The biggest problem, however, is the extension to 3D.

1.2. Restrictions and Assumptions

Although the boundary conditions of room acoustics and urban noise immission prog-
nosis are very different, the theory of sound diffraction remains the same.
However, both fields of application have quite different aims: while in noise immis-

sion prognosis, the spatial distribution of sound is of primary interest, the temporal
distribution of sound is more important in room acoustics in order to compute different
room acoustical parameters[Got73] (e.g., the reverberation time[Kut09]). In both cases,
the sound field is composed by a huge number of contributions (reflections, diffractions)

2



1.3. Organization of the Work

at each location, where phase differences are often not correlated. Thus, an incoherent
addition of these contributions is mostly sufficient. Consequently, this work focuses only
on energetic simulation results. This is supported by the fact that exact impedances
(including phase) of surfaces are often unknown.
Another demanding aspect is the determination of boundary conditions of the GA

simulation methods. Geometrical scenes created by architects usually include too many
acoustically irrelevant objects. In addition, they do not necessarily form a totally closed
polyhedron, which is – in general – an important requirement for many GA simulation
methods[SLSC08]. However, the geometrical scenes in this work are always assumed
to be defined by a closed polyhedron that is composed by polygons and edges (where
diffraction occurs). Furthermore, the quantitative description of the acoustical material
properties of those surfaces (especially the scattering coefficient) is standardized, but
still a huge source of uncertainty. Both effects are excluded in this work and all material
input parameters are assumed to be given correctly.
As the Uncertainty relation Based Diffraction (UBD) used in this work can be seen

as a combination of the Kirchhoff approximation[Pie89] and Heisenberg’s uncertainty
relation[Hei27], it is assumed that sound propagation is only affected by diffraction in
forward direction. Kirchhoff’s assumption is based on the idea that the incident sound
field is not disturbed in front of the wedge[Pie89]. Mostly, the diffraction effect is less
important in this region due to the occurrence of direct sound and specular reflections.
However, near edges of a building on the source-side, diffraction might play an important
role, which is not considered in this thesis.
Evaluations of the reunification algorithms are compared to exact GA methods and

in case of the UBD an analytic wave theoretical solution is chosen as reference. This
procedure is preferred over the comparison with real world measurements in order to
discuss the influences of the applied approximations in a better way.
In summary, the assumptions made in this work are:

1. geometric: the room dimensions are large compared to the wavelength

2. energetic: the results are restricted to intensity echograms and intensity maps

3. polyhedron: a watertight, reduced polyhedron is assumed

4. diffraction behind the wedge: the effect of diffraction is restricted to the receiver-
side of the wedge

5. evaluation: comparison to other simulation methods instead of measurements

1.3. Organization of the Work

This work is divided into three parts. In the first part of this thesis, the physical back-
ground of sound propagation and energetic sound simulation is briefly presented. The
second part discusses the two major goals of this thesis, namely the investigation of the
UBD and the construction of an efficient algorithm including reunification. As diffrac-
tion is mainly a two dimensional effect, this part is restricted to two dimensional cases.
This approach is justified, because also the investigation of an efficient reunification
technique is mainly a principle study, such that it is adequate to reduce the complexity
of the geometrical operations to 2D. The respective results and conclusions are then
applied to 3D in the third part of the thesis. In addition, the respective extensions of
the simulation models to 3D are further discussed.
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1. Introduction

Part 1:

Chapter 2: The physical fundamentals of sound are briefly recapitulated, including a
wave theoretical description of diffraction.

Chapter 3: GA simulation methods are briefly introduced by presenting their under-
lying physical models as well as made approximations and restrictions.

Chapter 4: Different spatial sub-division techniques are discussed and a new technique
is defined that aims at the introduction of diffraction. The speed-up of the new sub-
division technique is derived statistically and verified by numerical experiments.

Part 2:

Chapter 5: The UBD formulation presented by Stephenson is analyzed. It is shown
that some assumptions in his previous work are not well founded and alternative for-
mulations are presented. The formulation is extended – and validated – to second order
diffraction analytically. Additionally, the combination of diffraction with reflections is
validated for the first time.

Chapter 6: By introducing the UBD to GA, particles have to be split-up to achieve
a reasonable resolution in space. The exponential growth of the CT by this split-
up can only be compensated by a reunification of these particles. The reunification
technique QPBT, as proposed by Stephenson[Ste04], is analyzed in detail and different
assumptions are proven to be misleading. In contrast, the SPR, which Stephenson
argued had serious weaknesses[Ste01][Ste03b], is proven to be both more efficient and
more accurate. Therefore, the author concretises and implements both methods, such
that an analytical and statistical comparison between both methods can be performed.
The numerical errors of the SPR as well as the computational effort are derived in detail
and the influence of these numerical errors on the diffraction simulation is evaluated.

Part 3:

Chapter 7: As all former chapters are restricted to 2D, the results of the former chap-
ters have to be extended to 3D. Initially, the convex sub-division is discussed for the
3D case. In a subsequent step, the most efficient algorithm, namely the SPR, is also
extended to the 3D case. Fortunately, the complete reunification core algorithm is com-
pletely identical to the 2D approach, such that only the commonly known geometrical
procedures of the SPSM have to be modified. It is shown that the analytical and sta-
tistical investigations of the 2D case are still valid. The important part of this chapter
presents new extensions of the UBD formulation to 3D for the first time. Different con-
siderations are presented and the most promising concept is discussed in more detail.
Although a complete implementation of the 3D method is still missing, first results of
analytical evaluations are presented.

The work is concluded by a summary and an outlook discussing the remaining problems.
In contrast to other publications, the main chapters 4 - 7 are introduced by separate
sections of related work and concluded by separate summaries, too.
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2. Physical Fundamentals of Sound

Sound can be interpreted as a wave propagating through a physical medium. In this
chapter, the very basics of sound, sound emission and sound propagation are briefly
discussed. Sound emission is described by the example of two typical sound sources,
i.e., the point source and the line source. Sound propagation of the emitted sound
waves is exemplary shown by plane waves. Relevant wave phenomena such as air
attenuation, absorption, scattering and diffraction are further discussed. The influence
of the propagating waves is investigated with respect to receivers. Often, an energetic
approach is sufficient (e.g., for the description of sound sources), but also wave-based
derivations are necessary in special cases (e.g., for diffraction). In this work, mainly
energetic approaches are considered and an excursion to wave theory is made only
if absolutely inevitable. More detailed derivations are given in the literature, e.g.,
[Kut09, Vor08, Mös08, Pie89].

2.1. Basic Acoustic Equations

The fundamental equation in acoustics is the wave equation. It is a differential equation
derived from the law of inertia and the law of mass conservation in fluid media. The
overall sound pressure is the sum of the static sound pressure and the dynamic sound
pressure p. As only the latter is caused by the sound wave, the wave equation reads

∆p = 1
c2

· ∂2p

∂t2
, (2.1)

where ∆p represents the three dimensional Laplace operator (in Cartesian coordinates).

∆p = ∂2p

∂x2 + ∂2p

∂y2 + ∂2p

∂z2 . (2.2)

The speed of sound c is given by the ratio of the bulk modulus K and the bulk density
ρ. It is rather constant [BoA96], despite a little dependency on the temperature ϑT [◦C]

c = 331.4

√
1 + ϑT

273◦C
m

s
. (2.3)

The sound pressure p appears in a large range of about six decades in-between the
threshold of hearing and the theoretical maximum (in air). Therefore, a logarithmical
scale is used. The sound pressure level Lp in relation to the standardized reference
sound pressure p0 is defined as

Lp = 10 log10

((
p

p0

)2
)
dB = 20 log10

(
p

p0

)
dB, with p0 = 20µPa. (2.4)

In general, all levels are given in dB. The reference sound pressure p0 is equal to 20µPa,
which relates to the hearing threshold of humans, i.e., a sound pressure level of 0dB.
Besides the wave-based formulation using the sound pressure p, the sound intensity
~I = p·~v is defined as the energetic counterpart. In case of a plane wave or random
incidence, an energetic formulation is usually preferred, where the sound intensity is a

5



2. Physical Fundamentals of Sound

scalar. This definition is used in this work. With the free-field impedance Z0 and the
sound energy density w this intensity reads

I = p2

Z0
= c·w. (2.5)

As this occurs even in a range of twelve decades, the sound intensity I is transformed
to the respective sound intensity level LI in relation to the standardized reference sound
intensity I0

LI = 10 log10

(
I

I0

)
dB, with I0 = 10−12 W

m2 . (2.6)

In case of a plane wave, the sound pressure level is approximately equal to the sound
intensity level

Lp ≈ LI . (2.7)

2.2. Sources

A sound field can be excited by different kinds of sound sources. In this work, sound
sources are generalized to two main types of sound sources. First, point sources are
a generalization for different types of spatially restricted sources, whose size is small
compared to the other occurring dimensions, e.g., voice, pneumatic hammers, car horns
etc. Second, line sources are a generalization of spatial extended sources in one direction,
e.g., streets or rail tracks.

2.2.1. Point Sources

In room acoustics, point sources, e.g., musicians, generally spread sound depending on
the direction[Mey09]. However, many sound sources can be reduced to point sources
without direction dependency. With this assumption, the sound power P of a sound
source can be determined by an imaginary sphere around the sound source with the
radius r. The sound intensity I is constant over the surface of this sphere (4πr2) then
(see Fig. 2.1).

distance r

point source

spherical surface 4πr²

Figure 2.1.: The sound intensity I is constant on a sphere around a point source (after
Möser [Mös08]).

Hence, the total sound power is described by the sound intensity over the whole
surface

I = P

4πr2 . (2.8)

6



2.2. Sources

For this sound power P an equivalent source power level LW is defined with the
standardized reference sound power P0

LW = 10 log10

(
P

P0

)
dB, with P0 = 10−12W . (2.9)

Inserting Eqn. 2.8 in Eqn. 2.9 results in (with Eqn. 2.6) the free field sound intensity
level for a point source

LI ≈ LW − 20 log10

(
r

m

)
− 11dB. (2.10)

2.2.2. Line Sources

A line source can be seen as the concatenation of an infinite number of point sources
on a thought line. These sources can either be uncorrelated (incoherent), as applied in
traffic noise prognosis, or correlated (coherent). This work is restricted to the correlated
version, which is needed to create a 2D cross-section of a 3D scene. Correlated means
that the sources forming the line are in phase (i.e., a pumping line). These coherent
sound sources radially emit their sound intensity outwards, such that I is constant on
the lateral surface of a cylinder (2πrh), where h is the length of that cylinder (see Fig.
2.2).

distance r

line source

lateral surface of cylinder 2πrh

length h

Figure 2.2.: The sound intensity I is constant on a cylinder around a line source (after
Möser [Mös08]).

Hence, the total sound power is described by the sound intensity over the whole
surface

I = P

2πrh
. (2.11)

For infinite line sources (h � r), it is more descriptive to define a sound power per
length P ′

I = P ′

2πr
. (2.12)

Finally, also for infinite line sources, an equivalent source power level L′W is defined
with the standardized reference sound power per meter P ′0

L′W ≈ 10 log10

(
P ′

P ′0

)
dB, with P ′0 = 10−12W

m
, (2.13)

which results in
LI = L′W − 10 log10

(
r

m

)
− 8dB. (2.14)

Doubling the distance decreases the sound intensity level by 3dB, in contrast to the
point sources with 6dB per distance doubling.
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2. Physical Fundamentals of Sound

2.3. Sound Propagation

The basic sound propagation is described by the wave equation in free field. In this
section, first the influence of air attenuation is presented. Furthermore, the boundary
conditions of both smooth and rough surfaces are described and their influence on plane
waves is briefly described.
In the main part of this section, diffraction of sound around objects is physically

discussed in more detail, since diffraction modelling is the major focus of this thesis.

2.3.1. Air Attenuation

For sound propagation over large distances, which is especially important for city acous-
tics, the air attenuation of sound has to be considered. The attenuation is caused by
heat conduction, viscosity and thermal relaxation. Therefore, the sound intensity has
to be extended by the energetic attenuation coefficient m[BSZ+95, Kut07]

I(r) ∝ e−mr. (2.15)

The energetic coefficient m, however, is frequency-, temperature- and humidity-
dependent as shown in Fig. 2.3 [BSZ+95]

10−5

10−4

10−3

10−2

10−1

1

ab
so

rb
tio

n
co

ef
fic

ie
nt[

1 m
]

31.5 63 125 250 500 1k 2k 4k 8k 16k

frequencyf [Hz]

15 ◦C 50 % humidity
20 ◦C 25 % humidity
20 ◦C 50 % humidity
20 ◦C 75 % humidity
25 ◦C 50 % humidity

Figure 2.3.: Typical attenuation curves for different temperatures and humidities (after
Kuttruff [Kut07]).

2.3.2. Geometrical Sound Reflection and Absorption of Plane Waves

A sound wave in the far field of its source (excitation) can be interpreted as a plane wave
for a very small angle range. If such a plane wave intersects with a smooth surface,
the wave is geometrically reflected according to Snell’s law. This is called specular
reflection analogues to optics.
For an angle of incidence ϑ between the incident sound wave and the surface normal

(here: −x−direction), the complex incident sound pressure p
i
is described in Cartesian

coordinates (see Fig. 2.4)

p
i

= p̂ej(ωt−kxcos(ϑ)−kysin(ϑ)). (2.16)

While the orthogonal component of the incident sound wave velocity (vi)x changes the
direction, the parallel component (vi)y remains unchanged (see Fig. 2.4).
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2.3. Sound Propagation

 ϑ 

x

(vi)x

y

x=0

(vi)y

(vr)x

(vr)y

incident wave

reflected wave

 ϑ 

wall

n

Figure 2.4.: Incident and reflected wave on a smooth surface (after Vorländer [Vor08]).

A common assumption for the boundary condition of a wall is that it is locally
reacting[Kut07]. This means that the sound field is only affected by the sound pressure
in front of the wall element, but not by the sound pressure at neighbouring wall elements.
In other words, no propagation of vibration is allowed parallel to the surface, which is
valid, e.g., for porous absorbers. In such cases the reflected sound pressure is written
as [Mec08, CD09]

p
r

= p̂Rϑe
j(ωt+kxcos(ϑ)−kysin(ϑ)). (2.17)

Here, Rϑ is the (angle-dependent) complex reflection factor, which is determined with
the complex wall impedance Z and the free field impedance Z0

Rϑ =
p
r

p
i

= Zcos (ϑ)− Z0
Zcos (ϑ) + Z0

. (2.18)

As the complex wall impedance Z is often unknown, an energetic (scalar) value is
defined with the reflection factor Rϑ. This absorption coefficient αϑ reads

αϑ = 1−
∣∣Rϑ∣∣2 . (2.19)

For the simulation of many Geometrical Acoustic (GA) simulation methods, an ab-
sorption coefficient independent of the angle of incidence is mainly used, which can
be easily measured in a reverberation chamber[CD09, DIN03]. This random incidence
reflection factor can also be computed by the angle dependent reflection factor using
the Paris formula [CD09]

α =
∫ π

2

0
αϑ (ϑ) sin (2ϑ) dϑ. (2.20)

2.3.3. Sound Scattering

Geometrical reflections are only valid for infinite and plane surfaces. However, for finite
surfaces, diffraction deals with the effect of a sound wave bending around an obstacle
or a finite wall, whereas, for every rough surface, the incident sound wave is scattered.
In this section, only the latter effect in discussed, as the former is caused by diffraction
(see Sec. 2.3.4).
An incident plane wave is split up into several secondary plane waves. The local

phases of these independent secondary waves produce in sum a quite complicated scat-
tered sound field [Vor08].
The scattering effect of obstacles on a surface is dependent on their size and structure

relative to the wavelength λ. Thus, the structure of a surface acts differently for different
frequencies as shown in Fig. 2.5.
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2. Physical Fundamentals of Sound

d << λ d ≈ λ d >> λ

d d d

d
e

n
ts

surface

Figure 2.5.: Dependency of sound scattering on the wavelength λ = c
f (after Kuttruff

[Kut07]).

For dents much smaller than the wavelength λ� d, the sound wave is almost solely
reflected on the smooth wall surface. In contrast, for dents much larger than the
wavelength λ � d, the obstacles are seen as separated surfaces by the incident wave
and the waves are reflected geometrically on each surface separately. For dents in-
between these extreme cases, the incident sound wave is scattered.
In general, both specular and scattered reflections for an incident sound wave occur

theoretically. A standardized scattering coefficient σ is introduced that describes the
portion of the scattered energy that is reflected[CDD+06]. On the contrary, the portion
(1− σ) describes the geometrically reflected energy (see Fig. 2.6)[Vor08]. It can be
measured according to[VEdG+04, VM00, ISO04].

incident
1

scattered
(1-α)δ 

specularly reflected
(1-α)(1-δ) 

rough surface

Figure 2.6.: Split-up of incident sound energy into scattered and specularly reflected energy
(after Vorländer [Vor08]).

The distribution of the scattered energy σ is strongly dependent on the structure of
the scattering surface. However, in most cases a simple Lambertian distribution[LA92]
is used which gives good results when applied to real-world scenarios. The Lambert law
originates actually from optics and is based on the reciprocity principle, i.e., a surface
cannot emit more energy than it would receive[Ste04]. As a surface can only receive
energy with its projection area in direction of the incident sound wave, a cosine factor
has to be used.
Due to the principle of energy conservation, the scattered energy has to be distributed

over the complete angle range. Since the scattering distribution is a probability density
per (solid) angle[SP13], it follows

In 3D :
∫ 2π

0

∫ π
2

0

dp

dΩ
dΩ != 1 or in 2D :

∫ π
2

−π2

dp

dϑ
dϑ

!= 1 (2.21)
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2.3. Sound Propagation

For the 3D case, the normalization results in

dp

dΩ
= cos (ϑ)

π
. (2.22)

The same consideration holds for the 2D case with

dp

dϑ
= cos (ϑ)

2
. (2.23)

2.3.4. Sound Diffraction

The last two sections of this chapter dealt with the influence of very large walls on sound
propagation. The following section handles now the wave phenomenon of diffraction
around obstacles. Although diffraction also occurs on the source-side of the obstacle,
this thesis focuses on diffraction behind an obstacle. In spite of the fact that diffraction
is a more dominant wave phenomenon in acoustics (since the acoustical wavelengths
are often in the dimension of occurring obstacles), it was first investigated in optics.
For very small objects (in comparison to the investigated wavelength λ), the sound

field is more or less unaffected by the obstacle, i.e., the sound wave is bent around the
obstacles, such that the shadow zone behind the obstacles nearly disappears[Kut07].
Today, numerous diffraction theories exist that can be structured by different as-

pects. In this work, a classification with respect to the applied approximations is cho-
sen. Three degrees of approximations are ascertained: First, wave theoretical methods
have to be named. Although all diffraction theories are based on wave theory, this
group classifies all diffraction theories that remain completely in the wave pattern with-
out approximations. The second group approximates this wave pattern by Kirchhoff
assumptions[Pie89]. Most approaches in this group take only the aperture of an opening
into account and the actual shape of the wedge is neglected. Other approaches exist
that use the Kirchhoff approximations to compute the reflected sound from a rough
surface[Gor75, Tho88, LS09]. However, as the direct (and reflected sound field) is sig-
nificantly stronger on the source-side of the wedge[Pie89], this work handles only the
diffracted sound field behind the aperture. Finally, the third group approximates the
diffraction theory even further, such that only the detour is taken into account that
sound has to travel around an obstacle. In addition to these three main categories, ap-
proaches exist that model diffraction by transmitting sound through a semi-transparent
surface[Dam02] or increase the scattering coefficient of a surface close to an edge[Dal02].
The latter, again, handles only diffraction on the source-side and is not considered here.
The quantitative computation is rather complicated, even for simple geometries.

Therefore, a qualitative explanation is presented first using the Huygens principle.
Then, the three groups mentioned above are further discussed.

2.3.4.1. Huygens Principle

The basic idea of Huygens is that any (optical) wave can be created by the superposition
of an infinite number of secondary sources, so called Huygens sources [HLM90]. These
secondary sources have to be positioned on a wavefront and radiate sound spherically.
The superposition of the wavefronts of these secondary sources will create the same
wave shape compared to the original wave.
For a plane wave, the sideward components of these secondary sources cancel out

each other, whereas the propagating part of the original wave is composed by these
secondary sources (see Fig. 2.7 x1 → x2).
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x1 x2 x3 x4

plane wave
obstacle

wave frontspherical  wave I

II

Figure 2.7.: Huygens principle: a plane wavefront (x1) can be composed by a number of
secondary sources on that wavefront (x1 → x2). In case of an obstacle (x3),
the wave is propagating also in the shadow zone (x4) (after Kuttruff [Kut07]).

By introducing an obstacle orthogonal to the plane wave, the screen shields the
lower secondary sources such that only the remaining secondary sources add up to
a wavefront behind the screen (see Fig. 2.7 x3 → x4). Qualitatively, energy of the
remaining secondary sources propagates in the shadow zone (II), whereas the shielded
secondary sources cause a reduction of energy in the view zone (I).

2.3.4.2. Wave Theoretical Diffraction Models

All wave phenomena are frequency dependent. Thus, wave theoretical diffraction mod-
els are mainly described in the frequency domain. Here, a large number of contribu-
tions exist, e.g., by Bowman and Senior[BSU69], MacDonald[Mac15], Pierce[Pie89] and
Sommerfeld[SN04]. A special group of these wave theoretical models are high-frequency
asymptotic solutions. On the other hand, the most common solution in the time do-
main is given by the Biot-Tolstoy-Medwin (BTM) theory[BT57, Med81], which is also
the basis of the Secondary Source Model (SSM) (see Sec. 5.1.1). The latter is used as
main reference solution in this work. Therefore, the BTM expression is explained in
more detail after a short excurse to high-frequency asymptotic solutions.

High-Frequency Asymptotic Solutions Some wave theoretical models are only correct
for high frequencies and, thus, are sufficient for describing short waves around an
obstacle (kr � 1)[Pie74, RLBPL04]. Due to their high-frequency application, they
are often used in GA simulation methods. Keller presented a Geometrical Theory
of Diffraction (GTD)[Kel62] for the Sound Particle Simulation Method (SPSM) (see
Sec. 3.4), which was successfully applied to the radiative transfer method[RLBPL04],
too. Later, the Uniform Theory of Diffraction (UTD)[KP74] was found, which can
be seen as an extension to even higher frequencies (applied, e.g., to Beam Tracing
(BT)[TFAC00, TFNC01]). Another approach is the Physical Theory of Diffraction
(PTD)[Ufi89], which is based on the usage of elementary edge waves.

Biot-Tolstoy-Medwin The main idea of the solution in time-domain is that the sound
pressure level p is the sum of the direct sound pdirect, the specular reflections pspecular
and a diffracted sound field pdiffracted

p = pdirect + pspecular + pdiffracted. (2.24)

The BTM handles diffraction around an infinite wedge by normal coordinates[BT57].
Around the infinite edge on the z − axis, source (rS ,ϕS ,zS) and receiver (rR,ϕR,zR)
are positioned in cylindrical coordinates as shown in Figure 2.8.
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Figure 2.8.: Geometrical definitions of Biot - Tolstoy (after Calamia [Cal09]).

Then, a displacement potential is defined for the wedge geometry with the wedge
opening angle ϕW . This displacement potential is given by the superposition of modes
in cylindrical coordinates, such that the boundary conditions of both the rigid wedge
surfaces and the source position are fulfilled.
Consequently, the sound pressure p(t) is derived as [Cal09]

pdiffracted(t) = ρ0c3

4πϕW
· t

r2
Sr

2
Rsinh

2 (η ((t))
· e−νη((t) · (2.25)

4∑
i=4

{
coth (η ((t)) sin (νϕi)

1− 2e−νη((t)cos (νϕi) + e−2νη((t) +

π

ϕW

(
1− e−2νη((t)

)
sin (νϕi)[

1− 2e−νη((t)cos (νϕi) + e−2νη((t)
]2
}

Θ
(
t−

R0
c

)
,

where c is the speed of sound, ν = π/ϕW the wedge index, R0 the length of the shortest
path from the sound source to the receiver and Θ (t) the Heaviside step function. In con-
trast to the original publication, the variable names are modified to fit the conventions
of this work. Furthermore, η ((t) is equivalent to

η(t) = cosh−1

(
c2t2 −

(
r2
R − r

2
S + z2

R

)
2rSrS

)
(2.26)

and ϕi follows

ϕ1 = π + ϕS + ϕR (2.27)
ϕ2 = π + ϕS − ϕR
ϕ3 = π − ϕS + ϕR

ϕ4 = π − ϕS − ϕR.

Note that the sound source is restricted to zS = 0 without a loss of generality.
Instead of a pulse excitation, Medwin extended the Biot-Tolstoy theory by an uni-

form and instantaneous point source S, such that the sound pressure at the receiver is
rewritten [Med81] as

pdiffracted(t) = − Sρ0c

4πϕW
· 1
rSrRsinh (η ((t))

·
4∑
i=1

βi · e−νη((t) (2.28)
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with
βi ((t) = sin (νϕi)

cosh (νη ((t))− cos (νϕi)
(2.29)

using the same abbreviations as Biot - Tolstoy.
Based on that, Medwin extended the Biot-Tolstoy solution to finite wedges by as-

suming a reduction of the sound pressure p(t) to one-half, when the smaller detour
is reached (see Fig. 2.9, SPR). Furthermore, the sound pressure is set to zero for
distances larger than the greatest detour (see Fig. 2.9, SQR).

c t

z

R

S

p(t)

SQR

Q

P

SPRSR

Figure 2.9.: Extension of the Biot - Tolstoy solution to finite wedges (after Medwin
[Med81]).

2.3.4.3. Diffraction Models using Kirchhoff Approximations

The second group of diffraction models approximates the exact wave theoretical devi-
ations by applying Kirchhoff’s approximation. In contrast to the BTM, these models
handle the direct sound pdirect and the diffracted sound field pdiffracted simultane-
ously. Due to the approximations made, these models are not asymptotically correct
for high frequencies[JM82]. Although the classical Kirchhoff approximation is only valid
for small diffraction angles, Stephenson proposed an extension to larger angles, which
is presented briefly[Ste10a] (see below). Different approaches exist how to use Kirch-
hoff approximations in diffraction studies[Emb80, SN81]. The most famous diffraction
theories based on Kirchhoff’s assumptions are the diffraction theories by Fresnel and
Fraunhofer.
A quantitative formulation of Huygens principle is called the Kirchhoff integral theo-

rem. Based on the idea of Huygens, the sound pressure p at any point inside a volume
V is described by the sum over all secondary sources on a surrounding surface S of a
volume V (see Fig. 2.10).

pS

P

n

S

V
r2

Figure 2.10.: Geometrical definitions of the Kirchhoff integral theorem. The distance r2
is measured from any point on the closed surface S to a point P inside the
volume V defined by the closed surface. The sound pressure pS as well as the
surface normal n pointing inwards are given at any point of the surface.
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A complete derivation is found in [Pie89] with the result

p(P ) = 1
4π

∫����∫
S

[
pS

∂

∂n

(
e−jkr2

r2

)
−
e−jkr2

r2

∂pS

∂n

]
dS, (2.30)

where pS is the sound pressure given at each point of the surface S and n the normal
vector at each point of the surface pointing inwardsa). In this case, two Green’s func-
tions, i.e., solutions of the wave equation with inhomogeneous boundary conditions, oc-
cur in the Kirchhoff integral. The right part of Eqn. 2.30 represents a monopole source,
while the left part stands for a dipole source directing orthogonal to the surface[Kut07].
This formulation is still exact. In order to apply Kirchhoff’s approximations, however,

assumptions for the sound pressure of the surface pS have to be applied. Therefore,
the surface S is defined as infinite wall (closing in infinity) and is split up into a solid
region as well as a transmitting region S′.
On this surface, the typical Kirchhoff assumptions are:

1. the sound pressure on the rear side of the solid wall is zero and

2. the incident sound field is undisturbed in the opening.

Both approximations assume that the opening is large compared to the wavelength,
such that the effects of diffraction only take effect inside the volume, i.e., on the rear
side of the opening.
When small angles of incidence on the surface and small outgoing angles are assumed[Pie89],

the Fresnel - Kirchhoff integral states for the far field (kr2 � 1)

p(P ) ≈ jkpS

2π

∫∫
S′

e−jkr2

r2
dS, (2.31)

where r2 this the distance from any point on the aperture to the point of interest P .

Extension of the Kirchhoff Approximation to Larger Angles In order to extend this ap-
proximation to larger angles, Stephenson[Ste10a] assumed a plane wave that intersects
the aperture with an angle of ϕS , as shown in Fig. 2.11.

P

n

S`

V

r2 

φR 
xφS 

y
transmitting

solid

Figure 2.11.: Geometrical definitions for the derivation of the Fresnel-Kirchhoff diffraction
through an opening.

The surface normal points in x− direction. The angle ϕR denotes the angle between
a connection of the current point on the aperture and the receiving point P relative to
a)This equation is only valid for a point P inside the surface S (interior). For P outside S, an

exterior problem is solved.
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the surface normal n (see Fig. 2.11). If the angles ϕS and ϕR are not too small, Eqn.
2.30 can be modified in a different way.
The first term is simplified to (with far-field approximation kr2 � 1)

∂

∂n

e−jkr2

r2
= ∂

∂x

e−jkr2

r2
=
(
−
(
jk + 1

r2

)
e−jkr2

r2

)
∂r2
∂x

kr2�1
≈ −jk

e−jkr2

r2
cos (ϕR) .

(2.32)
For the second term, a cosine of the angle of incidence ϕS is derived

∂pS

∂n
= ∂pS

∂x
= −jkpS

∂r

∂x
= −jkpScos (ϕS) . (2.33)

If both equations are inserted in Eqn. 2.30, p(P ) is written as

p(P ) ≈ jkpS

2π

∫∫
S′

e−jkr2

r2
· cos (ϕR) + cos (ϕS)

2
dS. (2.34)

This equation is equal to Eqn. 2.31 only for ϕS ≈ ϕR ≈ 0. The Kirchhoff - Fresnel
integral is, so to say, only valid for orthogonal incident ϕS = 0 and small diffraction
angles ϕR ≈ 0.
In all other cases, a factor f must be introduced, found by Stephenson [Ste10a]

f = cos (ϕR) + cos (ϕS)
2

. (2.35)

Fresnel Diffraction at a Half-Infinite Screen A specialization of Eqn. 2.31 is called
Fresnel diffraction and refers to diffraction at a half-infinite screen. For this setup, the
aperture is defined for y > 0 with an infinite length in z − direction. Both aperture
and screen close at infinity. In addition to the approximations by Kirchhoff, the dis-
tance r2 is approximated by using Taylor approximation in the exponent up to the 2nd
order[Pie89]. During the integration over the surface, the current surface element is
located at (x′ = 0, y′, z′), whereas the point of interest P is located at (x, y, z), such
that the approximation reads

r2 =
√
x2 + (y − y′)2 + (z − z′)2 ≈ x+ (y − y′)2

2x
+ (z − z′)2

2x
. (2.36)

The denominator r2, on the other hand, is directly approximated by the Taylor approx-
imation of the 1st order r2 = x.
With Eqn. 2.36 and several conversions, Eqn. 2.31 is written as

p(P ) ≈ (1 + j)
2

· pS · e−jkx

[(
C

(√
k

πx
y

)
− jS

(√
k

πx
y

)
+ 1− j

2

)]
. (2.37)

where additionally the Fresnel Integrals[AS64]

C (z) =
∫ z

0
cos

(
π

2
s2
)
ds and S (z) =

∫ z

0
sin

(
π

2
s2
)
ds (2.38)

are used. The computed sound pressure level of the Fresnel diffraction is shown in Fig.
2.12 together with the geometrical shadow zone.
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Figure 2.12.: Fresnel diffraction by a rigid half-plane in a distance x
λ = 10 behind a screen

and y
λ above the edge (see Fig. 2.11).

Fraunhofer Diffraction at a Slit While the Fresnel diffraction assumes a semi-infinite
screen (see previous section), the Fraunhofer diffraction basically deals with diffraction
of a finite aperture S in the infinite plane. Fraunhofer diffraction can be interpreted
as a further approximation of the Fresnel diffraction assuming an extreme far field and
small angles, but historically it has been derived independently.
As this approximation is restricted to even larger distances to the aperture and small

angles, such that y′ � y and z′ � z, Eqn. 2.36 is further simplified by omitting the
2nd order terms

r2 ≈ x+ (y − y′)2

2x
+ (z − z′)2

2x
≈ x+ y2 − 2yy′

2x
+ z2 − 2zz′

2x
. (2.39)

Hence, the sound pressure of Eqn. 2.31 is further approximated to

p(P ) ≈ jkpS

2πx

∫ ∞
−∞

∫ ∞
−∞

a(y′, z′)e
−jk
(
x+ y2−2yy′

2x + z2−2zz′
2x

)
dy′dz′. (2.40)

Here, a(y′, z′) is a transmittance function being either 0 at the solid wall or 1 at the
opening. Thus, a(y′, z′) filters an opening from the infinite wall.
This transmittance function reads for a rectangular shape[Hec01]

a(y′, z′) = rect

(
y′

Y

)
· rect

(
z′

Z

)
=
{

1 |y′| < Y
2 and |z′| < Z

2
0 else

. (2.41)

This aperture is symmetrical to (y′, z′) = (0, 0) and has a width of Y in y−direction
and a width of Z in z−direction. It is shown that the Fourier transformation[OL07]

F
(
a(y′, z′)

)
= A(y, z) = Y si (πY y) ·Zsi (πZz) (2.42)

can be used to describe the sound pressure behind the slit[Pie89]. Although the defi-
nition of a symmetrical slit is quite simple, the sound pressure behind the aperture is
described by the Fourier transformation of any transmittance function a(y′, z′) (aper-
ture shape).
The sound pressure behind a rectangular screen is derived with A(y, z) to[Hec01]

p(P ) ≈ jpS
(
x

λ

)
e
−jk
(
x+ y2+z2

2x

)
Y

λ
si

(
π
Y

λ

y

x

)
· Z

λ
si

(
π
Z

λ

z

x

)
, (2.43)
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where si (x) = sin (x) /x is the si- function. The result is shown in Fig. 2.13
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Figure 2.13.: Fraunhofer diffraction at a slit of width Y
λ = 10 in a distance x

λ = 10 behind
a slit and y

λ above the centre of the slit (z = 0)

In Eqn. 2.43, two orthogonal diffraction angles ε and η are defined by the ratio of
y
x

= tan (ε) ≈ sin (ε) and z
x

= tan (η) ≈ sin (η) resulting in an energetic formulation
of Eqn. 2.43

I (P ) ∝ |p(P )|2 ∝ si2
(
π
Y

λ
sin (ε)

)
· si2

(
π
Z

λ
sin (η)

)
. (2.44)

2.3.4.4. Diffraction Models using only the Detour

The roughest approximation is to take only the shortest detour into account that sound
has to travel around an obstacle. These models are mainly used to compute the screen-
ing effect of single noise barriers. Certainly the diffraction theory of Redfearn is to men-
tion here[Red40], which can be derived from the Uniform Theory of Diffraction[Kur74].
Another model is the Maekawa Detour Law (MDL)[Mae68], which was first based on
empirical measurements, but has been proven later mathematically[Kur74]. In this
work, this method is used as a representative for these most simple diffraction models.
Although the result of Maekawa’s experiments is a graph with nonlinear axes, a

simple mathematical expression reads with N = 2d
λ
[Kur74]

∆L = 10 · log10 (20N) . (2.45)

In this equation, d stands for the detour that sound has to travel around an obstacle,
and λ is the wavelength.
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2.4. Receivers

2.4. Receivers

A propagating sound field can be evaluated at specified positions, called receivers. The
sound field can either be described by the sound pressure p or the (energetic) sound
intensity I, which are both dependent on time and space. In room acoustics and city
acoustics, different requirements occur for the description of the sound field. In city
acoustics, mainly the spatial distribution is of interest, but also the time dependency
is important if estimations of annoyance are of interest. Either way, the energetic
distribution is sufficient, especially because the exact phase information of the wall
impedances is only seldomly known anyway. Nevertheless, when this information is
available, an impulse response can be computed. However, if the phase information
is not available and only the energetic sound intensity is available, either an intensity
echogram or an intensity map can still be computed. All three solutions are presented
briefly in the following.

2.4.1. Impulse Response

The impulse response is introduced in system theory to describe the answer of a Linear
Time Invariant (LTI) - system to an excitation by a single pulse[OL07]. It is sufficient
to define the system completely.
In acoustics, both assumptions for an LTI - system are (at least approximately)

fulfilled in practical cases and the respective impulse response can be used to describe
the sound propagation of a single pulse from a sound source to a receiver. This impulse
response can either be measured or simulated and can be seen as a fingerprint of the
room[Sch11]. As each excitation signal can be composed of a sum of single delayed and
scaled pulses, the signal, i.e., the sound pressure, can be estimated by a convolution of
the excitation signal with the impulse response[OL07]. This estimated sound pressure
can be used to create a quite authentic auralization of the sound field[Vor08].

2.4.2. Echogram

A sound intensity echogram is the energetic counterpart of the impulse response, when
only one source emits a single (energetic) pulse. It describes the sound intensity I(t) up
to a maximum time of TMax of different reflection paths at the receiver position for the
regarding time delay. Multiple reflection (including scattering and diffraction) paths
are possible. From a room acoustical point of view, three main groups of reflections can
be named[Vor08]:

• direct sound: the first connection between source and receiver (line of sight). It
determines the perceived direction of incidence (precedence effect)[Bla96].

• early reflections: reflections of low-order reaching the receiver (typical 50−80ms).
These reflections are added up to the initial sound event by the human hearing
(Haas effect)[Bla96]. They contribute to the direct sound expression and support
the speech intelligibility.

• late reverberation: reflections of higher order (typical > 80ms). The reverberation
tail is quite independent of the receiver position and is used to determine the room
shape and size as well as the absorber distribution.

All three groups are described in Fig. 2.14. Here, the sound intensity I(t) is the sum
of the energies of single reflection paths at a receiver position up to a maximum time.
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Figure 2.14.: Composition of direct sound (red), early reflections (blue) and reverberation
(green) in an energetic echogram.

Based on the energetic echogram, many room acoustical parameters can be computed.
Here, the main parameter is certainly the reverberation time T60. It is defined as the
time interval in that the total sound energy in the room is reduced by a factor of 10−6

(−60dB). Additionally, parameters such as clarity, definition and gain are directly
derivable[Got73].
Although many GA simulation methods compute the intensity echogram, an impulse

response that is appropriate for auralization purposes can be computed by reconstruct-
ing the temporal fine structure from the energetic echogram[Sch11].

2.4.3. Intensity Level Map

For many purposes such as noise immission prognosis, the time dependency of the sound
distribution is not of interest. Therefore, a single value is found for the sound intensity
I of a specified receiver position by adding up all reflection energies of the echogram.
This total intensity (still valid only for a specified receiver position) is drawn in a map.
Due to the huge range of the sound intensity, the sound intensity level LI is used instead
of the sound intensity I (see Sec. 2.1). An example of such an intensity level map is
given in Fig. 2.15.

source

reflecting surface

fully absorbing surface

(a) geometrical setup of a single source inside a
closed volume with totally reflecting floor and
fully absorbing surrounding else.

95
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(b) intensity level map. The sound intensity level
LI is shown as colour from red (high) to blue
(low).

Figure 2.15.: Intensity level map for a geometrical scene with one reflecting surface.

A single source is placed within a closed volume (see Fig. 2.15a). In case of a free-field
sound propagation, the sound intensity would decrease radially outwards. However, the
specular reflections of the floor increase the sound intensity level LI right above the
surface (see Fig. 2.15b).
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3. Geometrical Acoustic Simulation Methods

For high frequencies and small wavelengths, respectively, the wave behaviour can be
neglected by part. Instead, the sound energy flow is modelled geometrically just like
in geometrical optics[Hec01]. Therefore, this type of wave field modelling is called
Geometrical Acoustic (GA). In GA, sound propagation is assumed as the dispersion of
rays or particles, similar to the wave-particle-dualism in physics. To apply these GA
simulation models, the typical dimensions of the environment have to be large compared
to the wavelength. Although there are GA simulation methods that include complex
sound pressure[Kel54, Pie89, JIR08], this work restricts GA to complete energetic mod-
els. Furthermore, it is assumed that the sound propagation always takes place in a
closed polyhedron (a free field is modelled by using only fully-absorbent surfaces).
In this chapter, the physical models as well as algorithmic details of the fundamental

GA simulation techniques 1) image sources, 2) ray tracing, 3) beam tracing and 4)
acoustic radiosity methods are presented. In general, these methods are applicable in
a 3D space, but their presentation is restricted to 2D cases first. A detailed under-
standing of these models in 2D is required to follow the derivation of the reunification
techniques and their evaluation in chapter 6, where only the most efficient and accurate
reunification technique is extended to 3D later in chapter 7. First an interpretation of
the 3D space in 2D is given. Then, extensions of the common GA simulation methods
are introduced in order to simulate multiple frequency bands simultaneously. Finally,
the actual implementations of these extended GA simulation methods are presented.

3.1. Interpretation of the 3D Space in 2D

In order to reduce the complexity of the investigated GA simulation methods, the
investigations are restricted to 2D. Therefore, only a two dimensional cross-section of
the 3D space is discussed. Without loss of generality, this cross-section is defined as
the x− y− plane (see Fig. 3.1).

line source

cross section

cylinder receiver

x

z
y

Δh

Figure 3.1.: Analogy of 3D and 2D simulation. The 3D scene has to be invariant of a
translation in z−direction.
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In order to compute valid results for this cross-section, the 3D scene has to be in-
variant with respect to a translation in z − direction and, thus, a coherent vertical
line source (see Sec. 2.2.2) with a sound power per length P ′ is assumed. In the case
of spatially extended receivers that are used, e.g., in the Sound Particle Simulation
Method (SPSM), their shape has to be invariant with respect to a translation in z−
direction, too. In this work, a cylindrical shape is chosen to avoid a directivity of the
receivers. Thus, the sound propagation in 2D is restricted to the propagation in a plane
of height ∆h (see Fig. 3.1), which can converge to ∆h→ 0.

3.2. Handling Multiple Frequency Bands Simultaneously

In general, the sound propagation is strongly dependent on the frequency. This is
especially important since acoustics encompasses a wide range of frequencies from f =
20Hz up to f = 20.000Hz. This frequency range is usually split up either into octave or
third-octave bands in order to meet the physiology of the human hearing. For acoustics,
the following centre frequencies are defined for the frequency bands:

Octave Third Octave (1) Third Octave (2) Third Octave (3)
31.5 20 250 3150
63 25 315 4000
125 31.5 400 5000
250 40 500 6300
500 50 630 8000
1000 63 800 10000
2000 80 1000 12500
4000 100 1250 16000
8000 125 1600 20000
16000 160 2000

200 2500

Table 3.1.: Typical frequency bands used in acoustics.

In building acoustics, only 6 of these octave bands are typically used (125Hz ≤ f ≤
4000Hz). Classical GA simulation methods handle the sound propagation for each fre-
quency independently. The results of each frequency band are interpreted individually
or combined to a full range impulse response[Sch11]. In this work, an octave band
resolution is chosen. All bands are computed simultaneously, which means that the
sound energy carriers are not only carriers of sound energy, but of multiple energies
for each frequency band. This procedure is faster than handling each frequency band
independently, but one has to ensure that the geometric sound propagation paths are
independent of the frequency. Thus, the frequency-dependent effects like scattering,
diffraction, absorption and air attenuation result only in a modification of the carried
energy, but not of the actual sound propagation path. Solutions for all these cases will
be presented in this chapter (in case of diffraction in chapter 5).

3.3. Image Sources

The basic idea of the image source method is that sound sources are mirrored on re-
flecting walls and specular reflections of the impacting sound are assumed. Early work
has been presented for the one dimensional case and the three dimensional case with
perpendicular surfaces[Min50]. It has been applied to concert halls[Gib72] and rectan-
gular rooms[Ber75, AB79, Bor84]. The image source method enables the computation
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3.3. Image Sources

of specular reflections of arbitrary order, whereas the simulation of diffuse reflections is
not possible (without further extensions).
The determination of the sound intensity is based on the free-field sound distribution

(Eqn. 2.12). Every sound source S is mirrored on a wall with index i to construct
the respective image source Si. The overall path length ri is equal to the Euclidean
distance between the image source and the receiver (see Fig. 3.2).

1
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3

S

S3

S4

S1

S2

r1

r2

r3

r4

α1

α2

α3

α4

Figure 3.2.: Construction of first order image sources.

The sound intensity after a wall reflection is still computed by simply applying the
1
r
distance law, where r is the total path length, and a multiplication by the (generally

angle- and frequency-dependent) reflection coefficient (1− α), where α is the absorption
coefficient (see. Sec. 2.3.2), and the air attenuation m for the distance ri (see. Sec.
2.3.1). It follows from Eqn. 2.12

I = P ′

2πri
· (1− αi) · e−mri . (3.1)

The overall sound intensity at the receiver position is written as the sum of all these
image sources. For the simulation of multiple frequency bands (see Sec. 3.2), the image
source positions are identical for each frequency, such that only different α and m have
be the used for each frequency band. In case of a real 3D simulation, where the source
(or the image source) are points rather than lines, an exact time delay between source
and receiver is defined. It is computed according to their distance ri to

∆ti = ri

c
. (3.2)

The image source method is very accurate within the restrictions of GA and even im-
pulse responses (including phase) can be computed. On the other hand, an introduction
of scattering is not possible for the image source method.
As higher order image sources are constructed recursively by mirroring the image

sources on additional walls, an exponential growth of these image sources as a function
of the reflection order i is derived. For arbitrary polyhedra instead of rectangular
rooms [Bor84] with a number of n walls, the number of constructable image sources
nCIS reads[KKF93, Kut09]

nCIS = n (n− 1)i−1 ≈ ni. (3.3)

Although the number of constructable image sources grows exponentially, the number
of visible image sources is only a small part of them. Visible, in this context, means
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that the constructed path between the image source and the receiver lies within the
room boundaries (see Fig. 3.3).

R

S21

S

S12

S1

S2

wall 1

wall 2

Figure 3.3.: Visibility of 2nd-order image sources. The path construction of S12 results in a
valid reflection. In contrast, the path connection between S21 and R does not
intersect the last reflected wall 1 within their boundaries. Thus, S21 is invisible
(after Vorländer [Vor08]).

Stephenson has estimated the number of visible image sources nIS by estimating a
visibility probability[Ste90]. On average, an image source of order n + 1 is one Mean
Free Path Length (MFPL) l[Kos60] farther away than the image source of order n.
Hence, the surface SIS where image sources of order i are located, is defined by a ring
with l·

(
i− 1

2

)
< r < l·

(
i+ 1

2

)
(see Fig. 3.4).

image source space per reflection order

 l  i 
l

original room

room of an image source

Figure 3.4.: Image rooms. All image sources of reflection order i are statistically within a
ring with radius of approximately i· l and a width of l (after Kuttruff [Kut09]).

The number of visible image sources nIS is found by the ratio

nIS(i) = SIS

SR
=
π·

[
l·
(
i+ 1

2

)]2
− π·

[
l·
(
i− 1

2

)]2
SR

= π· l
2 · 2 · i

SR
, (3.4)

because on average one visible image source is in one image room of area SR.
The number of visible image sources nIS for one explicit receiver position grows lin-

early with the reflection order ia). In contrast, the number of constructable image
a)only valid for the 2D case, for 3D the same assumptions yield ∝ i2
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sources nCIS increases exponentially. Thus, the image source method becomes very
inefficient, especially for higher order reflections.

3.4. Sound Particle Simulation Method

Today, many different ray- or sound particle tracing methods exist[KSS68, Gla89]. All
these methods have in common that infinitesimally smalls rays are traced along straight
lines and are detected by spatially extended receivers. In this thesis, a detection tech-
nique is used that takes into account the inner distance, which is called Sound Particle
Simulation Method (SPSM). The different techniques of the particle tracing are pre-
sented in individual subsections and the main approach for this thesis is chosen.
Sound particles are emitted by a sound source and traced independently through the

geometrical scene. These sound particles are reflected either geometrically or diffusely at
each wall, until their tracing is aborted. Spatially extended receivers are used to detect
the sound intensity at specified receiver locations. These parts of sound particle tracing
are described in this section followed by a brief discussion of algorithmic realizations
for the processing sequence in 2D. For the extension to 3D, see Sec. 7.2.

3.4.1. Emission of Sound Particles

The main configuration parameter of the SPSM is the number of emitted sound particles
N . They can be sent out either in N random directions by a Monte Carlo method (see,
e.g., [BS66]) or almost equally distributed (see, e.g., [Ste85]).
In this work, equally distributed sound parti-

N
2π

Figure 3.5.: Equal distribution of
N sound particles in
2D space.

cles are chosen by splitting up the angle range
of 2π in N equally spaced angle ranges 2π/N , as
this guarantees repeatability (see Fig. 3.5). The
sound particle with index i is then emitted in the
centre of these region

ϕi =
i+ 1

2
N

· 2π. (3.5)

Assuming a continuous sound source with a
source power per length P ′, each sound particle
carries a sound power Pi in a plane of height ∆h
(see Fig. 3.1) with Pi = P

N
= P ′· ∆h

N
. In or-

der to compute an echogram, the sound source
emits a single impulse, such that a sound particle
carries an energy Ei for a time interval tRef .

Ei =
P ′· ∆h· tRef

N
. (3.6)

In case of the simulation of multiple frequency bands, one energy for each frequency
band has to be carried. In conclusion, an emitted sound particle is defined by

• sound energy • starting point • direction vector.
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3.4.2. Wall Intersection Test

To find the intersection point between a sound particle and the geometrical scene, four
criteria have to be fulfilled. These criteria are visualized in Fig. 3.6.

non-convex room
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(a) the sound particle must hit the wall from
inside
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(b) the sound particle must travel forward

non-convex room
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P Ia

(c) the intersection must lie inside a wall

non-convex room

wall
v

S

I
dmin

(d) only the intersection with minimum dis-
tance to the point of emission is valid

Figure 3.6.: Criteria for valid intersection points of a sound particle (green) starting at the
sound source (red) in non-convex geometry. The valid intersection points are
marked blue, whereas invalid intersections are indicated in purple.

These criteria are computed as follows:
a) hit from inside: whether the particle hits from inside or outside is computed by a

scalar product of the surface normal ~n and the particle’s direction vector ~v

~n ◦ ~v =
{

> 0 hit from inside
< 0 hit from outside. (3.7)

b) travel forward: with the distance of the sound particle to the current wall t in
the direction of travel (found by a line-line intersection test[Gla90]), the particles
travel forward for t > 0 and backward for t < 0

t =
{

> 0 travel forward
< 0 travel backward. (3.8)

c) inside wall: with the intersection point ~I, the starting point of the current wall ~P
of length l and the normalized direction vector ~a in the direction of the wall, the
intersection is (

~I − ~P
)
◦ ~a =

{
≥ 0 ∧ ≤ l inside the wall
< 0 ∨ > l outside the wall. (3.9)

d) minimum distance: the intersection point with minimum distance is usually found
by defining a large distance dMin = 1000.000 as initial minimum distance and
updating dMin for each valid intersection with a distance d < dMin

dMin = d =
∣∣~I − ~S

∣∣ if d < dMin. (3.10)
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In a loop over all walls, every wall is tested whether the current particle’s direction
vector aims in the direction of the surface normal [3.6a]. Then the intersection between
the wall and the sound particle is computed and the intersection point is tested whether
it lies in the direction of travel of the sound particle [3.6b]. If the sound particle lies
in-between the wall boundaries [3.6c], the intersection is a valid intersection point. Out
of the set of valid intersection points, the intersection point with the closest distance to
the sound particle’s starting point is chosen as the resulting intersection point [3.6d].
For convex polygons, the four criteria reduce to two, because criteria a) and b) as

well as c) and d) are identical for convex polygons. Criterion b) is limited to a line-line
intersection test in 2D, but a more complicated point-in-polygon test[Gla90] has to be
performed for 3D. Thus, in a convex 2D geometry only criteria a) and c) are evaluated.
A comparison is shown in List. 3.1.

function f i ndWa l l I n t e r s e c t i on ( ) // non convex
Vec IMin // conta ine r f o r i n t e r s e c t i o n
f l o a t dMin = 1000.000 f ; // i n i t i a l i z e d i s t ance with l a r g e value
for ( a l l wa l l s )

I = f i ndCur r en t I n t e r s e c t i on ( ) ; // l i n e − l i n e − i n t e r s e c t i o n
i f (n ∗ v > 0) // see Eqn . 3 .7

i f ( t > 0) // see Eqn . 3 .8
i f (0 <= ( I−P)∗ a <= l ) // see Eqn . 3 .9

d = | I−S | ; // see Eqn . 3 .10
i f (d < dMin) // see Eqn . 3 .10

IMin = I ;
dMin = d ;

function f i ndWa l l I n t e r s e c t i on ( ) // convex
Vec I // conta ine r f o r i n t e r s e c t i o n
for ( a l l wa l l s )

I = f i ndCur r en t I n t e r s e c t i on ( ) ; // l i n e − l i n e − i n t e r s e c t i o n
i f (n ∗ v > 0) // see Eqn . 3 .7

i f (0 <= ( I−P)∗ a <= l ) // see Eqn . 3 .9
IMin = I ;
break ;

Listing 3.1: Pseudocode of the determination of a wall intersection.

3.4.3. Wall Interaction

A sound particle is interpreted as a small fraction of a plane wave propagating in
direction of the sound particle. Hence, sound absorption of a plane wave (see Sec.
2.3.2) has to be taken into account. Furthermore, the air attenuation (see Sec. 2.3.1)
for the travelled distance since the last wall interaction r has to be considered. In total,
the sound energy of the sound particle has to be multiplied with the energy reduction
factor

e−mr · (1− α) . (3.11)

For complete geometrical reflections (σ = 0, see Sec. 2.3.3) the reflection direction
~vr is determined according to Snell’s law (see Fig. 2.4)

~vr = ~vi − 2 (~vi ◦ ~n) ·~n, (3.12)

where ~vi is the direction of incidence and ~n the surface normal. The energy of the
reflected sound particle computes as in Eqn. 3.11.
For (even partly) scattering surfaces, mainly three different methods[Dal11, SP13]

are possible:
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3. Geometrical Acoustic Simulation Methods

direction randomization The scattering coefficient σ is interpreted as a probability. For
a random number z ∈]0, 1[ with z > σ the sound particle is reflected geometrically, while
it is diffusely reflected for z < σ. In both cases, the sound particle energy is unaffected.
For diffuse reflections, a random direction vector for the sound particle is chosen (see
Sec. 2.3.3). This method is, e.g., used in [Sch11].

energy weighted addition Another possible realization of scattering is to compute both
the specularly and the diffusely reflected vectors independently. Then, both vectors are
added up after weighting the diffuse direction vector with σ and the specular direction
vector with (1− σ) and finally renormalizing the new direction vector [Ste04].

recursive split-up The specular and diffuse reflections are handled independently, where
diffuse reflections are realized by additional secondary sound particles, i.e., the incident
sound particle is split up[Dal96].

As only the third method results in a split-up of sound particles, the first and the
second method seem to be more efficient than the third method. Indeed, both methods
can be simply integrated into classical SPSM algorithms by keeping the nested loops
(see Sec. 3.4.6). On the other hand, the third method is more accurate, because a
higher density of sound particles represents the scattered sound distribution better. In
order to achieve this accuracy for the two other methods, more sound particles would
have to be used.
In addition, the third method is the only one, where the actual directions of the

emitted sound particles are independent of absorption and scattering coefficients and,
hence, on the frequency. Thus, the energies of different frequency bands are traced
simultaneously by using only one particle, where the energy of each frequency band
is subsequently multiplied by different factors[PSS+12, SPD+13]. The necessary mod-
ification of the entire simulation method to include the split-up of sound particles is
discussed in Sec. 3.4.6.
The diffusely reflected sound energy is represented by a number of S additional sec-

ondary sound particles. Together with the sound particle for the geometrically reflected
sound energy, in total S+1 sound particles are emitted from the scattering surface. For
the geometrically reflected sound particle, the energy (relative to the incident energy)
is

e0 = e−mr · (1− α) · (1− σ) . (3.13)
Because of energy conservation, the energy for the diffusely reflected sound energy is

S∑
i=1

ei = e−mr · (1− α) ·σ. (3.14)

The angle range −π2 < ϑ < π
2 is separated in S equal angle ranges (relative to the

surface normal and independent from the incident angle), such that the ith sound
particle is emitted in the direction (see. Eqn. 3.5)

ϑi =
i+ 1

2
S

·π −
π

2
. (3.15)

According to Lambert’s Law (see Sec. 2.3.3), the energy of the ith sound particle is
computed with Eqn. 2.23 to

ei = e−mr · (1− α) ·σ

∫ i+1
S
π−π2

i
S
π−π2

cos (ϑ)
2

dϑ. (3.16)
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3.4. Sound Particle Simulation Method

3.4.4. Detection of Sound Particles

In order to detect infinitesimal small sound particles, spatially extended receivers are
required. Different ray tracing techniques use different detection techniques, but mainly
three methods are in use:

particle counting The most common method for the detection of sound particles is to
count the number of sound particles [Vor08]. Whenever a sound particle intersects with
the spatially extended receiver, its current energy is added up in the receiver. This is,
e.g., used in [Sch11].

back tracing Another method is to use ray tracing only for the detection of valid image
sources. Whenever a sound particle intersects a spatially extended receiver, the image
source for the sound particle is constructed and the exact reflection path (to the centre
of the receiver) is tested for visibility[Vor89]. This method is only a special technique
to detect visible image sources and, thus, not directly a ray tracing method.

inner distance weighting The third method is to count not only the detected sound
particles, but to weight them with the distance the sound particle travels within the
receiver [Ste85, Ste14].

The third method is a generalization of the first method, as the energy is addition-
ally weighted with the distance the sound particles travel in the receiver. While the
first method is faster due to less computational effort, the third method is more accu-
rate, as sound particles passing by the receiver position in a larger distance are weighted
with lower energy in contrast to a closer hit. Thus, the third method is chosen in this
work.
The sound intensity I of a plane wave can be written as I = c·w [Kut07], where

w is the energy density per volume and c the speed of sound. Furthermore, a constant
energy density w inside the receiver is assumed. The intensity computes with the
detected energy ED in the receiver to

I = c·w = c· ED

VD
, (3.17)

where VD is the volume of the receiver. Due to the invariance of a translation in
z − direction (see Fig. 3.1), this volume is written as a surface SD within the x − y−
plane with a height ∆h

VD = SD · ∆h. (3.18)

The detected energy ED is determined by adding up all energies Ei of all N0 sound
particles crossing the receiver. As the sound source has a certain sound power, it emits
sound particles in time intervals of tRef . Thus, the detected energy is weighted with
the time ratio ti/tRef , where ti is the particle’s travel time within the receiver volume.
Hence, the ratio describes a probability of the sound particle to be inside the receiver.
The sound intensity I is computed by the distance wi = c· ti that the sound particle

travels inside the receiver and the energy loss ei of the sound particle since emission
(see Eqn. 3.6)

I = c

∑N0
i=1 Ei

ti
tRef

VD
= c

∑N0
i=1

P ′· ∆h· tRef
N

ei

wi
c

tRef

SD∆h
= P ′

N ·SD

N0∑
i=1

ei ·wi. (3.19)
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While the energy fraction ei that the sound particle loses during absorption, air
attenuation, scattering and diffraction is computed during the sound particle tracing,
the distance wi is computed during detection.
The determination of such a time-independent sound intensity I is sufficient, e.g.,

when an intensity map is of interest (see Fig. 2.15). In order to compute a full time-
dependent echogram I(t) (see Fig. 2.14), however, the intersection time of the sound
particle in the receiver has to be detected, too. Therefore, each summand of Eqn. 3.19
has to reference to an impact time. This impact time is given by the total length of the
sound particle’s propagation path di (between the source and the centre of the inner
crossing distance wi) divided by the speed of sound c. Using Dirac - impulses δ(t) to
shift the single summands to their respective position, the time-dependent echogram
concludes to

I(t) = P ′

N ·SD

N0∑
i=1

ei ·wi · δ

(
t−

di

c

)
. (3.20)

The spatially extended receivers can be realized either by single receivers that esti-
mate the sound field at particular points or by receiver grids in order to determine the
sound distribution in a larger area. In either case, each receiver has to detect energy
for each frequency band, which is transported by the sound particle.

3.4.4.1. Single Receivers

For single receivers the most common solution is the usage of circular receivers (in 3D
spheres). If a sound particle hits the receivers, the inner distance in the receiver has to
be determined as follows: between receiver centre ~R and the starting point of the sound
particle ~S, the direct connection ~l = ~R − ~S is separated in a component lp parallel to
the sound particle direction vector ~v and a second orthogonal component ln (see Fig.
3.7).

R

v

l nlp

lS

w

r

detector

Figure 3.7.: Inner distance of a sound particle in a circular receiver.

The length
∥∥~ln∥∥ equals the bypass distance of the sound particle and, thus, an

intersection occurs if
∥∥~ln∥∥ < rb). Finally, the inner distance is computed with

w = 2 ·
√
r2 −

∥∥~ln∥∥2. (3.21)

b)the intersection point is only valid, if the intersection is in the direction of travel of the sound
particle(lp > 0)
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3.4. Sound Particle Simulation Method

3.4.4.2. Receiver Grid

A complete grid of receivers is constructed by a rectangular shape with the dimension
wgrid in both x− and y− direction[Ste85].

non-convex room

wall

wgrid

Figure 3.8.: Rectangular grid of receivers. Receivers are coloured red and green.

Instead of using these receivers independently, their symmetric alignment is used to
gain higher efficiency. This technique is similar to the voxel (small cubes) crossing
acceleration technique for intersection tests [Gla89, Ste06, Sch11]. The starting point
~S and the end point ~E have to lie within the receiver grid.
The algorithm starts by finding the indices of the starting point’s voxel. In 2D, voxels

are defined by i·wgrid < x < (i+ 1) ·wgrid and j·wgrid < y < (j + 1) ·wgrid,
where the indices i and j describe the indices in x− and y−direction. Thus, the tuple
(iT , jT ) of the starting voxel computesc)

(iT , jT ) =
⌊

~S

wgrid

⌋
. (3.22)

For the determination of the detected energy, the distances dx,y to the voxel boundary
in x− or y− direction read

dx =

{
(i+1) ·wgrid−Px

vx
vx > 0

i·wgrid−Px
vx

vx < 0
and dy =

{
(j+1) ·wgrid−Py

vy
vy > 0

j·wgrid−Py
vy

vy < 0
,

(3.23)
where ~v is the direction vector of the sound particle (see Fig. 3.9).

xd
yd

i

T

T

j  +1

j
T i  +1T

detector

v

P

gridw

Figure 3.9.: Inner distance of a sound particle in a receiver grid.

The minimum w = min (dx, dy) indicates the valid intersection and is automatically
the inner distance of the sound particle propagation path in the voxel (iT , jT ). The
c)bxc is the floor function yielding the largest previous integer
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indices of the next tuple (iN , jN ) are

(iN , jN ) =


(iT + 1, jT ) dx ≤ dy , vx > 0
(iT − 1, jT ) dx ≤ dy , vx < 0
(iT , jT + 1) dx > dy , vy > 0
(iT , jT − 1) dx > dy , vy < 0

, (3.24)

such that the inner distances of the receivers are found as above. This procedure is
repeated until the total inner distance of all voxels wtotal equals the distance between
the starting point and the end point of the particle. The algorithm is summarized in
List. 3.2.

function gr idDetec t i on ( )
int [ iT , jT ] = ( int ) ( s t a r t i ngPo in t /wGrid ) ; // see Eqn . 3 .22
f l o a t [ dx , dy ] = computeDistances ( ) ; // see Eqn . 3 .23
detectEnergy ( iT , jT , min (dx , dy ) ) ;
while ( t rave l edDi s tance<=to ta lD i s t anc e )
{

[ dx , dy ] = computeDistances ( ) ; // see Eqn . 3 .23
detectEnergy ( iN , jN , min (dx , dy ) ) ;
[ iN , jN ] = computeNextIndices ( ) ; // see Eqn . 3 .24
s t a r t i ngPo in t = Vec( iN , jN ) ∗ wGrid ;

}

Listing 3.2: Pseudocode of the detection of a sound particle by a receiver grid.

3.4.5. Abort Criteria

The sound particles are traced until the propagation is aborted, which can be decided
by four criteria:

Distance/Time Sound particles are traced until a user-defined maximum propagation
time is reached. This maximum time defines the length of the echogram.

Energy Sound particles are traced until the energy of the sound particle is below a
certain energy threshold.

Annihilation Whenever a sound particle intersects with a wall, a random number z ∈
]0, 1[ is compared to the local absorption coefficient. For z < α, the sound particle is
annihilated.

Reflection Order Sound particles are terminated if a user-defined maximum reflection
order is reached.

Although the reflection order is the most plausible criterion, it only partially has a
physical basis. The distance criterion seems very plausible, but is no secure criterion,
as sound particles can get stuck in corners of the geometry. Then, they practically
travel no distance anymore which could lead to infinite loops. The energy criterion,
however, is the most secure criterion, but the value of the threshold is hard to define
safely for every scene, especially with split-up of sound particles. A crucial point is
that the number of sound particles in a distant shadow region might be far below a
statistical average. Then, even sound particles with less energy might be important in
these regions. The annihilation is discussed in detail in [Vor88].
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3.4. Sound Particle Simulation Method

In conclusion, a variation of the energy criterion from the distance criterion is used
in this work. However, it has to be checked that enough sound particles are detected
in any region.
Starting with the maximum distance sMax = c·TMax given by the energy echogram

and the MFPL l[Kos60], the average number of reflections o computes to

o = sMax

l
. (3.25)

The energy loss of a sound particle is dependent on the sound absorption coefficient α
and the number of secondary sound particles S per reflection. With the mean absorption
coefficient α of the room, the average energy loss per reflection is defined to 1−α

1+S .
From this it follows that the energy threshold (including the air attenuation) is defined

by

eThreshold = eSafety · eExpected = eSafety ·
( 1− α

1 + S

)o
· e−msMax , (3.26)

where sMax is the maximum travel distance and an additional safety factor eSafety
is introduced. The latter is introduced to compensate the statistical variations of the
average energy loss. However, this safety factor is neglected for statistical evaluations
in the following (eSafety = 1).
By terminating sound particles within a finite number of reflections (e.g., by thresh-

olds such as minimum energy or maximum travel distance), a small portion of energy
is neglected, called the remaining reverberation energy[Ste90].

3.4.6. Main Algorithm

The algorithm of the SPSM is classically realized by nested loops. In a loop over all
sound sources, a second loop handles all sound particles of the sound source. For each
sound particle, a third loop handles the wall reflections including the detection and
absorption until the abort criterion terminates the sound particle. The algorithm is
summarized in List. 3.3.

function soundPart i c l eS imulat i on ( )
for ( a l l s our ce s )

for ( a l l sound p a r t i c l e s )
while ( energy > energyThreshold ) // see Eqn . 3 .26

f i ndWa l l I n t e r s e c t i on ( ) ; // use convex shape , s ee Sec . 3 . 4 . 2
de tec tSoundPar t i c l e ( ) ; // s i n g l e or gr id , s ee Sec . 3 . 4 . 4
energy = energy ∗ (1 − alpha ) ∗ exp(−m ∗ r ) ; // see Eqn . 3 .11
v = v − 2 (v ∗ n) ∗ n // see Eqn . 3 .12

Listing 3.3: Pseudocode of the Sound Particle Simulation Method algorithm by nested
loops.

Unfortunately, this simple algorithm is not applicable for a split-up of sound particles.
Instead, a function for the sound propagation between two walls is needed that calls
itself recursively. The other procedures are identical to the nested loop version. The
recursion is summarized in List. 3.4.
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function soundPart i c l eS imulat i on ( )
for ( a l l s our ce s )

for ( a l l sound p a r t i c l e s )
t raceSoundPar t i c l e ( ) ;

function t raceSoundPar t i c l e ( )
f i ndWa l l I n t e r s e c t i on ( ) ; // use convex shape , s ee Sec . 3 . 4 . 2
detec tSoundPar t i c l e ( ) ; // e i t h e r s i n g l e or gr id , s ee Sec . 3 . 4 . 4
energy = energy ∗ (1 − alpha ) ∗ exp(−m ∗ r ) ; // see Eqn . 3 .11
for ( a l l secondary sound p a r t i c l e s ) // s p l i t−up in S + 1

i f ( i==0) // specu l a r r e f l e c t i o n
f l o a t newEnergy = energy ∗ (1 − sigma ) ; // see Eqn . 3 .13
v = v − 2 (v ∗ n) ∗ n // see Eqn . 3 .12

else
f l o a t newEnergy = energy ∗ s c a t t e r i n gRa t i o ( ) ; // see Eqn . 3 .16
v = computeScatteredDirect ion ( ) ; // see Eqn . 3 .15

i f ( newEnergy > energyThreshold ) // see Eqn . 3 .26
t raceSoundPar t i c l e ( ) ; // r e c u r s i v e c a l l

Listing 3.4: Pseudocode of the Sound Particle Simulation Method algorithm by recursive
calls (including split-up).

3.5. Beam Tracing

Although the present work focusses on the SPSM, a brief description of Beam Tracing
(BT) is added, as the fundamental ideas are needed later for the discussion of Quantized
Pyramidal Beam Tracing (QPBT). BT can be understood as an efficient version of
the image source method (i.e., using the 1/r law directly) combined with the straight
forward detection technique of ray-based simulation methods. It was first introduced
in computer graphics[HH84, DKW85] and has later been applied to the computation
of acoustics[MMOD96, DL00, FTC+04], too. The main difference to the common ray-
based simulation methods is that beams are spatially extended and, thus, the receivers
remain point-like for BT. In general, two very different versions of BT exist today.
In the first group, spatially extended beams are mainly defined by a center-ray and an

angle range around that direction[Lew93]. In cone tracing [Ama84, VvM86], the cross
sections of the beams are restricted to a circular cross shape with a constant angular
range. For the 3D environment this yields inaccuracies, as circular shaped beams cannot
cover the whole angle range homogeneously. Thus, beams are either overlapping or gaps
occur in-between them (see Fig. 3.10).

beam cross section

overlap of beam

intersected surface

(a) overlap of beams

beam cross section

gap between beam

intersected surface

(b) gap between beams

Figure 3.10.: Different arrangements of cone tracing fit a rectangular wall.
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A major drawback of this approach is that it also computes additional invalid sound
paths (which can be cancelled out by back tracing) and ignores valid sound paths. On
the other hand, this type of BT can handle diffuse reflections by an application of the
energy-weighted addition (see Sec. 3.4.3) to the center-ray.
The second group of BT methods is algorithmically more complicated, but avoids

the inaccuracies of gaps and overlaps. One of these methods splits up the beams not
exactly, but the wrongly detected beams are eliminated by back tracing[LSLS09]. In
contrast to the first group, these BT methods require a split-up of beams and can
only handle specular reflections[Far00], but early approaches exist to combine BT with
diffraction[WD81]. Due to the exact results, this method is chosen in this work and
described in more detail.
Similar to the SPSM, a number of beams are emitted from a sound source and traced

through the scene. With each reflection the beams are split up into several secondary
beams, such that the secondary beams are reflected geometrically. Receivers within the
beams are detected and the energy of the beam is counted by the receivers.
As the computation of propagating beams is even in 2D much more complicated

than for sound particles, the following description is restricted to convex geometries.
For non-convex setups, a sub-division into convex subspaces is required to reduce the
geometrical complexity (see chapter 4).
The single steps of BT are described in the following sections.

3.5.1. Emission of Beams

In the exact BT methods, the shape of the beam has to be defined precisely. Therefore,
the beam is defined by a polynomial shape[FTC+04], which results in pyramidal beams
in 3D. Here, one beam per wall is emitted for each sound source. While sound particles
represent a constant angle range, beams have generally different angle ranges. The sum
of all angle ranges of these beams represents the complete angle range of 2π. As the
beam is spatially extended, two instead of one direction vectors are needed to define
the beam. The region of a beam is defined between the direction vector ~v1 and ~v2
counter-clockwise (see Fig. 3.11). In this initial step, they are set to either the starting
point ~Si or the end point ~Ei of the wall i, with

~v1 = ~Si (3.27)
~v2 = ~Ei.

The starting point of a beam at emission is defined by the source position. The beam
represents a fraction of the sound power per length P ′. This is described by the current
sound power density per angle dP ′

dα
multiplied by the angle range spanned by the two

direction vectors. This density is stored in the dataset of the beam and set initially to
P ′

2π . Again, multiple powers are carried simultaneously for multiple frequency bands.
In summary, an emitted beam is defined by

• sound power density • starting point • two direction vectors

3.5.2. Wall Intersection Test

At every wall intersection, the intersection points ~Q1 and ~Q2 of the direction vectors
~v1 and ~v2 with the surface have to be determined by independent intersection tests as
described in Sec. 3.4.2. As ~v1 and ~v2 intersect different walls in general, the beam has
to be split up into one beam per wall between those intersection points (see Fig. 3.11).
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(a) before split-up
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Figure 3.11.: Split-up of a beam intersecting with different walls.

Assuming that the intersection ~Q1 lies on the wall a1 and the intersection ~Q2 on the
wall a2, all walls a1 ≤ i ≤ a2 receive a part of the incident beam. In principle, all
intersection points of the split beams are set to the starting point ~Si or the end point
~Ei of the target wall i. For i = {a1, a2} the walls are only hit by part, such that the
computed intersection points have to be inserted. The first intersection point of the
beam at i = a1 is retained to be ~Q1 whereas the second intersection point of the beam
at i = a2 is retained to be ~Q2 (see Fig. 3.11).
In total, the new direction vectors of the split beams read

~v1 =
{

~Q1 − ~P i = a1
~Si − ~P i > a1

and ~v2 =
{

~Q2 − ~P i = a2
~Ei − ~P i < a2

. (3.28)

3.5.3. Wall Interaction

The starting point of a beamd) is mirrored on the wall after each split-up. This mirrored
point equals exactly the image source position for the regarded combination of reflec-
tions. In addition, the direction vectors have to be either mirrored or reconstructed by
a connection between the image source position and the former intersection points. It
should be noted that the sequence of the direction vectors has to be inverted to keep
the counter-clockwise definition of the beam region. The power of the beam has to be
reduced by the same factor as for the sound particles (see Eqn. 3.11).

3.5.4. Detection of Beams

In contrast to ray tracing methods, the receivers remain point-like due to the spatial
extension of the beams. An exact determination of time and location is possible. For
the valid detection of a receiver within a beam, the receiver must be located inside the
beam, i.e., between ~v1 and ~v2 in counter-clockwise direction. No additional criteria
are necessary in case of convex sub-spaces assuming that the receiver is located in the
d)source position for beams of order 0
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current sub-space. The receivers can be either independent points or aligned in a grid,
identical to the SPSM approach.
The energy for each receiver is computed by the 1

r
law, where r is the distance between

the receiver ~R and the beam’s starting point ~S (image source position). Without the
energy loss due to wall reflections, the beam’s power density per angle P

2π directly yields
the free-field intensity

I = P

2π
1
r
. (3.29)

3.5.5. Abort Criteria

In principle, the same abort criteria as for the SPSMs are used for BT algorithms.
Furthermore, the opening angle of a beam is limited by a lower boundary skipping
all beams with an opening angle below a certain threshold αMin. Mathematically
speaking, a beam with normalized direction vectors ~v1,2 has to fulfil

∆α = acos (~v1 ◦ ~v2) > αMin (3.30)

to be further processed. As the beams opening angle decreases with the reflection
order due to the on-going split-up, the opening width (Euclidian distance between the
intersection points ~Q1,2) can also be tested against a lower boundary aMin. Following
this definition, all beams with an opening width of

∆a =
∣∣ ~Q1 − ~Q2

∣∣ > aMin (3.31)

are further traced.
In this work, the SPSM energy criterion is combined with an opening width criterion.

If at least one of these criteria is not fulfilled, the beam is aborted.

3.5.6. Main Algorithm

The beams are split-up at every wall intersection where a beam hits several walls.
Hence, an implementation by nested loops is impossible for BT and only recursive calls
can be applied.
In a loop over all sources, a second loop handles all walls of the convex sub-space

where the sound source resides. Each wall spans a beam that is traced independently.
In order to trace these beams, first (both) wall intersections have to be found and
a secondary beam for all walls in-between these intersections (counter-clockwise) has
to be constructed. These secondary beams are used to detect all receivers that are
located within the beam before their energy is reduced and the beam is mirrored at
the respective wall. Finally, if no abort criterion aborts the tracing of the beam, this
function is called recursively. The algorithm is summarized in List. 3.5.
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function beamTracing ( )
for ( a l l s our ce s )

for ( a l l wa l l s )
createBeamDirect ionVectors ( ) ; // see Eqn . 3 .27
traceBeam ( ) ;

function traceBeam ( )
f i ndWa l l I n t e r s e c t i on ( ) ; // use convex shape 2x , s ee Sec . 3 . 4 . 2
for ( a l l i n t e r s e c t e d wa l l s )

c reatePart ia lBeamDirec t ionVector s ( ) ; // see Eqn . 3 .28
detectBeam ( ) ; // e i t h e r s i n g l e or gr id , s ee Sec . 3 . 5 . 4
f l o a t newPower = power ∗ (1 − alpha ) ∗ exp(−m ∗ r ) ; // Eqn . 3 .11
v1 = v1 − 2 ( v1 ∗ n) ∗ n // see Eqn . 3 .12
v2 = v2 − 2 ( v2 ∗ n) ∗ n // see Eqn . 3 .12
switch ( v1 , v2 ) // ensure counter−c l o ckw i s e

i f ( newPower > powerThreshold AND aMin > aDelta ) // Eqn . 3 . 26 , 3 .30
traceBeam ( ) ; // r e c u r s i v e c a l l

Listing 3.5: Pseudocode of the Beam Tracing algorithm by recursive calls.

3.6. Acoustic Radiosity

The Acoustic Radiosity method was first formulated for the computation of heat ex-
change between surfaces[McA54]. Later it has been used in computer graphics to
compute the interaction of light between diffuse surfaces[GTGB84] and it was also
successfully applied to acoustical problems[Kut71, Lew93, Kut95]. In recent years, a
generalization was formulated, called the room acoustic rendering equation[SLKS07].
The method by Miles[Mil84] assumes that after only a few reflections in a closed vol-

ume with at least partly scattering walls, the reflections are completely diffuse. Hence,
all specular reflections are neglected. In this work, the idea of discretizing the surface
into patches is an important part of the reunification of the Sound Particle Radios-
ity (SPR) and QPBT.
The basic idea of the Acoustic Radiosity is to define energy exchange factors between

every point x′ to x on a closed circumference C of an acoustic environment (see Fig.
3.12).

n'

Cr n

x

x'

   ϑ  

 ϑ'

   ϑ R

R

rR

Figure 3.12.: Geometrical definitions of the Acoustic Radiosity method (after Miles
[Mil84]).
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3.6. Acoustic Radiosity

The energy exchange factor K (x, x′) is proportional to two factors: a) the energy
distribution from the emission point dp

dϑ
and b) the projection factor dϑ

ds
. As diffuse

reflections are assumed, the energy distribution factor follows Eqn. 2.23. The projection
factor, however, is derived graphically from Fig. 3.13a,

r

dsr dϑ 

ϑ

emission point

n

(a) cosine at incidence

n'

C

n

   ϑ'

   ϑ 

patch j

patch i

Ki,j

r

(b) rectangular room

Figure 3.13.: Energy exchange factors Ki,j of Acoustic Radiosity between two patches i
and j.

such that the energy exchange factor K (x, x′) readse)

K
(
x, x′

)
= dp

dϑ
· dϑ

ds
= cos (ϑ′)

2
· cos (ϑ)

r
. (3.32)

In both cases, the angles ϑ and ϑ′ denote the angles between the connection xx′ and
the surface normals at x′ and x, respectively. The distance between x′ and x is denoted
as r. Due to energy conservation, the total sound energy that is received at all receiving
areas x has to be equal to the emitted sound energy at x′. Thus, the energy exchange
factor K (x, x′) has to fulfil ∫

C

K
(
x, x′

)
ds = 1. (3.33)

To compute the irradiation strength at the circumference IC (x, t), a differential equa-
tion is composed by using the energy exchange factorK (x, x′) and the sound irradiation
strength due to direct radiation from the sound source ID (x, t), with

IC (x, t) =
∫
C

K
(
x, x′

)
· IC

(
x′, t−

r

c

)
· (1− α) · ds′ + ID (x, t) . (3.34)

Once the sound intensity IC (x, t) on the circumference is known, IC (x, t) is reradiated
into the room to determine the sound intensity I (xR, t) at any position xR inside the
circumference.

I (xR, t) =
∫
C

I

(
x′, t−

rR

c

)
· (1− α) · cos (ϑ′) · cos (ϑR)

2 · rR
· ds′ + ID (xR, t) .

(3.35)
e)in the 3D case, the denominator has to be modified to π· r2
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3. Geometrical Acoustic Simulation Methods

Analytical solutions to the differential equation only exist for a small range of acous-
tical setups, but, in general, a numerical solution is required. Along with this numerical
solution, the surface has to be discretized in small surface elements called patches (see
Fig. 3.13b) [NHA04].
For all combinations of the starting patch (with index i) with the end patch (with

index j), the propagating energy has to be determined by an energy exchange coefficient
Ki,j . Ki,j is computed by integration of Eqn. 3.32 over the surface of both the starting
and the end patch and normalized to the length of the starting patch lP,S

Ki,j = 1
lP,S

∫
lP,S

∫
lP,E

K
(
x, x′

)
· dsjdsi. (3.36)

Even for simple scenes, the energy exchange coefficients are hard to compute, which is
the reason why these coefficients are usually calculated my means of numerical methods.
In numerical simulations, a large linear equation system has to be solved using the
energy exchange factors computed in a pre-processing step.
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4. Acceleration of Geometrical Acoustic Simulation Methods

The Computation Time (CT) of Beam Tracing (BT) and the Sound Particle Simulation
Method (SPSM) is mainly dominated by the search for intersection points during the
computation of sound propagation paths, called collision detection. Therefore, many
techniques for the acceleration of these collision detection tests exist. On the other hand,
the computation of diffraction with Geometrical Acoustic (GA) simulation methods
requires a sub-division of space into convex sub-spaces. Considering Kirchhoff theory
(see Sec. 2.3.4.3), diffraction occurs just at these apertures. Algorithmically, a sub-
division by Virtual Walls (VWs) prevents the difficult and time consuming search for
edges that are passed by closely[PS10b]. Several work has been performed to combine
the sub-division technique with diffraction[TFNC01, FTC+04], but these sub-division
techniques are not able to detect multiple edges that are passed by simultaneously (see
Sec. 5.2.3 for more details).
In this chapter, first a brief overview over the commonly used sub-division techniques

is given. Afterwards, a new sub-division technique is presented in 2D, which is optimized
for both the reduction of the CT and the automatic detection of diffraction events.
Finally, a statistical approximation of the speed-up of this sub-division technique is
shown together with a verification of the approximation.

4.1. Related Work

Collision detection is a fundamental problem in computer graphics, especially in sce-
narios with a great number of walls n. The three main techniques can be separated
in bounding volume hierarchies, sub-divisions in adjacent sub-spaces and binary space
partitionings, which are briefly described here. In addition, a sub-division technique by
Stephenson is discussed.

4.1.1. Bounding Volume Hierarchy

In order to reduce the CT, bounding volumes can be used to cluster more complex
geometrical objects. An intersection test is first performed for this simplified scene, and
the hit bounding volume in then inspected further[Eri04]. These bounding volumes
can either be spheres[Hub96], axis aligned bounding boxes[vdB98], oriented bounding
boxes[GLM96], discrete oriented polytopes of order k (in 3D: polyhedra)[KHM+98]
or convex hulls. More complex bounding volumes yield better culling, whereas more
simple bounding volumes yield faster intersection tests. This acceleration method is
mainly used for collision tests, where complex objects occur with low density in the
geometrical scene. Then, the CT is reduced drastically by skipping all polygons that
do not lie within the hit bounding volume. A speed-up cannot be defined generally, as
it strongly depends on the density of objects instead of the number of vertices or walls.

4.1.2. Sub-Divisions in Adjacent Sub-Spaces

Another technique is to divide the scene in adjacent, non-overlapping sub-spaces. Uni-
form grids are constructed by subdividing the complete geometrical scene into small
voxels of equal size[Gla89]. For each object of the geometrical scene, all voxels contain-
ing the object are computed and a link-up to the object is stored in the voxel. This
method can be used best for small objects with high density. For fewer objects, however,
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4. Acceleration of Geometrical Acoustic Simulation Methods

spatial hashing can be used on a uniform grid[THM+03]. By using a hashing table,
only the voxels containing objects have to be stored and can be accessed efficiently.
Using a uniform grid, a speed-up from O

(
n2
)
to O

(√
n
)
is achieved[Ste06], but

this technique is even more efficient for moving objects, as hashing tables can be up-
dated faster than the bounding volumes or binary space partitioning trees for each
translation[Sch11].

4.1.3. Binary Space Partitioning

In binary space partitioning, the geometrical scene is subdivided hierarchically and the
scene elements are stored in a tree-like structure[Eri04]. Here, the root node is the entry
point to the complete geometrical scene. Each node contains a partitioner that splits
the space into two sub-spaces, indicated as positive or negative halfspace. The names
are derived from the position of the halfspaces in relation to the partitioner, i.e., either
in front (positive) or behind (negative) the partitioner. The sub-division is performed
recursively until the remaining sub-space is convex (such a node is called leaf ). A
detailed description on how to find the intersection point of ray and the geometrical
scene is given in [Sch11]. For a balanced tree, i.e., a tree of minimum height, a speed-up
from O

(
n2
)
to O (log2 (n)) is achieved.

4.1.4. Convex Sub-Division by Cutting off the Largest Possible Convex Sub-Space

All former sub-division techniques are optimized for an acceleration of the CT and are
not capable of diffraction detection directly. Therefore, Stephenson proposed a convex
sub-division (in 2D) by cutting off the largest possible convex polygon recursively[Ste04].
As diffraction occurs basically on protruding wedges, called Inner Edges (IEs) (see Fig.
4.3b), no diffraction has to be computed inside a convex sub-space. Convex sub-spaces
are generated by introducing VWs (see Fig. 4.1a, 4.1b).

non-convex room

protuding edge

(a) non convex environment before in-
troducing a Virtual Wall

convex room

virtual wall

convex room

(b) non convex environment after in-
troducing a Virtual Wall

Figure 4.1.: Principle of convex sub-division by introducing Virtual Walls.

These VWs are acoustically transparent and connect two convex sub-spaces. As
no diffraction occurs in convex sub-spaces, only sound particles that travel from one
sub-space to another might be diffracted. Thus, the introduction of VWs makes the
detection of diffracted energy very simple (see Sec. 5.2.3).
The principle of Stephenson’s approach is to construct a convex sub-space from an

arbitrary IE (index i) and a set of adjacent vertices (in counter-clockwise order). Figure
4.2 serves to elucidate this in more detail:
As a first candidate for the insertion of a VW, the vertex with index i+2 is chosen (see

Fig 4.2a). The index of this vertex is incremented (see Fig. 4.2b) until the constructed
polygon is not convex anymore (see Fig. 4.2c). Then, the previous vertex is chosen and
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4.2. Convex Sub-Division Optimized for the Detection of Diffraction

the enclosed polygon (green) is cutted off by introducing a VW (see Fig. 4.2d). This
procedure is repeated until the remaining polygon is convex, too (see Fig. 4.2e).
Complicated exceptions can occur when other walls intersect the VW to construct

even if the polygon to cut off is convex (see Fig. 4.2f).

inner edge i

i+2

(a)

inner edge
i

i+3

(b)

inner edge i

i+4

(c)

inner edge

virtual wall

i

i+3

(d)

virtual wall

(e)

inner edge

virtual wall

(f)

Figure 4.2.: Convex sub-division by cutting of the largest convex polygon possible (after
Stephenson [Ste04]).

Although this convex sub-division is capable of detecting diffraction events, three
main disadvantages remain:

• the geometrical scene must only consist of one conjunct polygon,

• VWs might be placed far away from the bisecting line, which is not preferable for
diffraction detection and

• complicated exceptions can occur by walls intersecting the VWs.
To overcome these issues, a new solution has been found.

4.2. Convex Sub-Division Optimized for the Detection of Diffraction

For the simulation of sound propagation in cities, obstacles, e.g., buildings, hinder the
propagation of sound. In a city layout, these obstacles are presented by holes and, thus,
the layout has to be described by multiple, not conjuncted polygons. Therefore, a
convex sub-division allowing non-conjuncted polygons was developed[PS10d], which is
optimized for the detection of diffraction.
The positions of the VWs are dependent on the sub-division technique. As an opti-

mized sub-division for the detection of diffraction is aimed at, these VWs have to be
located near the bisecting lines of the IEs. Similar to Stephenson’s approach, the IEs
are chosen as starting point for the insertion of VWs and the sub-division is complete
when no IEs remain in the geometrical scene. To find a suitable end point for a VW, a
simple form of ray tracing is performed starting with a ray on the bisecting line from
the current IE. This VW would introduce an additional vertex at the intersection of
the scene with the ray and, thus, increase the complexity. To avoid that, the end point
of the VW is moved to either starting or end point of the intersected wall resulting in
a smaller change of angle. These steps are described in more detail in the following.
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4. Acceleration of Geometrical Acoustic Simulation Methods

4.2.1. Definition of Inner Edges

In 2D the complete scene is defined by a number of closed polygons (4 in Fig. 4.3b).
Each of these polygons is constructed from a set of vertices. These vertices enclose the
sound propagation environment (white area) by connecting them counter-clockwise. As
a result, polygons representing obstacles (black area) are encountered clockwise. The
vectors ~vi are defined to point from vertex ~Pi to ~Pi+1 and the normals ni point outside
the sound propagation environment.

i-1n
ni

i

i-1

i+1

P

P
Pi-1v vi

sound propagation environment

(a) definitions to compute Inner Edges

a

inner edges

(b) Inner Edges in a city layout

Figure 4.3.: Construction and example of Inner Edges.

As shown in Fig. 4.3a, a vertex ~Pi is an IE if

~vi−1 ◦ ~ni
{

< 0 IE
≥ 0 no IE . (4.1)

4.2.2. Computation of the End Point of a Virtual Wall

In order to compute the end point of a VW, first the bisecting line of the IE ~Pi has
to be determined. The direction vector of the bisecting line ~k reads for a vertex with
index i

~k = ~vi − ~vi+1
‖~vi − ~vi+1‖

. (4.2)

The combination of the IE ~Pi and the direction vector ~k is used as a ray and the
intersection point ~K of the ray and the geometrical scene is computed as described in
Sec. 3.4.2 (for non-convex geometry). Already constructed VWs are treated as real
walls. Although the connection line between the IE ~Pi and the intersection point ~K
would result in a valid candidate for the insertion of a VW, one of the already existing
vertices is preferred in order to keep the number of vertices of the scene constant.
Therefore, the intersection point ~K has to be translated along the intersected wall. The
wall is represented by a line segment, such that either the starting point ~S or the end
point ~E of the wall is used as new end point ~T for a VW. With the direction vectors
~kS = ~Pi − ~S and ~kE = ~Pi − ~E, the vertex is chosen that results in a smaller change of
angle relative to the bisecting vector ~k (see Fig. 4.4a)a)

~T =
{

~S for ^
(
~kS , ~k

)
< ^

(
~kE , ~k

)
~E else

(4.3)

a)The operator ^ (~x, ~y) indicates the (unsigned) angle between two direction vectors.
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4.2. Convex Sub-Division Optimized for the Detection of Diffraction

a

T

K

T T

K K

(a) without intersection

a

TK

J

(b) with intersection

Figure 4.4.: Translation of a Virtual Wall either to the starting point or the end point of
the intersected wall.

Due to the translation of the intersection point from ~K to ~T , a line of sight between
starting point and end point of the VW is not guaranteed anymore and the VW in
question might be intersected by other walls. If such an intersection ~J is closer to the
starting point than ~T (see Fig. 4.4b), the new intersection has to be translated again
either to the starting point or the end point of the intersected wall.

4.2.3. Inserting the Virtual Wall

To insert a VW into the sound propagation environment, two walls are inserted between
the starting point and the end point of the VW with reverse vertex order. Each of these
walls is used as boundary of the simulation environment. Two cases are possible:

• starting point and end point belong to the same polygon or

• starting point and end point belong to different polygons.

If the starting point and end point belong to the same polygon (see Fig. 4.5a), the
polygon has to be split up into two independent polygons. After the creation of a VW
(see Fig. 4.5b, yellow line), two polygons are created by resorting the vertices (see
Fig. 4.5c). Now the VW is duplicated, where one VW is assigned to one newly created
polygon (see Fig. 4.5d).
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Figure 4.5.: Insertion of a Virtual Wall to divide [(a) to d)] or combine [(e) to h)] sub-spaces.
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For a VW between different polygons (see Fig. 4.5e), both polygons are connected by
the VW (see Fig. 4.5f). The vertices of both polygons are re-arranged such that they
construct a closed polygon (see Fig. 4.5g). Again, a duplicate of the VW is used to
build a connected polygon that represents the complete sound propagation environment
(see Fig. 4.5h).

4.2.4. Main Algorithm

The algorithm of the convex sub-division is based on a loop over all IEs. In each
iteration, one IE is processed in a loop until a VW is inserted. In this loop, the
intersection of the bisecting line with the scene is computed. The intersection point is
translated to either the starting point or the end point of the intersected wall. In case
of a new intersection of the translated VW, this routine is repeated until the VW is
placed successfully. When a valid VW is found, it is inserted by a rearrangement of the
respective vertices. A summary of the algorithm is shown in List. 4.1.

function convexSubDivis ion ( )
f indInnerEdges ( ) ; // see Sec . 4 . 2 . 1
while ( NumerOfInnerEdges !=0)

Vec P = ChooseInnerEdge ( ) ; // random s e l e c t i o n
Vec k = ComputeBisect ingDirect ion ( I ) ; // see Eqn . 4 .2
Vec K = f i n d I n t e r s e c t i o n ( I , k ) ; // see Sec . 3 . 4 . 2
while ( ! VirtualWal lConstructed )

Vec KS = Trans lateToStart (K) ;
Vec KE = TranslateToEnd (K) ;
Vec kS = (KS − P) / length (KS − P) ;
Vec kE = (KE − P) / length (KE − P) ;
i f ( ang le (kS , k)<angle (kE , k ) ) // see Eqn . 4 .3

Vec T = KS;
else

Vec T = KE;
Vec J = f i n d I n t e r s e c t i o n (P,T) ; // see Sec . 3 . 4 . 2
i f ( ! e x i s t ( J ) )

i n s e r tV i r tua lWa l l (P,T) ; // see Sec . 4 . 2 . 3
VirtualWal lConstructed=true ;

else
K = J ;

updateInnerEdges ( ) ; // see Sec . 4 . 2 . 1

Listing 4.1: Pseudocode of the convex sub-division algorithm optimized for the detection of
diffraction.

4.2.5. Example

An example of a convex sub-division is given graphically in Fig. 4.6. Starting with four
independent polygons (see Fig. 4.6a), the VWs are inserted directly in Fig. 4.6b, 4.6c,
4.6e, 4.6f, 4.6g and 4.6h. The bisecting line (orange) is disconnected in Fig. 4.6d after
the translation is interrupted by the inner building (black). Then the intersection point
is updated accordingly. In Fig. 4.6i a VW is intersected, but handled as a real wall.
The final sub-division is shown in Fig. 4.6j. It should be noted that the atrium inside
the larger building (white square) remains convex, although it is not connected to the
remaining simulation environment at all.

46



4.2. Convex Sub-Division Optimized for the Detection of Diffraction

a0

1

2

3

0

1

2

3

0

3

2

1

0

1

2

3

(a)

a0

1

2

3

5

6

7

8

0

3

2

1

0

1

2

3

9
4

(b)

a0

1

2

3

5

6

7

2

0

3

2

1

0

1

2

3

3
4

0
1

(c)

a0

1

2

3

5

6

13

2

0

3

2

9

10

11

8

3
4

0
1

7
12 1

(d)

a0

1

2

1

3

4

11

2

0

3

2

1

7

8

9

6

3
2

0
1

5
10

3
0

(e)

0

1

2

1

3

4

3

2

8

9

6

3
2

0
1

5
2

3
0

0
1

a0 2

1

7

3

(f)

0

1

1

1

3

3

3

2

7

3

5

3
2

0
1

4
2

2
0

0
1

2
0

a0 2

1

6

3

(g)

0

1

1

1

3

2

3

2

3

3

4

3
2

0
1

3
2

0

0
1

2
0

2

a0

3

2

1

51 0

(h)

0

1

1

3

0

3

2

3

3

2

3
2

0
1

1
2

0

0
1

2
0

20

3

a

1

0

3

2

1

312

(i)

0

1

1

3

0

3

2

3

3

2

3
2

0
1

1
2

0

0
1

2
0

20

3

a

1

0

3

2

1

312

(j)

Figure 4.6.: Example sub-division procedure in convex sub-spaces.
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4.3. Estimation of the Speed-Up by Convex Sub-Division

The split-up of the geometrical scene into multiple convex sub-spaces has two concurring
influences on the CT of the intersection test. First, the number of vertices in a convex
sub-space and, thus, the CT to find the next intersection point is reduced (decrease of
CT) and, second, sound particles might have to pass one or more VWs until a real wall
is intersected (increase of CT).
In order to assess these CTs, two different CTs have to be defined. Both describe the

sound propagation from one wall to another, called iteration in the following:

• Tc,nc: The CT for the sound propagation to the physical relevant intersection
point (i.e., on a real wall, not a VW) in any convex sub-space and

• tc,nc: The CT for the sound propagation to any intersection point with a wall
(either real or virtual) within the same convex sub-space.

In this section, first the two concurring influences of the convex sub-division are
described in more detail and a comparison of both effects is made.

4.3.1. Reduced Computation Time by Convex Sub-Division

The CT for the propagation of a sound particle, an iteration, is composed of two parts.
One part is to determine the next intersection of the sound particle with the geometrical
scene. This part is obviously proportional to the number of walls (and thus the vertices)
n. Another part of the CT comes from update- and mirroring processes of the sound
particle. This part is independent of the number of walls.
In total, the CT tc,nc (see above) for one iteration is described by two constants c1,2

and the number of walls n to

tc,nc = c1 ·n+ c2. (4.4)

To determine the constants c1,2, a sound particle simulation in a regular polygon with
different numbers of walls n has been performed. In order to obtain reliable statistical
data, a number of N = 100.000 sound particles were traced (with no limit on the
reflection order). The computations were performed on a standard personal computer
(see Tab. 4.1).

CPU: Intel Core2Quad Q9550 2.83GHz
Level 2 Cache: 2 x 6 MB
Memory: 4 GB
Operating System: Microsoft Windows Vista Business SP2, 64bit
Development environment: Microsoft Visual Studio 2008 SP1

Table 4.1.: Personal computer used to determine the Computation Time of the sound prop-
agation by the Sound Particle Simulation Method.

The simulation was performed for different numbers of walls n = 1..16,
24, 32, 64 and with both algorithms (convex (c) and non-convex (nc), see Sec. 3.4.2).
The CT for the total simulation is divided by the number of performed iterations. The
CT tc,nc for one iteration is shown in Fig. 4.7.
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Figure 4.7.: Computation times tc,nc for one iteration measured on regular polygons with
different numbers of walls compared with the linear regression.

The constants in Eqn. 4.4 are approximated to

tnc = 0.14ns·n+ 0.6ns (4.5)

tc = 0.10ns· n

2
+ 0.5ns

by applying linear regression from the measured CTs for both the convex tc and the
non-convex tnc algorithm. For the convex case, half of the walls are neglected on
average, because after a valid intersection point the process is aborted. In addition, the
computation in the convex case is accelerated by a factor of 1.5 due to the neglection of
criterion d) (see Sec. 3.4.2). The CT c2, which is independent of the number of walls
n, is quite identical for the convex and the non-convex algorithms as the update and
mirroring computations are not affected by the convex sub-division.

4.3.2. Increased Number of Wall Reflections

On average more than one iteration is needed to find the next real wall due to the
insertion of VWs in the sound propagation environment (see Fig. 4.8).

Figure 4.8.: In this example, one iteration in the non-convex case is replaced by three
iterations in the convex case. They are separated by the blue dots at each
Virtual Wall intersected.

To estimate this increase, the Mean Free Path Length (MFPL) l of both the original
and the convex subdivided geometry is investigated.
Assuming a constant surface S of the geometrical scene, the circumference C of the

complete geometrical scene is extended by the overall length of the VWs CVW . It
should be noted that each VW is counted twice, as each side represents a different
sub-space and, thus, can be intersected from both sides (in contrast to a real wall that
can only be intersected from inside).
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For statistical considerations, a diffuse sound field is assumed, such that

1. the sound energy is distributed homogeneously and

2. each direction of sound propagation is equiprobable.

Thus, the MFPL l[Kos60] for the complete scene reads

lnc = π· S

C
(4.6)

lc = π· S

C + CVW
.

The smaller the MFPL is, the more iterations have to be computed for a sound
particle to travel the same distance. The ratio of both MFPLs describes the increase
of iterations

1
lc
1
lnc

= lnc

lc
=

π· S
C

π· S
C+V

= 1 + CVW

C
. (4.7)

The shape factor q = CVW
C

is only dependent on the room shape. It describes the ratio
of the length of the VWs relative to the length of the real walls (usually 0 < q < 2, see
Fig. 4.9).

(a) snake shaped room (q =
0.18)

(b) typical city layout (q =
1.11)

(c) rectangular houses (q =
2)

Figure 4.9.: Example of typical shape factors q.

The CT Tnc, i.e., the time to find the next real wall, is identical to the CT to find
the next wall tnc for a non-convex subdivided scene, whereas for the case of convex
sub-division, the shape factor q has to be taken into account

Tnc = tnc (4.8)

Tc = tc ·
(

1 + CVW

C

)
= tc · (1 + q) .

The factor (1 + q) describes the increase of iterations quantitatively.

4.3.3. Comparison of Computation Times in Convex and non-Convex Case

After the determination of the CT in a regular polygon with n walls with and without
convex sub-division and describing the increase of iterations by a convex sub-division,
the total speed-up is computed.
For a complete scene with a total number of walls ntotal, all these walls have to

be tested for intersection. On the other hand, after convex sub-division, only a minor
number of walls have to the taken into account for the intersection test in each sub-
space. On average, a mean number of walls nconvex is defined. This average number of
walls is found to be nconvex = 4..5[Ste04].
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4.3. Estimation of the Speed-Up by Convex Sub-Division

For typical geometrical scenes with many perpendicular walls, the average number of
walls is even lower (nconvex ≈ 4), such that

Tnc = 0.14ns·ntotal + 0.6ns (4.9)

Tc =
(

0.10ns· nconvex

2
+ 0.5ns

)
· (1 + q) nconvex≈4= 0.7ns· (1 + q) .

The CT to find the next real wall is, without convex sub-division, proportional to the
number of overall walls ntotal since every wall has to be taken into account. However,
(although the single CTs are very low), this is unsustainable for many reflections for
complex scenes, where the number of walls can easily be ntotal � 10.000.
In contrast, the CT is independent of the number of walls ntotal after convex sub-

division, but increases linearly with the shape factor q. As the shape factor is indepen-
dent of the number of walls ntotal, the acceleration of the CT is significant. Both CTs
of Eqn. 4.9 are compared in Fig 4.10 in a double logarithmic scale for different shape
factors q.

0.5

1

2

5

10

20

50

100

200

co
m

pu
ta

tio
n

tim
e

t[
ns
]

1 2 5 10 20 50 100 200 500 1000

number of vertices ntotal

q = 0.8
q = 1.6
q = 2.4
q = 3.2
q = 4.0
non convex

Figure 4.10.: Computation Time Tc,nc to find the next real wall for non-convex and convex
case for different shape factors q as a function of the number of walls ntotal.

For very few walls ntotal < 20, the CT after convex sub-division can even be higher
than without convex sub-division. This is due to the additional CT by passing the
VWs. For a greater number of walls, however, the convex sub-division is very efficient,
as the CT is independent of the number of walls.
The CT for convex sub-division itself is in the order of the CT for a first order ray

tracing routine, as basically a ray tracing procedure is performed for each IE. This is
neglected, as during the simulation many reflections are computed.
The speed-up due to convex sub-division SCSD is defined by the ratio of CT without

convex sub-division relative to the CT with convex sub-division. The measure of the
achieved speed-up is more meaningful than discussing the actual CTs since it abstracts
the underlying architecture and programming language

SCSD = Tnc

Tc
= 0.14 ·ntotal + 0.6

0.7 · (1 + q)
ntotal�1
≈

0.14 ·ntotal

0.7 · (1 + q)
= 0.2 ·ntotal

1 + q
. (4.10)

The speed-up SCSD increases linearly with the number of walls ntotal and, therefore,
also describes the compensation of the increasing CT without convex sub-division to a
constant value.

51



4. Acceleration of Geometrical Acoustic Simulation Methods

4.3.4. Numerical Verification of the Statistical Estimations

The speed-up SCSD of Eqn. 4.10 is derived statistically. In order to verify if this still
holds for practical use-cases, different geometrical setups have been investigated.
First, the regular polygons are investigated (q = 0). As the number of walls is equal in

both the initial case and the convex-subdivided case, the approximation nconvex ≈ 4 is
discarded. Then, the measured speed-up could be verified with a relative error e < 5%
in comparison to the computed speed-up SCSD.
Second, a rectangular room with the dimensions a : b is investigated. A VW is

inserted in the middle of a with length b. Here, the shape factor computes

q = CVW

C
= 2b

2a+ 2b
= b

a+ b
. (4.11)

For a wide range of aspect ratios of the rectangle 0.5 < a
b
< 6 and thus 2

3 > q > 0.14,
a relative error of the speed-up is even below 2%. Finally, more complex test cases are
computed. Their speed-up SCSD is shown together with their relative error e in Tab.
4.2.

Description ntotal q SCSD e [%]
long snake (Fig. 4.9a) 12 0.16 2.8 6
city layout (Fig. 4.9b) 26 1.11 2.87 9

city layout (Fig. 4.9c) with 5 x 12 houses 340 2.88 17.74 6
city layout (Fig. 4.9c) with 9 x 12 houses 532 2.04 35.28 5
city layout (Fig. 4.9c) with 12 x 12 houses 676 1.58 52.73 8

city layout (Fig. 4.3b) 16 1.11 1.92 6

Table 4.2.: Speed-up SCSD and relative error e for different setups with different numbers
of walls ntotal.

In total, a very good agreement between the estimated speed-up and the measured
speed-up is found, which supports the considerations made.

4.4. Summary of the Convex Sub-Division

The sub-division techniques used in graphics are not optimized to detect diffraction by
means of the Uncertainty relation Based Diffraction (UBD) used later. The method
proposed by Stephenson, however, was not applicable to urban layouts and the positions
of the VWs were not optimized for the detection of diffraction events. Therefore, a new
method was proposed and implemented that handles urban layouts and is optimized to
detect diffraction events. The reduction of CT was discussed statistically and the CT
after convex sub-division was shown to be independent of the number of walls of the
geometrical scene. The statistical considerations were verified numerically.
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5. Simulation of Diffraction in Geometrical Acoustic Simulation
Methods

All Geometrical Acoustic (GA) simulation methods that were presented in this work so
far are restricted to energetic approaches (see chapter 3). Thus, they neglect the wave
behaviour of sound. Diffraction, however, can only be handled in the wave pattern,
which hinders a direct integration of this important wave phenomenon in methods of
GA. But diffraction can be introduced to GA methods by applying different modifica-
tions.
In this chapter, first the reference methods are presented, which are used to evaluate

different types of diffraction simulations later. As diffraction is a two dimensional effect,
the two dimensional Uncertainty relation Based Diffraction (UBD) module[Ste10a] is
discussed in two dimensions. After a short summary of the fundamental concept of the
UBD, the applied assumptions are discussed and many modifications and extensions are
introduced that resolve occurring contradictions. An analytical formulation is derived
for some basic diffraction scenarios and the fulfilment of the reciprocity principle is
investigated. In an extended validation section, the consistency of the model as well
as a comparison with the reference models is performed. Additionally, the combination
of the Sound Particle Simulation Method (SPSM) with the UBD is validated for some
simple test cases.

5.1. Reference Methods

As described in Sec. 2.3.4, the diffraction theories are divided into three classes: a)
wave theoretical diffraction models, b) models based on the Kirchhoff assumptions and
c) detour based approaches. Because the UBD is a representative of the second group,
one exemplary reference solution of the first and the third group is presented, too.
It should be noted that the wave theoretical Secondary Source Model (SSM) is the
physically correct reference solution, whereas the Maekawa Detour Law (MDL) in only
used to demonstrate the need for more accurate methods than this.
In order to formulate diffraction independent of the source power P , the transmission

degree T rather than the sound intensity I is used in the following. Therefore, the
sound intensity with diffraction is divided by the expected sound intensity without the
screen, i.e., the free field sound intensity IF

T = I

IF
. (5.1)

The free-field sound intensity IF differs from 2D to 3D:

IF,2D = P ′

2πR
and IF,3D = P

4πR2 (5.2)

Here, R is the free-field distance between source and receiver and P and P ′ the sound
power and sound power per length, respectively (see Sec. 3.1). By using the transmis-
sion level T , the UBD is easily comparable with the reference models.
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5. Simulation of Diffraction in Geometrical Acoustic Simulation Methods

5.1.1. Secondary Source Model

Svensson et al. propose an analytic SSM for edge diffraction based on the Biot-Tolstoy-
Medwin (BTM) solution (see Sec. 2.3.4.2). As result, the sound pressure p(t) is derived
[Cal09].

Svensson utilizes the impulse responses of Medwin to derive directivity functions for
secondary sources on the edge. The basic idea is that incident sound waves on a wedge
are split up when hitting a point of an edge and are reradiated as wavefront in different
directions with different amplitudes[SFV99].

Therefore, Svensson derives a directivity function using retarded potentials

D [ϑS (τ) , ϑR (τ) , ϕS , ϕR] = −νβ [ϑS (τ) , ϑR (τ) , ϕS , ϕR]
4π

, (5.3)

where ϑS and ϑR are angles between the current point on the edge and the source
and receiver relative to the z − axes (see Fig. 2.9). As this directivity function is
completely symmetrical with respect to interchanging source and receiver angles, the
reciprocity principle is fulfilled automatically. Svensson showed that his implementation
of secondary sources using the directivity function exactly matches the analytically
derived BTM solution for infinite wedges (half planes) in case of totally reflecting walls
(hard or soft). Due to the extension to the secondary sources, also curved wedges
are computable and accurate results for the diffraction at a circular disk have been
shown[SFV99].

As reference in this work, the Edge Diffraction ToolBox (EDB) by Svensson [Sve10]
is used. In order to apply the EDB, a 3D setup is needed, such that the wedge setup is
extended into the z − axis from −1000m < z < 1000m. The complete investigation of
the UBD will be performed for distances relative to the wavelength λ, but the toolbox
computes impulse response in time domain for given geometrical setups in absolute
distances. Thus, the relative distances r are converted to absolute distances s = r· c

f

for an arbitrary frequency of f = 1000Hz, where c is the speed of sound. The resulting
impulse responses are then octave band filtered around f = 1000Hz (as the UBD
module is valid for an octave band). Although the impulse response could have been
filtered at other frequencies to achieve different equivalent distance combinations by
the same impulse response, this is discarded as only single values are of interest at a
time. The wedge is defined as hard- reflecting with an opening angle of ϕW = 1◦ (both
parameters are not relevant for UBD and MDL).

5.1.2. Maekawa Detour Law

Maekawa empirically found the so called detour law. It only takes the shortest detour
d = a+b−c between source and receiver across an obstacle into account (see Fig. 5.1a).
In case of a receiver in the view zone, the detour is negative (d < 0). The detour law
can also be analytically derived for small diffraction angles from the Kirchhoff theory
as described in Sec. 2.3.4.4.
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Figure 5.1.: Maekawa Detour Law for single diffraction (after Vorländer[Vor08]).

The formulation of Eqn. 2.45 is not defined for a detour of d = 0, but a fitted
approximation is applied[Ste04] with

∆L = 10 · log10

1
2
−
atan

(
1√
3 + 6N

(
1 + e−3N

))
π

 . (5.4)

Both equations are compared in Fig. 5.1b and very good agreements are observed
for almost all detours, except for small detours d ≈ 0 where the numerical error of Eqn.
2.45 is resolved.
The classical detour law is only valid for a single obstacle, but an extension to double

diffraction is made by computing the detour around a virtual apex (see Fig. 5.2). As
discussed by Pierce[Pie74], a different solution might be to take the real detour into
account by folding the sound propagation paths at each wedge. However, the first
method is used in this work for double diffraction, as it was intended by Maekawa.

source

receiverb

a

c

wedge

apex

wedge

Figure 5.2.: Geometric definitions of the Maekawa Detour Law for double diffraction (after
Pierce[Pie74]).

Both Eqn. 2.45 and 5.4 result directly in an average transmission loss, such that no
post-processing is needed.
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5. Simulation of Diffraction in Geometrical Acoustic Simulation Methods

5.2. Uncertainty relation Based Diffraction

In order to combine diffraction with the energetic GA methods SPSM and Beam Tracing
(BT), Stephenson uses an energetic approach[Ste04]. It is based on the Fraunhofer
diffraction of a slit and the uncertainty relation. For optics, also a particle diffraction
method had been derived[HC71, FGH99] using Gaussian functions instead of Fraunhofer
related si -functions (see Sec. 2.3.4.3), which is, however, wrong in the case of a hard
wedge[Ste04]
A main advantage of both methods regarding diffraction is that diffraction is auto-

matically detected by the straight forward detection technique. Thus, a complicated
search for valid sound paths is not necessary (in contrast to the SSM[SP09]). In case
of the SPSM, sound particles never hit edges exactly, which means that the Uniform
Theory of Diffraction (UTD) or BTM cannot be applied without further modifications.
As said before, a complete energetic simulation method is aimed at, but diffraction

only occurs in the wave pattern (see Sec. 2.3.4). Therefore, the wave-particle dualism
is utilized to bridge the gap between energetic (particle) and wave theory [Ste85]. By
this approach, even higher order diffractions are computable directly.
Within the wave-particle dualism, Stephenson uses Heisenberg’s uncertainty relation.

This relation states that of two complementary values only one can be defined exactly.
As an example, the position y and the momentum py can be named. Mathematically,
the multiplication of the uncertainty of position ∆y and the uncertainty of momentum
∆py is approximately[Hei27]

∆y· ∆py ≈ ~, (5.5)

where ~ is the Planck constant.
Based on this idea, Stephenson postulates for the diffraction module:

1. The closer a sound particle passes by the wedge, the stronger it is deflected (un-
certainty in momentum)

2. A sound particle sees a slit of width b (uncertainty in position) that is proportional
to the bypass distance a.

Mathematically spoken, these two assumptions yield the two principles of the UBD
module[Ste85]. On the one hand, the Edge Diffraction Strength (EDS) describes the
attraction of a wedge that is passed in distance a to the sound particle propagation. On
the other hand, the Diffraction Angle Probability Density Function (DAPDF) describes
the actual diffraction of the sound particle around the wedge by an angle of ε.
This diffraction procedure is outlined in Fig. 5.3.

source

ᵋ

a

DAPDF

-π
π

.

wedge

ε<0

ε>0

Figure 5.3.: Diffraction of a sound particle passing by a single wedge in a distance a by an
angle of ε (after Stephenson [Ste04]).
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5.2. Uncertainty relation Based Diffraction

In order to make the derivations independent of the wavelength, all distances are
defined relative to the wavelength λ. In the following, both principles[Ste04] are shortly
repeated followed by a discussion of different detection and normalization techniques.

5.2.1. Edge Diffraction Strength

As for the EDS S (a), Stephenson made the following hypotheses[Ste04]:

1. the EDS equals the reciprocal width of an imaginary slit Stotal =: 1
b
,

2. the EDS is inverse proportional to the bypass distance a (with a factor n) and

3. the EDSs of simultaneously passed wedges add up to Stotal =
∑

k
S (ak).

Stephenson derived the proportionality factor n by considering the total EDS Stotal
of two simultaneously passed wedges forming a slit of width b. The geometrical setup
is sketched in Fig. 5.4.
The total EDS Stotal is determined using the

b
y

b-y

wedge

wedge

Figure 5.4.: Geometrical definitions
of the Edge Diffraction
Strength

hypotheses two and three for this setup

Stotal = S1 +S2 = 1
nb1

+ 1
nb2

= 1
ny

+ 1
n (b− y)

.

(5.6)
The average over all these total EDSs should

equal the reciprocal of the width of the real slit
(first hypothesis)

1
b

= Stotal = 1
b

∫ b

0

1
n· y

+ 1
n· (b− y)

dy.

(5.7)
Solving Eqn. 5.7 results in

n =
∫ b

0

1
y

+ 1
b− y

dy =
∫ b

0

b

y· (b− y)
dy.

(5.8)
The found integral diverges for both y = 0 and y = b, thus, a computation is not

possible. To overcome this mathematical problem, Stephenson proposes an averaging
over the inverse EDS, i.e., the slit widths, instead of over the original EDS

1
n

=
∫ b

0

y· (b− y)
b

dy, (5.9)

such that the proportionality factor n concludes to n = 6. In total, an EDS for the
diffraction at a single wedge reads

S (a) = 1
6 · a

. (5.10)

Stephenson assumes from the uncertainty relation[Ste04]:
A sound particle passing by a wedge sees a slit with a width of six times the bypass

distance.
A validation of the diffraction module for the slit[Ste10a] showed that this EDS is

too strong for large distances of the edges. Hence, Stephenson disabled diffraction for
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5. Simulation of Diffraction in Geometrical Acoustic Simulation Methods

sound particles passing by a wedge above an arbitrary distance of 7λ by setting the
EDS to zero in these cases

S (a) =
{ 1

6 · a
a ≤ 7λ

0 a > 7λ . (5.11)

Besides a better agreement with the Fraunhofer diffraction at a slit, a reduction of the
Computation Time (CT) is achieved by avoiding a split-up of sound particle above this
limit.
Another, more continuous approach by Stephenson was an improved EDS extended

by an exponential term[Ste10a]

S (a) = 1
3 · a+ ea

. (5.12)

All three EDSs are compared in Fig. 5.5.
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Figure 5.5.: Comparison of the different Edge Diffraction Strength.

In contrast to the mathematically derived EDS, the trimmed and the improved EDSs
are based on heuristic observations. By introducing the exponential function into the
denominator (see Eqn. 5.12), the EDS decreases significantly faster for larger distances
than the former EDS. But also for very close distances, the differences between both
EDSs are very great. The errors in the linear EDS for diffraction at a slit are compen-
sated by other improvements, as will be shown in Sec. 5.5.
The mathematical derivation of the EDS wrongly assumes that the result is unaffected

by averaging either over the EDS or the inverse EDS (see Eqn. 5.8 and 5.9). Although
this assumption has no mathematical and physical basis, the good agreements with the
reference models shown in Sec. 5.5 are astonishing. With respect to the heuristical
derivation of the trimmed and the improved EDS, the mathematically derived EDS is
used in the present work.
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5.2. Uncertainty relation Based Diffraction

5.2.2. Diffraction Angle Probability Density Function

With the Fraunhofer diffraction at a slit (see Sec. 2.3.4.3), the sound intensity is
proportional to the squared si−function (see Eqn. 2.44). Interpreting the width in one
dimension of the slit in wavelength (Y

λ
) as the relative slit width b, Eqn. 2.44 reads

I = I0 · si (u)2 with u = πbsin (ε) , (5.13)

where I0 is a reference sound intensity.
The presented Fraunhofer diffraction is only accurate for one specific frequency and,

thus, a specific wavelength λ. SPSMs are, one the other hand, valid over a whole fre-
quency band (see Sec. 3.2). Therefore, the diffraction function has to be averaged over
the frequency band that the sound particle represents. As all distances are in relative
wavelength λ, an averaging over b√

2 < b̃ <
√

2 · b has to be performed for an octave
band. To avoid a decrease of sin (ε) for angles |ε| > 90◦, Stephenson approximates
u = πbsin (ε) by u = 2 · b· ε. The result is given by

Da (ε, b) = D0 ·
{ 1− u2 |u| ≤ u0

1
2√

2−1+u2 |u| > u0
with u0 =

√
1− 1
√

2
and u = 2 · b· ε,

(5.14)
where D0 is a normalization constant. The different variations are shown in Fig. 5.6.

The angle range is extended from −180◦ < ε < 180◦ to show the complete angle range.
Which range is used in the simulation will be further discussed in Sec. 5.2.4.
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Figure 5.6.: Derivation of the Diffraction Angle Probability Density Function from the (av-
eraged) slit function known from the Fraunhofer diffraction for b = 3 and
D0 = 1.

Besides this DAPDF, Stephenson proposed many other DAPDFs. These formulations
are only summarized without any derivation.
First, an even more simplified DAPDF Db (ε, b) was presented, yielding even better

agreements with the reference models[Ste04]. In order to fulfil the reciprocity principle,
Stephenson proposed additional DAPDFs Dc (ε, b)-Dg (ε, b) (see Sec. 5.4.2). Lately,
Stephenson derived from Fresnel-Kirchhoff theory a DAPDF Dh (ε, b) (not yet pub-
lished) that depends on the incident angle ε1 and the outgoing angle ε2 rather than the
total deflection angle ε = ε1 + ε2 for the first time
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5. Simulation of Diffraction in Geometrical Acoustic Simulation Methods

Db (ε, b) = D0
1 + 2 ·u2 with u = 2 · b· ε (5.15)

Dc (ε, b) = D0 · cos (ε)
1 + 2 ·u2 with u = 2 · b· ε

Dd (ε, b) =
D0 · 1+cos(ε)

2
1 + 2 ·u2 with u = 2 · b· ε

De (ε, b) = D0
1 + 2 ·u2 with u = π· b· sin (ε)

Df (ε, b) = D0 · cos (ε)
1 + 2 ·u2 with u = π· b· sin (ε)

Dg (ε, b) =
D0 · 1+cos(ε)

2
1 + 2 ·u2 with u = π· b· sin (ε)

Dh (ε1, ε2, b) = D0
1 + 2 ·u2 with u = π· b· (sin (ε1) + sin (ε2)) .

These DAPDFs are compared in Fig. 5.7.
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Figure 5.7.: Comparison of different Diffraction Angle Probability Density Functions for
ε1 = 30◦, b = 3 and D0 = 1.

In order to reduce the number of parameters discussed in the course of this work,
some DAPDFs are discarded. It will be shown in Sec. 5.2.4 that results have to
be at least plausible for the complete angle range (−180◦ < ε < 180◦). Therefore,
both DAPDFs Dc (ε, b) and Df (ε, b) are neglected due to singularities at ε = 90◦. In
addition, De (ε, b) is also excluded due to the wrongly increasing energy for diffraction
angles above |ε| > 90◦. The DAPDFs Da (ε, b) and Db (ε, b) are almost identical for
the whole angle range and, thus, the simpler DAPDF Db (ε, b) is preferred to Da (ε, b).
Finally, the DAPDF Dd (ε, b) decreases by-far too fast for increasing diffraction angles
|ε| > 90◦.
The latest DAPDF Dh (ε, b) is identical to DAPDF De (ε, b) for ε1 = 0, but for

ε1 6= 0, both angles can cancel out each other, while for all remaining DAPDFs the sign
of ε is not influencing the diffraction. As shown in Fig. 5.7, for an angle of incidence
ε1 = 30◦, a maximum of diffraction occurs for ε2 = −30◦ as this represents the straight
forward direction, but the same maximum occurs also for ε2 = −150◦. The reason is
that for ε2 = −150◦ the value of u equals zero forDh (ε, b) (sin (30◦)+sin (−150◦) = 0),
whereas it remains different from zero for, e.g., Dg (ε, b) (sin (30◦ − 150◦) 6= 0). This
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5.2. Uncertainty relation Based Diffraction

behaviour influences the diffraction in a huge angle range, as the DAPDF starts to
increase for diffraction angles ε < −60◦. An even increasing DAPDF is physically not
plausible and, thus, Dh (ε, b) is not used in this work.
Summing it up, the remaining DAPDFs Db (ε, b) and Dg (ε, b) are further inves-

tigated. However, a final DAPDF will be chosen not before a comparison with the
reference models (see Sec. 5.5).

5.2.3. Detection of Diffraction Events

Sound particles travel on lines, which intersect with edges with a probability of zero.
To overcome this, spatially extended detectors for the detection of diffraction events
have to be used, similar to the spatially extended receivers. Stephenson proposed four
different detection techniques, which are briefly repeated here[Ste04].

(a) tolerance region (b) diffraction cylin-
ders

(c) diffraction flags (d) convex sub-
division

Figure 5.8.: Comparison of different detection techniques for diffracted sound particles.

Tolerance region The first approach is a tolerance region of one wavelength λ that
extends the adjacent walls in both directions (see Fig. 5.8a). Sound particles are
diffracted that intersect with these tolerance regions. As for each wedge two detectors
are introduced, this method generates a huge computation overhead. Furthermore,
sound particles that hit physical walls in the tolerance region are diffracted, but no
bypass distance is defined, i.e., no diffraction procedure is defined.

Diffraction cylinders The most intuitive approach is the usage of diffraction cylinders
(see Fig. 5.8b). An intersection of such a cylinder is interpreted as diffraction event
and the bypass distance is computed directly. This method is successfully used in
[SP09, Sch11]. An advantage of this method is that it always computes the smallest
bypass distances of the sound particle and the wedge. One major drawback is, however,
that complicated exceptions occur when cylinders intersect each other.

Diffraction flags In this method, additional walls are placed on the bisecting lines (see
Fig. 5.8c). An intersection of these flags is interpreted as diffraction. As in the previous
case, diffraction is detected exactly on the bisecting line and, thus, the exact bypass
distance is computed. All this presented detection methods detect only one edge that
is passed. Thus, the important feature of the UBD to handle diffraction at more edges,
e.g., two edges forming a slit, cannot be utilized.

Convex sub-division As a consequence of the deficits of the presented detection meth-
ods, a global diffraction technique is chosen in this work (see Fig. 5.8d). Stephenson
proposes a sub-division of the room into convex sub-spaces.
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5. Simulation of Diffraction in Geometrical Acoustic Simulation Methods

The convex sub-division technique is the only method that allows the detection of
multiple (in 2D: two) diffraction edges simultaneously by connecting them with a
Virtual Wall (VW). Besides the efficient detection of diffraction, the convex sub-division
brings in a huge acceleration of the CT instead of an increased CT with the other
detection methods. Therefore, the convex sub-division is chosen.

5.2.4. Normalization of Diffracted Energy

In its original definition, the DAPDF is defined as a probability density per diffraction
angle. Per definition, the integral over the probability density function has to be equal to
one. As a dual definition, the DAPDF has later been used to describe the energy density
per diffraction angle, where for energy conservation requirements also the integral over
all diffraction angles has to be equal to one. Assuming εMin and εMax being the
smallest and the largest diffraction angle, respectively, the integral equation reads∫ εmax

εmin

D (ε) dε != 1. (5.16)

With this definition, the normalization constant D0 is computed. For the normaliza-
tion range, different diffraction regions are considered. Three of these definitions are
discussed in the following.

Normalization symmetrical to the incidence direction The most intuitive approach is
to deflect the sound particle in a range −90◦ < ε < 90◦ symmetrically around the
incidence direction (see Fig. 5.9). Stephenson defined this range in order to keep the
incident sound field undisturbed (Kirchhoff assumption).

ε1

wedge

virtual wall

(a) geometrical setting

-30

-25

-20

-15

-10

-5

0

10
·lo

g
(D

A
P

D
F
)[

d
B
]

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

total deflection angleε [◦]

-210 -180 -150 -120 -90 -60 -30 0 30 60 90 120 150
secondary deflection angleε2 [◦]

Db (ε ,b)
Dg (ε ,b)
slit function (octave average)

(b) normalization range (filled surface) of the Diffraction Angle Probability
Density Functions for ε1 = 30◦, b = 3 and D0 = 1.

Figure 5.9.: Normalization for the diffraction angle range −90◦ < ε < 90◦ symmetrical
around the incidence direction.

This approach has two disadvantages: On the one hand, not all sound particles pass
the VW due to the arbitrary position of the VW. Hence, diffracted sound particles
might intersect with the same VW several times resulting in multiple diffraction events.
From an algorithmical point of view, this also causes a higher effort as the concept of
VWs transmitting sound particles from one room to another is lost. One the other
hand, sound energy cannot be diffracted into the deep shadow zone, as no diffraction
angles larger than ε = 90◦ are possible. This is physically not acceptable as in the deep
shadow zone diffraction is often the only source of energy.
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5.2. Uncertainty relation Based Diffraction

An advantage of this method is the independency of the angle of incidence ε1 on the
VW. Hence, the normalization constant D0 is only dependent on the distance a or the
effective slit width b, respectively. This algorithmic advantage cannot compensate the
disadvantages, such that this method is not used in this work.

Normalization to the complete angle range Another possibility is to allow diffraction
to the complete angle range −180◦ < ε < 180◦ (see Fig. 5.10).
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Figure 5.10.: Normalization in the complete diffraction angle range −180◦ < ε < 180◦.

With this approach even more sound particles remain on the source-side of the VW
increasing the disadvantage of the first approach, whereas the extension of diffraction
to the complete angle range resolves the discrepancy of no sound energy in the deep
shadow zone. In contrast to all other methods, this approach completely ignores the
Kirchhoff assumption that the incident sound field is undisturbed, as sound particles
are diffracted even into the inverse direction. Therefore, this approach is not used in
this work, too.

Normalization to the angle range behind the Virtual Wall The combination of both
former requirements provides a normalization to the angle range behind the Virtual
Wall to −90◦ < ε2 < 90◦ (see Fig. 5.11).
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Figure 5.11.: Normalization to the angle range behind the Virtual Wall.
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5. Simulation of Diffraction in Geometrical Acoustic Simulation Methods

Sound particles are diffracted only into the subspace behind the VW, hence, the
algorithmic separation of subspaces is valid. This coincidences with the physical re-
quirements by Kirchhoff to leave the incident sound field unaffected, when the incident
found field is defined as the sound field on the source-side of the VW. Sound energy
is diffracted into the deep shadow zone behind the obstacle. As the derivation of the
DAPDF is based on the diffraction at a slit, this normalization meets this definition
best. Only for perpendicular sound incidence, this definition matches the first approach.
This approach is used in this work.
The normalization is now additionally dependent on the angle of incidence ε1. Hence,

also the DAPDF itself is dependent not only on the total diffraction angle ε, but also
on the angle of incidence ε1

D = D (ε, b, ε1) . (5.17)

5.2.5. Combination of the Uncertainty relation Based Diffraction and the Sound
Particle Simulation Method

The combination of diffraction with the SPSM

ε2,i
ε1

wedge

virtual wall

Figure 5.12.: Split-up of sound par-
ticles into S = 4 sec-
ondary sound parti-
cles by diffraction.

is similar to the combination of scattering with
the SPSM(see Sec. 3.4.3). Every sound particle
that intersects with a VW is split up into S sound
particles. These sound particles are equally dis-
tributed behind the VW(see Fig. 5.12).
Each sound particle is emitted at the centre of

the sound particle’s represented angle range (see
Eqn. 3.15)

ε2,i =
i+ 1

2
S

·π −
π

2
. (5.18)

The energy of the ith sound particle is com-
puted by an integral over the DAPDF. Including
the air attenuation (see Sec. 2.3.1), the energy
reduction reads

ei = e−mr ·
∫ ε1+ i+1

S
π−π2

ε1+ i
S
π−π2

D (ε, b, ε1) · dε. (5.19)

It has to be noted that the UBD handles both the diffracted sound field and the
direct sound (in the view zone). This is a significant difference to the UTD and the
BTM, where only the diffracted sound field is computed and the direct sound has to be
added separately.
The combination of diffraction with both geometrical and diffuse reflections as well

as the extension to higher order diffractions is achieved by combining the diffraction
module with the SPSM.
The main algorithm of the SPSM remains unaffected, but the function tracing a sound

particle between one wall and another (see List. 3.4) has to be modified such that sound
particles intersecting with a wall are scattered and sound particles intersecting with a
VW are diffracted. The modified algorithm is shown in List. 5.1.
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5.3. Analytical Formulations for the Simple Scenarios

function t raceSoundPar t i c l e ( )
f i ndWa l l I n t e r s e c t i on ( ) ; // use convex shape , s ee Sec . 3 . 4 . 2
de tec tSoundPar t i c l e ( ) ; // e i t h e r s i n g l e or gr id , s ee Sec . 3 . 4 . 4
energy = energy ∗ exp(−m ∗ r ) ; // see Eqn . 3 . 11 , only a i r
i f ( i sV i r t u a l ( i n t e r s e c t edWal l ) )

for ( a l l secondary sound p a r t i c l e s ) // s p l i t−up in S
f l o a t newEnergy = energy ∗ d i f f r a c t i o nRa t i o ( ) ; // see Eqn . 5 .19
v = computeDi f f rac tedDi rec t ion ( ) ; // see Eqn . 5 .18
i f ( newEnergy > energyThreshold ) // see Eqn . 3 .26

t raceSoundPar t i c l e ( ) ; // r e c u r s i v e c a l l
else

energy = energy ∗ (1 − alpha ) // see Eqn . 3 . 11 , only alpha
for ( a l l secondary sound p a r t i c l e s ) // s p l i t−up in S + 1

i f ( i==0) // specu l a r r e f l e c t i o n
f l o a t newEnergy = energy ∗ (1 − sigma ) ; // see Eqn . 3 .13
v = v − 2 (v ∗ n) ∗ n // see Eqn . 3 .12

else
f l o a t newEnergy = energy ∗ s c a t t e r i n gRa t i o ( ) ; // see Eqn . 3 .16
v = computeScatteredDirect ion ( ) ; // see Eqn . 3 .15

i f ( newEnergy > energyThreshold ) // see Eqn . 3 .26
t raceSoundPar t i c l e ( ) ; // r e c u r s i v e c a l l

Listing 5.1: Modified pseudocode for the Sound Particle Simulation Method including
diffraction.

5.3. Analytical Formulations for the Simple Scenarios

The combination of the diffraction module with the SPSM causes numerical errors due
to the finite number of sound particles and the spatially extended receivers. As these
numerical errors (see Sec. 5.5) prevent an exact estimation of the accuracy of the diffrac-
tion module, an analytical solution is found (at least for simple scenarios). For the sin-
gle diffraction at a wedge, Stephenson formulated a Beam Integration formula[Ste10a],
which combines the UBD diffraction module with BT. In contrast, now a formula is
derived from the SPSM and analytical formulations for the diffraction at a slit and
double diffraction at two wedges are presented. In order to get results independent of
the source power, the transmission level T instead of the intensity is of interest.

5.3.1. Diffraction at a Single Wedge

To analyse the diffraction module analytically, first a derivation of the sound intensity
behind a single wedge is determined. Based on the SPSM, analytical substitutions
are introduced to achieve both infinitesimally small receivers and an infinite number of
primary and secondary sound particles.
Without loss of generality, the diffracting edge is identical to the z − axis and of

infinite extend at (x, y) = (0, 0). Both the sound source and the receiver are in the
z = 0 plane at (xS , yS) and (xR, yR), respectively. The distances of the sound source
rS and the receiver rR to the edge are counted in wavelength λ and the angles ϕS and
ϕR indicate the angles between the x − axis and the source and the receiver. While
ϕR is defined relative to the x − axis counter-clockwise, ϕS is defined relative to the
−x− axis, such that negative angles indicate a position in the shadow zone (y < 0) for
both the sound source and the receiver (see Fig. 5.13a).
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Figure 5.13.: Sound particle diffraction at a single wedge on the z − axis.

The SPSM starts by emitting N primary sound particles. Only N0 of these N sound
particles intersect with the VW in the y − z plane for y > 0. Each of these N0 sound
particles is split up into S secondary sound particles by the diffraction module, where
a small number S0 of these S secondary sound particles intersect with the detector
(radius rD and surface SD).
The sound intensity I at the receiver is computed regarding Eqn. 3.19 by a double

loop over both primary and secondary sound particles to

I = P ′

N ·SD

N0∑
i=1

S0∑
j=1

ei,j ·wi,j , (5.20)

where ei,j is the relative energy of a sound particle that intersects with the receiver
with the inner crossing distance wi,j . With the energy loss of a sound particle in Eqn.
5.19 (neglecting air attenuation), the sound intensity reads

I = P ′

N ·SD

N0∑
i=1

S0∑
j=1

wi,j ·
∫ ε1,i+

j+1
S
π−π2

ε1,i+
j
S
π−π2

D (ε, bi, ε1,i)dε. (5.21)

The angle of incidence ε1 as well as the effective slit width b are only dependent on
the incident sound particle i. Furthermore, the inner crossing distance w as well as the
secondary angle ε2 depend on the secondary sound particle j.
For infinitesimally small receivers, which will be inserted later, the inner crossing

distance wi,j is replaced by the Mean Free Path Length (MFPL)[Kos60] in the detector
with circumference CD to

w = π· SD

CD
= π·

π· r2
D

2 ·π· rD
= π· rD

2
. (5.22)
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5.3. Analytical Formulations for the Simple Scenarios

Both the inner crossing distance and the surface of the detector are replaced in Eqn.
5.21, such that the sound intensity is written

I = P ′

N · 2 · rD

N0∑
i=1

S0∑
j=1

∫ ε1,i+
j+1
S
π−π2

ε1,i+
j
S
π−π2

D (ε, bi, ε1,i)dε. (5.23)

The angle ranges of sound particles that intersectsdiffraction point

ε2,Min

ε2,Max

receiver

Figure 5.14.: Substitution of
the sum over all
sound particle
angle ranges
by the receiver
angle range.

with the detector are directly connected to each other.
Mathematically speaking, the upper limit of sound
particle j is equal to the lower limit of index j + 1 as
long as the sound particles intersect with the detector
(see Fig. 5.14). The sum of these partial integrals is
replaced by the complete integral over the angle range
of the detector as seen from the diffraction point from
ε2,Min,i to ε2,Max,i to get rid of this sum

I = P ′

N · 2 · rD

N0∑
i=1

∫ ε1,i+ε2,Max,i

ε1,i+ε2,Min,i

D (ε, bi, ε1,i)dε.

(5.24)
This integration over the angle range of a detector

is also used as diffracted rain by Schröder[Sch11] for
both scattering and diffraction.
In the next step, the transition to infinitesimally

small receivers is performed by minimizing the angle range of the receiver ∆ε2,i =
ε2,Max,i − ε2,Min,i. It is approximated (for small angle ranges) by

∆ε2,i = 2 · asin

(
rD

r2,i

)
≈ 2 · rD

r2,i
or 2 · rD ≈ ∆ε2,i · r2,i, (5.25)

where r2,i is the distance between the intersection point on the VW and the receiver
(see Fig. 5.15a). For infinitesimally small receivers, the angle range ∆ε2,i converges
to zero. Thus, the integral over this angle range is approximated by the integrand
multiplied with this angle range. As this angle range occurs also in the denominator,
it is reduced, with

I = lim
∆ε2,i→0

P ′

N

N0∑
i=1

∫ ε1,i+ε2,Max,i
ε1,i+ε2,Min,i

D (ε, bi, ε1,i)dε

r2,i · ∆ε2,i
= P ′

N

N0∑
i=1

D (ε, bi, ε1,i)
r2,i

. (5.26)
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Figure 5.15.: Transition of the sound particle diffraction to an integral formulation.

With Fig. 5.15, the following relations are formulated

r1 =
√
x2
S + (a− yS)2 (5.27)

r2 =
√
x2
R + (a− yR)2

ε1 = α = atan

(
a− yS
−xS

)
= acos

(−xS
r1

)
ε2 = atan

(
a− yR
xR

)
= acos

(
xR

r2

)
ε = ε1 + ε2.

To get rid of the numerical value N , the transition to an infinite number of primary
sound particles N is made by minimizing the angle between the primary sound particles
∆α = 2π

N
in Eqn. 5.26

I = P ′

2π

N0∑
i=1

D (ε, bi, ε1,i)
r2,i

∆α. (5.28)

By this replacement, the sum in Eqn. 5.28 is written in integral form. The former
sum added up all N0 sound particles which intersect with the VW, whereas the integral
now integrates over the angle range under which the VW is visible from the source
position

I = P ′

2π

∫ αMax

αMin

D (ε, b, ε1)
r2

dα. (5.29)

Finally, the angle α is substituted by the more general position on the VW, because
the integral over a has a direct relation to the scene and is independent of the source
position. Assuming that the intersection point on the VW lies at (0, a), an integral in
the range of 0 < a <∞ is performed to cover the complete VW. By using the derivative
of α in Eqn. 5.27 and expanding with the differentials, a substitution is found, with
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dα = 1

1 +
(
yS−a
xS

)2 (yS − axS

)′
da =

x2
S

x2
S + (yS − a)2

(−1
xS

)
da (5.30)

= r1 · cos(ε1)
r2
1

da = cos(ε1)
r1

da.

This substitution can also be derived graphically from Fig. 5.15b (purple triangle).
Using this substitution, the intensity follows to

I = P ′

2π

∫ ∞
0

D (ε, b, ε1) · cos(ε1)
r1 · r2

da. (5.31)

Using Eqn. 5.1 and Eqn. 5.2, the transmission degree T reads

T = I

IF
=

P ′

2π

∫∞
0

D(ε,b,ε1) · cos(ε1)
r1 · r2

da

P ′
2πR

= R

∫ ∞
0

D (ε, b, ε1) · cos(ε1)
r1 · r2

da. (5.32)

This equation equals the Beam Integration formula for BT [Ste10a]. However, it is
derived from a SPSM experiment for the first time. Thus, the diffraction theory is
proven to be equivalently applicable to both the SPSM and BT.

5.3.2. Diffraction at a Slit

An analytical formula describing diffraction at a slit is derived to perform a self-
consistency test. A similar experiment has been performed by Stephenson, but infi-
nite source and receiver distances had been applied[Ste86], such that the results are
not comparable. As for the single diffraction event, now both edges are parallel to the
z − axis and of infinite extent at (x, y) = (0,− d2 ) and (x, y) = (0, d2 ). The positions of
the sound source and the receiver are identical to the scenario of single diffraction (see
Fig. 5.16a).
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Figure 5.16.: Sound particle diffraction at a slit of width d.
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5. Simulation of Diffraction in Geometrical Acoustic Simulation Methods

For a number of N emitted sound particles, N0 of these sound particles intersect with
the VW in the y− z plane for − d2 < y < d

2 . The secondary sound particles are handled
in the same way as for single diffraction. In contrast to the single diffraction event, two
by-pass distances a1 and a2 exist simultaneously (see Fig. 5.16b).
The sum of all sound particles is identical to Eqn. 5.20, but the number of sound

particles intersecting with the VW is defined differently and the slit width b is now an
effective slit width beff . Hence, the derivation is equal to the single diffraction scenario
apart from these small modification, yielding

I = P ′

2π

∫ d
2

− d2

D
(
ε, beff , ε1

)
· cos(ε1)

r1 · r2
da, (5.33)

where the integral covers the slit instead of a semi-infinite plane (compare with Eqn.
5.33). The total EDS is defined (see Sec. 5.2.1) as

Stotal = S1 + S2 = 1
b1

+ 1
b2

= 1
6a1

+ 1
6a2

= 1
beff

, (5.34)

where the by-pass distances a1 and a2 are computed by the position on the opening
a to

a1 = d

2
+ a and a2 = d

2
− a. (5.35)

It should be noted that the integrant a is no longer a by-pass distance, but the
distance to the centre of the slit. Finally, the transmission level reads

T = I

IF
= R

∫ d
2

− d2

D
(
ε, beff , ε1

)
· cos(ε1)

r1 · r2
da. (5.36)

5.3.3. Double Diffraction at two Subsequent Wedges

As last analytical derivation, the diffraction at two wedges passed one after another
instead of passed simultaneously (described above) is derived[PS12]. While this setup
differs only in the position of the second wedge for the SSM derivation, it is a totally
different setup in case of the UBD. For the latter, the slit experiment handled one
diffraction at two wedges simultaneously, but now two diffractions at one wedge at a
time are taken into account. The two edges are parallel to the z − axis, this time
at (x, y) = (− d2 , 0) and (x, y) = ( d2 , 0). In order to avoid single diffraction for sound
sources or receivers in-between the wedges, their positions are defined relative to the
left or right wedge, respectively (see Fig. 5.17a).
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Figure 5.17.: Sound particle diffraction at two wedges in distance d.

The source and receiver positions are defined as follows

(xS , yS) =
(
−rS · cos (ϕS)− d

2
, rS · sin (ϕS)

)
(xR, yR) =

(
rR · cos (ϕR) + d

2
, rR · sin (ϕR)

)
.

(5.37)

A number of N primary sound particles is emitted from the sound source and N0
are intersecting with the left VW. The secondary sound particles S are multiplied by
an energy factor ei,j and S0 of these sound particles intersect with the second (right)
VW. For each sound particle intersecting with the second VW, a number of T tertiary
sound particles are emitted in the direction of the receiver multiplied by another energy
factor fi,j,k. T0 of the T sound particles finally intersect with the receiver with an inner
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crossing distance of wi,j,k (see Fig. 5.17b). The sound intensity is then described by
the following equation

I = P ′

N ·SD

N0∑
i=1

S0∑
j=1

ei,j ·
T0∑
k=1

wi,j,k · fi,j,k. (5.38)

For the analytical solution, the additional geometrical definitions are consequently

r1 =

√(
xS + d

2

)2
+ (a1 − yS)2 (5.39)

r2 =
√
d2 + (a1 − a2)2

r3 =

√(
xR −

d

2

)2
+ (a2 − yR)2

ε1 = α = atan

(
a1 − yS
−xS − d

2

)
= acos

(
−xS − d

2
r1

)
ζ1 = −ε2 = atan

(
a2 − a1

d

)
= acos

(
d

r2

)
ζ2 = ζ1 = atan

(
a2 − yR
xR − d

2

)
= acos

(
xR − d

2
r2

)
ε = ε1 + ε2

ζ = ζ1 + ζ2.
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Figure 5.18.: Geometrical definitions for double diffraction.

To determine the energy factors ei,j and fi,j,k, an integral is computed over the
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respective angle ranges of the sound particles

ei,j =
∫ ε1,i+

j+1
S
π−π2

ε1,i+
j
S
π−π2

D (ε, b1,i, ε1,i) · dε (5.40)

fi,j,k =
∫ ζ1,i,j+ k+1

T
π−π2

ζ1,i,j+ k
T
π−π2

D (ζ, b2,i,j , ζ1,i,j) · dζ.

With the MFPL of the tertiary sound particle in the receiver (see Eqn. 5.22), the
sound intensity is written as

I = P ′

N · 2 · rD

N0∑
i=1

S0∑
j=1

ei,j ·
T0∑
k=1

∫ ζ1,i,j+ k+1
T

π−π2

ζ1,i,j+ k
T
π−π2

D (ζ, b2,i,j , ζ1,i,j) · dζ. (5.41)

Since the sound particles that intersect with the receiver are directly connected to each
other (see Fig. 5.14), the sum over the integrals is rewritten as the integral over the
complete angle range ∆ζ2,i,j under which the detector is visible from the emission point
on the second VW. Furthermore, the receiver diameter is expressed by this angle range
and the distance between emission point at the second VW and the receiver r3,i,j (see
Fig. 5.18) is expressed by 2 · rD ≈ ∆ζ2,i,j · r3,i,j (see Eqn. 5.25). In total, the sound
intensity reads

I = P ′

N

N0∑
i=1

S0∑
j=1

ei,j ·

∫ ζ1,i,j+ζ2,Max,i,j
ζ1,i,j+ζ2,Min,i,j

D (ζ, b2,i,j , ζ1,i,j) · dζ

∆ζ2,i,j · r3,i,j
. (5.42)

The transition to infinitesimally small receivers is again performed by the transition to
an infinitesimal angle range ∆ζ2,i,j → 0. As for the single diffraction case (see Sec.
5.3.1), the integral and the differential ∆ζ2,i,j cancel out each other. With ei,j from
Eqn. 5.40, Eqn. 5.42 yields

I = P ′

N

N0∑
i=1

S0∑
j=1

∫ ε1,i+
j+1
S
π−π2

ε1,i+
j
S
π−π2

D (ε, b1,i, ε1,i) · dε·
D (ζ, b2,i,j , ζ1,i,j)

r3,i,j
. (5.43)

To simplify Eqn. 5.43, the transition to an infinite number of secondary sound par-
ticles S is performed. By this transition, the integral over the decreasing angle range
∆ε2 = π

S
is approximated by

∫ ε1,i+
j+1
S
π−π2

ε1,i+
j
S
π−π2

D (ε, b1,i, ε1,i) · dε ≈ D (ε1,i + ε2, b1,i, ε1,i) · ∆ε2, (5.44)

where the current direction is expressed by

ε2 = j + 0.5
S

π −
π

2
. (5.45)

This transition implies for the sound intensity with ∆α = 2π
N

I = P ′

2π

N0∑
i=1

S0∑
j=1

D (ε, b1,i, ε1,i) ·D (ζ, b2,i,j , ζ1,i,j)
r3,i,j

∆ε2∆α. (5.46)
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Now, the transition ∆ε2 → 0 converts the second sum into an integral over the angle
range the second VW is visible from the intersection point on the first VW. With the
transition to an infinite number of primary sound particles, the remaining sum also
converges to an integral (similar to the single diffraction case)

I = P ′

2π

∫ αMax

αMin

∫ ε2,Max

ε2,Min

D (ε, b1, ε1) ·D (ζ, b2, ζ1)
r3

dε2dα. (5.47)

This analytical solution is based on two integrals over two angle ranges in the geo-
metrical setup. To generalize the analytical solution, two substitutions are derived from
Eqn. 5.39, such that the integrals integrate over the VWs instead of the angles α and
ε2. This substitutions can be derived either mathematically (compare with Eqn. 5.30)
or geometrically (compare Fig. 5.15b) to

dα = cos (ε1)
r1

da1 = cos (α)
r1

da1 (5.48)

dε1 = cos (ζ1)
r2

da2 = cos (ε2)
r2

da2.

Hence, an analytical solution for the sound intensity of Eqn. 5.47 is written as

I = P ′

2π

∫ ∞
0

∫ ∞
0

D (ε, b1, ε1) ·D (ζ, b2, ζ1) · cos (ε1) · cos (ζ1)
r1r2r3

da2da1. (5.49)

Finally, after applying the normalization to the free field sound intensity, the trans-
mission level for the double diffraction at two wedges passed one after another is found

T = R

∫ ∞
0

∫ ∞
0

D (ε, b1, ε1) ·D (ζ, b2, ζ1) · cos (ε1) · cos (ζ1)
r1r2r3

da2da1. (5.50)

Both integrals integrate over the VWs. In contrast to the transmission level for
single diffraction (see Eqn. 5.32), now two DAPDFs are multiplied to fulfil the double
diffraction setup. In addition, a factor of cos(ζ1)

r2
is added.

It should be noted that all values ε1,2, ζ1,2, b1,2 and r1,2,3 are at least dependent on
one by-pass distance a1 or a2.
This derivation can be extended to even higher order diffraction by using the same

principles, i.e., adding a factor and an additional integral for each diffraction order. As
these diffraction integrals are only solvable numerically, this extension is not performed
in this work due to the computational effort. Experiments with higher diffraction orders
are therefore carried out by numerical sound particle experiments.
Based on the found analytical description of the diffraction for simple scenarios, the

diffraction module is evaluated and discussed in detail for first and second order in the
following sections.
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5.4. Fulfilment of the Reciprocity Principle

One of the most important principles in sound propagation simulation is to fulfil the
principle of reciprocity, i.e., the result has to be independent of an interchanging of the
sound source and the receiver. Whereas Stephenson only assumed (without strict proof)
the reciprocity to be fulfilled in his first publications [Ste04] and still in 2009[Ste09],
an empirical proof by sound particle experiments showed that the reciprocity is only
fulfilled for ϕS ≈ 0◦ and major deviations occur for other angles of ϕS [SP11].
In this section, first the reciprocal scenario is described in short and the discrepancy

is determined numerically followed by a brief repetition of Stephenson’s attempts to
modify the UBD module in order to fulfil the reciprocity. The wrong assumptions of
these modifications are analysed and additional modifications to fulfil the reciprocity
principle are introduced and discussed. Finally, the numerical deviations of the modified
UBD module to reciprocity are determined.

5.4.1. Analysis of the Reciprocal Scenario

For the analysis of the reciprocity principle for diffraction at a single wedge, a sound
source is positioned left of the wedge at ϕS = 0◦ in a distance of rS = 10λ. The
receivers are positioned on the right-hand side of the wedge in a distance of rR = 10λ,
whereas the receiver angle ϕR is varied (see Fig. 5.19a). The angles ϕS and ϕR are
then interchanged, such that the source position is varying and only one receiver at
ϕR = 0◦ is used (see Fig. 5.19b). In general, the source and the receiver distances have
to be interchanged, but both are identical for this scenario.

 rs = 10  rR = 10

φs=0°

φR=84°

φR=0°

φR=-84°wedge

source

receivers

(a) normal

 rs = 10  rR = 10

φs=0°

φs=-84°

φs=84°

φR=0°

wedge

sources

receiver

(b) reciprocal

Figure 5.19.: Definition of the normal and the reciprocal scenario for rR = rS = 10λ (source
red, receiver blue).

As the VW is identical for both scenarios, also the formulation of the transmission
level of Eqn. 5.32 is identical for both cases. In the denominator, the source-related and
receiver-related distances r1 and r2, respectively, are interchangeable without changing
the equation. However, the source-related angle cos (ε1) has no counterpart, which
is the reason why a major difference in the results of the normal and the reciprocal
scenario is found for both DAPDFs (see Fig. 5.20).
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Figure 5.20.: Transmission level for the forward direction and the reciprocal scenario for a
single wedge with rR = rS = 10λ. The angle of the fixed source/receiver is
0◦.

In the deep shadow zone ϕS,R < −45◦, differences up to 20dB occur, which prove
that the reciprocity is not fulfilled. On the other hand, the difference between the
different DAPDFs seem to be very small, such that the mathematical investigation is
restricted to the first and more simple DAPDF Db (ε, b). The results for this DAPDF
are applied to the other DAPDF in the end.
Besides the cosine factor, the applied normalization constant D0 might also be unre-

ciprocal. With respect to Eqn. 5.16, the normalization constant reads

∫ π
2 +ε1

−π2 +ε1

D0 (b, ε1)
1 + 2 (2 · b· ε)2 dε = 1→ D0 (b, ε1) = 1∫ π

2 +ε1
−π2 +ε1

1
1+2(2 · b· ε)2 dε

. (5.51)

For b· ε� 1, which is invalid only for very close by-pass distances a, the normaliza-
tion constant is found to be only dependent on the effective slit width b and, thus, it is
independent of the angle of incidence ε1

D0 (b, ε1)
bε�1
≈
√

2 · 2 · b

π
= D0 (b) . (5.52)

As the normalization constant is (approximately) independent of the source and the
receiver angles and distances, the factor does not affect the behaviour of the transmis-
sion level with respect to reciprocity. Hence, only the cos (ε1) factor in the integral is
responsible for the inconsistency of the UBD module concerning the reciprocity prin-
ciple. This complies with Fig. 5.20, where the relation between the reciprocal and
the normal scenario is quite identical to a cosine factor of cos (ϕR) in the shadow zone
(ϕR < 0◦).

5.4.2. Stephenson’s Attempts to Achieve Reciprocity

In order to fulfil the reciprocity principle and to diminish the DAPDF in the deep
shadow, Stephenson investigated the Fresnel - Kirchhoff diffraction integral in more
detail and introduced an additional factor f (see Eqn. 2.35). Since from a physical
point of view only the total diffraction angle ϕS + ϕR ≈ ε1 + ε2 = ε is relevant,
Stephenson substitutes ϕS = ϕR ≈

ε1,2
2 generating a modified factor f ′ for small ε1,2

f = cos (ϕR) + cos (ϕS)
2

≈
cos
(
ε1
2

)
+ cos

(
ε2
2

)
2

= cos

(
ε

2

)
= f ′. (5.53)
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In the Fresnel - Kirchhoff diffraction integral, this factor is applied to the sound pres-
sure, such that for the energetic approach the factor has to be squared. Furthermore,
Stephenson uses another approximation yielding the energetic factor

f ′2 =
(
cos

(
ε

2

))2
= 1 + cos (ε)

2
≈ 1− ε

2
≈ cos (ε) . (5.54)

These factors were used to create new DAPDFs (see Sec. 5.2.2, Eqn. 5.15).
Unfortunately, the DAPDF with exactly the factor f ′2 Dg (ε, b′) brings practically

no improvement in the fulfilment of the reciprocity (see Fig. 5.20). This behaviour is
explained, because the factor f ′ is itself reciprocal, as it depends only on ε = ε1 + ε2
and, thus, cannot compensate the cos (ε1) factor. Therefore, different approaches to
fulfil the reciprocity principle are introduced.

5.4.3. Modifications of the Diffraction Angle Probability Density Function to Fulfil the
Reciprocity Principle

The attempts of Stephenson to fix the reciprocity were unsuccessful, as only a reciprocal
factor was used. In contrast to the former modifications, an unreciprocal factor is
now introduced. The first approach is to multiply the DAPDF by the missing cosine
factor and the second approach is to divide the DAPDF by the existing cosine factor.
Furthermore, an approach that modifies the EDS is discussed.

5.4.3.1. Multiplication of the Diffraction Angle Probability Density Function with
cos(ε2)

In order to create a counterpart for the cos (ε1) factor, an additional cos(ε2) factor is
introduced to the DAPDF

Dcos(ε2) (ε, b) = D (ε, b) · cos (ε2) . (5.55)

From a physical point of view, this factor could be argued by the Lambert law (see
Sec. 2.3.3). A multiplication with the new factor ensures that also the VW emits
energy following Lambert’s law (the maximum contribution must not exceed cos (ε2))
in addition to the diffraction theory.
At first sight, a reciprocal formulation of the transmission level (see Eqn. 5.32) seems

to be found

T = R

∫ ∞
0

Dcos(ε2) (ε, b) · cos(ε1)
r1 · r2

da = R

∫ ∞
0

D0,cos(ε2)(b,ε1) · cos(ε2)
1+2(2 · b· ε)2 · cos(ε1)

r1 · r2
da

(5.56)
While for the unmodified DAPDF the normalization constant D0 (b) has been shown

to be (approximately) reciprocal (see Eqn. 5.52), this is not valid after the multiplication
of the DAPDF with the cosine factor, as a renormalization is necessary. It is shown
mathematically that, at least for b � 1, an approximation for the new normalization
constant is valid, with

D0,cos(ε2) (b, ε1) ≈
√

2 · 2 · b

π· cos (ε1)
= D0 (b)
cos (ε1)

. (5.57)
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Inserting Eqn. 5.57 in Eqn. 5.56 reveals that again the reciprocity is not fulfilled.
This time, a cos (ε2) factor remains without an equivalent counterpart.

T = R

∫ ∞
0

D0(b)
cos(ε1) · cos(ε2)
1+2(2 · b· ε)2 · cos(ε1)

r1 · r2
da = R

∫ ∞
0

D0(b) · cos(ε2)
1+2(2 · b· ε)2

r1 · r2
da (5.58)

While the mathematical derivation of the normalization factor is quite demanding, the
result can also be explained graphically. For b� 1, as assumed also in the mathematical
derivation, the DAPDF is very narrow. By a multiplication of the DAPDF with a factor
of cos(ε2) = cos(ε−ε1) almost the complete DAPDF is scaled by a quite constant factor
due to its narrow shape (see Fig. 5.21).
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Figure 5.21.: Influence of the multiplication of the Diffraction Angle Probability Density
Function with cos(ε2) for huge by-pass distances (b = 10, ε1 = 60◦).

The DAPDF is symmetrical to ε = 0◦ (see lower x − axis), which correlates to
ε2 = −60◦ for ε1 = 60◦ in the given example. The cosine factor cos (ε2), on the
other hand, is symmetrical to ε2 = 0◦ (see upper x − axis) and almost constant in
the range of the DAPDF for b � 1. This constant occurs at ε = 0◦, which relates
to cos (−ε1) = cos (ε1). Due to the energy conservation criterion, the factor has to be
compensated by the renormalization and automatically extends the DAPDF by a factor

1
cos(ε1) .
For smaller by-pass distances (b ≤ 1) this approximation is a bit too rough as shown

in Fig. 5.22.

0.0

0.5

1.0

1.5

2.0

2.5

10
·lo

g
(D

(ε
,b
))
[d

B
]

-30 -15 0 15 30 45 60 75 90 105 120 135 150

total deflection angleε [◦]

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90
secondary deflection angleε2 [◦]

D(ε ,b)
cos(ε2)
D(ε ,b) · cos(ε2)

Figure 5.22.: Influence of the multiplication of the Diffraction Angle Probability Density
Function with cos(ε2) for small by-pass distances (b = 1, ε1 = 60◦).
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The DAPDF is by far broader than for huge by-pass distances, such that the mul-
tiplication with a constant factor is invalid for the complete range of the DAPDF.
The maximum of the DAPDF is shifted in the direction of ε2 = 0◦. Besides these
restrictions, the rescaling behaviour of the DAPDF is approximately valid here.
Even more, the introduction of the cos(ε2) factor can be interpreted as a new DAPDF

modified by a factor of cos(ε2)
cos(ε1) . However, there is no physical argumentation for such a

factor.

5.4.3.2. Division of the Diffraction Angle Probability Density Function by cos(ε1)

Another approach to fulfil the reciprocity principle is to divide the DAPDF by a factor
of cos(ε1) to compensate the existing cosine factor. Hence, a new DAPDF reads

Dcos(ε1) (ε, b) = D (ε, b)
cos (ε1)

. (5.59)

No physical argumentation is found for this procedure, but from a mathematical point
of view all former numerical evaluations stay approximately valid, because ϕS = 0◦
results in ε1 ≈ 0◦. Again, the reciprocity seems to be fulfilled at a first glance

T = R

∫ ∞
0

Dcos(ε1) (ε, b) · cos(ε1)
r1 · r2

da = R

∫ ∞
0

D0,cos(ε1)(b,ε1)
cos(ε1)

1+2(2 · b· ε)2 · cos(ε1)

r1 · r2
da. (5.60)

In order to approve the reciprocal behaviour of the integral, the normalization con-
stant has to be recomputed. In contrast to the multiplication by a cos (ε2) factor, this
time the normalization constant is computed without further approximations, with

D0,cos(ε1) (b, ε1) = D0 (b) · cos(ε1). (5.61)
Here, the normalization constant is multiplied by a factor of cos(ε1). For Eqn. 5.60

this yields again a formulation that does not fulfil the reciprocity principle

T = R

∫ ∞
0

D0(b) · cos(ε1)
cos(ε1)

1+2(2 · b· ε)2 · cos(ε1)

r1 · r2
da = R

∫ ∞
0

D0(b)
1+2(2 · b· ε)2 · cos(ε1)

r1 · r2
da. (5.62)

This formulation equals exactly Eqn. 5.32, such that the results are completely
unaffected by the modification. This is explained graphically as shown in Fig. 5.23
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Figure 5.23.: Influence of the division of the Diffraction Angle Probability Density Function
by cos(ε1) (b = 10, ε1 = 60◦).
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The DAPDF is multiplied by a constant factor 1
cos(ε1) , such that the complete energy

is scaled by the same factor. As the normalization assures that the total energy equals
1, this multiplication is withdrawn.
As the result equals the former equation, again no improvement to the reciprocity is

achieved. Even more it is stated that any modification of the DAPDF cannot fix the
reciprocity due to the renormalization of the DAPDF, because any needed asymmetrical
solution is cancelled by the normalization (at least for not too small distances). Hence,
a different approach has to be applied.

5.4.3.3. Usage of a Projected Slit Width

As the approach to modify the DAPDF has failed, the second function of the UBD is
investigated, i.e., the EDS S (a), which only depends on the by-pass distance a.
Up to now, the evaluated by-pass distance and, hence, the proportional slit with b,

are completely independent of the angle of incidence ε1. It is not the shortest by-pass
distance. This behaviour, on the other hand, is only correct for the perpendicular sound
incidence on a slit. For an oblique incidence, also the shortest by-pass distance may be
considered to be relevant for the uncertainty relation. Thus, a projected slit width b′ is
introduced (see Fig. 5.24a), such that the sound particles see a narrower slit.

b'

b

ε1

wedge

wedge

(a) projected slit width b′

aε1

a'

wedge

source

virtual wall

(b) projected by-pass distance a′

Figure 5.24.: Graphical explanation for projection of an angle of incidence ε1 = 60◦.

For the projected slit width it is followed geometrically

b′ = b· cos (ε1) . (5.63)

This correction of the actual slit width b is applied to the by-pass distance a in the
same way (see Fig. 5.24b). The result is a projected by-pass distance a′

a′ = a· cos (ε1) . (5.64)

As a and b are proportional to each other, both models yield the same modification.
Due to the usage of the EDS inside the DAPDF, a modified DAPDF is formulated

Db′ (ε, b) = D (ε, b· cos (ε1)) . (5.65)
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The transmission level of Eqn. 5.32 then reads

T = R

∫ ∞
0

Db′ (ε, b) · cos(ε1)
r1 · r2

da = R

∫ ∞
0

D0,b′ (b,ε1)
1+2(2 · b· cos(ε1) · ε)2 · cos(ε1)

r1 · r2
da,

(5.66)
where an unreciprocal formulation occurs by this modification also in the denominator
of Db′ (ε, b) for the first time. Before the equation is analysed further, the normalization
constant for the particular case has to be computed (using Eqn. 5.52)

D0,b′ (b, ε1) = D0
(
b′
)

= D0 (b· cos (ε1)) ≈
√

2 · 2 · b· cos (ε1)
π

= D0 (b) · cos (ε1) .
(5.67)

For the transmission level of Eqn. 5.66, this modification delivers

T = R

∫ ∞
0

D0,b′ (b,ε1)
1+2(2 · b· cos(ε1) · ε)2 · cos(ε1)

r1 · r2
da (5.68)

= R

∫ ∞
0

D0(b) · cos(ε1)
1+2(2 · b· cos(ε1) · ε)2 · cos(ε1)

r1 · r2
da.

Appling the approximation b· ε� 1, the transmission level simplifies to

T ≈ R
∫ ∞

0

D0(b) · cos(ε1)
2(2 · b· cos(ε1) · ε)2 · cos(ε1)

r1 · r2
da = R

∫ ∞
0

D0(b)
2(2 · b· ε)2

r1 · r2
da. (5.69)

Finally, a complete reciprocal formulation (assuming b· ε� 1) for the transmission
level is found, as neither ε1 nor ε2 remain in the equation. Both radii r1 and r2 are
completely interchangeable. Although the made approximations are actually not valid
for small by-pass distances a or small diffraction angles ε, the reciprocity is proven
analytically in a wide range.
At first glance, it seems doubtful to achieve reciprocity by taking the slit width into

account which is seen from the sound source and neglecting the slit width which is
seen from the receiver. However, this definition meets the idea of a straight-forward
simulation technique based on the Kirchhoff approximation, since diffraction has to be
independent of the receiver position (which is not yet known).

5.4.4. Numerical Difference after Introducing the Modifications

The introduction of a projected slit width shows, in principle, a reciprocal equation for
the transmission level. This transmission level is computed for three distance combina-
tions rS = rR = 1λ, 10λ and 100λ in Fig. 5.25.
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(a) rR = rS = 1λ
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(b) rR = rS = 10λ
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(c) rR = rS = 100λ

Figure 5.25.: Transmission level for the forward direction and the reciprocal scenario for a
single wedge after introduction of the projected slit width b′.

Fig. 5.25 shows that the reciprocity is fulfilled in all scenarios rR = rS ≥ 10 for
the complete angle range (difference< 0.7dB). Only for very close sound sources and
receivers (rR = rS = 1) greater differences occur below ϕR < −75◦. For larger receiver
angles, the difference is below 1dB even for such close distances that the approximations
made are not valid anymore.
Even for the second DAPDF Dg (ε, b), which has not been investigated mathemati-

cally, the results are completely applicable, as the results of both DAPDFs are almost
identical (difference < 0.1dB).
In summary, the projected slit width b′ solves the reciprocity problem for almost
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all cases. Only for very close source and receiver positions and simultaneous very low
receiver positions differences above 1dB remain. Nevertheless, a huge improvement has
been achieved also in these regions. The modified EDS is used for the rest of this work.

5.5. Validation and Comparison with Reference Models

The former UBD module was validated by Stephenson in detail for the single wedge and
a slit. Due to the modifications of the EDS (to fulfil the reciprocity principle) as well
as the new normalization range, these results became outdated. Furthermore, both the
presented extension to higher order diffraction and the combination of the diffraction
module with reflections have not been evaluated yet.
In this section, first the analytical solution for the UBD module is compared with

three simple scenarios (screen, slit and cascade) using the MDL (only for screen and cas-
cade) as well as Svenssons SSM as references. Based on this results, the final DAPDF for
this work is chosen. With this DAPDF, the module is tested on consistency when some
non-geometrical parameters are varied. Finally, the integration of the UBD module into
a SPSM is performed and validated for some critical setups.

5.5.1. Comparison of Simple Scenarios with Reference Models

In a first investigation, analytical formulations of the three simple scenarios of a single
wedge, a slit and two subsequent wedges (see Sec. 5.3) are validated against the reference
models. In order to fulfil the reciprocity principle, the EDS is used that utilizes the
projected slit width. Although eight different DAPDFs were presented in total, it was
shown that only two of them are physically reasonable (see Sec. 5.2.2). In the following,
the UBD with the former DAPDF Db (ε, b) is denoted as UBDb and the UBD with the
new DAPDF Dg (ε, b) is denoted as UBDg . As reference models both the SSM and the
MDL are used.
After discussing the three scenarios single wedge, slit and cascade independently from

each other, this section concludes with the selection of a final DAPDF for this work.

5.5.1.1. Single Wedge

The geometrical setup of a single wedge is given in Fig. 5.26. The geometrical variables
are the source distance rS , the receiver distance rR, the source angle ϕS and the receiver
angle ϕR. The transmission levels are directly computed regarding Eqn. 5.32. In all
experiments, the source and the receiver distances as well as the source angles are fixed,
whereas the receiver angle is varied in steps of 1◦ (in contrast to 15◦[Ste04]). The
methods are analysed in four regions (see Fig. 5.26).

• region0 : −90◦ < ϕR ≤ −60◦ (deep shadow zone)

• region1 : −60◦ < ϕR ≤ −30◦ (medium shadow zone)

• region2 : −30◦ < ϕR ≤ 0◦ (high shadow zone)

• region3 : −90◦ < ϕR ≤ 90◦ (complete range)

The mean differences between different models are computed for these regions. In
addition, the maximum and minimum differences between the different models are
computed.
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Figure 5.26.: Definition of the investigated regions of the single wedge.

In a first reference experiment, the source and the receiver distances are set to rS =
rR = 10λ and the source angle is set to ϕS = 0◦. The results of the transmission level
L = 10 · log10 (T ) of the UBD, the MDL and the SSM are shown in Fig. 5.27.
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Figure 5.27.: Validation of a single screen as a function of ϕR, with rS = 10λ, ϕS = 0◦
and rR = 10λ.

The main difference between the two UBDs is that the UBDg diffracts fewer energy
into the shadow zone, such that a greater transmission loss (smaller transmission level)
of about 1dB is gained quite constantly in the shadow zone (closer to the SSM).
Investigations of Stephenson[SS07] (using the former DAPDF with beam diffraction)

showed a standard deviation (in contrast to the mean difference in this work) between
UBD and SSM of 0.39dB, but without the EDS with the projected slit width.
The UBDg fits very well to the SSM (region0 - region1 ). Only in the transition from

the shadow zone to the view zone at approximately ϕR = 20◦, the SSM causes a trans-
mission level above 0dB, hence, an increasing transmission level after the introduction
of the wedge. This effect is caused by ripples from interference effects (see Fig. 2.12).
Here, this effect is smoothed due to the applied octave band averaging. In contrast,
the MDL and the UBD cannot model this effect as both methods are energetic models.
Therefore, at ϕR = 21◦, the difference of transmission levels between the UBD and
the SSM reaches its minimum (0.8dB). Between this ripple and the boundary to the
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shadow region (ϕR = 0◦), the transmission level decreases stronger for the UBD than
for the SSM, such that a maximum difference of 1.0dB is observed. For the UBDb, this
difference vanishes almost completely, but the maximum difference between the UBDb
and the SSM is 1.6dB at ϕR = −52◦ due to the difference in the shadow zone. This
difference is almost constant in the shadow zone (region0 - region1 ) yielding an overall
mean difference (region3 ) of 0.6dB, whereas the UBDg delivers a mean difference of
0.0dB (region3 ). The MDL, on the other hand, overestimates the diffracted energy in a
wide angle range. Quantitatively, the MDL results in a 2.0dB greater transmission level
in comparison to the UBDb and a 3.0dB greater transmission level in comparison to
the UBDg (region0 - region2 ). Nevertheless, the UBDg brings in more accurate results
compared to the SSM. For the MDL a saddle point is noted a ϕR = 0◦, as the detour it-
self has a saddle point there. Due to this saddle point, the minimum difference between
the UBDb is −2.7dB at ϕR = −9◦ and the maximum difference 1.0dB at ϕR = 8◦
quite symmetrically. In case of the UBDg , the minimum is shifted to ϕR = −29◦ with
−3.6dB. On average, the mean difference (region3 ) is −0.9dB (UBDb) and −1.4dB
(UBDg), respectively.
To achieve more general results, the parameters rS , rR and ϕS are modified indepen-

dently, before all distances are modified simultaneously, which equals the modification
of the frequency for fixed distances and finally the source angle is varied. For the in-
terested reader, all graphical comparisons are shown in appendix A.2.1. In addition,
tables summarizing the differences quantitatively are given.

Changing Source Distances As first parameter, the source distance is varied within
rS = 0.1λ, λ, 10λ, 100λ, 1000λ. For distances rS > 10λ, a far field approximation is de-
fined for all three models, such that the occurring differences from modifying the source
distance do not affect the transmission level anymore. For sound sources coming closer
to the wedge, the transmission level of the SSM increases faster than the transmission
level of the UBD in the shadow zone. Therefore, the UBD underestimates the diffracted
sound energy in comparison to both the MDL and the SSM for rS ≤ 1λ (see Fig. 5.28).
However, the transmission level was in-between them for distances rS > 1 .
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Figure 5.28.: Validation of a single screen as a function of ϕR, with rS = 1λ, ϕS = 0◦ and
rR = 10λ.

For all distances, the UBDg is approximately 1dB below the UBDb in the shadow
zone. For very close sound sources rS = 0.1 this means that the mean difference (re-
gion3 ) between the UBDb and the SSM is smaller (−0.6dB) compared to the UBDg
(−1.0dB). Nevertheless, the agreements are better than expected for very close dis-
tances, as interference effects (not handled by the energetic UBD) were expected to
dominate. A mean value over the region3 values of all source distances shows that the
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UBDg is only a little closer (0.2dB) to the SSM than the UBDb (−0.3dB). As shown
in Tab. A.1, the difference of the UBDg comes mainly from differences in close sound
source scenarios. As larger distances are of higher importance, the UBDg yields better
results than the UBDb.

Changing Receiver Distance In this investigation, the receiver distance rR is varied,
whereas the source distance is fixed at rS = 10λ. As for the variation of the source
distance, again, the convergence to a far field approximation for rR > 10λ seems to be
fulfilled, since no variation is found for rR > 10λ. Basically the same effects occur for
closer receivers as for the variation of the source distance rS . In the transition to the
near field, the transmission level of the SSM rises faster than the transmission level of
the UBD. Due to this effect, the difference between the UBDg and the SSM decreases
down to a minimum of −3.5dB at ϕR = −89◦ for rR = 1

10 (see Tab. A.2). However,
a good agreement between the SSM and the UBD can still be found, as this difference
occurs only for extreme angles. The mean difference (region3 ) over all receiver distances
is quite similar for the different DAPDFs (UBDb:0.3dB, UBDg :−0.2dB), but again the
discrepancy between the UBDg and the SSM occurs only for very close distances. The
MDL overestimates the diffracted energy in contrast to the UBDb by −0.2dB (−0.9dB
in case of the UBDg) (average over region3 for all distances).

Changing All Distances Frequency is often very important in practical scenarios. There-
fore, all distances are varied simultaneously in the next experiment. A doubling of
the relative distance, for instance, is directly interpreted as a doubling of the fre-
quency. In the deepest shadow zone (region0 ), transmission levels range from −7dB
for rS = rR = 0.1λ up to −42dB for rS = rR = 1000λ for the SSM. This is explained
by the detour law, too (see Tab. A.3). The UBDg follows this strong variation quite
well, but again with a smaller slope. Thus, the UBDg overestimates the diffraction by
+2.8dB at 1000λ and underestimates the diffraction by −2.4dB at 0.1λ (region0 ). For
region3, the mean discrepancy is only +1.6dB and −0.9dB, respectively. The UBDb
behaves quite similar but produces again approximately a 1dB greater transmission
level in the complete shadow zone (region0 -region2 ). This yields better agreements
with the SSM for close distances and worse agreement for far distances.
The maximum underestimation of the transmission level of the UBD in the inter-

ference region is located at ϕR = 21◦ for rS = rR = 10λ, but shifts in the direction
of ϕR → 0◦ for increasing distances. For rS = rR = 100λ, the minimum is shifted to
ϕR = 7◦ (see Fig. 5.29), whereas it stayed almost constant for the previous experiments.
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Figure 5.29.: Validation of a single screen as a function of ϕR, with rS = 100λ, ϕS = 0◦
and rR = 100λ.
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Here, the transmission level of the UBDg is in-between the transmission levels of the
SSM and the MDL. The average difference between the UBD and the SSM (region3 )
is 0.9dB. Although the largest difference is expected to be in the deepest shadow zone
(region0 ), the medium shadow zone (region1 ) has a 0.5dB greater difference than the
deep shadow zone. This effect occurs qualitatively for all distances larger than 10λ
and can also be seen in the maximum difference of 2.2dB at ϕR = −37◦. There is
no physical explanation for this effect and, thus, the effect can only be argued by the
totally different underlying diffraction theories. Finally, the average over all region3
setups shows that the UBDg fits the SSM better (0.2dB) than the UBDb (0.7dB).

Changing Source Angle As a final experiment for the single wedge setup, the distances
are now fixed with rS = rR = 10λ and the source angle ϕS is varied in steps of
15◦. These experiments have never been performed by Stephenson, as he expected
these experiments to be covered already by the reciprocity principle. Indeed these
experiments are important, because, on the one hand, the UBD was not reciprocal
before and, on the other hand, these experiments now include total diffraction angles
above 90◦, which are very important in practical cases. Without the introduction of
the projected slit width (see Sec. 5.4) the UBD would cause errors of up to 20dB for
sound sources in the shadow zone. With the introduction of the projected slit width, the
difference between the UBDg and the SSM is only 2.3dB in region3 for sound sources
in the deep shadow zone ϕS = −75◦ (see Tab. A.4). These angles correlate with a
total diffraction angle of ε ≈ 150◦. The good agreements between the UBD and the
SSM are even more astonishing, as the derivation of the diffraction module uses the
Kirchhoff approximation which is only valid for small diffraction angles[Pie89]. Hence,
the introduction of the projected slit width to the UBD is interpreted also as an extension
of the Fraunhofer diffraction to greater diffraction angles (see Sec. 2.3.4.3). Diffraction
angles above ±90◦ were not possible before the redefinition of the normalization (see
Sec. 5.2.4). The interference effect for the SSM as well as the saddle point of the MDL
are shifted on the ϕR axis by the source angle as shown in Fig. 5.30.
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Figure 5.30.: Validation of a single screen as a function of ϕR, with rS = 10λ, ϕS = −45◦
and rR = 10λ.

For ϕS = −45◦, the transition from the shadow zone into the view zone is at ϕR =
45◦, where the saddle point of the MDL is identified. The interference point is also
shifted from ϕR = 21◦ (ϕS = 0◦) to ϕR = 66◦ (ϕS = −45◦) (as the angles are counted
in different directions). The UBDg yields about 1dB smaller transmission levels than
the UBDb for all source angles in the (now extended) shadow zone. As the UBDg
matches the SSM quite well for ϕS = 0◦ and rS = rR = 10λ, the averaged difference
in region3 is 0.0dB and 0.6dB for the UBDb.

87



5. Simulation of Diffraction in Geometrical Acoustic Simulation Methods

5.5.1.2. Slit

The geometrical setup for the slit is composed by two wedges where both diffraction
wedges are parallel to the z − axis. In addition to the parameters of the single wedge
experiment, the distance between the wedges d is varied, too. The regions of interest
are the same as before (see Fig. 5.31). The MDL is not defined for the diffraction at a
slit and is, thus, not considered here. The EDB is used to compute the SSM again and
the UBD is computed according to Eqn. 5.36.
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Figure 5.31.: Definition of the investigated regions of the slit. Green angles are only valid
for rS = rR.

The reference experiment for the slit setup is defined as follows: the sound source is
located on axis (ϕS = 0◦) and all distances are set to rS = rR = d = 10λ. Stephenson
validated the received sound intensity relative to the total diffracted sound energy for
parallel incidence, i.e., rS,R →∞. In order to stay conform to both other experiments
in this section, the transmission degree T is defined as the received sound intensity
relative to the free-field sound intensity (as for the single wedge). The transmission
levels are shown in Fig. 5.32.
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Figure 5.32.: Validation of a slit (d = 10λ) as a function of ϕR, with rS = 10λ, ϕS = 0◦
and rR = 10λ.

The transmission level is completely symmetrical to ϕR = 0◦ for the SSM and for both
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UBDs. In the angle range −35◦ < ϕR < 35◦, the transmission level is almost exactly
0dB for both DAPDFs (compare with total illumination area −53.13◦ < ϕR < 53.13◦,
see Fig. 5.31). For the SSM, in the transition region between the shadow and the
view zone again the interference effect is modelled yielding an overestimation of the
diffraction of +0.8dB at ϕR = ±36◦. In the actual shadow zone, the UBDg yields
again an approximately 1dB smaller transmission level than the UBDb. The UBDg
fits the SSM better in the shadow zone of region0 (−0.2dB in contrast to +1.1dB).
The maximum difference of +1.0dB at ϕR = ±47◦ as well as the minimum difference
of −0.8dB at ϕR = ±36◦ reveal a very good agreement between the SSM and the
UBDg . Furthermore, the overall difference between these transmission levels is ±0.0dB
in region3. In short, the good agreements of the single wedge experiment are also
obtained for the slit experiment.
Based on this reference case, only one of the distances rS , rR and d is changed.

Then, all distances are changed simultaneously to perform a variation of the frequency.
Finally, a variation of the source angle ϕS is investigated. The numerical results as well
as the plots are given in appendix A.2.2.

Changing Source Distance The source distance rS is varied within the same range as
in the single wedge experiment. For distances rS > 10λ, the results converge to a far
field distribution and the UBD differs only slightly from the SSM. In contrast to the
perfect match for rS = 10λ, the SSM matches the UBDg still very well in the view zone
and in the deepest shadow zone, but the SSM computes smaller transmission levels
between ϕR = ±75◦ and ϕR = ±45◦ of up to +1.3dB at ϕR ≈ ±64◦ (see Tab. A.5).
Hence, a mean difference of +0.9dB is noticed in region0 resulting in a total difference
of +0.5dB in region3. With the UBDb, this difference is +1.3dB due to the constantly
greater transmission levels. For shorter source distances rS < 10λ, the angle range of
the view zone increases drastically (∆ϕR = 150◦ for rS = 1λ, see Fig. 5.33).
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Figure 5.33.: Validation of a slit (d = 10λ) as a function of ϕR, with rS = 1λ, ϕS = 0◦
and rR = 10λ.

For these short distances that are not covered by Kirchhoff theory, almost no differ-
ence between the different DAPDFs is found. Both show good agreement with the SSM
with L ≈ 0dB. For the closest distance of rS = 0.1λ, the SSM computes a transmission
level of L ≈ 0dB over the complete angle range of the receivers, whereas the UBD
yields transmission levels up to 3dB below this threshold for receiver positions in the
deep shadow zone, |ϕR| > 80◦. Minimum differences between the UBD and the SSM
of −3.4dB occur at ϕR = ±89◦. In the deep shadow region, sound energy is diffracted
for sound particles passing the edge closely, hence, some energy is missing for receivers
in the straight forward direction of these sound particles. This effect decreases with de-
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creasing source distances with the result that again a match between the SSM and the
UBD is expected for even shorter source distances rS < 0.1λ. However, the agreements
are still better than expected, because the underlying Kirchhoff theory is derived for
large distances. The average of all the experiments in region3 shows better agreement
between the UBDg and the SSM (0.2dB) than in case of the UBDb (0.5dB).

Changing Receiver Distance In the second experiment, the receiver distance rR is
varied, while both source and wedge distances are constant rS = d = 10λ. The source
angle is again on axis (ϕS = 0◦). For receiver distances of rR ≤ 1λ, all receivers are
completely in the view zone of the slit (see Fig. 5.31). For rR = 1λ, the transmission
level is almost constant with L ≈ 0dB (±0.2dB, see Tab. A.6). Due to this, no
numerical values are computed for receivers even closer to the slit. With increasing
receiver distances, the transmission level of both the SSM and the UBD gradually turns
to a far field transmission level that is almost independent of the distance (see Fig. 5.34
for rR = 1000λ).
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Figure 5.34.: Validation of a slit (d = 10λ) as a function of ϕR, with rS = 10λ, ϕS = 0◦
and rR = 1000λ.

For rR = 1000λ, the compatibility between the SSM and the UBDg is good with
almost no discrepancy in both the view zone and the deepest shadow zone. However,
for the transition from region0 to region1, the UBD overestimates the transmission level.
The maximum difference of +1.5dB occurs at ϕR = ±60◦ and the mean differences are
+1.0dB in region0 and +0.8dB in region1. The differences between the SSM and the
UBDb are again about 1dB greater than between the SSM and the UBDg . The mean
average over all experiments in region3 reveals better agreement of the UBDg (0.3dB)
in contrast to the UBDb (0.8dB) with the SSM.

Changing Slit Width For constant source and receiver distances rS = rR = 10λ and
a source angle of ϕS = 0◦, the influence of the wedge distance d (aperture size) is
investigated in the following. For wedge distances above d > 10λ, the slit is too large to
observe diffraction phenomena for the given source and receiver distances. Hence, the
transmission level equals L ≈ 0dB for both diffraction methods. For wedge distances
below d < 10λ, shadow regions occur. The difference in-between these methods is
in the range between −0.8dB and +1.0dB in case of d = 10λ (see Tab. A.7). For
smaller distances of the wedges (aperture size), almost no agreement between the SSM
and the UBD was expected, because strong side-lobes occur for small aperture sizes
with Fraunhofer diffraction (see Sec. 2.3.4.3). Indeed, the maximum difference over all
distances occurs for d = 1λ with 2.3dB in the same order of magnitude as before at
ϕR = ±62◦. The transmission level is shown for d = 1

10λ in Fig. 5.35.
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Figure 5.35.: Validation of a slit (d = 1
10λ) as a function of ϕR, with rS = 10λ, ϕS = 0◦

and rR = 10λ.

The transmission level computed with the SSM is quite constant at −22dB for the
complete angle range −89◦ < ϕR < 89◦. The UBDb matches the SSM for the complete
angle range, whereas the UBDg underestimates the diffracted energy with about−3.1dB
at ϕR = ±89◦. Although the UBDb matches the SSM better for d = 1

10λ, the UBDg
matches the SSM around 1dB better for all larger distances. The mean difference in
region3 averaged over all distance combinations shows better results for the UBDg
(0.0dB) than the UBDb (0.5dB) in comparison to the SSM.

Changing All Distances In order to investigate the frequency behaviour of diffraction at
a slit, all distance combinations 1

10λ < rS = rR = d < 1000λ are computed. As in the
previous experiments, the UBDb computes slightly greater transmission levels than the
UBDg , which, again, matches the SSM better - at least for larger distances. For small
distances, i.e., low frequencies, quite constant transmission levels are found again similar
to the experiment with small apertures (d ≤ 1), but fixed source and receiver positions
rS = rR. In this experiment, however, the transmission level is around L ≈ 0dB for
ϕR = 0◦. The quite constant transmission level for d = 1

10λ converges to transmission
levels down to −10dB at d = 1λ in region0 (see Tab. A.8). For larger distances, i.e.,
higher frequencies, a plateau is found between −45◦ < ϕR < 45◦ (as shown in Fig. 5.36
for rS = rR = d = 100λ).
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Figure 5.36.: Validation of a slit (d = 100λ) as a function of ϕR, with rS = 100λ, ϕS = 0◦
and rR = 100λ.

For rS = rR = d = 100λ identical results are computed in the view zone except for the
interference effect yielding a difference of −1.1dB between the UBD with both DAPDFs
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and the SSM at ϕR = ±47◦. However, the SSM computes smaller transmission levels
in the deep shadow zone (region0 ) with a difference of +1.6dB in comparison to the
UBDg and +3.0dB in comparison to the UBDb. The maximum difference between both
models is again not obtained for the lowermost angle ϕR = ±89◦, but for ϕR = ±74◦.
In the regions region1 and region2 almost no difference between the UBDg and the
SSM is found (±0.0dB) and only slight differences occur in the case of the UBDb
(region1 :0.2dB, region2 :0.0dB). In the complete angle range, on the other hand, the
discrepancy between the UBDb and the SSM (0.6dB) is significantly greater than with
the UBDg (0.3dB).

Changing Source Angle In a last experiment for the slit setup, the source angle is
modified in steps of 15◦ in-between −75◦ ≤ ϕS ≤ 75◦. In the appendix A.2.2.5 only
the figures for the angles −75◦ ≤ ϕS ≤ 0◦ are shown as greater angles equal the shown
graphs with inverted x − axis due to the complete symmetrical geometry. The UBDg
yields almost identical transmission levels for ϕS = 0◦ in comparison to the SSM,
whereas the UBDb overestimates the transmission levels in the shadow zone. Similar to
the single wedge experiment, this behaviour stays almost unaffected by a rotation of the
sound source up to extreme angles. For all possible combinations of source and receiver
angles, the difference between the SSM and the UBDg is always between −1.9dB and
+2.2dB (see Tab. A.9) whereas it is in the range of −0.9dB up to +4.9dB using the
UBDb. The difference is explained by the general overestimation of diffraction by the
previous DAPDF. It should be noted that the extreme discrepancies occur only in
the outermost receiver positions at ϕR = ±89◦. As an example, a comparison for
ϕS = −45◦ is shown in Fig. 5.37.
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Figure 5.37.: Validation of a slit (d = 10λ) as a function of ϕR, with rS = 10λ, ϕS = −45◦
and rR = 10λ.

For ϕS = −45◦, two shadow regions exist with different transmission levels. For
ϕR < 0◦, transmission levels down to −22dB are computed and the SSM matches
the UBDg almost perfectly. In contrast, the shadow region for ϕR > 0◦ computes
transmission level down to −10dB, but the SSM now matches the UBDb better. As
the first shadow zone exists in a wider angle range, the mean difference of the UBDg
is +0.1dB in region3 and +0.6dB in case of the UBDb. The average over the region3
values of all source angles shows a by far better agreement of the UBDg (0.1dB) with
the SSM than in case of the UBDb (0.7dB), but both still agree well with respect to
the different diffraction theories.

92



5.5. Validation and Comparison with Reference Models

5.5.1.3. Double Wedge

Finally, as a completely new investigation compared to the experiments that were car-
ried out by Stephenson until 2009[Ste09], the validation of two subsequent wedges is
discussed. Here, both wedges are parallel to the z − axis. The same investigations are
performed as for the slit experiments, but the distance d now describes the distance
between the wedges in x− direction. It should be noted that the source and the receiver
distances are given relative to the closest wedge (see Fig. 5.38). In case of the MDL,
the transmission level is computed directly from Eqn. 5.4 with the detour of Fig. 5.2.
The EDB is used to perform the SSM, where an accuracy parameter had to be intro-
duced for higher order diffractions. In order to achieve results for this setup, the wedge
length of ∆z = 2000m has to be adjusted depending on the accuracy parameter for
each experiment to reduce the memory effort. Although the results are valid for a wide
range of parameters, singularities are occurring for the SSM and will be mentioned.
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Figure 5.38.: Definition of the investigated regions of the double wedge

The reference experiment is given by an source angle of ϕS = 0◦ and distances of
rS = rR = d = 10λ. The transmission levels L = 10 · log10 (T ) are shown in Fig. 5.39.
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Figure 5.39.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 10λ,
ϕS = 0◦ and rR = 10λ.
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The transmission level equals the behaviour of a single wedge qualitatively, but trans-
mission level down to −30dB are achieved. Although very good agreements in the view
zone are still observed, the difference between the UBD and the reference methods in-
creases in the shadow zone. When comparing the UBDg with the SSM, the difference
has a maximum of +3.2dB at ϕR = −42◦ and a minimum of −0.9dB at ϕR = +37◦.
The minimum difference is caused by the same interference ripples as in the former
experiments. Although the SSM is influenced by singularities in the region around
ϕS ≈ 0◦, the results are accurate for the remaining angle range. In the shadow zone
the UBDg results in transmission levels of about 1dB below the transmission levels of
UBDb (as for the former investigations), resulting in a better match with the SSM. In
the complete angle range (region3 ), the UBDg matches the SSM about 0.5dB better
than the UBDb. On the other hand, the MDL computes up to 6.5dB greater transmis-
sion levels compared to the UBD and even 8dB greater transmission levels compared
to the SSM. Thus, the results of the MDL are assumed to be totally wrong for double
diffraction.
The parameters are varied as for the former experiments.

Changing Source Distance In this experiment, the source distance is varied within a
range of 0.1λ < rS < 1000λ. For larger source distances rS > 10λ, the difference
between the UBD and the SSM increases slightly about 0.3dB in region3 (see Tab.
A.10). Nevertheless, a convergence to the far field case is observed, as the difference
in-between rS = 100λ and rS = 1000λ is below 0.1dB except for the deep shadow zone
(region0 ), where the UBD still decreases for increasing source distances. In case of
decreasing source distances, however, the difference between the SSM and the UBDg
almost vanishes (see Fig. 5.40 for rS = 1λ).
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Figure 5.40.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 1λ,
ϕS = 0◦ and rR = 10λ.

Unfortunately, the decreasing source distance rS increases the effect of the singularity
around ϕR ≈ 0◦ (SSM), but the effect occurs only locally. Both the maximum difference
of +5.6dB at ϕS = +1◦ and the minimum difference of −1.8dB at ϕS = −1◦ between
the SSM and the UBDg are caused by this singularity. For the remaining angle range,
the UBD and the SSM fit quite well (differences below 1.0dB), such that an average
of 0.8dB is computed for region3. The UBDb computes an average error of 1.2dB in
the same range and the average over all source distances shows better agreement of the
UBDg (0.8dB) in comparison to the UBDb (1.3dB).
The variation of the receiver distance behaves alike, but the average difference be-

tween the SSM and the UBD is increased by 0.5dB (1.2dB with the UBDg compared
to 1.7dB with the UBDb). All numerical values are listed in Tab. A.11.
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Changing Distance Between Wedges In the following test case, the distance d is varied
and the distances rS = rR are set to 10λ. Increasing the wedge distance above the
reference distance (d > 10λ) reduces the difference between the SSM and the UBD.
A convergence to a far field distribution of all three models is observed – at least in
the shadow region (region0 -region2, see Tab. A.12). For these increased distances, a
variation of the transmission level in the view zone is noticed for the first time. Here,
the transmission level decreases from 0dB at d = 10λ to −6dB at d = 1000λ. This
effect is almost identical for all three models. The physical reason for this effect is that
even the sound wave propagating to the receivers in the upper view zone passes the
first wedge with a short distance, such that the decreased transmission level is mainly
an effect of first order diffraction. This effect is independent of the DAPDF and very
smooth for the UBD and the SSM, whereas it is a hard transition at ϕR ≈ 0◦ in case of
the MDL. For wedge distances below the reference distance (d < 10λ), the computation
of diffraction becomes incomputable for the SSM (see Fig. 5.41 for d = 1

10 ) due to the
computational effort.
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Figure 5.41.: Validation of a double wedge (d = 1
10λ) as a function of ϕR, with rS = 10λ,

ϕS = 0◦ and rR = 10λ.

The singularity of the SSM is observed in the angle range of −30◦ < ϕR < 30◦,
d = 1

10 , such that the reference solution becomes doubtful for the complete angle range.
Without a wave theoretical reference solution, the UBD can only be compared to the
MDL, which shows good agreements for very close wedges. Although the MDL is only
a very rough approximation, the results are plausible in this case, because such close
wedges act almost like a single diffraction event (see Sec. 5.5.2.2). Although doubtful,
the average difference over all distances in region3 between the SSM and the UBDb is
1.5dB and 2.0dB in case of the UBDg . The reader is reminded that these values are
strongly influenced by the singularities of the SSM.

Changing All Distances Now, all distances rS = rR = d are modified simultaneously.
This can be reinterpreted as constant distances, but varying frequencies. The simulta-
neous modification of all distances allows a better adjustment of the SSM parameters,
such that this reference model is valid almost for the complete distance range. For very
small distances, rS = rR = d = 0.1λ, i.e., very low frequencies, the agreement between
the SSM and the UBD is quite good for both DAPDFs, although the UBDb shows
better results in region0 (+0.1dB in contrast to −1.0dB, see Tab. A.13). The MDL, on
the other hand, yields different results as it overestimates the transmission level with
about 3dB for ϕR < 0◦ and underestimates the transmission level to the same amount
for ϕR > 0◦. In case of a distance of rS = rR = d = 1λ, the SSM matches the UBDg
in both the deep shadow zone region0 and the view zone. Only in the transition zone
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around ϕR ≈ 0◦, the UBD computes a greater transmission level of approximately
2dB. Larger distances result in even better agreements than the reference distance of
rS = rR = d = 10λ (see Fig. 5.42 for rS = rS = d = 1000λ).
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Figure 5.42.: Validation of a double wedge (d = 1000λ) as a function of ϕR, with rS =
1000λ, ϕS = 0◦ and rR = 1000λ.

For such large distances, transmission levels down to −52dB are computed with
the SSM. Astonishingly, this transmission level almost matches the UBDg , but also the
UBDb computes transmission levels down to −50dB in the deep shadow zone (region0 ).
The MDL overestimates the transmission levels (only down to −42dB) in the same
region and, thus, adds an error of up to 10dB. Like in the experiment for the single
wedge and the slit, the maximum error between the UBD and the SSM is not in the deep
shadow zone (region0 ), but occurs at ϕR = −6◦ where the slope of the transmission
level has its maximum. The average difference over all distances between SSM and the
UBDb is 1.5dB and 1.0dB in case of the UBDg , respectively. However, the difference
between the UBD and the MDL is −2.3dB and −2.8dB, respectively.

Changing Source Angle The last experiment handles the variation of the source angle
ϕS in steps of 15◦ for double diffraction. The distances are set to rS = rR = d = 10λ.
Due to the geometrical setup, source angles in the view zone with ϕS > 0◦ result in
single diffraction events at the second wedge. As described in the section on the single
wedge, the agreement between the SSM and the UBDb is only a little bit better than
with the UBDg . Thus, the more interesting case is defined by sources in the shadow
zone ϕS < 0◦ (see Fig. 5.43 for ϕS = −45◦).
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Figure 5.43.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 10λ,
ϕS = −45◦ and rR = 10λ.
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Two regions are identified for a sound source in the shadow zone (ϕS = −45◦). In case
of receivers in the former view zone ϕR > 0◦, single diffraction occurs which has already
shown good agreements (see Sec. 5.5.1.1). Receivers in the shadow zone (ϕR < 0◦) are
influenced by both double diffraction and diffraction angles above ε > 90◦. In contrast
to single diffraction or the diffraction at a slit, the transition of a sound source into the
shadow zone increases the difference between the SSM and the UBD even with the new
DAPDF up to 5.5dB at ϕR = −52◦ (see Tab. A.14). This difference decreases for even
lower receivers slightly, such that a mean difference in region0 of 5.3dB is observed.
This difference is reduced to 2.4dB in region3. The average over all source rotation
angles shows that the UBDg yields significantly better results (1.1dB) than the UBDb
(1.8dB).

5.5.1.4. Discussion of the Validation of the Simple Test Cases and Choice of the
Diffraction Angle Probability Density Function

The analytical comparison of the UBD with the wave theoretical reference model SSM
for the single wedge, the slit and two subsequent wedges showed that in either case a
convergence to a far field distribution is observed with increasing source and receiver
distances. Also for close distances, acceptable agreements are noticed, where a failure
of the UBD was actually expected. In general, the UBD matches the SSM in almost all
test cases for the single wedge and the slit. Although the UBD is based on Kirchhoff
assumptions and, thus, it is theoretically only valid for small diffraction angles, very
good agreements between the SSM and the UBD are observed for the transition of the
sound source even in the shadow zone for the single wedge and the slit. This is achieved
by the introduction of the projected slit width (see Sec. 5.4). All former EDSs were
not able to handle this critical section correctly. In case of double diffraction, the UBD
computes greater transmission levels (up to 5dB in the worst case, where the absolute
transmission level is in the range of −50dB). In all experiments the UBD proved to be
a huge improvement in comparison to the MDL.
In order to choose the best-suited DAPDF, the numerical values of the single wedge,

the slit and two subsequent wedges are averaged and minimum and maximum values
are determined. The results are given in Tab. 5.1

region [dB] Min[dB] at[◦] Max[dB] at[◦]0 1 2 3

si
ng

le

UBDb-MDL −1.1 −1.1 −1.4 −0.4 −7.5 −89 +5.1 +89
UBDb-SSM +0.9 +1.2 +0.6 +0.5 −3.0 −89 +7.2 −89
UBDg-MDL −2.6 −2.4 −2.2 −1.0 −11.4 −89 +4.7 +89
UBDg-SSM −0.5 ±0.0 −0.2 −0.1 −4.7 −89 +3.8 −25

sl
it UBDb-SSM +1.4 +0.6 ±0.0 +0.7 −3.4 ±89 +5.2 ±66

UBDg-SSM +0.3 +0.2 +0.1 +0.2 −3.4 ±89 +3.6 ±66

ca
sc
ad

e UBDb-MDL −4.4 −4.5 −4.4 −2.2 −12.2 −80 +2.6 +89
UBDb-SSM +2.7 +3.6 +2.9 +1.7 −18.1 −01 +28.3 +01
UBDg-MDL −5.6 −5.8 −5.4 −2.8 −13.9 −82 +3.0 +89
UBDg-SSM +1.5 +2.3 +1.9 +1.1 −18.4 −01 +28.2 +01

Table 5.1.: Average differences between different diffraction models for the single wedge, the
slit and the double wedge.

The UBDb shows in all regions and every setup better agreements with the wave
theoretical reference (about 1dB), but the choice of the DAPDF showed a minor effect
than expected. However, as the UBDb matches the SSM better, UBDb is discarded and
only UBDg is used in the following (the index g is omitted).
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5.5.2. Consistency of the Uncertainty relation Based Diffraction Module

In this section, the consistency of the UBD is discussed. In this context, consistency
means that the UBD model has to fulfil the most important physical laws and has to be
independent of the variation of (no physical/geometrical) parameters. The important
reciprocity principle has already been investigated before (see Sec. 5.4).
Now, the fulfilment of Babinet‘s principle[Bab37] is discussed. Second, the conver-

gence of double diffraction to single diffraction (d → 0) is studied. As the VW is
constructed by the convex sub-division and, thus, is not necessarily placed exactly on
the bisecting line of the wedge, the influence of the misplacement of this VW is inves-
tigated. The studies are restricted to the distance of r = 10λ, since only the principle
behaviour is of interest and the results are assumed to be applicable to other distances.

5.5.2.1. Babinet’s Principle

Babinet’s principle[Bab37] is basically known from optics[Hec01]. It states that the
superposition of a wave propagating around a screen adds up with the wave propagating
through the complementary screen to the equivalent wave without any obstacle. In this
context, complementary means that the opening is replaced by a solid screen and vice
versa. In addition, the impedance of the objects has to be inverted, too (hard ↔ soft)
[HC99], and complex sound pressures have to be added. However, as the aim of this
section is to check whether the energetic UBD fulfils Babinet’s principle, identical (hard)
surfaces are assumed and intensities are added up.
In this work, the diffraction of a slit is combined with the diffraction around a screen

(obstacle) with the same size as the slit (see Fig. 5.44).
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Figure 5.44.: Geometrical definitions for an investigation of Babinet’s principle by super-
posing diffraction at a slit and diffraction around an obstacle.

The transmission level of the slit in case of the UBD can directly be computed from
Eqn. 5.36 by integrating in the range of − d2 < a < d

2 . However, in case of the screen,
the integration has to be performed from −∞ < a < − d2 and from d

2 < a < ∞. In
addition, the energetic sum is shown in Fig. 5.45, too.
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Figure 5.45.: Validation of Babinet’s principle at a slit, its complementary screen and their
energetic sum for the Uncertainty relation Based Diffraction.

In the view zone of the slit (−45◦ < ϕR < 45◦) as well as in the view zone of the
screen (|ϕR| > 60◦) a transmission level of L = 0dB is obtained solely by either the slit
or the screen. The appropriate transmission level is small enough (L < −10dB), such
that the energetic sum also fulfils the L = 0dB requirement. Geometrically, the point
of transition is found at |ϕR| ≈ 53.13◦ (see Fig. 5.31). At this point, the transmission
level is computed by the UBD to −5.6dB for both the slit and the obstacle. Hence,
both energies add up to −2.6dB. Around this transition angle, the transmission level of
the sum of both transmission levels converges quite linearly to the 0dB level in the view
zones described earlier. Unfortunately, the requested transmission level of L = 0dB is
underestimated by the energetic sum with about −2.6dB at the most. To understand
this behaviour, the same experiment is performed for the SSM. In theory, the SSM
fulfils Babinet’s principle exactly for a single frequency, as it is a wave-based approach.
In contrast to Kirchhoff, the SSM needs a well-defined wedge angle. This angle is set
to 1◦ for both limits of slit and for the screen. The crucial point is that the diffraction
modules that are applicable in GA have to be valid for a frequency range. Due to
this requirement, the SSM was evaluated in octave bands in the former experiments.
Assuming this octave band averaging also for the investigation of Babinet’s principle,
the transmission levels are computed with the SSM (see Fig. 5.46).
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Figure 5.46.: Validation of Babinet’s principle at a slit, its complementary screen and their
energetic sum for the Secondary Source Model.

The SSM computes transmission levels greater than L = 0dB for both the slit and
the screen. The energetic sum yields the same overestimations of about 1dB for the
diffracted energy. In the transition region, the underestimation of the UBD is repeated.
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In order to exclude the effect by averaging, the SSM is computed for a single fre-
quency instead of an octave band and, again, the results for the screen and the slit
are added up energetically (see Fig. 5.46, dark red). Due to the evaluation at a sin-
gle frequency, the overall behaviour of the transmission level slightly varies over the
complete angle range (±1dB), but in the transition region, the significant reduction
of the transmission level still exists. Hence, the octave band averaging cannot be the
reason for the underestimation of the transmission level in the transition region. In
both experiments, the transmission levels were added up energetically. In case of the
SSM, the phase information of the amplitude can be taken into account. Therefore, the
(complex) transmission degree is added up before the transmission level is computed
from the magnitude of this addition (see Fig. 5.46, blue). Then, the reduction of the
transmission level in the transition zone is compensated almost completely and the
interference effects that overestimate the transmission level are compensated as well.
The insignificant variations over the complete angle range might be explained by the
not exact complementary setup: The geometrical reason is that wedges are modelled in
contrast to flat barriers as in the original case of Babinet. Thus, the superposition of
slit and obstacle does not exactly form an infinite flat wall. Another reason is that one
of the setups would have been modelled with soft instead of rigid surfaces.
The conclusion is that the discrepancy between the SSM and the UBD is mainly

caused by the energetic addition of the transmission levels. However, this effect cannot
be modelled by the UBD, as phase information could not be introduced at any time.

5.5.2.2. Convergence of Double Diffraction to Single Diffraction

As an analytical solution is available now for double diffraction, the convergence from
double to single diffraction is investigated for the first time. In order to have a consis-
tent diffraction module, the transmission levels of the double diffraction experiments for
small wedge distances have to converge to the transmission levels of the single wedge.
Mathematically speaking, Eqn. 5.50 should converge to Eqn. 5.32 for d → 0. Un-
fortunately, this transition is not performable in an analytical way, because too many
geometrical singularities occur. A geometrical investigation is presented that shows
arguments for such a convergence. In addition, numerical experiments are performed.
As shown in Fig. 5.17b, the transition of d→ 0 does not affect the diffraction at the

first VW. However, by moving the second VW in the direction of the first VW, the
distance a2 has to equal a1, because both VWs merge to one. The numerical problem
for d → 0 occurs for the computation of the angle of incidence ζ1 on the second VW.
It is computed from Eqn. 5.39 (see Fig. 5.18). It is shown in Fig. 5.47 for different d.

-90
-75
-60
-45
-30
-15

0
15
30
45
60
75
90

di
ff

ra
ct

io
n

an
gl

e
ζ 1

[◦
]

-10 -8 -6 -4 -2 0 2 4 6 8 10

difference in intersection points a2−a1

d = 10
d = 1
d = 0.1
d = 0.01

Figure 5.47.: Angle between two Virtual Walls ζ1 for different wedge distances d as a func-
tion of the difference of intersection point a2 − a1.
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For d = 0, the angle ζ1 is not defined, but for infinitesimally short distances d → 0,
the angle ζ1 jumps from ζ1 = 90◦ at a2 = a1 − εa) to ζ1 = −90◦ at a2 = a1 + ε.
This singularity, or undefined behaviour, of the angle between those VWs makes

an analytical formulation hard to define. However, as the distance d between both
VWs converges to zero, the sound particles travel almost no distance in-between the
VWs (in neither x− nor y direction). So, the scattering and the broadening of the
distribution of the secondary sound particles that are diffracted by the first VW, and,
thus, the diffraction effect, is approximately suppressed. Hence, only the diffraction at
the second VW takes place - as expected.
For a numerical investigation of the former assumption, the transmission level of the

double wedge (see Sec. 5.5.1) with different d are compared directly to the transmission
levels of the single diffraction. Although for double diffraction the source position and
the receiver position are defined relative to the closer VW, their positions are practically
the same as in the single diffraction case. For the UBD, the results are compared in
Fig. 5.48.
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Figure 5.48.: Convergence of the transmission level from double diffraction to single diffrac-
tion for rS = rR = 10λ of the Uncertainty relation Based Diffraction.

The transmission level of the UBD converges to the single diffraction experiment
(black) above ϕR > 15◦. Furthermore, in the deepest shadow zone at ϕR = −89◦
the same convergence is noticed. In the shadow zone −80◦ < ϕR < 0◦, the double
diffraction converges to the single diffraction for decreasing wedge distances down to d =
1λ. For even shorter distances d = 0.1λ, the transmission level increases even further,
i.e., an over-convergence of the double diffraction experiment is observed. However,
this effect is 2dB at the most. This is better than expected, because mathematically a
double diffraction is still computed even for d = 0.1λ.
This effect could be reduced by scaling the EDS by a factor that takes into account

the distance from the last point of diffraction, such that the influence of the EDS
is weakened. The main advantage of such a factor is that the convergence to single
diffraction is achieved, as the diffraction at the second VW is disabled for d→ 0. This
factor would, on the other hand, abandon the assumption that sound particles should
be handled independently with respect to their history. That is very important for the
reunification of sound particles, because sound particles might differ in another attribute
(distance since last diffraction) and could not be reunified with particles with the same
propagation path, but different diffraction distances. Therefore, a modified EDS should
be avoided and slight differences in the convergence of double to single diffraction for
the UBD should be accepted.

a)Here ε indicates an infinitesimally small positive distance
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Double diffraction that is computed with the MDL, converges of course exactly to
the single diffraction results (see Fig 5.49), if just the total detour is measured.
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Figure 5.49.: Convergence of the transmission level from double diffraction to single diffrac-
tion for rS = rR = 10λ of the Maekawa Detour Law.

Due to the simple geometry, it is clear that with decreasing d the detour converges
to the single diffraction case.
Finally, the convergence of the SSM is investigated (see Fig. 5.50).
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Figure 5.50.: Convergence of the transmission level from double diffraction to single diffrac-
tion for rS = rR = 10λ of the Secondary Source Model.

In both the upper view and the deep shadow zone, the double diffraction case con-
verges to the single diffraction case with decreasing d, but in contrast to the UBD, the
single diffraction level is not reached for d = 0.1λ yet (−3dB). However, the results
are doubtful anyway, because singularities occur in the angle range of ϕR ≈ 0◦ which
spread at least 30◦ in both the shadow and the view zone. As described in the previous
section about double diffraction, it is mathematically demanding to compute double
diffraction for very close wedges, because of two countervailing requirements. First, the
wedge has to be split up in very small parts for the numerical integration due to the
very close wedge and, second, the wedge has to be of proper length due to the source
and receiver distances of rS = rR = 10λ. Both restrictions spread for decreasing wedge
distances, such that the numerical problems increase for closer wedges.

5.5.2.3. Influence of the Angle of the Orientation of a Virtual Wall

The investigations so far assumed the VW to be identical with the yz − plane(x = 0).
In the SPSM, however, this VW can be rotated around the diffracting wedge by convex
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sub-division (see Chapter 4). This influence has to be small in order to obtain a robust
model. In this section, the influence of such a rotation by an angle of γ is investigated
for the single wedge case (see Fig. 5.51a).

φR=0°

φR=-90°

φR=90°

 γ 

φs=0°

wedge

source

receivers

virtual wall

(a) rotation of a Virtual Wall by an an-
gle of γ

wedge

source

receivers

γ

φS=0° - γ 

φR=90° + γ 

φR=-90° + γ 

virtual wall

(b) rotation of the complete scene by an
angle of γ

Figure 5.51.: Rotation of a Virtual Wall and its complementary scenario.

This rotation yields extensive modifications for Eqn. 5.32, as all angles and distances
have to be recalculated. As, on the other hand, the actual wedge does not affect the
UBD, a complementary scenario is defined by rotating both the source and the receiver
position (see Fig. 5.51b). Mathematically speaking, the complementary scenario is
described by

ϕS → ϕS − γ and ϕR → ϕR + γ. (5.70)
Using these modifications, Eqn. 5.32 is utilized to compute the transmission level for
a rotated VW. The angle γ is rotated in steps of 30◦ in the range −90◦ ≤ γ ≤ 90◦ as
shown in Fig. 5.52a.

γ=0° γ=30°γ=-30°

γ=-60° γ=60°

γ=-90° γ=90°

φR=-90°

φR=90°

wedge

source

receivers

virtual walls

(a) investigated positions of a Virtual
Wall

φR=-90°

φR=90°

wedge

source

receivers

γ=-30° γ=30°

(b) neglected receiver positions due to
geometrical restrictions

Figure 5.52.: Geometrical definitions for the rotation of a Virtual Wall

Due to the rotation of the VWs, some receivers may become invalid and cannot be
computed with Eqn. 5.32. This effect differs for γ < 0◦ and γ > 0◦, such that both
effects are discussed independently from each other.
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Invalid receivers for γ < 0◦ Deep in the shadow zone, receivers become invalid (see
green receivers in Fig. 5.52b). The analytical equation of the transmission level cannot
be computed, because the normalization of the diffracted energy is restricted to diffrac-
tion angles behind the VW of |ε2| < 90◦. Although that effect could be handled by
changing to a different normalization (see Sec. 5.2.4), no energy would be transported
by sound particles. For sound particles that intersect with the VW, the emitted sec-
ondary sound particles cannot reach the lower receivers, as the wedge still shadows the
receivers. This problem, however, cannot occur if the space is properly subdivided into
convex subspaces by means of VWs. Thus, an additional VW has to be inserted. The
effect of these multiple VWs is discussed in Sec. 5.5.4.

Invalid receivers for γ > 0◦ For the analytical formulation of Eqn. 5.32, receivers in
the upper view zone become invalid. Some receivers rotate through the VW to the
source-side of the VW (see purple receivers in Fig. 5.52b). This cannot be handled by
the analytical equation, because no sound energy is diffracted back to the source-side
of the wedge. However, this effect is only a problem of the analytical formulation. In
an actual SPSM, the receivers on the source-side of the VW would detect the direct
(undiffracted) sound field of the sound source yielding a transmission level of L = 0dB,
respectively, as physically expected.

For the remaining receiver positions, the transmission level is shown in Fig. 5.53 for
different rotation angles γ. The transmission level for γ = 0◦ is the target function, as
it was used in the former evaluations.
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Figure 5.53.: Influence of the rotation of a Virtual Wall on diffraction using the Uncertainty
relation Based Diffraction for a single wedge with rS = rR = 10λ.

Rotations of the VW of γ = ±90◦ are not computable, because the sound source at
ϕS = 0◦ is in plane with the VW. For this geometrical setup, singularities occur in
the computation of angles and distances (see Fig. 5.52b). In case of the SPSM, this
could be directly explained by the absence of sound particles that could intersect with
this VW. For the remaining rotation angles, good agreement (∆L < 1dB) is achieved.
The experiment has also been extended to different source angles, where the same very
small differences occurred and only the valid receiver positions varied (see above).
The very high robustness of the UBD is explained by the introduction of the co-

sine factor to the EDS (see Sec. 5.4.3.3), whereas discrepancies occurred without that
modification[Ste10b]. When using this extension, the point of diffraction stays on the
VW, but the decisive point is that the by-pass distance is computed as a projected
by-pass distance that is independent of the VW position. Therefore, the position of the
VW only slightly influences the transmission level.

104



5.5. Validation and Comparison with Reference Models

This independence of the VW position results in a certain degree of freedom to
position these VWs. An upper boundary for the rotation of the VW is not necessary.

5.5.3. Numerical Errors by the Combination of Diffraction with the Sound Particle
Simulation Method

All former results have been achieved with the analytical equations for the transmis-
sion level, i.e., a fictive sound particle experiment with an infinite number of sound
particles and infinitesimally small receivers. Originally, the UBD method had been
derived (at least for the single wedge) for sound particle and later for beam tracing
experiments[Ste04].
The analytical solution must match a sound particle experiment, before validations

of the SPSM including the UBD are performed. In contrast to the analytical so-
lution, a specified number of sound particles have to be emitted and the receivers
have to be spatially extended (see Sec. 3.4). In order to fulfil this requirement, the
number of receivers is reduced from 180 (in steps of 1◦) to 15 receivers (in steps of
12◦). To obtain an equal distribution, the centre points of the receivers are set to
ϕR = {−84,−72,−60,−48,−36,−24,−12, 0, 12, 24, 36, 48, 60, 72, 84}◦[Ste06]. The ra-
dius rD of these receivers is defined as

rD = rR · asin

(12◦

2

)
, (5.71)

such that receivers are tangent to each other (see Fig. 5.54).

 r
R
    

 rS    

wedge

source

receivers

virtual wall

φR=0°

φR=-84°

φR=84°

Figure 5.54.: Geometrical definitions of a sound particle diffraction experiment at a single
wedge.

In this section, the numerical influences of these parameters on the UBD are discussed
and a convergence of the sound particle diffraction to the analytical equation is shown.

5.5.3.1. Receiver Size

In a first investigation, a single diffraction experiment is performed for rS = rR = 10λ,
which relates to a receiver radius (see Eqn. 5.71) of rD = 1.0491λ. The results of
the transmission level for each receiver are compared with the analytical formulation
of Eqn. 5.32 and are shown in Fig. 5.55. A very large number of N = 10000 primary
and S = 1000 secondary sound particles (see Sec. 5.5.3.2 and 5.5.3.3) is emitted to
eliminate the numerical influence of these parameters.
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Figure 5.55.: Influence of the receiver radii rD on diffraction at a single wedge, with rS =
rR = 10λ.

As a first result, the transmission level computed with the SPSM (red marker)
matches the analytical formulation (blue). Only a small deviation is noted (ϕR = 0◦).
In order to examine this effect, the difference of the analytical formulation and the
SPSM is shown multiplied by a factor of 10 (red). Similar results were found ear-
lier, but no explanation was given [Ste06]. However, the difference comes from averaging
over the angle range of 12◦, which has the greatest effect in regions of strongly varying
transmission levels. In order to prove this assumption, the SPSM is repeated for re-
ceivers with a reduced radius by a factor of 100 (green marker). Then, the deviation in
the transmission level (green) vanishes almost completely, such that, at least for very
small receivers, an exact agreement between the analytical formulation and the SPSM
is found. On the other hand, the differences for larger receiver sizes are still very good.
Classical ray tracing methods without weighting the detected energy with the inner

crossing distance[Sch11] showed slightly greater deviations (for the UBD with the former
DAPDF) compared to the SPSM proposed here, because the inner distance weighting
reduced the averaging effect[SPS+12].

5.5.3.2. Number of Primary Sound Particles

The receiver size discussed above directly correlates with the necessary number of sound
particles to be emitted from the sound source. Now, the influence of the number of
primary sound particles N on the transmission level is investigated for a receiver radius
of rD = 1.0491λ and a large number of secondary sound particles S = 1000 (for each
incident sound particle). The results are presented in Fig. 5.56.
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Figure 5.56.: Influence of the number of primary sound particles N on diffraction at a single
wedge, with rS = rR = 10λ.
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Besides the computed transmission levels (markers), the difference between the ref-
erence solution (N = 10000) and these simulations is shown multiplied by a factor of
10. A comparison of N = 10000 and N = 2500 shows absolutely no difference even
in the difference plot, with the result that no improvement for even larger numbers is
expected. Even for N = 640 primary sound particles, the difference is very small and
only in the deepest shadow zone a difference of up to 0.1dB is noted. A further decrease
to N = 160 sound particles results in an unacceptable numerical error of 1.5dB. These
occurring differences are explained as follows: the VW upon the edge is assumed to
be a special kind of receiver. Using this assumption, it is clear that the accuracy of
the transmission level increases with a larger number of sound particles that intersect
with the VW. As a rule of thumb, Stephenson proposed a region 0 < a < 0.1λ above
the wedge, where at least a few (≈ 12) sound particles have to intersect for a proper
accuracy[Ste86]. To verify this empirical estimation, the number of sound particles N0
that intersect with the VW in this region is estimated.
This number is proportional to the angle range the region is visible from the sound

source

N0 = N · α

2π
= N ·

atan
( 0.1λ· cos(ϕS)

rS

)
2π

≈ N · 1
2π

· 0.1λ· cos (ϕS)
rS

. (5.72)

For rS = 10λ and N = 640 primary sound particles, one sound particle intersects
with the 0.1λ region (N0 ≈ 1). For less than N = 640 sound particles, less than one
sound particle intersects with the 0.1λ region (N0 < 1), such that the numerical error
exceeds 1dB. In order to verify the assumption for different frequencies, the simulation
is repeated for distances of rS = rR = 1λ and rS = rR = 100λ. The receiver radius is
modified regarding Eqn. 5.71. For each combination, the absolute difference between
the transmission level and the reference solution (N = 10000) is computed and the
mean value over all receiver positions is determined. The results are given in Fig. 5.57
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Figure 5.57.: Accuracy of the transmission level computed with the Uncertainty relation
Based Diffraction for different numbers of sound particles N and distances
rS = rR.

For rS = rR = 10λ, the blue curve represents the results that were already presented
in Fig. 5.56. In addition, values for S = 100 (circle) and S = 10000 (triangle) are
shown for N = 640.
The number of sound particles that intersect with the 0.1λ region is inverse propor-

tional to the source distance rS (see Eqn. 5.72). Assuming Stephenson’s estimation
to be correct, N = 6400 sound particles would be necessary for rS = rR = 100λ and
N = 64 sound particles for rS = rR = 1λ to obtain the same accuracy. As shown in
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Fig. 5.57, a mean difference of 0.02dB is found for rS = rR = 10λ at N = 640. The
same mean difference is found for rS = rR = 100λ at N ≈ 5000 and for rS = rR = 1λ
at N ≈ 100. With respect to the rough estimation of Stephenson, the assumption that
at least one sound particle has to intersect with the 0.1λ region, is confirmed. Unfor-
tunately, for high frequencies and, thus, small wavelengths, a large number of sound
particles are necessary.

5.5.3.3. Number of Secondary Sound Particles

A second parameter besides the number of primary sound particles is the number of
secondary sound particles S that are emitted for every primary sound particle that
intersects with the VW. For rS = rR = 10λ and a very large number of primary sound
particles N = 10000, the transmission level is computed for different S and shown in
Fig. 5.58.
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Figure 5.58.: Influence of the number of secondary sound particles S on diffraction at a
single wedge, with rS = rR = 10λ.

In order to highlight the small differences, the differences are multiplied by a factor
of 10. Both transmission levels for S = 250 and S = 64 match the reference solution
(S = 1000) exactly (< 0.01dB), such that S = 64 is a sufficient number. For even less
secondary sound particles S = 16, significant differences of up to 2.5dB are found.
This difference is explained by the restrictions of the SPSM itself. The intersection

point emitting secondary sound particles can be interpreted as a secondary sound source.
As the 15 receivers are tangent to each other in the whole angle range, the number of
secondary sound particles that intersect with a receiver S0 is approximately

S0 ≈ S· 1
15

. (5.73)

Hence, the number of sound particles that intersect with the receivers is nearly in-
dependent of the frequency. Thus, the accuracy is independent of the frequency, too.
For verification, the same mean absolute difference as for the primary sound particles
is shown in Fig. 5.59.
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Figure 5.59.: Accuracy of the transmission level computed with the UBD for different num-
bers of sound particles S and distances rS = rR.

The result is explained by the Gauss law for detection[Ste14]

∆L = 10 · log10

(
1 + 1
√
D

)
, (5.74)

where D is the number of detected sound particles. In contrast to the former variations
of the primary sound particles, the accuracy is nearly independent of the variation of
the distances (frequencies). For an accuracy of 0.02dB, for example, S ≈ 40 secondary
sound particles are needed for rS = rR = 1λ, S ≈ 64 for rS = rR = 10λ and S ≈ 110
for rS = rR = 100λ. As a rule of thumb, S = 64 seems to be an accurate choice, as
S0 ≈ 4 sound particles intersect with each receiver and a mean absolute difference of
approximately 0.02dB is reached.

5.5.4. Combination of reflections of the Sound Particle Simulation Method with
diffraction by the Uncertainty relation Based Diffraction Method

The combination of the UBD method with the SPSM allows a validation of the diffrac-
tion module for critical setups that could not be handled with the analytical formulation.
Especially the influence of the faces forming the wedge is investigated. As a reference,
the SSM is computed by the EDB.
In this section, the influence of specularly reflecting faces of the wedge is investigated

by varying the opening angle of the wedge. A crucial point for the UBD (in contrast
to the SSM) is the independence of the diffraction module on the wedge angle. This
independence of diffraction and reflection module is wanted, as it is the advantage of the
UBD. Due to the convex sub-division procedure, multiple VWs are possibly introduced,
even on (almost) flat surfaces, e.g., a roof, such that this effect is discussed for both
the wedge and flat surfaces. As in all these studies, again, only the general effect is of
interest, the distances are restricted to rS,R = 10λ. In addition, the influence of a both
reflecting and a scattering surface underneath the diffracting wedge is investigated. As
here also numerical values are of interest, this study is extended to other distances.
In case of the UBD, the SPSM is performed with N = 1000 primary and S = 200
secondary sound particles for both scattering and diffraction, which showed up to be
sufficient in the last section.

5.5.4.1. Influence of the Wedge Angle

As UBD is based on the Fraunhofer diffraction and, thus, on the Kirchhoff assumption
(see Sec. 2.3.4.3), neither the shape nor the material properties of the flanking walls
are taken into account.
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The SSM, in contrast, takes (as a wave method) the boundary conditions into account,
i.e., the effect of the wedge shape. Totally reflecting walls are assumed for the wedge’s
faces. The diffraction results depend on the wedge angle (see Sec. 2.3.4.2). Such an
experiment has been performed by Stephenson, but only for a wedge angle of ϕW = 90◦
without reflections[Ste11]. In order to quantify the effect of this wedge angle ϕW ,
the single wedge experiment is repeated for rS = rR = 10λ and ϕS = 0◦ (see Fig.
5.60)[SPS+12].

φs=0°
φR=0°

φR=-84°

φR=84°

φW 
10

λ 

10λ 

wedge

source

receivers

Figure 5.60.: Geometrical definitions for the investigation of the wedge angle ϕW on single
diffraction.

The wedge angle is set to ϕW = 1◦ in order to meet the assumptions by Kirchhoff (see
Sec. 2.3.4.3). Furthermore, for these thin wedges, all receiver positions are computable.
The results for different ϕW are displayed in Fig. 5.61. With increasing wedge angles,
receivers in the deep shadow zone become invalid, because their position transits into
the wedge (see Fig. 5.60, brown receivers). Hence, a computation of the transmission
level is not reasonable for such cases. Due to this effect, the transmission level of the
SSM is only computable for ϕR < −90◦ + ϕW

2 . In addition to the results for different
ϕW , a region of valid transmission levels is added in Fig. 5.61 that includes all possible
angles ϕW and, thus, describes the available range of transmission level independent of
the wedge angle.

-25

-20

-15

-10

-5

0

5

tr
an

sm
is

si
on

le
ve

lL
[d

B
]

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

receiver angle ϕR [◦]

ϕW = 1◦

ϕW = 30◦

ϕW = 60◦

valid area

ϕW = 90◦

ϕW = 120◦

ϕW = 150◦

(angle-independent)

Figure 5.61.: Influence of the wedge angle ϕW on diffraction at a single wedge with the
Secondary Source Model.

At ϕR = 15◦ the transmission level is independent of ϕW . For even larger receiver
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angles, the transmission level is approximately 0dB (except for the interference ripple)
for all wedge angles below ϕW ≤ 90◦. Starting from that wedge angle, an image source
becomes visible, which results in additional sound energy behind the wedge, too (see
Fig. 5.62a).

wedge

source

receiversvirtual wall

φR=0°

φR=84°

visible IS invisible

 IS
φW=100° φW=50°

(a) An image source (or the respective reflec-
tion with sound particles) is either con-
structable (green) or not constructable
(purple) depending on the wedge angle

wedge

secondary 

source

receiversvirtual wall

φR=0°

φR=84°

φW=100°

image source

(b) Different distances from either a sec-
ondary source or an image source to the
receiver (direct path: orange, dark red,
reflected path: green, purple)

Figure 5.62.: Visualization of different sound propagation paths from the sound source to
the receivers around an edge.

The sound energy emitted by the sound source is reflected on the wedge’s left face
and diffracted afterwards. Adding up the diffracted sound energy of both the initial
and the image source yields complicated interference effects in the view zone as shown
in Fig. 5.61. Both sound sources have different distances to the receiver, such that
both constructive and destructive interference effects cause significant variations of the
transmission levels for different receiver positions. In total, a transmission level of up
to 4dB occurs, but on average incoherent superposition occurs (3dB).
The same experiment has been performed with the SPSM and the UBD. As for the

SSM, the faces of the wedge are modelled completely reflecting (α = 0.0). The results
are shown in Fig. 5.63.
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Figure 5.63.: Influence of the wedge angle ϕW on diffraction at a single wedge for the
Uncertainty relation Based Diffraction.
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The combination of the UBD with specular reflections yields different results than the
SSM. In the shadow region, the transmission level is increasing with increasing wedge
angles ϕW . In contrast to the SSM, where an increase of up to 6dB could be achieved,
only up to 2.5dB are possible with the UBD. Sound particles that are diffracted into
the deep shadow zone and reflected at the wedge’s rear face are detected in receivers
with greater angles ϕR. If these sound particles would have the same energy as the
directly detected sound particles, the transmission level would be increased by 3dB (see
Fig. 5.62b). However, sound particles in the deeper shadow zone have even less energy,
such that a total increase is a bit below this upper limit. Without the consideration of
phase, no greater transmission level (as for the SSM) is possible.
In the view zone ϕR > 0◦, the transmission level is constantly 0dB for all wedge

angles below ϕW ≤ 90◦. For larger wedge angles, the transmission level increases up
to 3dB, because sound particles that are reflected on the left face of the wedge are also
reflected towards the VW. Together with the sound particles diffracted directly when
emitted from the sound source, the transmission level increases up to 3dB at the most
only for infinite, hard flanking walls. This increase is, similar to the increase in the
shadow zone, slightly smaller than for the SSM.
In summary, the correctly increasing transmission level of the SSM, although not

included in the UBD, is achieved by adding specular reflections on the faces of the
wedge. This effect is about 2dB stronger for the SSM than for the UBD. Further
improvement could only be achieved by applying modifications to the UBD taking the
wedge angle into account and, thus, ignoring the Kirchhoff theory.

5.5.4.2. Influence of Virtual Walls Upon a Flat Surface

As the UBD is independent of the wedge angle, a crucial experiment for the UBD is the
diffraction at a) a ϕW = 179◦ wedge (including edge diffraction) and b) a ϕW = 181◦
wedge (no edge diffraction). This effect is only problematic for the UBD, because
for the SSM the diffraction impulse response vanishes for wedge angles ϕS → 180◦
automatically.
In the SPSM, the diffraction is only computed when a VW is constructed. To inves-

tigate this effect, multiple VWs are placed upon a flat surface. Physically, this makes
no difference. This surface is modelled either completely absorbing (α = 1.0) or com-
pletely reflecting (α = 0.0). The recursive split-up of sound particles, and thus the CT,
restricts the number of VW to a maximum of three as shown in Fig. 5.64. The sound
source and the receivers are placed relatively to the left or the right VW, respectively.
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10λ 
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VW1 VW2 VW3

1
0

λ
 

source

receivers

virtual wall

floor surface (either absorbing or reflecting)

Figure 5.64.: Geometrical definitions of three Virtual Walls between the sound source and
the receivers over a flat surface.
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In a first attempt, the floor surface is completely absorbing and no VW is inserted.
For this setup, the sound intensity at the receiver point exactly equals the free-field
sound intensity, such that the transmission level is L = 0dB for all receivers (see Fig.
5.65, red, below).
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Figure 5.65.: Validation of sound propagation over a flat surface with multiple Virtual
Walls.

The same experiment is repeated for one VW (VW2), two VWs (VW1 and VW3) and
all three VWs (VW1, VW2 and VW3). In these experiments, diffraction is computed at
every VW. Physically speaking, the propagating sound wave sees up to three openings
one after another. In case of fully absorbing surfaces, the same results are computed
whether the VWs are placed upon wedges or plane surfaces, as long as their position
is identical. Although this is (up to) third order diffraction, the transmission level is
quite similar (∆L < 0.2dB) to the transmission level without any VW.
This effect is explained by taking the results of the diffraction experiments into ac-

count that were performed with the analytical solution. In the view zone, the transmis-
sion level is, also for double diffraction, quite constant with L ≈ 0dB. For receivers in
the shadow zone (see Fig. 5.26, region0 - region2 ), on the other hand, the diffraction
varies very much for different setups. In the given setup (see Fig. 5.64), the edges are
placed at the foot of the VWs, such that these regions would be underneath the floor.
However, without reflections, this diffracted sound energy is totally absorbed.
Different behaviour is expected for a reflecting surface, bringing this diffracted energy

back to the receivers instead of absorbing it. For a (specularly) reflecting floor without
a VW, the pink curve is computed in Fig. 5.65. The transmission level is increased
up to 3dB (not exactly 3dB, because the distances of the sound source and the image
source to the receivers are not identical). For receivers far above the surface, the
difference in their distances increases, such that the transmission level slightly decreases
for increasing receiver angles (down to 2.4dB).
Very astonishingly, the transmission level with VWs yields only little greater trans-

mission levels L < 3.5dB in the complete angle range. Worth to be mentioned is that a
small difference between the transmission level with VW and without VWs occurs for
one and three VWs in the angle range |ϕR| < 15◦, where the transmission level drops
from 3dB to approximately 2dB. As this effect is seemingly not occurring for two VWs,
this effect is obviously caused by VW2. Indeed, the specular reflection point is exactly
at the foot position of VW2 for the receivers around ϕR ≈ 0◦. In the SPSM, the sound
particles responsible for the specularly reflected sound energy intersect with the floor
surface in a short distance before (green sound particle in Fig. 5.64) or after (orange
sound particle in Fig. 5.64) the VW. In both cases, the UBD computes diffraction
for very close by-pass distances resulting in a very broad smearing of the sound energy
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behind the VW. This smeared energy is missing at the receiver ϕR ≈ 0◦ and adds
up partly to the remaining receivers. For the detected sound intensity and, thus, the
transmission level L, a decrease at ϕR ≈ 0◦ and an increase for the remaining receivers
is found.
The results achieved in this section can eas-

wedge

virtual wall

flat surface

no physical edge

physical edge

Figure 5.66.: Geometrical definitions of
a Virtual Wall between a
flat surface and a wedge.

ily be extended to diffraction at a slit, where
one wedge is a real wedge and the other wedge
is only a flat surface (see Fig. 5.66). In this
case, the diffraction at the non-physical edge
is reduced by the same principles as described
above.
In general, the experiments showed that flat

surfaces are by far less problematic than ex-
pected, because receiver positions in the for-
mer shadow zone are (algorithmically) not pos-
sible and reflecting surfaces compensate the
diffraction by part. Only specular reflection points exactly at the foot of a VW are
problematic, but the transmission level only reduces about 1dB in a small receiver
range.

5.5.4.3. Influence of Multiple Virtual Walls on a Wedge

A second possible artefact can occur from multiple VW upon a wedge due to the
implemented convex sub-division. The influence of a rotation of one VW has been
shown analytically. This experiment is extended for up to three VWs placed upon the
same wedge as shown in Fig. 5.67.

10λ 

10λ 

wedge

source

receivers

virtual walls

VW1 VW2 VW3
φR=84°

φR=0°

φR=-84°

Figure 5.67.: Geometrical definitions of three Virtual Walls between source and receiver on
a wedge.

The red curve (see Fig. 5.68) is seen as reference, because the results were confirmed
earlier with both the analytical solution and the SPSM for this scenario. For the two
VWs (VW1 and VW3), almost identical transmission levels are computed compared to
the experiment with only one VW. Technically, second order diffraction is computed
only for receivers with ϕR < 45◦, because receivers with ϕR > 45◦ are in-between the
two VWs. However, the transition from single to double diffraction at ϕR ≈ 45◦ is very
smooth. Differences of up to 1.5dB greater diffraction levels with two instead of one
VWs occur only in the small angle range between −30◦ < ϕR < −15◦. A reduction
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Figure 5.68.: Validation of diffraction through up to three Virtual Walls.

of the transmission level of about 1dB in the transition from the view into the shadow
zone is found, too. Hence, a more homogeneous transition from the view to the shadow
zone occurs for two VWs.
If all three VWs are used simultaneously, the effect increases even more. In the

shadow zone (ϕR < −15◦), the transmission level increases quite constantly up to
2.5dB in comparison to the setup with only one VW. Both effects are explained by
the computed second or even triple diffraction, which could not result in the same
transmission level as for single diffraction. However, the VWs start at the same wedge
and their distance between each other is very small near the wedge. Here, most of
the energy is diffracted. The positive results of the convergence from double to single
diffraction for close wedges (see Fig. 5.5.2.2) and, thus, close VWs results in deviations
of the transmission level up to 2.5dB.

5.5.4.4. Ground Reflections Before and Beyond the Wedge

The final experiments in this chapter handle the influence of floor reflections in front
and behind the wedge on the diffracted sound level. Therefore, the former single wedge
experiment is extended by a reflecting front and rear floor (see Fig. 5.69).

10λ 

10λ 

1
0
λ
 

front floor rear floor

wedge

source

receivers

virtual wall

Figure 5.69.: Geometrical definitions of three Virtual Walls between source and receiver on
a wedge.

Both the front and the rear floor are modified independently. The surfaces can be
modelled either full absorbent (σ = 0.0, α = 1.0), rigid (σ = 0.0, α = 0.0) or scattering
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(σ = 1.0, α = 0.0), whereas only rigid and absorbent cases are computed with the EDB.
The parameters for the latter are identical to the analytical single wedge experiments.
The sound source is fixed at ϕS = 0◦ and the distances are restricted to rS = rR = 10λ
first, before they are extended to rS = rR = 1λ and rS = rR = 100λ.
The differences between the UBD and the SSM are given in Tab. 5.2 for the different

surface combinations divided into the regions known from Fig. 5.26.

region [dB] Min[dB] at[◦] Max[dB] at[◦]0 1 2 3

1λ

abso Both −2.0 −1.5 −1.3 −0.6 −2.1 −84 +0.9 +24

rigid
Front −2.3 −1.7 −1.2 −0.6 −2.4 −84 +1.4 +84
Rear −5.1 +1.2 −2.0 −0.6 −5.8 −84 +4.8 −48
Both −4.9 +0.6 −1.6 −0.5 −5.6 −84 +2.7 −48

10
λ

abso Both ±0.0 +0.3 −0.3 ±0.0 −0.7 +24 +0.3 −60

rigid
Front ±0.0 +0.4 −0.2 +0.2 −0.7 +24 +0.3 −60
Rear −2.3 +0.3 −0.1 −0.2 −3.2 −84 +0.6 −36
Both −1.8 +0.6 +0.1 ±0.0 −2.8 −84 +1.0 +72

10
0λ

abso Both +0.4 +1.3 +1.9 +0.7 −0.1 +48 +2.0 ±00

rigid
Front +0.7 +1.4 +1.9 +0.9 ±0.0 +48 +1.0 ±00
Rear −0.5 +1.3 +1.9 +0.6 −1.4 −84 +2.0 ±00
Both +0.1 +1.6 +2.0 +0.9 −0.7 −84 +2.0 −24

Table 5.2.: Numerical comparison of transmission level L for a single wedge with reflecting
floor. Besides the absorbent case, only the front floor, the rear floor or both
surfaces are rigid.

Variation of the Reflectivity of Front Floor First, the front floor is modified and the
rear floor is set be full absorbent. The transmission levels are shown in Fig. 5.70.
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Figure 5.70.: Influence of a reflecting floor in front of wedge (r = 10λ). The rear floor is
absorbent.

In case of the UBD, the reflecting floor increases the transmission level about 0.6dB
in the shadow zone for both specularly and diffusely reflecting surfaces compared to the
absorbing surfaces. This weak effect is explained by the additional sound particles that
are reflected on the front floor and deliver strongly reduced energy. This reduction is
caused by the greater diffraction angle of the sound particles and their increased trav-
elled distance before they are detected by the receivers. The small difference between
the specular and diffuse reflection is due to the fact that the main sound energy is
diffracted close to the wedge’s apex. While this region is only reachable by a few sound
particles in case of a specular reflection, by far more sound particles are scattered into
this direction but with reduced energy (see Fig. 5.71a).
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Figure 5.71.: Special case of reflections cause from a reflecting front floor.

Both effects seem to compensate each other. This result is perfectly confirmed by
the SSM in case of the rigid surface, because the difference between both methods is
almost unaffected by the insertion of a reflecting front floor (≤ 0.1dB, see Tab. 5.2).
In the view zone, however, reflected sound particles reach the receivers, when they

are in a sufficient height above the wedge. For the given geometrical definitions, this
occurs for receivers above an angle of ϕR ≈ 63.4◦ (see Fig. 5.71b). Upper receivers
detect the reflected sound particles. Thus, the transmission level increases up to 2dB
in case of the UBD and up to 1dB in case of the SSM. This difference is argued by
the coherent addition assumed with SSM. The increase at ϕR ≈ 63.4◦ is smeared on a
wider angle range in case of a scattering floor, because the reflection is smeared, too.

Variation of the Reflectivity of Rear Floor In the second experiment, the rear floor is
varied and the front floor is full absorbent again (see Fig. 5.72).
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Figure 5.72.: Influence of a reflecting floor behind wedge with rS = rR = 10λ. The front
floor is absorbent.

By a variation of the properties of the rear floor, stronger effects of the reflection on
the transmission level are observed. In the whole shadow zone, the transmission level of
the UBD is increased by a reflecting floor up to 3dB. Here, the diffracted sound particles
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have approximately the same diffraction angles as the sound particles that are reflected
and diffracted. This effect is weakened for receivers that have a larger distance to the
floor, because the diffraction angles of the reflected sound particles are greater than
the diffraction angles of the directly detected sound particles. Thus, the transmission
level increases more for receivers deeper in the shadow zone. This behaviour is again
approved by the SSM, except for the receiver at ϕR = −84◦. This receiver is doubtful,
because the spatially extended receiver intersects with the reflecting surface and, thus,
the detected energy is computed incorrectly.
Almost no difference of the transmission level in the view zone is noticed for neither

SSM nor UBD.

Variation of the Reflectivity of Both Surfaces Finally, both surfaces in front and to the
rear of the wedge are interchanged simultaneously (see Fig. 5.73).
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Figure 5.73.: Influence of a reflecting floor in front and behind a wedge with rS = rR = 10λ.

The effects of both previous investigations add up by introducing two reflecting sur-
faces.

Extension to Different Distances The results for rS = rR = 10λ have been extended
to distances of 1λ and 100λ. The numerical results are given in Tab. 5.2, too. The
graphical comparisons are shown in appendix A.2.4.
For rS = rR = 1λ, the increased transmission level in the shadow zone is greater and

more dependent on the receiver angles, as for these short distances the coherent addition
yields complicated results for the SSM. Thus, the transmission level for receivers in the
deep shadow zone is even greater than the transmission level for receivers in the medium
shadow zone.
The results of the rS = rR = 10λ experiments are confirmed by the results of

rS = rR = 100λ.

5.6. Summary of the results of the Uncertainty relation Based
Diffraction

The UBD method and module by Stephenson was presented and investigated in detail.
Different detection techniques were discussed in Sec. 5.2.3. The result was that the
convex sub-division was the only technique that reduced the CT and handled multiple
edges at a time (see Tab. 5.3, valid ("), not valid (%) and by part valid (%")).
However, in contrast to diffraction cylinders, it detected the smallest by-pass distance
only approximately.
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reduction of smallest by-pass multiple edges
Computation Time distance at a time

tolerance region % % %

diffraction cylinders % " %

diffraction flags % %" %

convex sub-division " %" "

Table 5.3.: Comparison of different detection techniques.

Based on this detection technique, different normalization methods were discussed in
Sec. 5.2.4. In contrast to the normalization symmetrical to the incidence direction that
was proposed by Stephenson, it was shown that the normalization to the angle range
behind the VW allowed diffraction into the deep shadow zone and kept the separation of
sub-spaces (see Tab. 5.4). However, it still was compatible to the Kirchhoff assumptions.

compatible to diffraction in separation of
Kirchhoff assumption deep shadow sub-spaces

symmetrical to the
" % %incidence direction

complete angle range % " %

angle range behind
" " "the Virtual Wall

Table 5.4.: Comparison of different normalization techniques.

Based on these techniques, analytical equations for the transmission level at a single
wedge and, for the first time, at a slit and the diffraction at two subsequent wedges
were derived. Stephenson proposed three different EDSs (see Sec. 5.2.1), but it was
shown that the UBD did not fulfil the reciprocity principle, where deviations of up to
20dB were observed (see Sec. 5.4). To overcome this, a new EDS was presented that
fulfils the reciprocity principle for almost all combinations (see Tab. 5.5).

mathematically heuristically fulfils
derived found reciprocity principle

S (a) = 1
6 · a %" %" %

S (a) = 1
6 · a for a < 7λ % " %

S (a) = 1
3 · a+ea % " %

S (a) = 1
6 · a· cos(ε1) %" %" "

Table 5.5.: Comparison of different Edge Diffraction Strength.

Six of the eight investigated DAPDFs were already discarded in Sec. 5.2.2. The
UBD was investigated (see Sec. 5.5.1.4) for three analytically scenarios with the re-
maining DAPDFs in a wide range of distances and angle parameters with the new
EDS. The DAPDF Dg (ε, b) yielded about 1dB greater transmission levels than the
DAPDF Db (ε, b) in the shadow zones, which matched the wave theoretical SSM better
(see Tab. 5.6).

119



5. Simulation of Diffraction in Geometrical Acoustic Simulation Methods

valid for valid for simple to matches
ε = ±90◦ |ε| > 90◦ compute SSM

Da (ε, b) " " %

Db (ε, b) " " " %"

Dc (ε, b) % % "

Dd (ε, b) " % "

De (ε, b) " % "

Df (ε, b) % % "

Dg (ε, b) " " " "

Dh (ε, b) " % %"

Table 5.6.: Comparison of different Diffraction Angle Probability Density Function.

Sufficient agreements were found for almost all setups with diffraction at a single
wedge or a slit, also the results of double diffraction showed acceptable results for many
combinations. A variation of the source angle was investigated and showed very good
results.
The investigation of the consistency of the UBD (see Sec. 5.5.2) revealed that the

double diffraction converged at least approximately to the single diffraction for close
wedges and that Babinet’s principle was fulfilled within the potential of an energetic
model. Even more, the influence of rotated VWs was proven to be very small, which is
a good argument against the arbitrariness of the UBD (see Tab. 5.7).

checked with checked with sound
analytical formula particle experiment

Babinet’s principle %"

convergence of double
%"to single diffraction (d→ 0)

influence of a rotated
"Virtual Wall

influence of
%"the wedge angle

influence of multiple
"Virtual Walls

influence of
"reflecting surfaces

Table 5.7.: Results of different numerical experiments.

After it was proven that the analytical equations matched the sound particle experi-
ments (see Sec. 5.5.3), it was shown that the influence of the wedge angle is handled by
reflections automatically. Finally, the UBD diffraction module turned out to be very
robust with respect to the number of VWs, even for flat surfaces (see Sec. 5.5.4).
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The introduction of diffraction into Geometrical Acoustic (GA) simulation methods is
performed (like scattering) by introducing secondary sound particles. The recursive
split-up of sound particles causes an exponential increase of their number and, thus,
the Computation Time (CT). For both the Sound Particle Simulation Method (SPSM)
and Beam Tracing (BT), this can only be compensated by the reunification of the sound
particles or beams, respectively. To achieve this reunification, a solution is aimed at
that is based on the GA simulation methods handling specular reflections and adds only
the reunification effect of the Acoustic Radiosity method.
Stephenson published Quantized Pyramidal Beam Tracing (QPBT)[Ste96, Ste04] as a

combination of BT (and partially the Image Source method) with the Acoustic Radiosity
and later Sound Particle Radiosity (SPR)[Ste01, Ste03b] as a combination of the SPSM
with the Acoustic Radiosity.
Both methods are described by Stephenson in detail, but due to a lack of implemen-

tation, some important misassumptions have not been realized so far. To explain these
misassumptions, both methods have to be described in detail and modified by part for a
concrete implementation. Although the reunification method within SPR and QPBT is
different, the algorithmic core of both methods is practically identical. Sound particles
and beams are named as sound energy carriers in the following, although beams carry
physically a sound power.
In this chapter, after a short summary of the related work, the idea of reunification

is introduced and the SPR method as well as QPBT allowing the reunification of sound
energy carriers are presented. This presentation order is preferred in contrast to the
historical order, because SPR is geometrically simpler.
Both methods are discussed and implemented for the first time, such that both im-

plementations are comparable. They are compared qualitatively to find the preferable
reunification technique. The resulting method is analysed with respect to the efficiency
and the numerical errors, and a discussion of further optimizations is presented.

6.1. Related Work

The idea to reunify sound energy is covered by the Acoustic Radiosity (see Sec. 3.6)[Mil84]
in acoustics. This method is implemented, e.g., by Nosal et al. [NHA04]. Although,
in principle, the Acoustic Radiosity method is only capable of completely diffuse reflec-
tions, Christensen presented the wavelet radiance method[CSDS94] for optics, which
is capable of specular reflections. For acoustics, Siltanen et al. present the Acoustic
Radiance Transfer method[SLKS07], which adds specular reflections to the diffuse re-
flections. Another approach by Dalenbäck used in CATT Acoustics[CAT] is to add
diffuse reflections by a multi-pass procedure.
Furthermore, Lewers combines the Acoustic Radiosity with BT[Lew93] to add spec-

ular reflections in the first part of the impulse response. As this method handles both
simulation methods one after each other (for first and late reflections), it is not consid-
ered here. Another approach to combine specular with diffuse reflections is presented
by Korany[KBA01], but he has to neglect specular reflections after a certain order, too.
However, the Acoustic Radiance Transfer method as well as the method of Dalenbäck

are briefly described.
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6.1.1. Acoustic Radiance Transfer Method

Based on the room acoustic rendering equation[SLKS07], an Acoustic Radiance Transfer
method[SLS09] is proposed that replaces Lambert’s diffuse reflections by directional
diffuse reflections[SLS10]. The main idea of this method is to divide the circumference
of the scene into huge patches and the energy exchange factors between these patches are
determined. These form factors make use of the bi-directional reflectance distribution
functions (BRDF)[PSS+12]. As in the classical Acoustic Radiosity method, the energy
is propagated in-between these patches without taking the receivers into account. In a
second phase, the patches reemit the radiance for all receivers. Thus, this method is
applicable efficiently for auralization purposes, because the radiance remains constant
during a translation of the receivers. This method is capable of diffraction of first
order[SL08] using the Biot-Tolstoy-Medwin theory.
As this method is based on the Acoustic Radiosity method, specular reflections are

added to the energy exchange factors of diffuse reflections, on the contrary to an aspired
equal weighting of specular and diffuse reflections.

6.1.2. Dalenbäck’s Method

The method of Dalenbäck is divided into two phases, too[Dal95]. In the first phase, a
cone tracing algorithm, as a variant of ray tracing is performed in the complete scene. At
each wall interaction, the diffusely reflected energy of the cone is stored at the surface
and not traced further, first. After a complete simulation over multiple (specular)
reflections is performed, the stored energies for diffuse reflections are processed in the
second phase. They are traced regarding Lambert’s law and, again, stored in the
intersected walls. This is repeated several times, but the accuracy is reduced with each
pass.
This method already realizes important theories for the reunification of sound, but

Stephenson assumes QPBT to be even more efficient and accurate[Ste04]. This as-
sumption is investigated in this chapter by implementing the algorithm for the first
time.

6.2. Reunification of Sound Energy Carriers

The CT of GA simulation methods without split-up of sound energy carriers is pro-
portional to the number of computed reflections. For the application of the SPSM or
BT to practical setups, both diffraction and scattering have to be added yielding an
exponential growth of the number of sound energy carriers. This CT can be reduced by
different acceleration techniques (see Chapter 4), but the exponential behaviour cannot
be compensated. In this section, first this exponential growth is discussed by abstract-
ing the sound propagation to the growth of a directed graph. Based on this abstraction,
the two requirements to reunify sound energy carriers are analysed:

• discretization: the continuous description of a sound energy carrier’s propaga-
tion path has to be discretized to allow reunification. In contrast to the first
publications[Ste96, Ste01, Ste03b, Ste04], this effect called discretization instead
of quantization. For simplification, the discretization of a sound energy carries is
defined as the discretization of its sound propagation path.

• sequence: the processing order of sound energy carriers has to be adjusted for
reunification (called Logistics by Stephenson).

Both requirements are presented one after another. In the following, the reunification
of sound energy carriers and their energies is used synonymously.
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6.2.1. Exponential Growth of Sound Energy Carriers

In order to investigate the effects of exponential growth and reunification, the SPSM
is abstracted to a directed graph (tree)[Ste04]. With this abstraction, the geometrical
structure of the room can be neglected. Without loss of generality, the investigation is
restricted to a convex room, because complex rooms can be composed of these convex
rooms (see Chapter 4). In order to create the tree structure, the surface of the room
is projected to the c − axis (see Fig. 6.1a), such that each intersection point on the
surface is mapped to 0 < c < C, where C is the circumference of the room.
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(a) projection of the surface of a convex room
to the c − axis. A different colour is as-
signed to each wall (green, blue, purple
and red)
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(b) 4 sound energy carriers (yellow, dark blue,
gray and orange) emitted from a sound
source. They start at level 0 (random c−
value) and end at level 1 at the c−value
representing their intersection point on
the surface.

Figure 6.1.: Illustration of sound propagation in a tree-like data structure. The lower axis
represents the surface position.

On the second axis, the level of reflections or diffractions is displayed. Starting from
the sound source (level 0), the propagation to the next wall intersection is shown by a
connection to the c − value that represents the intersection point at level 1 (see Fig.
6.1b). The sound propagation of one reflection order is completed, when all sound
energy carriers have reached the next level.
For the general discussion of the tree structure, two different terms are introduced

which are very similar, but it is very important to distinguish between them:

• iteration: the transition of one sound energy carrier to the next level and

• order: the transition of all sound energy carriers to the next level.

Without split-up, the number of nodes and, thus, the number of sound energy carriers
per level is constant as shown in Fig. 6.2a. For one additional sound energy carrier
on each reflection (S = 1, i.e., a split-up into 2 sound energy carriers), the exponential
growth becomes visible in Fig. 6.2b. The result is an explosion of CT.
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Figure 6.2.: Traces of the abstracted sound propagation up to 4th order between four walls.
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Assuming N primary sound energy carriers and a split-up of S additional sound
energy carriers, the number of sound energy carriers NSEC existing solely for order o
reads

NSEC (o) = N · (1 + S)o . (6.1)

6.2.2. Sound Energy Carrier Logistics

In order to reunify sound energy carriers, the moment of reunification has to be specified
first. In case of QPBT, Stephenson assumes a reunification in the image source space,
whereas for SPR a reunification of sound particles is plausible when they intersect with
the room surface, because this is the only time when sound energy particles change their
direction or split up. Any other time of reunification would be less efficient, because
the sound energy carriers that could have been reunified travelled on the same sound
propagation path since their last wall intersection. For Stephenson, a continuous search
for similar sound energy carriers would exceed the CT of the actual sound simulation
by far[Ste04].
Algorithmically, sound energy carriers must wait at the position where they should

be reunified, until all sound energy carriers have reached this position. If such a sound
energy carrier is traced further before all other sound energy carriers reached that
point, at least one reunification is skipped. This cannot be achieved with the recursive
processing order of BT and SPSM.
This is shown by the abstraction of sound propagation paths to the growth of the tree

of Fig. 6.2. By splitting up each sound energy carrier into two sound energy carriers at
each intersection, an equivalent tree growth as shown in Fig. 6.3 occurs.
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c0

1
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3

level

(a) recursive: the left most branch reaches
the highest level before any branch to the
right can grow

4

c0

1

2

3

level

(b) parallel: all branches have to reach a cer-
tain level before any branch can start to
grow to the next level

Figure 6.3.: Snapshot of a tree after 12 branches are grown, if each branch splits up into
two branches.

For reunifications, a parallel growth as shown in Fig. 6.3b is aspired as described
above. For the processing order of sound energy carriers, this means that all sound
energy carriers have to reach a certain reflection order, before the first sound energy
carrier is allowed to be propagated further.
This processing order is achieved by a completely new frame algorithm for the com-

putation of sound propagation. The realization of this processing order is presented in
Sec. 6.3.1.

6.2.3. Discretization of Sound Energy Carriers

For a reunification of sound energy carriers it is necessary that they propagate at least
similarly. The data set of a sound energy carrier is defined when a sound energy carrier
intersects with a wall by
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6.3. Sound Particle Radiosity

a) Position: intersection point on the surface. In case of BT, this intersection point
is extended to an intersecting region due to the spatial extension of a beam.

b) Direction: direction of incidence on the surface. This can be substituted by the
emission point of the sound energy carrier.

c) Time: the time the sound energy carrier intersects with the position (see a))

in addition to the carried energy. Consequently, a discretization of a sound energy
carrier is defined as a discretization of these three parameters. The actual energy
remains continuous. Slight differences have to be tolerated in all three parameters by
discretization.
If all these discretized parameters are identical for two sound energy carriers, their

energies can be added up into only one sound energy carrier. This is defined as reuni-
fication of two sound energy carriers in the following.

6.3. Sound Particle Radiosity

To allow the reunification of sound particles, the SPSM has been extended by Stephen-
son to the SPR[Ste01, Ste03b] method (later investigations: [PS10a, PS11b]). After
investigating the Acoustic Radiosity method, Stephenson came up with the core idea
to reunify sound particles on discrete points on the surface.
A Reunification Matrix (RUM) had already been introduced by Stephenson[Ste96]

(for both QPBT and SPR) to allow a parallel processing of the sound particles – the
sound particle logistics. Thus, it is only shortly repeated. Then the discretization of
sound particles as a specialization of sound energy carriers is presented and a complete
algorithm of the SPR is derived for the first time.

6.3.1. Reunification Matrix

The RUM is proposed to temporarily store sound particles and extract them when
needed. The RUM has to be understood as a multi-dimensional storage of energy,
where the parameters of the sound particles (position, direction and impact time, see
Sec. 6.2.3) are encoded in the position of the energy in the RUM first. The propagation
information of a sound particle is defined by the three conditions that were described
above. One dimension is reserved for each of the three geometrical identifiers of the
sound particle (starting point, end point and intersection time on the surface). In total,
a number of k2 combinations is theoretically possibly, where k is the maximum number
of discrete starting and end points. The index of the starting point and the index of the
end point can be mapped to such a combined index and vice versa. Multiple intersection
times are distinguished by discrete time values. In total, a RUM as shown in Fig. 6.4
is created.

1

1

k
2

start-end 

connections

time

Figure 6.4.: Definition of an empty Reunification Matrix with start-end connections on the
x− axis, and time on the y − axis.
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6. Sound Energy Reunification

Any non-zero entry in the RUM represents the energy of a sound particle that starts
at a discrete position on the circumference on the wall in the direction of another
intersection point (k2 − axis) at a given time.
It should be noted that in case of the simulation of multiple frequency bands, each

matrix element stores not only one energy but one energy for each frequency band.

6.3.2. Discretization of Sound Particles

In order to create the discretization of sound particles, the three parameters of a sound
energy carrier (see Sec. 6.2.3) have to be discretized. This is shown for sound particles
in Fig. 6.5.

circumference

sound particle

direction

vector

(a) position: intersection
point

circumference

sound particle

direction

vector

(b) direction: direction of in-
cidence or emission point

circumference

sound particle

sound 

propagation

 path

(c) impact time

Figure 6.5.: Three parameters describe the sound propagation path of a sound particle. Two
identical sound particles are shown only differing in the current parameter.

To discretize the first two parameters, the circumference of the room is divided into
small patches, similar to the Acoustic Radiosity method. These patches are small
wall elements, whose centre is used as unified intersection point. By these patches,
intersections of the sound particle’s starting point and end point with the circumference
are mapped to a patch number. In addition, the time is discretized in time elements
∆t, whose traveling distance c· ∆t is defined proportional to the length of a patch.
In total, two discretizations have to be made to discretize three parameters:

1. intersection point: patches (patch number)

2. emission point (or direction): patches (patch number)

3. time: time intervals tQ (time interval number)

A discretized sound particle is completely described by these three numbers, as the
complete sound propagation path can be reconstructed from them.

6.3.2.1. Discretization of Intersection Points

The sub-division of the circumference into small elements is known, i.e., from the Acous-
tic Radiosity method (see Sec. 3.6). The average patch length lP (to be fitted for
each wall) is a simulation parameter and is defined by the user. An input parameter
fP describes the average ratio of the patch length lP relative to the Mean Free Path
Length (MFPL) l[Kos60]. This value is preferred over an absolute value to make the
number of patches independent of the size of the room. An alternative would be to
define the patch length relative to the wavelength λ as recommended by the diffraction
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6.3. Sound Particle Radiosity

theory. However, the wavelength has no influence on the geometrical propagation of
sound particles for the used diffraction module, such that it is not used here.
As not every wall can be split up into patches of exactly the same length lP , it has to

be adjusted for each wall. Therefore, lP is reduced until the patches match the length
of the wall. The number of patches for the current wall kW is computed by rounding
up the ratio of the wall length lW and the patch length lP to the next whole numbera)

kW =
⌈
lW

lP

⌉
=
⌈

lW

l· fP

⌉
. (6.2)

The kW patches are equally distributed on the wall. The continuous intersection
point of the sound particle with the circumference is mapped to a Patch Identification
Number (patchID). The exact intersection point is lost, such that the centre of the
patch is used as new end point of the sound particle (see Fig. 6.6a).

E

S

circumferenceintersection point

j

i

(a) sound particle: the end point E is
computed by the intersection test
with the circumference

j

i

E

S

circumference

patch center

intersection point

(b) discretized sound particle: the end
point E is translated to the centre of
the patch with number j. The direc-
tion vector (purple) is reconstructed
from these numbers

Figure 6.6.: Comparison of sound particle and discretized sound particle.

In other words, the discretization of the intersection point is interpreted as an adjust-
ment to the centre of the intersected patch. In order to reconstruct the actual sound
particle’s propagation path, both intersection and emission point are reconstructed by
the centres of the patches as shown in Fig. 6.6b. This is needed to remain compatible
with the former SPSM routines of Sec. 3.4.

6.3.2.2. Discretization of Time

In a next step, the impact time of a sound particle with the patch has to be discretized,
too. To do so, the time is discretized in intervals of tQ. The latest possible intersection
time of a sound particle on the circumference is given by the total length of the echogram
TMax (see Sec. 2.4.2), since TMax is an abort criterion for the SPSM. The length of
the time intervals tQ is not necessarily identical to the time intervals of the echogram.
In a first attempt, the time interval tQ is defined as the time that a sound particle

needs to travel the distance of a patch length tQ = lP /c, where c is the speed of sound.
A Time Identification Number (timeID) is assigned to each interval. Thus, only one
discretization parameter is used as the discretization of the sound particle’s intersection
time scales linearly with the patch length.

6.3.3. Main Algorithm

In the following, the main algorithm of the SPR is presented. The former concepts are
already published by Stephenson, but the main algorithm here is different.
a)dxe is the ceil function yielding the smallest next integer
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6. Sound Energy Reunification

As the actual sound propagation path is reconstructed from the three IDs, the exact
same algorithm is used to trace the sound particle as in the SPSM (see Sec. 3.4).
The RUM is the core of the SPR algorithm. To include the RUM into the SPR, the

algorithm is separated into two phases. In the first phase, the RUM is filled with the
initial data and in a second phase the simulation is performed on the RUM.
In the initialization phase of the SPR, both main loops (see List. 3.4) of the SPSM

are used to fill the RUM. For each sound particle, the first intersection point with the
circumference is determined and the intersection point as well as the emission point are
discretized to their unique patchIDs. It should be noted that a special patchID for the
source position is used. With the timeID of the impact time on the wall, the energy
is stored in the RUM at the position given by the three discretized IDs (see List. 6.1,
compare List. 3.4). Actually, no acoustic computations are performed in this phase.

function s o undPa r t i c l eRad i o s i t y I n i t i a l i z a t i o n ( )
for ( a l l s our ce s )

for ( a l l sound p a r t i c l e s )
f i ndWa l l I n t e r s e c t i on ( ) ; // use convex shape , s ee Sec . 3 . 4 . 2
d i s c r e t i z e S oundPa r t i c l e ( ) ; // compute unique IDs
addSoundParticleToRum ( ) ; // s t o r e energy in RUM

Listing 6.1: Pseudocode for the initialization of the Sound Particle Radiosity.

In the second phase, the initially filled RUM is processed until no unprocessed ele-
ment remains. Therefore, a sound particle is extracted from the RUM. The address of
the element in the RUM is used to reconstruct the three discretized parameters (start-
ing and end patchIDs as well as the timeID), although only the sound particle’s energy
is stored in the RUM. In case of a simulation of multiple frequency bands simultane-
ously, all energies from the specified element are extracted. From these IDs, the sound
propagation path is reconstructed (with the centre of the patches).
Each of these extracted sound particles is processed for one iteration. The recursive

call after the reflection and split-up (see List. 5.1) is replaced by the storage of the sound
particle back in the RUM. Therefore, the three parameters of the sound particles have
to be discretized again to find the position of the energy in the RUM (see List. 6.2).
Discretized sound particles that are placed back into the RUM are either placed on

an empty or an already used element. In case of an occupied element, the energy of the
sound particle is added to the already present energy and, hence, the sound particles
represented by these energies are reunified. An additional advantage is that even sound
particles of different sound sources (even with time delay) can be reunified with this
procedure, because sound particles are only defined by geometrical definitions and their
energy.
In addition to the abort criteria of the SPSM, the maximum propagation time is

restricted to the maximum number of possible timeIDs and, thus, the size of the RUM.
This restriction is implemented by ignoring the sound particles stored in the RUM for
greater time values. To save memory, Stephenson proposed a cyclic usage of the RUM
(see Sec. 6.6.1).
As described in Sec. 6.2.2, the optimal choice for the processing order is always the

oldest sound particle first (lowest in the RUM). This processing order guarantees that
the cleared matrix element is not reachable for any other incident sound particle yet to
process. If multiple elements are set with the same time index, an arbitrary element of
them is chosen. This is not problematic for the reunification, as long as it is assured that
a sound particle travels at least the distance of one time element to avoid singularities.
The algorithm is summarized in List. 6.2 and acoustical identical to List. 5.1.
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6.3. Sound Particle Radiosity

function soundPar t i c l eRad io s i ty ( )
while ( numberOfElementsInRUM>0)

getAnyOldestSoundParticleFromRum ( ) ;
t r a c eD i s c r e t i z edSoundPar t i c l e ( ) ; // i t e r a t i o n in the SPSM

function t r a c eD i s c r e t i z edSoundPar t i c l e ( )
deD i s c r e t i z eSoundPar t i c l e ( ) ; // r e c on s t ru c t propagat ion path
f i ndWa l l I n t e r s e c t i on ( ) ; // use convex shape , s ee Sec . 3 . 4 . 2
de tec tSoundPar t i c l e ( ) ; // e i t h e r s i n g l e or gr id , s ee Sec . 3 . 4 . 4
energy = energy ∗ exp(−m ∗ r ) ; // see Eqn . 3 . 11 , only a i r
i f ( i sV i r t u a l ( i n t e r s e c t edWal l ) )

for ( a l l secondary sound p a r t i c l e s ) // s p l i t−up in S
f l o a t newEnergy = energy ∗ d i f f r a c t i o nRa t i o ( ) ; // see Eqn . 5 .19
v = computeDi f f rac tedDi rec t ion ( ) ; // see Eqn . 5 .18
i f ( newEnergy > energyThreshold ) // see Eqn . 3 .26

d i s c r e t i z e S oundPa r t i c l e ( ) ; // compute unique IDs
addSoundParticleToRum ( ) ; // former r e c u r s i v e c a l l

else
energy = energy ∗ (1 − alpha ) // see Eqn . 3 . 11 , only alpha
for ( a l l secondary sound p a r t i c l e s ) // s p l i t−up in S + 1

i f ( i==0) // specu l a r r e f l e c t i o n
f l o a t newEnergy = energy ∗ (1 − sigma ) ; // see Eqn . 3 .13
v = v − 2 (v ∗ n) ∗ n // see Eqn . 3 .12

else
f l o a t newEnergy = energy ∗ s c a t t e r i n gRa t i o ( ) ; // see Eqn . 3 .16
v = computeScatteredDirect ion ( ) ; // see Eqn . 3 .15

i f ( newEnergy > energyThreshold ) // see Eqn . 3 .26
d i s c r e t i z e S oundPa r t i c l e ( ) ; // compute unique IDs
addSoundParticleToRum ( ) ; // former r e c u r s i v e c a l l

Listing 6.2: Pseudocode for the Sound Particle Radiosity.

6.3.4. Example

In order to understand the SPR, the algorithm is described for an example in Fig. 6.7.
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Figure 6.7.: Example of processing the Reunification Matrix. Occupied matrix elements are
shown in blue and reunified matrix elements in green.
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6. Sound Energy Reunification

In the initial step, the sound particles are emitted from the sound source and sound
particle energies are stored in the RUM (see Fig. 6.7a). In the actual simulation, the
oldest sound particle is removed from the RUM and traced through the scene by means
of the SPSM. During this simulation, four new sound particles are created and, thus,
their energy is assigned to four new entries in the RUM (see Fig. 6.7b, 6.7c). Due to
the increased density of occupied matrix elements, energies are added to already used
elements in the RUM (see Fig.6.7d) - this is the desired reunification effect.

6.4. Quantized Pyramidal Beam Tracing

The combination of the SPSM with the Acoustic Radiosity method to the SPR allows
the reunification of sound particles and, thus, a compensation of the exponential growth
of the CT. However, Stephenson proposed QPBT combining BT with the Acoustic
Radiosity method, because BT seems to be a more accurate and efficient simulation
technique[Ste96, Ste04]. Stephenson’s motivation for QPBT has been the combination
of BT with both diffuse reflections and diffractions.
Unfortunately, many of the assumptions yielding these conclusion are questionable,

such that a detailed comparison of SPR and QPBT is aimed at. Therefore, first Stephen-
son’s concept of QPBT has to be specified to an exact algorithm. QPBT uses a similar
algorithmic reunification technique as the SPR, such that the RUM is inherited directly
from the SPR. First, the more complex discretization of beams in contrast to sound
particles is presented. In the following, the complete algorithm is described based on
the SPR algorithm (by part based on Stephenson’s descriptions). The actual sound
propagation algorithm is very similar to the unquantized BT (see Sec. 3.5).

6.4.1. Discretization of Beams

The discretization of beams is more complicated than the discretization of sound par-
ticles due to the more complicated geometrical structure of the sound energy carrier.
The three parameters of a sound energy carrier (see Sec. 6.2.3) are depicted in Fig. 6.8
for a beam.
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(a) position: intersection
area
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beam

(b) direction: emission point
(image source position)

circumference

beam

current 

propagation time

(c) impact time

Figure 6.8.: Three parameters describe the sound propagation path of a beam. Two iden-
tical beams are shown only differing in the current parameter.

In contrast to the point-shaped intersection point of a sound particle, a beam in-
tersects with a whole area. This area is actually a length in 2D and is discretized by
patches. This definition is different from the definition of Stephenson, who discretizes
solid angles instead of intersected areas. The starting point, however, has to be han-
dled by a different type of discretization, because the emission point of a beam is not
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6.4. Quantized Pyramidal Beam Tracing

restricted to the circumference of the scene (different solutions are discussed in Sec.
6.4.1.2). The time when a beam intersects with a patch has to be discretized, too.
In total, three instead of two types of discretizations (as with the SPR) have to be
performed in case of QPBT:

1. intersection area: patches (patch number)

2. emission point: position of image source (still to define)

3. time: time intervals tQ (time interval number)

The beam has to be completely described by these three discretized parameters, as
they must be sufficient to reconstruct the sound propagation path.

6.4.1.1. Discretization of Intersection Area (Including Power Interpolation)

In contrast to the SPR, where the sound particles intersection point is discretized to
the centre of the patch that it intersects with, the beam has a spatial extension when
it intersects with the circumference (see Fig. 6.9a). Due to the discretization of a
beam’s intersection area to a patch, a patch can only be intersected completely or not
intersected at all. In this work, all (even partly) intersected patches are defined as
intersected completely. This extension does only affect the outer most patches that are
intersected by the incident beam (see Fig. 6.9b).

e = 100%

circumference

beam

patches

(a) beam: the beam intersects with the
circumference over an area hitting
different patches

e = 100%

e = 25%
e = 50%

circumference

partial beam

patches

(b) discretized beam: the beam is split
up into one beam for each inter-
sected patch. Due to the restriction
to patchIDs, every patch is per def-
inition covered completely.

Figure 6.9.: Comparison of beam and discretized beam.

The most important criterion of GA is the energy conservation. As beams represent
a sound power, this sound power has to remain constant. By extending the cross-
section of the beam, the solid opening angle of the beam is extended, too. In case of a
constant sound power density per angle within the beam, the sound power represented
by the beam would be increased. If a patch is intersected on a length l by a beam,
this intersection area is extended to the patch length lP and, thus, increased by a
factor of lP /l. This extension is compensated by reducing the sound power density
of the beam proportionally to the increased intersection area p′ = p· l/lP . Beams
that almost completely intersect with patches (l ≈ lP ) are almost unaffected, whereas
beams that intersect with patches on a small length l � lP are extend widely. The
sound power density of the latter is reduced drastically (see Fig. 6.9b). Hence, the
energy conservation criterion is fulfilled. This modification of the beam is summarized
in List. 6.3.
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function reshapeBeam ( )
// reduce power dens i ty
f l o a t l = computeIntersectedLength ( ) ;
f l o a t newPowerDensity = powerDensity ∗ l / patchLength
// extend beam d i r e c t i o n vec to r s to patch l im i t s
Vec f i r s tBeamIn t e r s e c t i on = patchStar t ingPo int ;
Vec secondBeamIntersect ion = patchEndPoint ;

Listing 6.3: Pseudocode for reshaping a beam to a patch.

6.4.1.2. Discretization of the Emission Points

The discretization of the starting point of a beam differs from the discretization of a
sound particle’s emission point significantly. While the position of a sound particle’s
starting point is restricted to the circumference of the scene, the starting point of a
beam can be freely placed in the whole scene. The position of the starting point of a
beam equals the position of the image source (see Sec. 3.3) and is used in this section
synonymously during the mirroring to higher orders. The image sources translate away
from the initial source (image source space, see Fig. 3.4).
This illustration of the image source indicates that the radius of the image source shell

equals c times the arrival time at the original source. For both scattering and diffraction,
secondary sources have to be constructed at the position of the scattering/diffraction
event. Thus, the beam’s propagation time (times c) is larger than the distance of the
image source (of the secondary sources) to the initial source.
Stephenson [Ste04] proposes a discretization of the concentric image source space with

the initial source as origin. However, the distance between the image source and the
initial source does not represent the propagation time of a beam, because the prop-
agation time of a beam is defined by the distance between the image source and the
receiver. Furthermore, this discretization prohibits the reunification of beams of dif-
ferent sound sources, because each sound source (including secondary sources) requires
an own coordinate system. Both facts prevent an efficient usage of this discretization.
In order to get a discretization that represents a beam’s propagation time, Stephenson

proposed a spherical coordinate system centred to the receiver[Ste04] (see Fig. 6.10).

Δφ 

Δr

source receiver

Figure 6.10.: Discretization of the image source space by spherical coordinates that are
concentric with the sound receiver (after Stephenson[Ste04]).
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Using this definition, the average radius r of a shell equals the distance (rounded by
∆r) between the image source and the receiver (which is proportional to the propagation
time of a beam). Beams in the innermost shell represent the beams with the smallest
propagation time to the receiver and are to be computed first. As an advantage, beams
originating from other original sources can be reunified as this coordinate system is
independent of the image source position. On the other hand, the discretization is
dependent on the receiver position, such that only one receiver can be used. In case
of many receivers (e.g., if noise maps have to be computed), the procedure has to be
repeated for each receiver position.
To retrieve a coordinate system independent of the source position as well as the

receiver position, the plausible selection is a Cartesian coordinate system, because no
centre is needed (see Fig. 6.11).

ΔyΔx

source

receiver

Figure 6.11.: Discretization of the image source space by Cartesian coordinates.

The Cartesian coordinate system is a compromise solution, as neither the source
position nor the receiver position influence the coordinate system. Thus, a reunification
of beams is possible that were emitted by different sound sources and are detected by
different receivers. Although it is a huge advance of the coordinate system, the grid
dimensions ∆x and ∆y cannot be adjusted to different distances. The result are equally
sized grid elements, whereas the size of these elements grew for larger distances with
the former spherical coordinates. Even more, it was possible to construct distance
dependent intervals ∆r = f (r) with the polar coordinate systems, which is not possible
in Cartesian coordinates. The equally sized grid elements are either too large in the
near field (where the position of the image source is important) or too small in the far
field (resulting in extreme memory usage).
All the former coordinate systems assume that the distance and, thus, the time be-

tween the image source and the receiver is the relevant value for reunification. However,
Stephenson found[Ste04] (in contrast to [Ste03a]) that the intersection time of the beam
at the circumference of the wall (patch) is rather relevant than at the receiver.
Obviously, none of the presented coordinate systems is an optimum choice, as at

least one elementary requirement is not fulfilled. Based on these requirements, a new
coordinate system is found. This coordinate system is defined in spherical coordinates
and concentric with the patch that is aimed at by the beam (see Fig. 6.12).
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Figure 6.12.: Discretization of the image source space by spherical coordinates that are
concentric with the target patch.

This coordinate system is independent of the source position and allows the reunifica-
tion of beams that belong to different sound sources. As the coordinate system is also
independent of the receiver position, the distance between the image source and the
patch is proportional to the propagation time of a beam to a patch. Thus, the age of a
beam (since the last secondary source) is proportional to the radius of the coordinate
system. Finally, this coordinate system reduces the memory requirement by half in
comparison to the former spherical coordinates, because a beam can only intersect with
a patch from inside. In a first attempt, these coordinate systems seem to be very inef-
ficient, because a different coordinate system for each patch has to be constructed and
the number of these patches exceeds the number of sound sources or receivers by far.
Together with the discretization of the intersection area, however, beams are already
distinguished by the patches they aim at. Thus, no additional differentiation is intro-
duced by using this coordinate system. In summary, the spherical coordinate system
that is concentric with the target patch allows an efficient reunification of beams.
First, the distance of the beam’s starting point to the centre of the patch is (in a

first attempt) divided into equally sized elements. The size of the elements is defined
as the patch length ∆r = lP and a Distance Identification Number (distanceID) is
assigned. Second, the angle of incidence of the beam (relative to the surface normal of
the patch) is also split into equally sized elements. The number of these elements is as
a first proposal set equal to the patch length per MFPL fP = ∆ϕ/π. The size of both
elements is first based on the idea to end up with only one discretization parameter fP .
Finally, four parameters need to be discretized for a beam in total:

1. intersection area: patches (patch number)

2. emission point:
a) distance (distance number)
b) angle (angle number)

3. time: time intervals tQ (time interval number)

The propagation time of the beam without any secondary source, i.e., without diffrac-
tion or scattering, is proportional to the distance between the image source position and
the patch (see Fig. 6.13a).
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Figure 6.13.: Comparison of propagation time and image source distance of one beam be-
tween three walls.

Whenever such a secondary source is constructed, both values are not connected to
each other anymore (see Fig. 6.13b). The arrival time of the purple and the orange
beam is almost identical, whereas the distance of the secondary source to the inter-
sected wall is significantly smaller for the purple beam. In case of SPR, the number of
secondary sources (split-ups) between the sound source and the patch has no influence
on the geometrical shape of a sound particle, whereas the beam shape (opening angle)
is strongly influenced. In other words, the geometrical starting point can only be the
one that intersected with the last wall for the SPR.

6.4.1.3. Discretization of Time

The discretization of the time when a beam impacts a patch is performed in the same
way as the discretization of a sound particle’s impact time. The relevant time is the
time when the beam intersects with the patch centre. Time elements with the size of
tQ = lP /c are used.

6.4.2. Main Algorithm

The algorithm of BT has to be modified in the same way as the SPSM to achieve a
reunification by QPBT. The recursive calls of BT (see Sec. 3.5.6) have to be replaced
by iterative processing based on the RUM.
This RUM-based process is mainly identical to that of sound particles, as only energies

are stored for given IDs. However, as described in the previous section, four instead of
three discretization parameters are necessary to describe a discretized beam completely.
Therefore, the RUM for QPBT is a four dimensional matrix in comparison to a three
dimensional matrix in case of the SPR. By using this extended RUM, the same two
phases have to be performed for QPBT as for the SPR. In the first initialization phase,
the initial beams are stored in the RUM before, in the second phase, this RUM is
processed.
In the first phase, the two outer loops of BT that handle all sound sources and all

walls of the current room (see List. 3.5) are used in QPBT. The two edge vectors of
those beams (in 3D: pyramidal) are created and describe the spatial extension of the
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beams, but, in contrast to unquantized BT, these beams directly aim at all patches (as
described in Sec. 6.4.1.1). These partial beams are discretized in all four dimensions
by determining their regarding IDs for each dimension. Finally, the sound power of all
those discretized beams is stored in the RUM at the position specified by those IDs (see
List. 6.4). As in the SPR, no acoustic computation is performed in the first phase.

function Quant izedPyramida lBeamTrac ingIn i t ia l i zat ion ( )
for ( a l l s our ce s )

for ( a l l wa l l s )
createBeamDirect ionVectors ( ) ; // see Eqn . 3 .27
for ( a l l patches )

createPart ia lBeam ( ) ; // edge vec to r s to patch
d i sc re t i zeBeam ( ) ; // compute unique IDs
addBeamToRum ( ) ; // s t o r e power in RUM

Listing 6.4: Pseudocode for the initialization of Quantized Pyramidal Beam Tracing.

The second phase of QPBT processes the RUM exactly like in the SPR. The beam
with the smallest time travelled yet is taken out of the RUM. This beam is traced by a
modified version of the BT iteration procedure. This processing is ended whenever no
element remains in the RUM (see List. 6.5, compare List. 3.5).
During the iteration of a discretized beam, the beam’s propagation path is recon-

structed by the four IDs. Similar to the SPR, the actual propagation routines are only
slightly modified compared to their undiscretized version (see Sec. 3.5). One difference
is that the beams have to be de-discretized (reconstructing the actual sound propaga-
tion path) before they are propagated through the geometrical scene. In addition, the
beam has to be split up again according to all patches of the intersected wall as in phase
one after the beam is propagated to the next wall (including a possible split-up due to
multiple intersected walls (see Sec. 3.5.2)). After this second split-up, the beams are
discretized and their power (for multiple frequency bands: powers) are stored in the
RUM at the position given by these IDs (see List. 6.5).

function QuatizedPyramidalBeamTracing ( )
while ( numberOfElementsInRUM>0)

getAnyOldestBeamFromRum ( ) ;
t raceDiscret i zedBeam ( ) ; // i t e r a t i o n in the BT

function t raceDiscret i zedBeam ( )
deDiscret izeBeam ( ) ; // r e c on s t ru c t propagat ion path
detectBeam ( ) ; // e i t h e r s i n g l e or gr id , s ee Sec . 3 . 5 . 4
f l o a t newPower = power ∗ (1 − alpha ) ∗ exp(−m ∗ r ) ; // Eqn . 3 .11
v1 = v1 − 2 ( v1 ∗ n) ∗ n // see Eqn . 3 .12
v2 = v2 − 2 ( v2 ∗ n) ∗ n // see Eqn . 3 .12
switch ( v1 , v2 ) // ensure counter−c l o ckw i s e

f i ndWa l l I n t e r s e c t i o n s ( ) ; // use convex shape 2x , s ee Sec . 3 . 4 . 2
for ( a l l i n t e r s e c t e d wa l l s )

c reatePart ia lBeamDirec t ionVector s ( ) ; // see Eqn . 3 .28
for ( a l l i n t e r s e c t e d patches )

createPart ia lBeam ( ) ; // edge vec to r s to patch
reshapeBeam ( ) ; // see L i s t . 6 . 3
d i sc re t i zeBeam ( ) ; // compute unique IDs
i f ( newPower > powerThreshold AND aMin > aDelta ) //Eqn . 3 . 2 6 , 3 . 3 0

addBeamToRum ( ) ; // s t o r e power in RUM

Listing 6.5: Pseudocode for Quantized Pyramidal Beam Tracing.
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6.5. Determination of the Preferred Simulation Technique

So far two different 2D-GA simulation methods allowing reunification have been pre-
sented. A common feature of both techniques is the compensation of a split-up of
the sound energy carriers by diffraction or scattering. Stephenson proposed in his
work[Ste04] that BT is much more efficient than the SPSM and should, therefore, be
the preferred simulation technique to be extended by reunification. As a second aspect,
he states that reunification is more intuitive by beams instead of sound particles as the
spatial overlap is utilized. The latter has been disproved already as an implementation
of the SPR (where sound particles are reunified) has been presented. In order to find
the most efficient algorithm, the author investigated[PS10c] first the SPSM and BT in
detail. In this investigation, a statistical estimation of the CT for both the SPSM and
BT was found as a function of the number of initially emitted sound energy carriers
and a given maximum reflection order. As BT is exact within GA, a maximum error
of the SPSM was defined. Thus, the number of sound particles to emit was given by
the wanted accuracy. The former assumption that BT is always more efficient than the
SPSM because many sound particles have to travel in a beam for the same accuracy,
was disproved[PS10c]. Three different requirements of accuracy were distinguished:

1. Accuracy of the overall sound intensity: if the temporal resolution of the sound
intensity is not of interest (as for the creation of level maps), the SPSM is more
efficient for a reflection order greater than 10. Then, the relative error is below
0.5dB.

2. Accuracy in a certain time interval: if the temporal resolution of the sound in-
tensity is important (as for the determination of room acoustical parameters), it
strongly depends on the number of reflections whether to prefer BT or the SPSM.
In case of a relative error of 1dB in an interval of 25ms, the SPSM is more efficient
for reflection orders above typically 10.

3. Accuracy of intensity of a selected sound energy propagation path or image source:
in this case, BT is always the method of choice, although it is doubtful whether
this requirement occurs in practical cases.

Now, in case of the discretized simulation methods SPR and QPBT, the accuracy
and the computational effort of the discretized simulation methods SPR and QPBT are
compared and a decision is carried out which method to use[PS11c].

6.5.1. Accuracy

The main advantage of BT is the exact result of the received sound energy. The spatially
extended beams allow an exact detection of all image sources and the point-shaped
receivers detect the correct energy (see Sec. 3.5.4). However, due to discretization, the
beam is modified, a divergence of its shape occurs and wrong image sources might be
detected. In the following, both inaccuracies are checked, one after another.

6.5.1.1. Divergence of Energy

Due to the principle of QPBT, the discretized beams can intersect with patches only
completely by definition (see Sec. 6.4.1.1). To analyse the effect of this interpolation,
the propagation of a single beam is investigated. A beam is reflected in the actual
simulation at each intersected wall and passed on to the next one (see Fig. 6.14a). For
the sake of simplification, the reflection is left out, such that the walls are placed one
after another (see Fig. 6.14b).

137



6. Sound Energy Reunification

source

circumference

image 

source

beam

(a) real scene

source

straigtened circumference

beam

(b) equivalent, straightened scene

Figure 6.14.: The sound propagation path of a beam that is reflected twice can be straight-
ened by placing the reflecting walls one after another.

By this simplification, the smearing of power by discretization and interpolation is
illustrated. Without discretization, the power density of the beam is constantly 100%
within the exact range of the beam. The split-up of the beam to partial beams assures
a constant sound power (besides absorption, which is excluded in this investigation),
but the extension of the beam width causes a modification of the sound power density
(per angle) such that the energy conservation criterion is fulfilled. This reduced sound
power density (on a wider range) is shown in Fig. 6.15a).
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Figure 6.15.: Smearing of the power density by the first interpolation.

Although the power density is plotted against the length of the circumference, c, this
is approximately proportional to the beam angle, because the opening angle is always
very small (α ∝∼ c). The crucial point is that the divergence of the power transported by
the beam and its children cumulates at each interpolation, because there is no chance
that power re-concentrates again. Stephenson wrongly assumed that the interpolation
errors cancel each other by part. In principle this widening is shown in Fig. 6.15b
for beams with a reflection order of up to three (two interpolations) in green and
blue beams, whereas the undiscretized beam is shown in purple. The sharp edge of
a beam smears by discretization from an exact assignment to an uncertain assignment
of receivers to the beams or image source, respectively. Thus, the uncertainty is a loss
of accuracy of QPBT in contrast to BT, as the power propagates in a wider angle range
by discretization. Still, a single impulse in the echogram is achieved, but it is not sure
anymore that the energy is correct or there is even a sound propagation path for the
detected impulse without discretization.
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6.5. Determination of the Preferred Simulation Technique

To quantify this effect, a numerical simulation was performed. Therefore, the walls
were placed in a distance of a MFPL l and the sound source was placed half a MFPL
in front of the first wall. The size of the patches was varied in a range of 1/10 < fP =
lP /l < 1/200, as no absolute distances are relevant for this investigation. Beams that
intersect with a wall were split up into partial beams. The beams that intersected
with a patch only by part were interpolated as described in Sec. 6.4.1.1. Besides
the computation of the power density distribution of the beams over the last wall, the
discretized beams are shown in Fig. 6.16. The brightness of each beam is proportional to
the power density that the beam carries, such that the smearing of energy is recognized
in the propagation, too. For overlapping beams, the brightness is added up.
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Figure 6.16.: Investigation of beam widening at reflection order 10 and ϕ = 10◦ for Beam
Tracing (green) and Quantized Pyramidal Beam Tracing (red). For visual-
ization, the brightness is proportional to the power density of the discretized
beam.

As expected, the smearing of power density strongly depends on the patch size. For
very large patches (fP = 1/10), the power density is completely smeared after only 10
interpolations. Even in the centre of the former beam, the power density is reduced to
50%. In case of smaller patches (1/50 ≤ fP ≤ 1/100), the power density in the centre of
the patch remains at 100%, but at the limits of the former beam still a smearing of power
density is observed. For the smallest considered patches (fP = 1/200), the widening
of the beam almost vanishes. The final beam width d (i) after i = 10 interpolations is
shown in Fig. 6.17 for an opening angle of ϕ = 10◦ (solid) and ϕ = 2.5◦ (dotted).
The energy conservation, a crucial criterion of all GA simulation methods, is fulfilled,

as the power (integral over the beam’s power density, surface below graphs in Fig.
6.17) is constant for an opening angle of ϕ = 10◦ as well as for ϕ = 2.5◦. The width
of the beam d strongly depends on the initial beam opening angle ϕ and the reflection
order i. In addition, the beam width is proportional to the MFPL l, but the overall
behaviour is independent of the absolute sizes. In general, a plateau of power density in
the centre of the beam (for not too large patches) exists with a power density of 100%.
A reasonable value to quantify the widening is the difference between the beam width
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Figure 6.17.: Comparison of beam widening for different patch sizes fP and different initial
beam angles (solid: ϕ = 10◦,dotted: ϕ = 2.5◦) after 10 reflections.

with discretization ddiscretized and the beam width without discretization dinitial

∆d = ddiscretized − dinitial. (6.3)

Numerical investigations showed that the beam widening ∆d is quite independent of
the initial beam’s opening angle. In other words, the widening effect is more important
for narrower than for wider beams.
To discuss the behaviour of the beam widening with respect to the reflection order i,

it is shown in Fig. 6.18 for different reflection orders and a patch length of fP = 1/10
(solid) and fP = 1/100 (dotted). To mask the effect that the beam itself widens out
with each reflection order proportional to the reflection order i, the opening angle itself
ϕ is adjusted by a factor of 1/i for each reflection order. Thus, the undiscretized beam
width is constant.
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Figure 6.18.: Comparison of beam widening for different reflection orders i and different
patch sizes (solid:fP = 1

10 , dotted:fP = 1
100 ). The initial beam angle is

adjusted for each reflection order, such that the width (without widening)
would be constant.

The assumption that the beam widening increases is proven again. In the case of
fP = 1/10, the beam is smeared almost completely even after 5 interpolations, whereas
the shape is kept better for fP = 1/100. But even in case of fP = 1/100, the beam is
smeared to its triple width after 15 reflections. Investigations for more cases revealed
that the widening increases proportionally with the reflection order. The beam widening
is even worse in an actual simulation. While the beam widening increases linearly (even
for a constant width of the undiscretized beam) with the reflection order, the reference
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width of an initial beam even decreases with the reflection order. Thus, the beam
widening is even stronger for the actual simulation of QPBT.
In contrast, only the starting point and the end

source

straigtend circumference

propagation path

patch

Figure 6.19.: Divergence of
sound particles by
discretization.

point are discretized to the centre of the patches in
case of the SPR. However, the error in propagation
direction does not cumulate as for QPBT, because
the energy flow is restricted to thin lines instead of
extended beams. In contrast to QPBT, where only
the beams widen out, sound particles are shifted
to the inside with the same probability, too (see
Fig. 6.19). In addition, no energy modification as
in QPBT is necessary for the SPR.

6.5.1.2. Detection Of Wrong Image Sources

The point-shaped receivers cause problems for the discretization. To investigate this, a
single beam is used that intersects with a wall. It is a generalization of a higher order
beam. This beam is split up into one partial beam for each patch (see Fig. 6.20a).

source

beam

patch

wall

(a) one partial beam for each patch

close up

beam

patch

wall

(b) translation of a beam’s start-
ing points (image source posi-
tion)

Figure 6.20.: Discretization of a beam in Quantized Pyramidal Beam Tracing.

This split-up alone does not affect the detected sound energy. But, in order to store
the beam power in the RUM, a discretization of the starting point has to be performed
in a local coordinate system of each patch (see Fig. 6.12). By discretizing the angle and
the radius, the starting points are translated relative to each other (see Fig. 6.20b).
The translation of the starting point results together with the constant intersection
area in two regions: a) no beam is present anymore and b) beams overlap each other
(see Fig. 6.20b). This causes significant errors in the detected sound intensity, as
either no energy or double energy is detected by different receivers. To demonstrate
this, the sound intensity within a receiver grid is determined (see Fig. 6.21a). While
without discretization the shape of the beam is noticeable in the intensity map (see
Fig. 6.21b) and a homogeneous distribution is achieved, drastical errors occur through
discretization. An error of 100% (3dB, red) is gained when the same image source is
detected twice. This effect is caused by the coverage of receivers by multiple beams
(see Fig. 6.21c). Another effect is the separation of beams forming a region uncovered
by any beam. Receivers placed in these regions detect no energy (white). Hence, the
homogeneous distribution without discretization is disturbed by receivers with double
and no energy. Such errors are unacceptable for any simulation method, especially as
they occur at any wall intersection.
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Figure 6.21.: Influence of discretization on an intensity map of a single beam.

In case of the SPR, the discretization causes similar translations of the sound particles.
Principally, similar effects in the intensity maps are conceivable. But, in contrast to
BT, the receivers instead of the sound energy carriers are spatially extended. The
spatial extension averages over a small area automatically. This averaging is actually
the reason for the inaccuracies of the SPSM in contrast to BT. Whenever a sound
particle is translated slightly, the energy detection is not changed totally (yes or no) as
for BT, but the inner crossing distance, and thus the detected energy, is varied slightly.
Sound particles that already intersect with a receiver close to the boundary, i.e., a small
inner distance, might be excluded from a detection by the translation, but the energy
weighting keeps the error small (see Fig 6.22).
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Figure 6.22.: Discretization of a sound particle in the Sound Particle Radiosity.
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By the discretization of beams, the benefit of the exact method is destroyed anyway.
Hence, no additional inaccuracy occurs in the SPR by the detection of wrong image
sources. In other words, this effect is by part already included in the SPSM.

6.5.2. Computational Complexity

The computational complexity of QPBT and the SPR is separated into two investi-
gations. The frame algorithm of both methods (RUM logistics) is identical, but one
of the differences is found in the initialization phase. For both methods, the number
of initially traced sound energy carriers is one condition. Another one is the overall
memory effort, which is given by the RUM.

6.5.2.1. Number of Initial Sound Energy Carriers

In case of the undiscretized version of the SPSM and BT, it is obvious that the number
of primary beams is far below the number of primary sound particles, because many
sound particles have to travel in a beam to achieve the same accuracy for this dedicated
sound propagation path. For a rectangular room (n = 4), one beam per wall is emitted,
whereas a huge number of sound particles has to be emitted (N � n) (see Fig. 6.23).
These more efficient beams result in even higher accuracies.

source

convex roomsound particle

(a) Sound Particle Simulation Method

source

convex roombeam

(b) Beam Tracing

Figure 6.23.: Initial number of sound energy carriers without discretization.

However, after the discretization (with the same parameter fP ), one sound energy
carrier, either beam or sound particle, has to be created for each patch (see Fig. 6.24).
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Figure 6.24.: Initial number of sound energy carriers with discretization.
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In a room with k patches, k sound energy carriers have to be emitted initially for
the SPR as well as for QPBT. Without a split-up due to scattering or diffraction,
the number of sound particles keeps constant N = k, whereas the number of beams
increases quadratically (in 2D) with the reflection order[PS10c]. So, in contrast to the
unquantized version, the number of initially emitted sound particles equals the number
of beams, such that the SPR is always faster than QPBT due to the even reduced
number of sound energy carriers. This might cause different accuracies, but the former
section showed that the inaccuracies of QPBT are even higher with the same parameter
fP than with the SPR.

6.5.2.2. Memory Usage

The SPR as well as QPBT feature exactly the same frame algorithm. The RUM is
processed until no sound energy carrier remains. As pointed out in the previous section,
the number of sound energy carriers that are initially stored in the RUM is identical
for both simulation methods. However, it will be shown that the necessary size of the
RUM differs drastically between the SPR and QPBT. In case of the SPR, a sound
particle is discretized by three parameters (see Sec. 6.3.2). In a convex room, the
overall circumference CR is divided into kP patches of length lP = fP · l in analogy to
Eqn. 6.2 to

kP =
⌈
CR

lP

⌉
=
⌈

CR

l· fP

⌉
≈

CR

l· fP
. (6.4)

The time of intersection is discretized by time intervals tQ, such that the number of
time elements kT reads

kT =
⌈
TMax

tQ

⌉
=
⌈
c·TMax

lP

⌉
=
⌈
c·TMax

l· fP

⌉
≈
c·TMax

l· fP
. (6.5)

In total, the number of matrix elements KRUM for the SPR is given by the multipli-
cation of the number of starting points, the number of end points and the number of
time slots

KRUM = kP · kP · kT ≈
c·TMax ·C2

R

l
3

1
f3
P

. (6.6)

Besides some geometrical constants (left), the size of the RUM increases with the
inverse patch size to the power of three. For example, a reduction of the patch size by
a factor of two increases the memory effort by a factor of eight. For high accuracies,
the RUM becomes very huge, which turns out to be a crucial point of the SPR.
In QPBT, even four discretization parameters are needed to describe a beam com-

pletely (see Sec. 6.4.1). While the intersection area is described by the number of
patches kP and the time by kT elements, the emission point is described by both dis-
tance and angle and, thus, kE possible values (see Fig. 6.12). With the maximum
distance rMax, kE is estimated by

kE =
⌈
rMax

∆r
π

∆ϕ

⌉
=
⌈
rMax

lP

π

fP ·π

⌉
=
⌈
rMax

l

1
f2
P

⌉
≈
rMax

l

1
f2
P

. (6.7)

In summary, KRUM for QPBT is computed by the multiplication of the number of
starting points, the number of intersection areas and number of time interval to

KRUM = kE · kP · kT ≈
rMax ·CR · c·TMax

l
3

1
f4
P

. (6.8)

The size of the RUM increases with the inverse patch size to the power of four. Thus,
the memory effort of the SPR is even higher than for QPBT.
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6.5.2.3. Evaluation of Computed Noise Maps

Despite the problems of QPBT, the simulation method has been implemented. Due to
the huge memory effort, only simple scenarios are computable. The main differences
are expected rather in the spatial than in the temporal resolution. Thus, intensity maps
instead of echograms are investigated. These are considered in three test cases.

Free Field The first and most simple case is the sound propagation in free-field, i.e.,
without any reflections.
This is approximated by a rectangular room (20m
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=

2
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m

fully absorbent wall

Figure 6.25.: Geometrical
definitions of
the free field.

times 20m) with totally absorbent walls (α = 1.0) and
a receiver grid with wgrid = 0.25m (see Fig. 6.25). A
sound source with P ′ = 1W/m is positioned at the cen-
tre of the room. A BT simulation is used for the ref-
erence sound intensity level map (see Fig. 6.26a). The
discretization size of the reunification techniques is set
to fP = 1/100. A number of N = 100000 sound parti-
cles is chosen in case of SPR to exclude this parameter
as source of numerical errors. The results of those sim-
ulations are given in Fig. 6.26b and 6.26c. In addition,
the absolute value of the difference of the intensity levels
computed with the reunification techniques to the refer-
ence levels (BT) are added (see Fig. 6.26d and 6.26e).

(a) Beam Tracing (b) Quantized Pyramidal Beam Tracing (c) Sound Particle Radiosity

(d) |QPBT − BT | (e) |SPR− BT |

Figure 6.26.: Intensity maps (in dB) of Beam Tracing, Sound Particle Radiosity and Quan-
tized Pyramidal Beam Tracing in free field.

While in case of the SPR a maximum of 3dB occurs at the most for only 8 receiver
points, differences of up to 10dB occur in case of the QPBT. Additionally, many
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receivers detect no energy, which is a theoretical error of ∞dB. Both effects are caused
by the detection of wrong image sources. A mean value of the difference is computed
to 0.1dB for the SPR, whereas no value is computable for QPBT due to the infinite
values. To achieve a numerical value, the infinite errors are replaced by an error of only
3dB with the result of an average error of 0.5dB. This value describes only qualitatively
that, even if the neglected receivers are weighted only by an error of 3dB, QPBT yields
five times worse results than the SPR. Thus, QPBT is even for the free-field case more
inaccurate (and anyway more inefficient) than the SPR.

Convex Room The same investigation is carried out for a closed rectangular room.
In the same setup as above (see Fig. 6.25), an absorption degree α = 0.5 is applied
to each wall. Sound particles and beams are traced until an energy loss of −60dB
(approximately 20 reflections). The other parameters remain the same. The intensity
level maps are shown in Fig. 6.27.

(a) Beam Tracing (b) Quantized Pyramidal Beam Tracing (c) Sound Particle Radiosity

(d) |QPBT − BT | (e) |SPR− BT |

Figure 6.27.: Intensity maps (in dB) of Beam Tracing, Sound Particle Radiosity and Quan-
tized Pyramidal Beam Tracing in a rectangular room.

In contrast to the former investigation, the sound intensity level is increased due
to the wall reflections. Both the SPR and QPBT seem to result in very inaccurate
simulation results, because the reference level, which is cylindrical symmetrical, can
only be conjectured even for the SPR. However, the difference in the intensity levels
reveals that the differences in case of the SPR are evenly distributed and 1.5dB at the
most, whereas this difference is 16.9dB at the most in case of QPBT. The average error
in the intensity maps is smaller for the SPR (0.3dB) than for QPBT (0.8dB), but not as
significant as the maximum differences (as the latter are in a minority). The difference
maps show that the SPR is again much more accurate than QPBT.
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Two Rooms that are connected by a Virtual Wall Now, a slightly extended setup is
chosen to investigate the influence of a Virtual Wall (VW), too.
Therefore, two of the rooms that were used

source

a=20ma=20m

a
=

2
0

mvirtual

wall

convex roomconvex room

Figure 6.28.: Geometrical defi-
nitions of coupled
rooms.

in the previous sections are placed beside each
other (see Fig. 6.28). The connecting wall of
both rooms is replaced by a VW. Furthermore,
the remaining walls are defined as fully absorbent
(α = 1.0), such that again a free-field result is
achieved. As diffraction is not implemented in
QPBT, the sound particle diffraction module is
deactivated, too. The sound source is placed at
the centre of the left room. Due to the increased
sound propagation environment, the receiver grid
is adjusted to wgrid = 0.5m instead of wgrid = 0.25m as in the previous experiments.
The results are shown in Fig. 6.29.

(a) Beam Tracing

(b) Quantized Pyramidal Beam Tracing (c) Sound Particle Radiosity

(d) |QPBT − BT | (e) |SPR− BT |

Figure 6.29.: Intensity maps of Beam Tracing, Sound Particle Radiosity and Quantized
Pyramidal Beam Tracing in two coupled rooms.

This time, QPBT and the SPR result in receivers with no detected energy (white
spaces), but their number is greater in the case of QPBT. It has to be noticed that the
detection of wrong image sources in the case of QPBT does not only occur for the first
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6. Sound Energy Reunification

reflection: it is even worse after the first reflection (which corresponds to an equivalent
transmission at the VW). This effect is very strong at the diagonal of the source-related
subspace, because the receivers lie exactly on one of the beam’s edge vectors. Thus,
a minimal translation is enough here to cause such dropouts. The maximum error
(neglecting the receivers without any energy) is 12.4dB for QPBT and 7.9dB for SPR.
To achieve more accurate results in both cases, either the discretization parameter fP
has to be decreased or the receiver size has to be increased. The average error (replacing
∞dB by 3dB again) shows that the SPR is more than twice as accurate (0.3dB) than
QPBT (0.8dB).

6.5.3. Choice of the Optimal Reunification Technique

The reunification techniques SPR and QPBT have been compared qualitatively with
respect to their computational effort and their accuracy. In total, four arguments have
been found, which reveal that the SPR is more efficient and, quite astonishing, more
accurate than QPBT. These are

1. in QPBT, propagating beams are influenced by cumulating interpolation errors
(smearing of energy),

2. correct image sources are neglected or double detected image sources are possible
with QPBT,

3. there are not less beams than sound particles with discretization and

4. the memory requirement of QPBT is significantly higher than with the SPR.

With respect to these four arguments, which have been proven by numerical exper-
iments, QPBT is abandoned. The computational effort and the accuracy of the SPR
are investigated quantitatively in the next sections.

6.6. Efficiency of Sound Particle Radiosity

As shown in the previous section, the SPR has less computational complexity than
QPBT, but a quantitative estimation of the efficiency is aimed at, too. To determine the
efficiency, two contrary conditions have to be taken into account. On the one hand, the
storage of sound particles in the RUM causes additional computational effort, whereas,
on the other hand, the reunification of sound particles reduces the computational effort.
Thus, the reunification rate is the main parameter that describes the efficiency of the
SPR and is derived analytically. Furthermore, the CT of the SPR is investigated to
determine the computational effort of reunification.

6.6.1. Statistical Analysis of the Reunification Rate

To statistically investigate the benefit of reunification, first the reunification rate has to
be defined. Besides the split-up S, the main parameter for this is the size of the RUM
(a formula calculating the size of the RUM was already presented in Sec. 6.5.2.2).
In this thesis, all matrix elements with the same time index are defined as row, whereas

all matrix elements with the same start-end combination are defined as column.
The size of the RUM is decreased essentially by recycling the RUM by processing the

oldest sound particle first[Ste04]. As sound particles travel only up to a maximum free
path length lMax between two walls, Stephenson postulated that only rows in a time
range of lMax/c have to be stored in the RUM. Thus, a cyclic buffer is used (see Fig.
6.30).
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Figure 6.30.: Restriction of Reunification Matrix to the maximum time interval a sound
particle travels due to the maximum free path length lMax.

Based on this reduced RUM, Stephenson estimated a degree of occupation ΦRUM .
This degree of occupation equals statistically the reunification rate as it describes the
probability to hit an already occupied element. Stephenson observed the RUM only after
many reflections assuming a diffuse sound field (homogeneously and equiprobable, see
Sec. 4.3.2), such that a steady state is approximately reached. In a diffuse sound field,
the RUM is occupied homogeneously. Every patch is intersected from every direction at
least one time during the cycle of t = lMax/c. Stephenson concluded that the complete
energy is distributed over a time range regarding the mean free patch length MFPL l,
although a time range of lMax is processed. From that he computed an average degree
of occupation

ΦRUM = l

lMax
. (6.9)

However, this derivation by Stephenson seems to be only an estimation of the relative
number of (at least by part) occupied rows in the RUM. A more descriptive term is the
degree of occupied elements in the RUM, which takes the occupation of each row into
account. Stephenson’s crucial misassumption was to assume that all rows are completely
occupied, i.e., the sound propagation acts exactly like in the Acoustic Radiosity method,
where the matrix of energy exchange coefficientsKi,j is fully occupied. This assumption
is only valid in a convex room for S ≈ k, i.e., each patch emits energy in as many
directions as patches exist whenever a sound particle intersects with a wall. Typically,
values of S are significantly smaller. Thus, Stephenson’s conclusion[Ste04] that the
degree of occupation and, hence, the reunification rate is typically ΦRUM > 0.1 is not
correct for the presented method.
To find a correct characterization of the occupation rate ΦRUM , the simulation is

carried out statistically. Similar to the investigation of the speed-up by convex sub-
division, the smallest considered interval is an iteration i of one sound particle between
two walls. Due to the functional principle of the SPR, the number of simultaneously
propagating sound particles equals the number of occupied elements NRUM . This num-
ber varies with the number of performed sound particle iterations, such that NRUM (i)
denotes the number of occupied matrix elements after i computed sound particle iter-
ations. However, these iterations are of minor practical relevance. More important is
the description of the number of occupied matrix elements NRUM (o) as a function of
the reflection order o. In this context, the term reflection includes specular reflections,
diffuse reflections and diffractions. Finally, the reunification rate is defined as the ratio
of occupied matrix elements to the number of available matrix elements KRUM .
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6. Sound Energy Reunification

In summary, the parameters are:

• KRUM : number of available matrix elements

• NRUM : number of occupied matrix elements

• ΦRUM : degree of occupation NRUM
KRUM

• N : number of emitted sound particles (by all sound sources)

• i : counter of single iterations

• o : reflection order (including scattering and diffraction)

6.6.1.1. Behaviour Without Reunification

To investigate the behaviour of the SPR without reunification[PS10a], the probability
of reunification is set to 0. In other words, the number of available matrix elements
converges to infinity (KRUM →∞).
During one iteration i, one sound particle is taken out of the RUM and, after the

actual propagation, S + 1 sound particles are stored in the RUM

NRUM (i+ 1) = NRUM (i)− 1 + (S + 1) . (6.10)

The conversion of the recursive equation to an explicit equation yields

NRUM (i) = NRUM (i = 0) + i·S = N + i·S. (6.11)

Thus, the number of occupied matrix elements linearly increases with every computed
iteration i (except for S = 0, i.e., without scattering or diffraction, where the number
remains constant). NRUM (i) is shown in Fig. 6.31 for different S and N = 1000 (dotted
lines).
The determination of the number of occupied matrix elements after o reflections,

NRUM (o), is more complicated. Mathematically speaking, a number of ∆i (o+ 1)
iterations have to be performed to find the number of occupied matrix elements after
o + 1 reflections NRUM (o+ 1). The computation of one reflection order requires the
computation of all currently propagating sound particles. Thus, all sound particles of
the previous order NRUM (o) have to be handled once

∆i (o+ 1) = NRUM (o) . (6.12)

The handling of the reflection order o is finished whenever ∆i (o+ 1) iterations are
computed. Fortunately, Eqn. 6.11 already describes the number of occupied matrix
elements when i iterations are computed, based on a starting value of NRUM (i = 0).
With a starting value of NRUM (o) occupied matrix elements and the substitutions

i → ∆i (o+ 1) = NRUM (o) (6.13)
NRUM (i = 0) → NRUM (o)

NRUM (i) → NRUM (o+ 1) ,

Eqn. 6.11 can be analogously used to describe the whole procedure as a function of the
number of reflections (instead of iterations)

NRUM (o+ 1) = NRUM (o) + ∆i (o+ 1) ·S = (S + 1) ·NRUM (o) . (6.14)
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6.6. Efficiency of Sound Particle Radiosity

This recursive equation is converted to an implicit equation using the geometric series

NRUM (o) = NRUM (o = 0) · (S + 1)o = N · (S + 1)o . (6.15)

This matches exactly (as already estimated in Eqn. 6.1) an exponential increase.
The number of occupied matrix elements increases exponentially with the reflection

order o (see Fig. 6.32, dotted lines, note the logarithmic y− scale), whereas it increases
only linearly with the number of computed iterations i.

6.6.1.2. Behaviour With Reunification

In the case of reunification, a certain probability 0 < pr < 1 to hit an already occupied
matrix element is introduced. Consequently, the probability to hit an empty matrix
element is (1− pr). Thus, only (S + 1) · (1− pr) new elements will be occupied.
So, in analogy to Eqn. 6.10, the number of occupied matrix elements is written as

NRUM (i+ 1) = NRUM (i)− 1 + (S + 1) · (1− pr) . (6.16)

Although the reunification probability pr is dependent on the geometrical scene, pr
has to be abstracted for statistical analysis. Therefore, a diffuse sound field is assumed.
Assigning the assumption of a diffuse sound field to the reunification probability, the

probability is independent of the actual position in the geometrical scene and, thus, in
the RUM. It follows from the equiprobable distribution

pr = NRUM (i)
KRUM

= ΦRUM , (6.17)

such that Eqn. 6.16 reads

NRUM (i+ 1) = NRUM (i)− 1 + (S + 1) ·
(

1− NRUM (i)
KRUM

)
(6.18)

= q·NRUM (i) + S

with

q = 1− S + 1
KRUM

. (6.19)

The recursive equation is converted into an implicit equation

NRUM (i) = NRUM (i = 0) · qi + S· 1− qi

1− q
(6.20)

= N · qi + S· 1− qi

1− q
.

The behaviour of the number of occupied matrix elements with reunification (see Eqn.
6.20) for K = 10000 available matrix elements is shown in Fig. 6.31 and compared with
the case without reunification (see Eqn. 6.11).
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Figure 6.31.: Number of occupied elements NRUM (i) for different split-up values S, as a
function of the computed iterations i (dotted: without reunification, solid:
with reunification).

Without split-up (S = 0), where the number of occupied matrix elements remains
constant without reunification, a slight decrease is noticed if reunification is applied.
Sound particles are never split-up, but there is a slight chance to reunify. In this case,
the reunification effect (difference between solid and dotted line) is so small that the SPR
becomes very inefficient. However, for great split-up values S = 10, the number of sound
particles increases with the number of computed iterations i. With reunification, the
number of occupied matrix elements and, thus, simultaneously existing sound particles,
is below the case without reunification. This reduced linear increase indicates the
convergence of NRUM (i) to an upper boundary. This upper boundary exists, because
NRUM (i) = KRUM matrix elements are occupied at the most.
More meaningful is the number of occupied elements as a function of the reflection

order o. With the same substitutions as in Eqn. 6.13, Eqn. 6.20 yields for NRUM (o)

NRUM (o+ 1) = NRUM (o) · qNRUM (o) + S· 1− qNRUM (o)

1− q
. (6.21)

This recursive equation is not easily convertible to an implicit equation, but it is
evaluated numerically. The result is shown in Fig. 6.32 for K = 10000 and different
split-up values S (the dotted lines indicate the case without reunification).
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Figure 6.32.: Number of occupied elements NRUM (o) for different split-up values S, as a
function of the reflection order o (dotted: without reunification, solid: with
reunification).

For very small reflection orders, NRUM (o) follows the exponential increase without
reunification, but converges fast to a constant upper boundary. The higher the split-up
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6.6. Efficiency of Sound Particle Radiosity

value S is, the faster is this upper boundary reached. Only for S = 1, a smaller upper
boundary is observed, and for S = 0 the number of occupied elements even decreases in
comparison to the number of initially emitted sound particles. To determine the upper
boundary, the same comparison is shown in Fig. 6.33 for S = 1, but different numbers
of available matrix elements K.
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Figure 6.33.: Number of occupied elements NRUM (o) for different matrix sizes KRUM and
a split-up values of S = 1, as a function of the reflection order o.

The exponential increase (note the logarithmic y − scale) converges quite fast to a
constant upper boundary. The upper boundary strongly depends on the number of
available matrix elements KRUM . This boundary is computed analytically, with

lim
o→∞

NRUM (o) = S

S + 1
·KRUM . (6.22)

Here, the number of occupied matrix elements is only depended on the split-up value
S and the number of available matrix elements K, whereas the occupation degree
ΦRUM = NRUM

KRUM
= S

S+1 is only dependent on the split-up value S. Both are inde-
pendent of the number of primary emitted sound particles N . Astonishingly, NRUM
never converges to a full occupation ΦRUM = 1. The steady state value is approxi-
mately reached after a different number of reflections o depending on the split-up S
and the size of the RUM. Starting from this crucial reflection order, the exponential
increase of sound particles is prevented, and the CT increases only linearly with the
reflection order. This convergence has been proposed by Stephenson (at least qualita-
tively) for QPBT and the SPR. The presented equations are used to determine the
reflection orders of convergence now quantitatively, too. The result is validated by a
comparison with a simulation.

6.6.1.3. Comparison with Numerical Simulation

To verify the estimated reunification rate, a SPR simulation is performed in a rectangu-
lar room with a wall length of a = 10m for all four walls (see Fig. 6.34). The scattering
degree is set to σ = 0.5 and absorption is disabled (α = 0.0). Sound particles are only
aborted after a certain number of reflections, such that no sound particles are aborted
within the investigated iterations.
The number of available matrix elements is computed by Eqn. 6.6, where TMax is

replaced by lMax/c due to the cyclic buffer to

KRUM =
c· lMax

c
·C2

R

l
3

1
f3
P

=
√

2 · a· (4 · a)2(
a· π

4

)3 1
f3
P

≈
47
f3
P

. (6.23)
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The discretization parameter is set to fP = 1/100, such that the reunification matrix
consists of K ≈ 47.000.000.000 matrix elements. In the special case of a rectangular
room, the number of available patch-patch-combinations reduces by a factor of 3/4,
because sound particles cannot intersect with the wall from where they were emitted.
Thus, K = 35.000.000.000 is assumed. A SPR simulation has been performed with a
split-up value of S = 25 andN = 1000 primary sound particles. The number of occupied
matrix elements is counted after each iteration and compared with the estimation of
Eqn. 6.20 in Fig. 6.35.
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Figure 6.35.: Validation of estimated number of occupied matrix elements (see Eqn. 6.20)
NRUM (i) as a function of the computed iterations i by a simulation in a
rectangular room. The walls are of a = 10m length, N = 1000 sound particles
are emitted and split up into S = 25 secondary sound particles.

Both graphs behave qualitatively similar, but the
a=10m

a
=

1
0

m
source

convex room

Figure 6.34.: Geometrical def-
initions for the
test of the reuni-
fication rate.

estimated maximum number of occupied elements is
approximately 40% above the simulated value. This
is explained by the assumption of a diffuse sound field
that is (as expected) not fulfilled here. In a rectangu-
lar room with mainly diffuse reflections is the proba-
bility to intersect with an opposite wall higher than
the probability to intersect with a neighbouring wall,
because the projected surface of the latter is smaller
(cosine law). Thus, regions in the RUM exist, where
sound particles propagate more probable and, on the
contrary, regions exist with lower density. The result
of this uneven distribution is that the effective reuni-
fication rate is higher, such that the total amount of
sound particles that propagate simultaneously is re-
duced. Consequently, NRUM behaves, as if the total
amount of available matrix elements is reduced. As a uniform distribution is the worst
case, the estimated NRUM is interpreted as an upper boundary for every geometrical
scene, but all NRUM elements must - for safety - be made accessible. The general
behaviour of the occupied matrix elements as a function of the number of iterations is
confirmed.

6.6.2. Computation Time

For the comparison of the CT of the SPR (with reunification) and the CT of the SPSM
(without reunification), the same simulation parameters have to be defined for both
simulation methods. The same rectangular room as in the previous investigation is
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6.6. Efficiency of Sound Particle Radiosity

used (see Fig. 6.34) with N = 1000 primary sound particles and a split-up of S = 25.
As abort criterion, an energy threshold eThreshold is computed from the maximum
reflection order (see Sec. 3.4.5, Eqn. 3.26). With a constant wall absorption α = 0.5
and without air attenuation (m = 0), the energy threshold reads for a given effective
reflection order oMax

eThreshold =
( 1− α

1 + S

)oMax
=
(0.5

26

)oMax
≈ (0.02)oMax . (6.24)

The CTs of the SPR and the SPSM are measured and compared in Fig. 6.36.
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Figure 6.36.: Comparison of Computation Time of Sound Particle Radiosity and Sound
Particle Simulation Method in a rectangular room. The energy threshold is
defined, such that a simulation up to an effective reflection order is computed.

The CT of the SPSM increases exponentially, as expected, with the reflection order
(note the logarithmic y − scale). The CT of the SPR increases slower than the linear
increase (in logarithmic scale) of the SPSM. Both CTs match each other at approxi-
mately oMax = 4. For higher reflection orders, in this setup, the SPR is faster than the
SPSM. Unfortunately, the SPSM is still faster for simulations up to a lower reflection
order. For only one reflection, the SPSM computes less than a second, whereas the
SPR already has a CT of approximately one minute. The reason for this behaviour is
the additional computational effort to access the RUM (see Fig. 6.36, a measurement
uncertainty due to small time intervals is indicated in green).
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Figure 6.37.: Composition of Sound Particle Radiosity’s Computation Time into memory
usage and sound propagation.

The CT of the SPR is mainly based on the memory usage, since the actual propagation
of a sound particle is very simple (see Sec. 4.3). In this example, this search overhead
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is approximately 6 times higher than the CT of the sound propagation. This causes the
inefficiency of the SPR below that reflection order. However, the SPR is designed for
higher order reflections including diffraction and scattering.
Furthermore, the current implementation of SPR is only a prototype implementation,

and a reduction of the search overhead is expected by optimizing the memory usage.

6.7. Numerical Errors of the Sound Particle Radiosity

The discretization of sound particle intersection points to the centre of the patches
causes errors (described already qualitatively in comparison with the errors of QPBT
in Sec. 6.5.1). In this section, these numerical errors are described quantitatively. The
SPSM is chosen as reference solution. A number of N = 1.000.000 sound particles are
emitted to suppress the numerical error (< 0.1dB) by this parameter.
The main discretization parameter is the patch size given by fP . First of all, the

influence of this patch size on the echogram is discussed without taking scattering and
diffraction into account. In a second experiment, scattering is added and the results are
discussed with respect to the echogram, too. Finally, the influence of the discretization
to the intensity maps that are computed with diffraction is presented.

6.7.1. Influence of the Patch Size on Numerical Errors

The influence of the patch size to the results of the computed echogram is investigated
with respect to three attributes. For city acoustics, where intensity maps are important,
the overall sound intensity is computed and the error is defined relative to the result
of the SPSM. For room acoustical simulations, however, the temporal behaviour of
the echogram is important for the computation of the room acoustical parameters.
Therefore, the relative error of the intensity in each time slot is computed and an
average over those values is determined. Finally, the relative error in the reverberation
time, as representative of these room acoustical parameters, is identified.
The geometrical scene is defined once more

source
receiver

a=10m

a
=

1
0

m

convex room

Figure 6.38.: Geometrical definitions for
the investigation of dis-
cretization errors.

by a rectangular room with walls of length
a = 10m. The sound source and the receiver
are placed in a height of 5m above the floor
and in a distance of 5m between each other
(see Fig. 6.38). The receiver radius is set
to rD = 1m. The maximum simulation time
and, thus, the length of the echogram, is set
to TMax = 0.1s to inspect the single reflec-
tions. The time slots of the echogram are
set to ∆t = 0.1ms. The absorption degree
is constantly α = 0.5 and scattering is dis-
abled (σ = 0.0, S = 0) on all four walls. The
SPR simulation has been performed for patch
sizes given by discretization parameters from
fP = 1/10 to fP = 1/200. The echograms of those simulations are presented in Fig.
6.39. As a reference, the result of SPSM is shown, too.
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Figure 6.39.: Echograms in a rectangular room for different discretization parameters fP
computed with the Sound Particle Radiosity and the Sound Particle Simula-
tion Method as reference.

The results of the SPR with fP = 1/200 are quite identical to use of the SPSM,
whereas fP = 1/10 results in a different echogram. The relative errors of the overall
intensity, the time interval and the reverberation time are shown in Fig. 6.40 for different
values of fP .
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Figure 6.40.: Relative error in an echogram for different discretization values fP .

Although the echograms are very different, the relative error of the reverberation
time is almost independent of the discretization parameter. This result is caused by
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the fact that the reverberation time is only a measure of the average energy loss over
time. Although the sound particle propagation path is shifted to a huge extent by an
insufficient discretization, the average energy loss per time is constant, especially for a
homogeneous distribution of absorption. Even for very large patches, the reverberation
time is constructed by different sampling points, but the slope is quite similar. In total,
the reverberation time is robust with respect to the discretization.
On the contrary, the error in the overall intensity varies with the discretization pa-

rameter fP . For fP = 1/10, the relative error is approximately 100% and decreases
with smaller patches (< 5% for fP < 1/50). The large error for fP = 1/10 is caused by
the receiver size, because less than one sound particle intersects with the receiver with
this rough discretization statistically.
A similar effect is found for the error in time intervals. It is extreme (180%) for

fP = 1/10 and decreases for smaller patches (10% for fP = 1/200). The relative
error in the time interval is greater than the error of the overall intensity for all patch
sizes. This is explained by looking at the echograms: While in case of moderate values
fP = 1/50, the overall intensity is quite accurate, single (wrong) peaks lead to large
temporal errors. These steps in the echogram start to vanish for fP ≥ 1/100.
The same experiments have been performed for different maximum echogram time

ranges of TMax. All three errors are almost not affected by this variation. In case
of the reverberation time and the overall intensity, this effect is explained by the fact
that intensities for small time indices are most important for the determination of
those parameters. But the error in the time interval is almost constant. Hence, the
accumulation of errors as in QPBT is precluded also numerically for the SPR.
The relative errors are practically independent of the number of emitted sound parti-

cles N , as long as a sufficient number of sound particles intersect with the patch during
the initialization process. Whenever at least 20 sound particles intersect with a patch
on average, no further increase of accuracy is observed.

6.7.2. Influence of the Discretization on the Simulation of Scattering

In a second experiment, the effect of the discretization on a simulation including scat-
tering is investigated. A scattering coefficient of σ = 0.5 is applied to all surfaces (see
Fig. 6.38) and each sound particle is split up into S diffusely reflected sound particles in
addition to the specular reflected sound particle. To achieve moderate CTs, the sound
propagation is aborted after an energy loss of −60dB. The discretization parameter is
fixed to fP = 1/100 in this investigation. The echogram of a simulation with a split-up
value of S = 10 is shown in Fig. 6.41.
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Figure 6.41.: Echograms in a rectangular room for S = 10 and fP = 1
100 computed with

the Sound Particle Radiosity and the Sound Particle Simulation Method.
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6.7. Numerical Errors of the Sound Particle Radiosity

The echograms of the SPR and the SPSM agree quite well in the complete time
range. Based on these computations, the same three relative errors as described above
are determined for different split-up values S. The results are shown in Fig. 6.42.
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Figure 6.42.: Relative error in an echogram for different split-up values S and a discretiza-
tion value of fP = 1

100 .

The relative error of the reverberation time as well as the relative error of the overall
sound intensity increases with increasing split-up values. While almost no relative error
occurs for S = 5 (< 1%), errors up to 10% occur in simulations with S = 25. The
relative error in the time interval behaves similarly for S > 10. Unreasonable results
below S = 10 are explained by many empty time intervals for low split-up values. Thus,
a reduced number of time intervals is taken into account and the relative error is not
directly comparable with the error of other split-up values.
The described effect seems to prevent an efficient simulation by the SPR, because the

aim of the SPR is the simulation of scattering (and diffraction). Therefore, the occurring
error is investigated in more detail. In order to determine the effect of increasing errors
for greater split-up values S, the echogram of a simulation with S = 25 is shown in Fig.
6.43. To clarify the effect, the energy is plotted logarithmically.
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Figure 6.43.: Echograms in rectangular room for a split-up value S = 25 and fP = 1
100 com-

puted with the Sound Particle Radiosity and the Sound Particle Simulation
Method (note: logarithmic y − scale).

A comparison of the SPR with the SPSM reveals that the difference in-between both
methods occurs in the later part of the echogram. More energy is detected by the SPR.
The errors in the overall sound intensity, the temporal errors and even the errors in
the reverberation time are explainable by this increased energy in the late part of the
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6. Sound Energy Reunification

echogram. Although the reverberation time seems to be quite robust with respect to
the patch size fP , the influence of the split-up value S is strongest for the reverberation
time. The difference is explained by the energetic abort criterion, although it was
identical for both simulation techniques.
For the given setup, an energetic abort criterion of −60dB seems to be sufficient,

because approximately 20 reflections are handled with an average absorption degree of
α = 0.5. But with a split-up in S = 25 sound particles, only 4 reflections are handled
according to Eqn. 3.26. Even for an abort criterion of −60dB, the tracing of sound
particles is aborted before they reach the maximum time of 0.1s. Nevertheless, the same
effect occurs with the SPR, such that no difference is expected in the first attempt. In
the case without reunification, the tracing of sound particles below the energy threshold
is directly aborted. On the other hand, in the case of reunification, multiple sound
particles (each with energy below the energy threshold) might be reunified, such that the
total amount of energy is above the energy threshold. As a result of this reunification,
the reunified sound particle is propagated at least one more reflection. Hence, the
echogram that is computed with the SPR is more accurate than in case of the SPSM.
This is verified by the simulation of the SPSM with a reduced abort criterion of −80dB
as also shown in Fig. 6.43. The increase of the SPR in the late part of the echogram is
confirmed by this simulation. The difference between the SPSM and the SPR increases,
but this is rather a result of a wrong abortion criterion than an error of the SPR.

6.7.3. Influence of the Discretization on the Simulation of Diffraction

The computation of diffraction with the SPR is influenced by numerical errors, too. In
case of diffraction, the spatial behaviour of those numerical errors is more important
than the temporal behaviour[PS11a]. In contrast to the investigations of Chapter 5,
all units are now in real distances (m) instead of relative wavelengths (λ). However,
the simulation has been performed for 10 octave bands from f = 31.5Hz to f =
16.000Hz simultaneously. Due to the functional principle of the SPR, all sound particles
are discretized by shifting their intersection points to the patch centres before they
are diffracted or detected. In contrast to the former investigations in this chapter, a
dependency of the wavelength λ, and thus the frequency f , is expected, because of the
specification to diffract at least a few sound particles in a region of d = 0.1λ above
the wedge (see Sec. 5.5.3.2). This region is in the range of 0.002m(16.000Hz) < d <
1.092m(31.5Hz). In order to achieve a reference solution, the simulation has been
repeated by the SPSM (i.e., without discretization) with the same parameters.
The simulations have been performed in a rect-
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Figure 6.44.: Geometrical setup for
the investigation of
diffraction.

angular room of a = 20m width in each dimen-
sion. A single wedge of a2 = 10m height is placed
at the centre of the floor, x = a

2 , and is extended
to the ceiling by a VW (see Fig. 6.44). The sound
source is positioned at the centre of the room to
the left of the wedge. No specified receiver posi-
tion is needed, because the sound intensity maps
are computed for a receiver grid. This grid has
the dimensions of wgrid = 0.1m (200 · 200 re-
ceivers). All surfaces (including the wedge) are
completely absorbent (α = 1.0) in order to fo-
cus on the effect of diffraction (compare setup of
Stephenson’s investigations[SS07]). A number of
N = 500.000 primary sound particles are emit-
ted and split up into S = 200 sound particles at each diffraction event. Both values
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6.7. Numerical Errors of the Sound Particle Radiosity

are great enough to neglect their influence (see Sec. 5.5.3.2, 5.5.3.3). The Diffraction
Angle Probability Density Function (DAPDF) Dg (ε, b) (see Eqn. 5.15) and the Edge
Diffraction Strength (EDS) with the projected slit width (Sec. 5.4.3.3) are used.

The sound field is computed by the SPR for fP = 1/20, fP = 1/50 and fP = 1/100.
With a MFPL of l = 4π ≈ 12.5m, these parameters correspond to an absolute patch size
of lP ≈ 0.625m(fP = 1/20), lP ≈ 0.25m(fP = 1/50) and lP ≈ 0.125m(fP = 1/100).

For f = 500Hz, the value of d computes to d ≈ 0.07m, such that no accurate results
are expected below fP = 1/100. The results are shown in Fig. 6.45 together with the
reference solution of the SPSM. In addition, the absolute difference of the intensity
levels by the SPR is shown relative to the intensity maps by the SPSM. The plots for
the remaining frequencies are collected in appendix A.2.6.

(a) SPSM (b) SPR with fP = 1
20 (c) SPR(fP = 1

20 )-SPSM

(d) SPR with fP = 1
50 (e) SPR(fP = 1

50 )-SPSM

(f) SPR with fP = 1
100 (g) SPR(fP = 1

100 )-SPSM

Figure 6.45.: The influence of the applied discretization in Sound Particle Radiosity on
diffraction simulation compared with the Sound Particle Simulation Method
for f = 500Hz.
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6. Sound Energy Reunification

The investigation of the numerical errors in the intensity maps is divided into three
regions (see Fig. 6.44):

• region0 : source-side (direct zone)

• region1 : upper right (view zone)

• region2 : lower right (shadow zone)

region0 No diffraction is computed, such that the intensity maps are completely iden-
tical for all frequencies (see appendix A.2.6). The sound intensity map reproduces
the direct sound in case of the SPSM exactly. In case of the SPR (with discretiza-
tion), sufficient results occur for fP = 1/50 and fP = 1/100. For smaller patches
lP ≈ 0.625m(fP = 1/20), the size of the patches is larger than the receiver size,
wgrid = 0.1m, such that the discretization of the sound particles to the patch cen-
tres results in receivers, which are not intersected by any sound particle. Even for
lP ≈ 0.25m(fP = 1/50), this effect causes inaccuracies near the surfaces (see Sec.
6.5.2.3). This can be compensated by smaller patches or larger receivers.

region1 The same effect as in region0 is noticed for f = 16kHz (see appendix A.2.6).
For this high frequency, the diffraction effect is very small, such that the sound parti-
cles are only transmitted through the VW. Thus, single (discretized) sound propagation
paths are observable in case of too large patches. This effect decreases for lower frequen-
cies, because the diffraction smears the energy among many secondary sound particles.
They cover the receivers more homogeneous, such that for f = 31.5Hz this effect is
only hardly noticeable anymore.

region2 The error is more evenly distributed among all receiver points for almost all
frequencies and patch sizes. The mean value increases significantly with the frequency
(decreasing wavelength) due to the effect of a decreasing value of d. This effect can be
reduced by decreasing patch sizes by the same argument.

To describe the discretization error on diffraction quantitatively, the average over
the absolute difference of the intensity maps for all frequency bands (relative to the
respective SPSM) is investigated only in region2. To achieve more generalizable results,
this difference is shown in Fig. 6.46 as a function of the relative patch length per
wavelength lP /λ .
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Figure 6.46.: Mean errors of the intensity maps in the shadow region computed with the
Sound Particle Radiosity for different discretization parameters fP as a func-
tion of the relative patch length lP /λ.
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6.8. Further Optimizations

The average error in simulations with fP = 1/100 and fP = 1/50 yield quite similar
results for the same relative patch length lP /λ. For fP = 1/20, the numerical error of
the receivers that detect no energy influences the average error too strong to extrapolate
more information in that case. However, the behaviour is quite similar to both other
functions, besides an offset of about 2dB. For fP = 1/100 and fP = 1/50, the aver-
age error increases for larger patches, such that the effect of a wavelength dependent
parameter d is proven.
As this effect is caused only by the patches on the VW, different discretization pa-

rameters for solid walls and VW could be introduced, such that a higher resolution
is achieved for the VW. Furthermore, smaller patches near the edges and, thus, an
unregular discretization of the surface, might be used to increase the accuracy.

6.8. Further Optimizations

As described in this chapter so far, the SPR is a very efficient simulation technique
to simulate higher order diffractions and reflections, but the main problem of the SPR
is the memory usage (see Sec. 6.5.2.2). Therefore, both the reduction of the memory
requirement and the extension of the available memory are discussed briefly. Addition-
ally, a technique to reduce the CT by computing identical sound propagation paths
only once is introduced.

6.8.1. Elimination of Unused Reunification Matrix elements

The size of the RUM is the main bottleneck of the SPR, because it increases rapidly
for higher accuracy. One solution to reduce the memory requirement of the RUM is to
ignore matrix elements that are never used (see Fig. 6.47).
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Figure 6.47.: Unused matrix elements of the Reunification Matrix. Unused elements are
marked in red.

Candidates for those elements are, e.g., patch-patch combinations of the same sur-
face, as sound particles can never start and end at the same surface. In addition,
depending on the simulation parameters like the patch size fP and the split-up degree
S, invalid patch-patch combinations might occur. In either case, a mapping of theoret-
ically possible matrix elements to geometrically reachable matrix elements is needed,
which increases the memory requirement, but might be worth using.

6.8.2. Parallelization on a Computation Cluster

For more complex scenarios higher memory storage is needed, such that an extension to
computer clusters is required[PWS13]. For an efficient usage, the RUM has to be divided
into one RUM for each computer. These smaller RUMs reduce the memory requirement
for each computer, although the total memory requirement remains constant. The
bottleneck of these computation clusters is the communication between distributed
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6. Sound Energy Reunification

cluster nodes. Therefore, a good decomposition of the RUM is achieved by reducing
the overall communication amount. To find an optimum decomposition, a graph of
possible communications between matrix elements is needed. In this graph model, each
row of the RUM (patch-patch-combination, see Sec. 6.6.1) is represented by a node
and a possible communication between these nodes is indicated by an edge between
them (see Fig. 6.48). An edgecut between nodes of different computers is equivalent
to a communication between different nodes. The number of such edgecuts in that
graph indicates the amount of computational overhead. For an example of eight matrix
elements, two different decompositions are shown in Fig. 6.48.
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Figure 6.48.: Two decompositions of eight matrix elements in a graph model.

Obviously, good and bad decompositions exist (in Fig. 6.48a:4, in Fig. 6.48b:16).
From an algorithmical point of view, one solution to find a good decomposition is to
investigate the communication between matrix elements [Win12]. From a physical point
of view, however, geometrical information, e.g., the increased communication between
parallel walls due to flutter echoes or the almost independent sound propagation of
sound particles in distant sub-spaces, can be used.

6.8.3. Tracing of Sound Particles Simultaneously

In case of the SPR, the reunification rate and, thus, the efficiency can be increased by
propagating multiple sound particles simultaneously. Due to the definition of the RUM,
sound particles that are represented by one column (different absolute running times
from the sound source) have the same sound propagation path (see Fig. 6.49).
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Figure 6.49.: Tracing sound particles with the same propagation path simultaneously. Ma-
trix elements of sound particles with the same sound propagation patch are
indicated in yellow.
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6.9. Summary of Sound Energy Reunification

As their sound propagation path (except the propagation time) is completely iden-
tical, the geometrical intersection test with the scene and the receivers has to be per-
formed only once. Unfortunately, this method increases the overall memory effort,
because sound particles are traced that do not fulfil the oldest sound particle first re-
quirement, such that the cyclic RUM is increased in size.

6.9. Summary of Sound Energy Reunification

The reunification of sound energy carriers was presented for sound particles as well as
for beams. Both reunification techniques were published by Stephenson before, but
only theoretically without using any concrete implementation. Thus, details had to
be worked out for both methods. A crucial question in the case of QPBT was the
choice of the coordinate system, in which the starting points of beams were reunified.
It was shown (see Sec. 6.4.1.2) that none of the former coordinate systems, i.e., a) a
receiver concentric spherical coordinate system, b) a sound source concentric spherical
coordinate system and c) the Cartesian coordinate system, were usable, such that a
patch-related spherical coordinate system was introduced (see Tab. 6.1).

radius proportional multiple multiple adjustable
to propagation time sources receivers grid size

sound source concentric
% % " "spherical coordinates

receiver concentric
" " % "spherical coordinates

Cartesian coordinates % " " %

patch concentric
%" " " "spherical coordinates

Table 6.1.: Comparison of different coordinate systems for the discretization of a beam’s
starting point in case of Quantized Pyramidal Beam Tracing.

Concrete implementations for the SPR and, using the new coordinate system, QPBT
were presented for the first time (in 2D). A detailed statistical comparison of both
methods was performed and it was shown that the SPR was both more efficient and
even more accurate than QPBT (see Sec. 6.5). Actually, QPBT failed totally. Four
arguments were presented to prove this statement (see Tab. 6.2).

Sound Particle Radiosity Quantized Pyramidal Beam Tracing

errors do
" %not cumulate

no detection of
%" %wrong paths

fewer number of
" %sound energy carriers

lower memory
" %usage

Table 6.2.: Comparison of both reunification techniques.

The statistical analysis was confirmed by numerical experiments, too.
For the preferred SPR, the efficiency was discussed resulting in a quantitative de-

scription of the reunification rate and an estimation of the required memory (see Sec.
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6. Sound Energy Reunification

6.6). This estimation contradicted to Stephenson’s former estimation and the respec-
tive misassumptions were pointed out. It was shown analytically and numerically that
the SPR prevented the exponential increase of the SPSM due to the split-up of sound
particles (see Tab. 6.3).

Sound Particle Radiosity Sound Particle Simulation Method

prevents exponential
" %increase of particles

Table 6.3.: Comparison of the increase of sound energy carriers.

It was shown that in non-diffuse sound fields, the RUM was occupied inhomoge-
neously, too. Thus, a higher effective reunification rate was observed. Although the
memory requirement for the SPR was reduced compared to the case of QPBT, a very
large amount of memory was still needed to obtain accurate results. To overcome this
issue, an extension for computation clusters was presented.
Finally, the numerical errors that came from the discretization of sound particles were

investigated for a) a simulation without scattering and diffraction, b) a simulation with
scattering and c) a simulation with diffraction (see Sec. 6.7). The result was that the
relative error in the reverberation time was almost independent of the discretization
parameter fP , whereas the relative error in the overall sound intensity and the relative
error in a time interval decreased with smaller values of fP . However, all three errors
were almost independent of the maximum simulation time and the number of primary
and secondary sound particles, as long as at least a few sound particles intersected with
a patch (see Tab. 6.4).

reverberation time overall sound intensity
sound intensity in a time interval

independent of
" % %discretization parameter

independent of
" " "maximum simulation time

independent of
" " "number of sound particles

Table 6.4.: Comparison of different coordinate systems for the discretization of a beam’s
starting point.

However, the patch size has to be adjusted for the given geometrical scene, the fre-
quency and the desired accuracy of the results, but good results were achieved with a
sufficient number of patches.
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7. Transition to Three Dimensions

The former investigations of the convex sub-division, diffraction and the reunification
of sound particles were restricted to 2D in order to discuss the principle effects with
simplified geometrical considerations. However, real world scenarios are three dimen-
sional problems, and some 2D test cases are only a special case of 3D scenarios (e.g.,
with vertical walls).
The analytical and statistical considerations of the chapters 4 – 6 are directly appli-

cable to 3D (at least qualitatively), such that a detailed statistical analysis is left out
in 3D. The conclusions made in 2D with respect to an optimum diffraction module as
well as the optimal reunification technique are only applied here (this is justified, as
edge diffraction is mainly a 2D effect). A convex sub-division of a 3D environment has
to be performed, before the Sound Particle Radiosity (SPR) is extended to 3D. Finally,
the diffraction module is extended to 3D.

7.1. Convex Sub-Division

In analogy to the Geometrical Acoustic (GA) simulation methods in 2D (see chapter 3),
a sub-division of the geometrical scene into convex subspaces (see chapter 4) is required
in 3D, too. The aim of this technique is again to achieve a sub-division into convex
subspaces, such that the Computation Time (CT) is reduced and sound particles are
automatically detected when they pass through a Virtual Wall (VW).
Unfortunately, the convex sub-division technique that was presented earlier (see Sec.

4.2) turned out to be by far more complicated in 3D than in 2D, such that only the idea
is presented in this section – the actual implementation has not been carried out yet. As
a preliminary solution, an automatic sub-division based on Delaunay-triangulation[Si08]
is then introduced, which results in a sub-division into convex tetrahedra. However, the
resulting sub-division is not optimal for the application of the diffraction algorithms that
were introduced earlier. But, with both methods, a subdivided scene can be assumed for
the SPR method in 3D. As an alternative, the user can sub-divide the scene manually
and use it as input for the SPR. This section concludes with a short discussion of the
speed-up in 3D (valid not only for the SPR, but for the Sound Particle Simulation
Method (SPSM), too).

7.1.1. Convex Sub-Division Optimized for the Detection of Diffraction

The idea is to extend the method of convex sub-division from 2D (bisecting lines, see
Sec. 4.2) to 3D. Although the approach is not implemented yet, the idea is presented
by the example of a simple geometrical scene as shown in Fig. 7.1a. In this scene,
a single rectangular house (brown cube) is placed upon a single floor (green plane).
Furthermore, five totally absorbent surfaces are added to create a closed polyhedron,
which are not shown. However, the boundary edges of these surfaces are shown (gray
lines).
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(a) starting scene
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Figure 7.1.: Extension of the convex sub-division to 3D.

Inner Edges (IEs) have to be identified (by some vector operations) first between
surfaces (which are lines instead of points as in 2D). These are shown in Fig. 7.1b
(red lines). Due to the higher dimension of the IEs, Inner Vertices (IVs) (blue spheres)
are the intersection points of these IEs. Furthermore, the starting points and the end
points of the IEs, which are not connected to other IEs, are defined as IVs, too.
Now, the bisecting lines of the IVs have to be constructed. To compute them, only

the flanking walls of the IVs are taken into account (see Fig. 7.1c, yellow lines). The
bisecting lines can either be inside a surface (lower IVs in Fig. 7.1c) or traversing the
space (upper IVs in Fig. 7.1c). The intersection points of these bisecting lines with the
scene can be computed by intersection tests.
As the intersection points of the bisecting lines with the other room surfaces introduce,

in general, additional vertices to the scene, a translation to an already existing vertex
of the intersected surface is carried out. Like in the 2D case, the vertex is chosen that
adds the smallest change of angle compared to the bisecting line (see Fig. 7.1d, gray
lines).
In a final step, VWs are introduced in-between the translated bisecting lines (see Fig.

7.1e, 7.1f, yellow planes). These VWs are often close to the bisecting planes on the IEs.
In some cases, however, the bisecting lines spanning the VW are not in plane, such
that the introduced VW has to be superimposed by multiple VWs. This implies a more
complicated algorithm, which has to be worked out. Stephenson roughly proposed a 3D
convex sub-division[Ste03a] based on the idea in Sec. 4.1.4, but the same disadvantages
are valid for 3D, too.
Although not implement yet, the convergence of this algorithm is obvious, because
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7.1. Convex Sub-Division

in each step one IE is removed. Hence, the scene is convex when neither IVs nor IEs
remain.

7.1.2. Convex Sub-Division Based on the Delaunay-Triangulation

As the presented sub-division technique is not implemented yet, an alternative is used to
test the SPR (besides a manual sub-division). As an example, the boundary conforming
Delaunay mesh generation[Si08] is chosen. This theory is mainly used for the generation
of meshes to solve differential equations of, e.g., finite element methods. The result is
a sub-division into a huge number of tetrahedra, i.e., convex volumes in 3D described
by exactly four vertices and four planes. No additional vertices are introduced into the
scene, but the simple form of the volume requires a huge number of convex sub-spaces
and, thus, a huge amount of VWs. To create these meshes, the freely available library
TetGen[Si11] is used in this work to perform these sub-divisions (see Fig. 7.2).

(a) initial setup with 20 vertices and 12 sur-
faces

(b) 29 sub-spaces with still 20 vertices

Figure 7.2.: Convex sub-division by TetGen (after [Si08]).

Although all scenes are computable by this library, the first method should be pre-
ferred in later implementations, as it is optimized for the detection of diffraction and
the number of VWs is reduced.

7.1.3. Applicability of the Speed-Up

In Sec. 4.3 it has been shown that the CT of the SPSM with convex sub-division is
independent of the number of walls or vertices of the scene, but dependent on a shape
factor q (see Eqn. 4.9). The same considerations are made in 3D with the Mean Free
Path Lengths (MFPLs) [Kos60] of 4 · V

S
in 3D instead of π· S

C
in the 2D case. The

overall surface S of the scene with volume V is extended by the surface of the VWs
SVW , such that the shape factor q reads

lnc

lc
=

4 · V
S

4 · V
S+SVW

= 1 + SVW

S
. (7.1)

Regarding Eqn. 7.1 instead of Eqn. 4.7, it is clear that the sub-division by the
tetrahedra is not perfect, because the surface of the additional walls SVW is very large.
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7. Transition to Three Dimensions

7.2. Sound Particle Radiosity

The algorithm of the SPR method in 3D is similar to the 2D case. Especially the core
of the SPR, namely the Reunification Matrix (RUM), stays completely unchanged. As
the processing of the RUM remains unaffected, the investigations of the reunification
probability (see Sec. 6.6.1) are directly applicable to 3D. Thus, only the geometrical
computations of the sound propagation between two surfaces that are based on the
SPSM, have to be modified. Even the algorithms of List. 6.1 and List. 6.2 are valid.
The emission of sound particles as well as the computation of the wall intersection

points are mostly known. In the following, the split-up of sound particles and the
discretization of the surface into patches are described in more detail. Furthermore, the
detection of sound particles by weighting the inner crossing distance is extended to 3D.

7.2.1. Emission of Sound Particles

For both the SPSM and ray tracing techniques, an omnidirectional emission of sound
particles from a source point is a problem, because the sphere cannot be subdivided
in equally sized and shaped surface elements except for the platonic bodies. This can
be handled either by a deterministic or a stochastic model. Stephenson presented a
combination of both models[Ste85]. The complexity to construct the direction vectors
is in the same order of magnitude in 2D and in 3D[Mar72] in case of a stochastic model.
However, in this work, a deterministic SPR is aimed at, such that no random numbers

are used to compute the distribution of sound particles. The reason is that the same
distribution is used for the emission of secondary sound particles by the split-up of
sound particles of both scattering and diffraction. The problem is that not only N
direction vectors for each such particle have to generated but the solid angle ranges
have to be described analytically, too. For this purpose, the recursive zonal sphere
partitioning[Leo07a] yields a sub-division of the unit sphere into N equally sized (not
shaped) solid angle ranges (see Fig. 7.3).

angle range

direction vector

(a) N = 10 (b) N = 100 (c) N = 1000

Figure 7.3.: recursive zonal sphere partitioning for different N . The green surfaces define
the angles ranges to the respective direction vector in red (after [Leo07a]).

These solid angle ranges are defined in spherical coordinates, where the region of each
sound particle i around its direction vector vi is defined within

ϑMin,i < ϑ < ϑMax,i and (7.2)
ϕMin,i < ϕ < ϕMax,i,
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such that the whole solid angle reads∫ ϕMax,i

ϕMin,i

∫ ϑMax,i

ϑMin,i

dΩ = ∆Ω ≈ 4π
N

. (7.3)

Both the angle ranges and the direction vectors are computed by the EQSP Tool-
box[Leo07b].
Although this distribution is not optimum with respect to the shape of the solid angle

ranges, the benefit of well defined, orthogonal integration boundaries compensates this
disadvantage, since Eqn. 7.3 has to be solved for different distributions in case of
scattering or diffraction later.

7.2.2. Wall Intersection Test

To find the valid intersection point of a sound particle with the geometrical scene, four
criteria have to be tested in general (see Fig. 3.6). Due to the restriction to convex
subspaces by the convex sub-division, only two of these criteria have to be verified to
determine the valid intersection point.
As the point-in-polygon test is much more complex in 3D, the closest intersection

point instead of the point-in-polygon is computed in addition to the test whether the
polygon is intersected from the inside.
The distance of the sound particle to the surface in direction of propagation is deter-

mined by the Hesse normal form. It is valid for any point ~x in the plane, whenever ~P
is an arbitrary point within the surface[

~x− ~P
]
◦ ~n = 0. (7.4)

The distance d from the sound particle’s starting point ~S to the intersection point ~I
is found (assuming all direction vectors are in unit length) by solving[(

~S + d·~v
)
− ~P
]
◦ ~n = 0. (7.5)

The intersection point ~I is computed by

~I = ~S + d·~v. (7.6)

The distances to all walls of the convex room, which are intersected from the inside,
are computed, and the intersection point with the minimum distance is chosen as valid
intersection point (see List. 7.1).

Vec I // conta ine r f o r i n t e r s e c t i o n
f l o a t dMin = 1000.000 f ; // i n i t i a l i z e d i s t ance with l a r g e value
for ( a l l wa l l s )

I = f i ndCur r en t I n t e r s e c t i on ( ) ; // see Eqn . 7 . 7 , 7 . 8
i f (n ∗ a > 0) // see Eqn . 3 .7

i f (d < dMin) // see Eqn . 3 .10
IMin = I ;
dMin = d ;

Listing 7.1: Pseudocode for the determination of a wall intersection.
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7. Transition to Three Dimensions

7.2.3. Wall Interaction

To determine the interaction of a sound particle with a wall, it has to be distinguished
between a real wall and a VW. In case of a real wall, the sound particle is split-up due
to scattering (for the scattering coefficient σ > 0, see Sec. 2.3.3), whereas the sound
particle is split up due to diffraction in case of a VW.
In either case, a number of S equally distributed sound particles is emitted. Their

direction vectors are independent of the angle of incidence and, thus, computed by
the same principle as the emission of primary sound particles. However, the direction
vectors are distributed only on a half sphere with 0 < ϑ < π/2.

solid wall

incident sound 

particle

secondary

sound particles

(a) scattering (solid wall)

virtual wall

incident sound 

particle

secondary

sound particles

(b) diffraction (Virtual Wall)

Figure 7.4.: Split-up of sound particles in equally distributed secondary sound particles.

Scattering The coordinate system of the half sphere is chosen, such that the direction
vectors point into the convex room and the origin is equal to the intersection point (see
Fig. 7.4a). The boundaries ϑMin,ϑMax,ϕMin,ϕMax of each angle range i are defined
in the same (rotated) coordinate system, where the centre vector points in direction of
the inverse surface normal. The relative energy ei of each secondary sound particle with
index i reads with air attenuation m, the absorption degree α and the travel distance
since last intersection r (compare Eqn. 2.22, 3.16 and 7.3)

ei = e−mr · (1− α) ·σ

∫ ϕMax

ϕMin

∫ ϑMax

ϑMin

cos (ϑ)
π

dΩ. (7.7)

In addition to the S secondary sound particles, a sound particle with the specularly
reflected energy is emitted in the specularly reflected direction with an energy amount
of

e0 = e−mr · (1− α) · (1− σ) . (7.8)
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7.2. Sound Particle Radiosity

Diffraction When a VW is intersected, the sound particles are transmitted through
the VW (see Fig. 7.4b).
The determination of each sound particle’s relative energy is computed similar to

Eqn. 7.7 (compare Eqn. 5.19) by an integration over the solid angle the sound particles
represents

ei = e−mr ·
∫ ϕMax

ϕMin

∫ ϑMax

ϑMin

D∗
(
SAP , ~I,Ω1,Ω

)
dΩ, (7.9)

where D∗
(
SAP , ~I,Ω1,Ω

)
is the 3D-Diffraction Angle Probability Density Function

(DAPDF), i.e., the Diffraction Angle Probability Function (DAPF) derived by the solid
angle

D∗
(
SAP , ~I,Ω1,Ω

)
= ∂DAPF

∂Ω
. (7.10)

In general, it depends on the aperture SAP , the intersection point ~I, the direction of
incidence Ω1 and the outgoing direction Ω (each consisting of a polar and an azimuth
angle). This 3D-DAPDF is derived in Sec. 7.3.

7.2.4. Discretization of the Surface into Patches

The discretization of any wall into patches can be handled in different ways. One
attempt is to perform a triangulation of the wall into triangles by a refined Delaunay
triangulation[She96] (see Fig. 7.5a). An efficient version is Triangle[She05].
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(a) Delaunay triangulation (after [She96])
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Figure 7.5.: Different techniques defining patches on a surface.

This approach describes the split-up of the surface in equally sized triangles, such that
the complete surface is covered without overlap. For the discretization, the triangular
patches are numbered linearly. Although this concept fits any arbitrary surface ex-
actly, the computation of a Patch Identification Number (patchID) is very complicated.
The dediscretization, i.e., the computation of each triangle centre from the respective
patchID, is complex, too. Thus, a more simplified method is used in this work.
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7. Transition to Three Dimensions

This simplification is achieved by placing a linear grid to discretize the surface in a
pre-defined, arbitrary 2D wall coordinate system (see Fig. 7.5b). In the example above,
a grid of 8x8 patches is constructed to cover the complete surface. The computation of
the patchID is performed by using the same linear numbering technique as in 2D for
both indices i and j (see Sec. 6.3.2.1). Both are combined to a single number as shown
in Fig. 7.5b. Defining the surface of these patches as lP · lP , the simulation parameter
fP = lP /l describes the size of a patch in one dimension. Due to the simple technique,
three different patch types exist that have to be handled differently.

Completely covered patches (green) The first group of patches is completely covered
by the surface. Every intersection point can be directly converted to a patchID and
this patchID is dediscretized to the patch’s centre [(i+ 0.5) · lP , (j + 0.5) · lP ].

Partly covered patches (red) The discretization of the intersection points on these
patches is equal to the discretization of the completely covered patch. However, inter-
section points outside the surface are geometrically not possible, such that the centre
of the patch (where the intersection point has to be shifted to) is adjusted to the cen-
tre of gravity of the remaining patch surface. The patch surface of these patches is
smaller. In an actual simulation, theses patches are a minor part of all patches. Thus,
the additional computational effort to adjust the intersection point during simulation
is neglectable compared to the effort by Delaunay triangulation.

Not covered patches (white) In general, some patches are completely outside the wall.
The discretization of intersection points is not needed, because no intersection point
outside the wall can occur. The geometrical simulation is independent of these patches,
but a huge number of unreachable patches in the RUM cause an increased CT. Thus,
a mapping is used to skip these patches.

7.2.5. Detection

The spatially extended receivers are volume detectors with volume VD instead of surface
detectors in 2D. Thus, the energy density is given by the detected energy ED per volume

I = c·w = c· ED

VD
. (7.11)

With the inner crossing distance of a sound particle within a volume of the detector
wi, the sound particle detection formula reads (with the same derivation as in Sec.
3.4.4)

I = P

N ·VD

N0∑
i=1

ei ·wi, (7.12)

where P is the sound power, N and N0 the number of emitted or detected sound
particles, respectively.
Like in 2D, the detected sound intensity is independent of the shape of the detector.

Spherical detectors are used, whenever a moderate number of receivers are used. The
inner crossing distances are shown in Fig. 3.7. Cubical receivers are used when the area
of interest is an array or a matrix (see Fig. 3.9).
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7.3. Uncertainty relation Based Diffraction

The Uncertainty relation Based Diffraction (UBD) module is based on the Fraunhofer
diffraction at a slit as well as the uncertainty relation. Both physical principles are valid,
of course, in 3D, such that the extension of the UBD to 3D is conducted consequently.
The main goal of a UBD module in 3D is that the module has to be applicable to

apertures of arbitrary shape instead of only a slit, like in 2D. Also its results in a 2D
cross-section should be identical to the former 2D experiments, as these were interpreted
as a specialization of diffraction in three dimensions.
In this section, different concepts on extending the UBD to 3D are discussed. The

actual 3D-DAPDF is derived analytically based on the preferred concept. Then, an
analytical formulation of the transmission level by diffraction through an arbitrarily
shaped aperture is derived based on a fictive SPSM (without discretization). The
extension of the 2D-DAPDF to 3D is a crucial point, because different definitions of
the 3D-DAPDF are possible, such that conversions are derived. This aspect is discussed
in more detail. A validation of the 3D-UBD is achieved by evaluating the analytical
equation for the former 2D experiments to ensure compatibility. Some extended 3D
scenarios are validated by the wave theoretical Secondary Source Model (SSM). Due
to a lack of a full implementation of this diffraction module in the SPSM, the influence
of reflections or the discretization cannot be discussed yet.

7.3.1. Concepts of 3D diffraction

In this work, the diffraction in 3D is defined as the diffraction through an (arbitrar-
ily shaped, but polygonal) opening in a wall. This opening is represented by a VW.
This definition correspondents to the derivation of the UBD by Fraunhofer diffraction
through an aperture. However, the second basis of the UBD is the uncertainty relation.
Even in 2D, the discussion of the reciprocity principle showed that the definition of
the uncertainty in position (i.e., the by-pass distance a) is questionable. This definition
becomes even more arguable as the 3D-DAPDF is a function of two dimensions. Thus,
the definition of uncertainty or, in other words, the definition of the Edge Diffraction
Strength (EDS) is discussed.
Six concepts are briefly presented, of which the last is proposed by Stephenson[SS07].

Due to the convex sub-division, it is assured that the apertures are convex, too. As the
UBD is applied to sound particle diffraction, the diffraction of a single sound particle
is observed that intersects with the opening at an arbitrary position. Of course, the
final transmission level is the superposition of all sound particles that intersect with the
aperture. The aperture is, so to say, sampled by the SPSM (as in 2D a line above the
wedge).

7.3.1.1. Whole Circumference

The first concept is to take the complete circumference of the opening into account. The
idea is shown for an arbitrary opening with n = 7 vertices in Fig. 7.6. An intersection
point of the current sound particle is marked in red.
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Figure 7.6.: Sampling of the aperture’s circumference in steps of constant angle.

In this concept, the aperture itself is sampled for each sound particle that intersects
with the aperture. Therefore, a number of cross-sections h is defined that start from
the intersection point (red) in equally distributed angles ∆α = π/h. For each cross-
section h (h = 16 in Fig. 7.6), their intersection points with the aperture’s edges are
determined. Since both distances to the aperture on this line, e.g., the purple line,
are taken into account, only half of the angles are considered. The EDS is computed
for every cross-section independently, such that h EDSs (uncertainties) are derived in
total. These EDSs are defined in the current direction (green ray). On this line, e.g., the
purple line, both distances to the aperture are taken into account, such that actually the
EDS of a slit is computed (see Eqn. 5.34) for each line. Corresponding to these lines,
a plane is constructed perpendicular to the surface for each cross-section. The angle of
incidence ε1 inside each plane is considered to independently compute a 2D-DAPDF for
each cross-section, such that the results of this concept is a number of h 2D-DAPDFs.
The 2D-DAPDFs are superposed in a three dimensional space by a projection of each
2D-DAPDF into the respective plane that belongs to the EDS. The transition to an
infinite number of cross-sections h → ∞ results in a homogeneous distribution of the
3D-DAPDF.
The benefit of this concept is that the exact same EDSs as in 2D are used and the

simultaneous diffraction at multiple edges is handled. Furthermore, the convergence for
a circular aperture (a polygon with an infinite number of vertices) is possible.
On the other hand, the accordance to the 2D diffraction is doubtful, because sound

particles passing by a single edge are diffracted in all directions. Besides this disad-
vantage, the CT of this concept is very high, because an integral over the complete
aperture has to be performed for each diffracted sound particle. It is hard to estimate,
which number of cross-sections h is sufficient.
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7.3. Uncertainty relation Based Diffraction

As this concept cannot result in an efficient simulation, it is discarded.

7.3.1.2. Edges of Circumference

In order to reduce the computational effort of the former concept, the number of cross-
sections h is reduced to the number of vertices n and, thus, edges, of the aperture (see
Fig. 7.7). A physical reason for this concept is that the uncertainty is given by the
distance to the edge, which is handled explicitly for each edge. This distance is constant
for the whole edge.
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Figure 7.7.: Sampling all edges of the aperture’s circumference.

The computation of the 3D-DAPDF is similar to the former concept, but the number
of cross-sections h is reduced (h = n = 7 in Fig. 7.7). For each edge of the aperture, an
EDS is constructed including both the distance to the current edge and the distance in
opposite direction to maintain compatibility with the 2D approach. A superposition of
the 2D-DAPDFs, which are computed from these EDSs, yields the 3D-DAPDF.
The main benefit of this concept is that the compatibility to 2D is given, because

in case of the respective cross-section, the resulting 3D-DAPDF is identical to the
former 2D DAPDF. Another benefit is that the CT is reduced, because the number of
dimensions is restricted to the number of edges of the aperture.
However, the consideration of the opposite by-pass distance can be questioned, be-

cause more complicated cases can occur. Whenever two edges of the aperture are
exactly parallel, two interpolation planes collapse to one, whereas they are independent
interpolation planes for the 3D-DAPDF if they differ by an infinitesimally small angle.
A second critical case is when the point of the closest distance between the edge and the
intersection point is not within the circumference of the aperture (see intersections with
dotted black lines in Fig. 7.7). In these cases, two closest distances, e.g., a6 (the closest
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7. Transition to Three Dimensions

distance to the infinite line) or a∗6 (the distance of the closest vertex), are possible and
even the plane might be constructed with either the blue or the green ray in Fig. 7.7.
The major disadvantage of this concept is revealed by very small edges of the aperture.
Any edge, however small it is, adds an interpolation plane by an own 2D-DAPDF to
the construction of the 3D-DAPDF. If the edge is removed from the aperture (as a
thinking experiment), the interpolation plane with this edge vanishes, such that the
3D-DAPDF behaves differently. Due to these physical discrepancies, the advantages
cannot be compensated. Hence, this concept is discarded, too.

7.3.1.3. Closest Edge

From a computational point of view, the simplest concept is to take only the closest
edge of the aperture into account. This was proposed by Heinisch[HC71] for optical
ray diffraction[FGH99], where it is justified since the aperture is large compared to the
wavelength λ. This photon diffraction model is based on Gaussian functions, but very
good agreements with the diffraction pattern at a circular aperture were found.
The concept to use only the closest edge is depicted in Fig. 7.8.
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Figure 7.8.: Considering only the closest edge between the intersection point and the aper-
ture’s circumference.

When only the closest edge is taken into account, the EDS and 3D-DAPDF can be
computed as in the 2D case. The result of this concept is still a 2D DAPDF (in direction
of the closest edge) and, hence, sound particles are diffracted in a plane. Nevertheless,
it is possible to take the opposite distance into account, but this is not consequent with
respect to the consideration of only the closest edgea).
a)For self-consistency with the slit experiment, Stephenson found the constant in Eqn. 5.10 to be 4

instead of 6 if only one edge is considered[Ste08]
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7.3. Uncertainty relation Based Diffraction

As in the previous concept, it is highly probable that this concept ends up with the
same results as in 2D, because this time even more similarities with the 2D-diffraction
are noted. Furthermore, the CT is not only reduced by the fast computation of the
by-pass distance but also by the emission of secondary sound particles only in a plane.
The disadvantage of this concept is, however, caused by exactly this emission of

secondary sound particles in a plane. When considering not only one but all sound
particles that intersect with the aperture, sound particles are diffracted in as many
planes as the aperture has edges. Discontinuities occur for sound particles, which are
close to two edges. As shown in Fig. 7.8, sound particles that intersect the blue surface
are diffracted in the blue direction, whereas sound particles that intersect with the
brown surface are diffracted in the brown direction. No sound particles are diffracted in
direction of the purple region. Thus, no energy is detected at any chance in this region.
The good results for diffraction around a circular disc [FGH99] can therefore only be
explained by the complete disappearance of these regions for n → ∞. For a smaller
number of vertices, however, strong discontinuities occur and prevent a steady sound
distribution.
As this is a decisive factor, this concept is abandoned, too.

7.3.1.4. Closest and Perpendicular Edge

To avoid the region with no diffracted energy that appeared in the previous concept,
additional diffraction in the direction perpendicular to that direction is performed (two
uncertainties, see Fig. 7.9).
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Figure 7.9.: Considering only the closest edge (here: distance a4) and the perpendicular
axis.

By this definition, the resulting 3D-DAPDF for one sound particle diffracts sound
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particles into the complete space instead of in a single plane. This 3D-DAPDF is
composed by the superposition of two 2D-DAPDFs. In contrast to the former concepts,
the interpolation with this concept is by far simpler, because both diffraction planes
are perpendicular to each other and there are only two instead of h or n planes.
The advantages of this concept are that the EDSs as well as the 2D-DAPDFs are

equal to the 2D diffraction case, and the CT is reduced due the computation of only two
2D-DAPDFs. Furthermore, the discontinuities of the former concept are compensated.
However, still boundaries exist at which the coordinate systems are rotated (see Fig.

7.9, difference between blue and brown coordinate systems), such that singularities are
possible.
Nevertheless, this is the most preferable concept and is used first, but a variation of

this concept is presented in the following.

7.3.1.5. Arbitrary and Perpendicular Edge

This concept in quite identical to the former concept, but the perpendicular coordi-
nate system is independent of the aperture and the sound particle’s intersection point,
respectively (see Fig. 7.10).
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Figure 7.10.: Considering two arbitrary, but perpendicular axes.

In contrast to the previous concept, the by-pass distance is defined as closest distance
(ay,1 in Fig. 7.10) in an arbitrary direction. The perpendicular direction is computed
as before including the perpendicular distance (az,1 in Fig. 7.10). Both concepts are
identical for a rectangular aperture, whenever the arbitrary coordinate system is along
the axes of the rectangle.
This concept is even simpler and the last mentioned disadvantage of the different

coordinate system vanishes.

180



7.3. Uncertainty relation Based Diffraction

But, due to this arbitrary coordinate system, the computed distances are not the
closest distances anymore (the relation to the uncertainty is doubtful). This might
introduce large errors in contrast to the former, more physical definition. However, it
will be shown in Sec. 7.3.5.2 that these errors are smaller than expected.

7.3.1.6. Vectorial Addition of Edge Diffraction Strengths

A basic idea of Stephenson[Ste85, SS07] is that the EDS is a vector (like the attractive
force of electrons). The last concept is based on the idea (already described in Sec.
5.2.1) to add up the EDSs of different edges. Therefore, each edge is taken into account
as shown in Fig. 7.11.

1

2

4

5

6

7

a4

3

a3

a2

a1

a7

a6

aperture
aperture's edges

intersection point

angle

region

Figure 7.11.: Adding Edge Diffraction Strengths of each edge vectorially.

The idea is to compute a scalar EDS for each edge like in 2D and multiply these
EDSs with the direction vector pointing from the intersection point to the current edge.
These vectorial EDSs are added up and the result is a single EDS including an averaged
direction. The physical reason for this is to add the attractions of each wedge. A variant
of this concept is to weight each vectorial EDS with the angle of the edge that is visible
from the intersection point (e.g., purple and orange area in Fig. 7.11.) The resulting
EDS is used to create a 2D-DAPDF as in concept 7.3.1.3, which is applied in a plane
constructed by the direction of added EDS and the surface normal.
With both variants, the invalid regions of concept 7.3.1.3 are compensated and a low

computational effort is achieved, but the main problem of concept 7.3.1.2 remains, i.e.,
the partial EDS of one edge might not point to the actual edge (the direction a3 in
Fig. 7.11 is outside the orange angle region). A more critical problem of this concept
is that the EDS of a rectangular aperture that is intersected in the centre results in
an EDS of 0, because the partial EDSs compensate each other due to the symmetrical
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setup. In case of a single wedge, the introduction of an additional edge in opposite
direction would reduce the EDS instead of increasing it like in the 2D case. All ideas
that delivered good results in 2D regarding the superposition of EDS would become
invalid, such that this concept is discarded, too.
Finally, the concepts of Sec. 7.3.1.4 and Sec. 7.3.1.5 remain. In the following, these

concepts are further investigated and the final choice is made after the error of the
arbitrary rotation is quantified.

7.3.2. The derivation of the 3D Diffraction Angle Probability Density Function

Different definitions of a 3D-DAPDF are possible. Since the UBD is based on the un-
certainty relation, first the uncertainties have to be defined. Based on the 2D-approach,
where the uncertainty of position A is related to the uncertainty of momentum in direc-
tion of A (see Eqn. 5.5), an additional assumption has to be made for the uncertainty
of position B in relation to the uncertainty of momentum in direction of B

∆A· ∆pA ≈ ~ (7.13)
∆B· ∆pB ≈ ~,

which have to be valid at the same time. Without loss in generality, the A− and B−
direction vectors are both lying in the y − z− plane, but not necessarily the identities
A=̂y and B=̂z have to be valid, as these coordinate systems can be rotated against each
other. Nevertheless, these equations are defined in perpendicular planes (both have the
x−axis in common). According to the UBD in 2D, each of these equations corresponds
to a pair of perpendicular 2D-DAPDFs and EDSs. The 3D-DAPDF is computed by
multiplying the two 2D-DAPDFs in perpendicular planes, as the probabilities multiply.
Therefore, an additional diffraction angle η is introduced that diffracts sound particles
in the perpendicular plane compared to ε (see Sec. 5.2). With the DAPF, the result of
such a multiplication is

∂DAPF

∂ε
· ∂DAPF

∂η
= DA (ε, bA) ·DB (η, bB) = D (ε, η, bA, bB) = ∂2DAPF

∂ε∂η
.

(7.14)
This idea is also directly based on the Fraunhofer diffraction, where the si− functions

for the y− and the z− directions are multiplied, because they are orthogonal/indepen-
dent to each other (see Eqn. 2.44).
It has to be noted that this definition of the 3D-DAPDF differs from the definition

of Eqn. 7.10. Although the DAPF itself is identical, their derivations are not, because
∂DAPF

∂Ω
6= ∂DAPF

∂ε
· ∂DAPF

∂η
= ∂2DAPF

∂ε∂η
(7.15)

and, more precisely,
∂Ω 6= ∂ε∂η. (7.16)

The difference between these definitions and a conversion between them is presented
in Sec. 7.3.4. The rest of this section assumes the 3D-DAPDF defined as in Eqn. 7.14.
In order to reduce the computational effort and keep the analogy to the 2D-derivation,

the analytical considerations are restricted to the simpler 2D-DAPDFDb (ε, b) (see Eqn.
5.15). Two 2D-DAPDFs are derived for the diffraction in two dimensions A and B

DA (ε, bA) =
D0,A

1 + 2 ·u2 with u = 2 · bA · ε and (7.17)

DB (η, bB) =
D0,B

1 + 2 · v2 with v = 2 · bB · η,
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where bA,B are the effective slit widths in the respective directions. The multipli-
cation of these 2D-DAPDFs results in the 3D-DAPDF with a general normalization
constant D0 = D0,A ·D0,B

D (ε, η, bA, bB) = DA (ε, bA) ·DB (η, bB) = D0
(1 + 2 ·u2) (1 + 2 · v2)

. (7.18)

This 3D-DAPDF is exemplarily shown in Fig. 7.12.

Figure 7.12.: Diffraction Angle Probability Density Function in 3D for bA = 1, bB = 3,
ε1 = 30◦, η1 = 0◦ and D0 = 1.

It should be noted that this 3D-DAPDF is independent of any rotation of the coordi-
nate system as long as the planes A and B are perpendicular to each other in the y−z−
plane. Thus, it can be applied to the two diffraction concepts that were described in
Sec. 7.3.1.4 and Sec. 7.3.1.5.
In case of the concept of an arbitrary rotation of the coordinate system, the direction

A can be defined as the y− direction and the direction B as the z− direction. Then,
the two independent effective EDSs bA and bB are based on, in total, 4 distances ay,1,
az,1, ay,2 and az,2 (see Fig. 7.10). For each distance a, an EDS of Eqn. 5.10 (with
the extension of Eqn. 5.63) is computed and the respective EDSs of one dimension are
added up by Eqn. 5.34.

SA = Sy = 1
by,1

+ 1
by,2

= 1
6ay,1cos (ε1)

+ 1
6ay,2cos (ε1)

= 1
by

= 1
bA

(7.19)

SB = Sz = 1
bz,1

+ 1
bz,2

= 1
6az,1cos (η1)

+ 1
6az,2cos (η)

= 1
bz

= 1
bB

,

where ε1 and η1 are the angles of incidence of the sound particle on the aperture
projected on the respective plane (either y − x− or z − x− plane).
Since the orthogonal 2D-DAPDFs are multiplied with each other, the same multipli-

cation is used to compute the normalization constant D0 in analogy to Eqn. 5.51 by∫ π
2 +ε1

−π2 +ε1

∫ π
2 +η1

−π2 +η1

D0(
1 + 2 (2 · bA · ε)2) (1 + 2 (2 · bB · η)2)dεdη != 1 (7.20)
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D0 is approximated with bAε� 1 and bBη � 1 (according to Eqn. 5.52) by

D0 (bA, bB)
bAε�1,bBη�1

≈
8 · bA · bB

π2 . (7.21)

In any other case, the normalization constant has to be computed numerically.

7.3.3. Analytical Formulation for Sound Particle Diffraction Through an Aperture

To achieve an analytical expression for the diffraction in 3D, an analytical equation is
derived from a SPSM experiment, similar to the 2D case. Without loss in generality,
the diffraction plane (aperture represented by the VW) is assumed to be the y−z plane
at x = 0. This infinite plane is covered by an infinite surface with an arbitrary opening
in this surface of size SAP , through which sound particles can propagate. A sound
source (xS , yS , zS) is defined at xS < 0 and a receiver (xR, yR, zR) at xR > 0 (it should
be noted that this derivation is in analogy to Sec. 5.3.1).
The sound source emits a number of N primary sound particles, from which N0

intersect with the opening SAP that is represented by the VW. Each intersecting
sound particle is split-up into S secondary sound particles. S0 of these sound particles
intersect with the receiver with radius rD for each of the N0 sound particles (see Fig.
7.13).

N primary sound 

particles

S secondary sound 

particles

virtual wall

receiver

Figure 7.13.: Geometrical definitions of the sound particle diffraction in 3D through an
aperture (yellow).

The detected sound intensity reads (neglecting reflections) with the respective double
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7.3. Uncertainty relation Based Diffraction

sum (according to Eqn. 7.12, compare to Eqn. 5.20)

I = P

N ·VD

N0∑
i=1

S0∑
j=1

ei,j ·wi,j , (7.22)

where VD is the detector volume, ei,j are the relative sound particle energies and wi,j
are the inner crossing distances. From Eqn. 7.22 follows with the energy of these sound
particles (see Eqn. 7.9), neglecting air attenuation (compare to Eqn. 5.20)

I = P

N ·VD

N0∑
i=1

S0∑
j=1

wi,j ·
∫

ΩSP

D∗
(
SAP , ~I,Ω1,Ω

)
dΩ. (7.23)

Here, a different definition of the 3D-DAPDF D∗
(
SAP , ~I,Ω1,Ω

)
than in Eqn. 7.18

is used. For simplification (as in Eqn. 5.22), the inner crossing distances are replaced
by the MFPL inside the detector with the surface SD

w = 4 · VD

SD
→

wi,j

VD
≈

4
SD

. (7.24)

As all pyramids (see Fig. 7.3) around sound particles are tangent to each other
(compare Fig. 5.14 and Eqn. 5.24), the sum over all S0 sound particles that intersect
with the receiver in Eqn. 7.23 is replaced by the integral over the angle range of the
detector ΩR (with Eqn. 7.24) to

I = 4 ·P

N ·SD

N0∑
i=1

∫
ΩR

D∗
(
SAP , ~I,Ω1,Ω

)
dΩ. (7.25)

In order to perform the transition to infinitesimally small receivers, the integral over
the receiver angle range ΩR is replaced by a multiplication of ∆ΩR, as the 3D-DAPDF
is assumed to be constant in that small angle range

I = 4 ·P

N ·SD

N0∑
i=1

D∗
(
SAP , ~I,Ω1,Ω

)
∆ΩR. (7.26)

The solid angle ΩR of the receiver with radius rD is expressed for small solid angles
by the ratio of a circular disc relative to a sphere with the radius r2 (distance between
the intersection point and the receiver) to (compare to Eqn. 5.25)

∆ΩR
4π

≈
πr2
D

4πr2
2
→

4 · ∆ΩR
SD

= 1
r2
2
. (7.27)

This allows the transition to infinitesimally small receivers of Eqn. 7.26 to

I = P

N

N0∑
i=1

D∗
(
SAP , ~I,Ω1,Ω

)
r2
2

. (7.28)

The number of primary sound particles N is substituted by the solid angle of each
sound particle ∆ΩSP

4π
N

= ∆ΩSP → N = 4π
∆ΩSP

, (7.29)
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such that the transition to an infinite number of primary sound particles N → ∞ is
performed by ∆ΩSP → 0 (compare to Eqn. 5.29),

I = lim
∆ΩSP→0

P

4π

N0∑
i=1

D∗
(
SAP , ~I,Ω1,Ω

)
r2
2

∆ΩSP (7.30)

= P

4π

∫
ΩAperture

D∗
(
SAP , ~I,Ω1,Ω

)
r2
2

dΩ,

where the sum over all N0 sound particles that intersect with the aperture is replaced
by an integral over the solid angle range of the aperture ΩAperture.
Now, for the special case of a plane aperture (VW), the integral over the solid angle

is replaced by a surface integral over the aperture (to symmetrize the formulation). The
vector from the sound source to the current intersection point at the aperture is defined
as ~r1, and d ~A denotes an infinitesimally small surface element of the aperture. In the
given coordinate system, the surface element of the VW, i.e., the aperture in the y − z
plane, is given by d ~A = dy· dz· ~ex, where ~ex is the unit vector in x− direction. In
analogy to Fig. 5.15b, Eqn. 5.30 reads for 3D

dΩ = cos(β1)
r2
1

dA = cos(β1)
r2
1

dydz. (7.31)

In 3D, β1 (instead of α in 2D) equals the non-projected angle of incidence of the
current propagation path at the VW. It has to be noted that β1 is not equal to both
ε1 or η1 as long as the other angle is different from 0◦.
Eqn. 7.30 yields directly

I = P

4π

∫∫
Aperture

D∗
(
SAP , ~I,Ω1,Ω

)
cos (β1)

r2
1r

2
2

dydz. (7.32)

Finally, the transmission degree is computed with Eqn. 5.1 and Eqn. 5.2 to

T = I

IF
= R2

∫∫
Aperture

D∗
(
SAP , ~I,Ω1,Ω

)
cos (β1)

r2
1r

2
2

dydz, (7.33)

which is in direct analogy to Eqn. 5.32 or Eqn. 5.36. The only differences are:

1. the radii are exchanged from linear (2D) to quadratic (3D),

2. the angle of incidence is β1 (3D) instead of ε1 (2D) and

3. the line integral (2D) is a surface integral (3D).

Unfortunately, the 3D-DAPDF, as derived in Eqn. 7.18, cannot be inserted in Eqn.
7.33 due to different definitions. This difference is explained together with a substitution
in the following.
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7.3.4. Conversion of the Diffraction Angle Probability Density Function Within
Different Definitions

Per definition, the 2D-DAPDF is a density function per angle. As described in Eqn.
7.10, the 3D-DAPDF D∗

(
SAP , ~I,Ω1,Ω

)
is derived by the solid angle ∂Ω (usual de-

scription in polar coordinates), whereas the definition of the 3D-DAPDF D (ε, b), Eqn.
7.14, is based on a physical derivation by two diffraction angles ∂ε and ∂η (into orthog-
onal directions). However, the absolute probabilities (the DAPF) must be identical.
Thus, one 3D-DAPDF can be mathematically expressed by the other with Eqn. 7.10
and 7.14.

D∗
(
SAP , ~I,Ω1,Ω

)
= ∂DAP

∂Ω
= ∂2DAP

∂ε∂η

∂ε∂η

∂Ω
= D (ε, η, bA, bB) ∂ε∂η

∂Ω
. (7.34)

Therefore, a 3D-diffraction conversion factor Q3D (ε, η) = ∂ε∂η
∂Ω has to be determined.

For the further investigations, the projected angles of incidence ε1 and η1 are assumed
to be constant due to a fixed intersection point on the VW and, thus, a constant ~r1. In
this case, the 3D-diffraction conversion factor Q3D is only dependent on the outgoing
angles ε2 and η2

Q3D (ε2, η2) = ∂ε∂η

∂Ω
= ∂ε2∂η2

∂Ω
. (7.35)

With this definition and the outgoing angle β2, a similar equation like Eqn. 7.31
is found that utilizes the relationship between an integration over an angle and an
integration over a surface

dΩ = cos(β2)
r2
2

dydz = 1
r2
2

·
r2,x
r2

dydz,

where r2,x is the x−component of ~r2. Inserting this in Eqn. 7.35, Q3D (ε2, η2) reads

Q3D (ε2, η2) = ∂ε2∂η2
∂Ω

= ∂ε2∂η2
dydz

r3
2

r2,x
. (7.36)

In order to compute the 3D-diffraction conversion factor Q3D (ε2, η2), the diffraction
angles on the rear side of the VW ε2 and η2 have to be defined in Cartesian coordinates.
Based on the diffraction concept with an arbitrary rotation of the coordinate system
(see Sec. 7.3.1.5), a coordinate system is assumed as follows (see Fig. 7.14):

x = r2,x (7.37)
y = r2,x · tan (ε2)
z = r2,x · tan (η2)

ε2 = atan

(
y

x

)
η2 = atan

(
z

x

)
r2 =

√
x2 + y2 + z2 = r2,x

√(
1 + tan (ε2)2 + tan (η2)2)
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y

x

ε2 

r2 r2,x 

r2,y 

(a) ε2

z

x

η2 

r2 r2,x 

r2,z 

(b) η2

Figure 7.14.: Conversion from the diffraction coordinate system (ε2, η2) on the rear side of
the Virtual Wall to Cartesian coordinates.

So, the partial derivations are

∂ε2
∂y

=
∂atan

(
y
x

)
∂y

= x

x2 + y2 =
1
x

1 + tan (ε2)2 and (7.38)

∂η2
∂z

=
∂atan

(
z
x

)
∂z

= x

z2 + y2 =
1
x

1 + tan (η2)2

and, thus, Eqn. 7.36 yields

Q3D (ε2, η2) = ∂ε2∂η2
dydz

r3
2

r2,x
= ∂ε2

dy
· ∂η2

dz

r3
2

r2,x
(7.39)

=

(
1 + tan (ε2)2 + tan (η2)2) 3

2(
1 + tan (ε2)2) ·

(
1 + tan (η2)2) .

This modification factor is shown in Fig. 7.15.

Figure 7.15.: 3D-diffraction conversion factor Q3D (ε2, η2) (see Eqn. 7.39) between two
definitions of the Diffraction Angle Probability Density Function.
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For small diffraction angles ε2 and η2, this factor can be expressed by

Q3D (ε2, η2)
ε2,η2≈0
≈ 1 + tan2 (ε2)

2
+ tan2 (η2)

2
(7.40)

and converges to 1 for ε2, η2 → 0 (see centre of Fig. 7.15), such that no influence is
expected for the targeted angle range of Kirchhoff’s diffraction theory (see Sec. 2.3.4.3).
If only one angle is 0, it follows

Q3D (ε2, η2 = 0) =
∣∣∣ 1
cos (ε2 = β2)

∣∣∣ and Q3D (ε2 = 0, η2) =
∣∣∣ 1
cos (η2 = β2)

∣∣∣ . (7.41)

Thus, the increase of Q3D (ε2, η2)→∞ in Fig. 7.15 is explained, which is very prob-
lematic for a numerical integration in this region. If both angles tend to ε2, η2 → ±π2 ,
the factor Q3D (ε2, η2) drops to zero, which is numerically problematic, too. However,
if only one diffraction angle is above 60◦, the factor increases rapidly, whereas it rapidly
decreases if both angles are above a certain angle (corners in Fig. 7.15). This factor is
explained geometrically by the size of the surface elements on a unit sphere. With both
definitions, they are approximately at the same size near the equator ε2 ≈ η2 ≈ 0◦, but
differ significantly near the pole caps.
With this factor, the transmission degree T of Eqn. 7.33 is written with Eqn. 7.34

as

T = R2
∫∫

Aperture

D (ε, η, bA, bB) ∂ε∂η
∂Ω cos (β1)

r2
1r

2
2

dydz (7.42)

= R2
∫∫

Aperture

D (ε, η, bA, bB) cos (β1)
r2
1r

2
2

(
1 + tan (ε2)2 + tan (η2)2) 3

2(
1 + tan (ε2)2) (1 + tan (η2)2)dydz.

It is very questionable, if this 3D-diffraction conversion factor Q3D (ε2, η2) is physi-
cally correct, although it has been derived mathematically. Furthermore, the combina-
tion of the UBD with the SPSM results in high computation times, because the integral
is only computable numerically, such that one approach might be to just omit that
conversion factor in the future.
For an analytical comparison to 2D, η1 = η2 = 0◦ and bB →∞ have to be assumed,

such that β1 = ε1 and β2 = ε2. Then, Eqn. 7.42 reads

T = R2
∫ ∫

D (ε, 0, bA,∞) cos (ε1)
r2
1r

2
2

∣∣∣ 1
cos (ε2)

∣∣∣ dydz. (7.43)

As an equivalence to 2D cannot be seen directly, the analytical solution (Eqn. 7.42)
is validated for some simple aperture shapes in the following.

7.3.5. Validation of the analytical 3D diffraction module

The validation of the analytical equation is performed in several steps. First of all,
the agreement with the two dimensional UBD module is investigated in the respective
cross-section, because this is an important requirement. As this investigation basically
covers the convergence to the infinite wedge length, finite wedges are covered in this
section, too. Furthermore, the influence of the arbitrarily chosen coordinate system by
the diffraction concept of Sec. 7.3.1.5 is quantified.
In addition, the source and receiver positions are rotated around the y − axis in

the third dimension to investigate oblique diffraction around a wedge. Finally, the
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investigation is extended to the sound distribution of rectangularly shaped apertures.
As no 2D equivalent is defined for that case, the wave-theoretical SSM is used as
reference here. An extension to arbitrarily shaped apertures is not covered yet, because
the integration boundaries of Eqn. 7.42 are dependent on each other then, such that
these cases are investigated by the SPR in the future.

7.3.5.1. Comparison with Former 2D Investigations

To validate the three dimensional analytical diffraction model, the shape of the aperture
has to be defined at first. In order to solve the analytical Eqn. 7.42, a rectangular
aperture parallel to the y − axis and z − axis is assumed. Thus, the boundary of the
aperture is defined by the range yMin < y < yMax and zMin < z < zMax. The widths
are given by dy = yMax − yMin and dz = zMax − zMin. The sound source and the
receivers are defined identically to the 2D experiments in the x− y−plane at z = 0 (see
Fig. 7.16). In 3D, the receivers are on a half circle (arc) and differ by an angle of 1◦ in
the range −89◦ < ϕR < 89◦.

source

virtual wall

solid wall

receiver arcx

y

z
dz

dy

Figure 7.16.: Geometrical definitions for the diffraction in 3D.

Due to the restriction of the presented analytical 3D diffraction model to rectangular
apertures, no infinitesimally long wedges are possible as they were assumed in 2D,
because the limits of the integration have to be finite. In addition, the effective slit
widths b converge to b→∞ for infinite wedges, such that the 3D-DAPDF collapses to
a 2D-DAPDF, which is numerically not computable. However, the aperture has a large
width in one direction (dz � 1) and the convergence for larger widths is investigated.

First, a single wedge is symmetrically defined to the z − axis (
∣∣zMin,Max

∣∣ = dz/2)
and a large width in y − direction (yMin = 0, yMax = 500) is assumed. All distances
are given in relation to the wavelength λ. The results are shown in Fig. 7.17 for
rS = rR = 10λ. Besides the 3D experiments, the reference solution in 2D of Fig. 5.27
is shown.

190



7.3. Uncertainty relation Based Diffraction

-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5

tr
an

sm
is

si
on

le
ve

lL
[d

B
]

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

receiver angle ϕR [◦]

dz = 2 ·0.1
dz = 2 ·1
dz = 2 ·10
dz = 2 ·100
2D reference
difference (2D-dz,200)

Figure 7.17.: Validation of 3D diffraction at an (in)finite wedge (rS = rR = 10).

The difference between a wedge length of dz = 200 and dz = 20 is not noticeable,
because the green graph matches the red graph exactly. Thus, a convergence is achieved
for increasing single wedge lengths dz . In comparison to the former 2D-experiments,
the same transmission level is computed except for the deep shadow zone, where an
increased transmission level is computed (up to 1dB greater).
For a smaller wedge length of dz = 2, the overall transmission level decreases quite

constantly by about 2dB. This is reasonable, because both wedges in y− direction are
so close to each other that they cause a diffraction of energy in z − direction. This
energy is missing in direction of the receivers (y − direction).
For even shorter wedges (dz = 0.2), this effect increases to a reduction of approx-

imately 17dB (also in the visibility region ϕR > 0◦), because even more energy is
diffracted in z − direction. Unfortunately, very large errors occur in the angle range
|ϕR| > 75◦. This is caused by the 3D-diffraction conversion factor Q3D (ε2, η2) (see
Eqn. 7.39), due to numerical errors in the integration.
The same behaviour is observed for different source and receiver distances in principle,

but the numerical problems occur already for dz = 2 for rS = rR = 100 (see appendix
A.2.5.1).
In a second experiment, the slit case of the 2D-experiments is repeated, too. There-

fore, the dimensions of the aperture remain unaffected in z − direction, but a slit is
constructed in y − direction (yMin = −5, yMax = 5, dy = 10). The results are shown
in Fig. 7.18.
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Figure 7.18.: Validation of 3D diffraction at an (in)finite slit (rS = rR = dy = 10).

No principle difference between the slit and the wedge is noticed. For not too narrow
slits in z − direction, very good agreements between the 2D results and different slit
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lengths show a compatibility of the 3D diffraction model, too. For dz = 0.2, the same
effect as for the wedge occurs. Again, the results for different distances are shown in
appendix. A.2.5.1.

7.3.5.2. Influence of an Arbitrarily Chosen Local Coordinate System

In the next experiments, the influence of the local coordinate system is discussed. The
reflection pattern behind the aperture should be invariant to a rotation of the two
main axes of the 2D-DAPDFs to make the concept of Sec. 7.3.1.5 usable. Due to
the definition of the aperture in Fig. 7.16, the y− and z − axes directly equal the
dimensions of the closed distances (such that the diffraction concept of Sec. 7.3.1.4
and 7.3.1.5 are identical in this case). To investigate the effect of a rotated coordinate
system, the local coordinate system, and thus the perpendicular diffraction dimensions,
are rotated around the x− axis about an angle of α in steps of 15◦. Only angles in the
range of 0◦ ≤ α ≤ 45◦ are investigated, as a rotation of a larger angle geometrically
equals a rotation of 90◦ − α. This is repeated for a rotation above α > 90◦, except
for an interchange of the axes. The results for a single wedge (or a rather wide slit of
dy = 200) are shown in Fig. 7.19.
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Figure 7.19.: Validation of the local coordinate system at a wedge (rS = rR = 10). The
coordinate system is rotated by an angle of α.

In general, the transmission level is only hardly affected by a rotation of the coordinate
system. For all receiver angles ϕR > −45◦, no difference is observed at all. However,
for receivers in the deep shadow zone (ϕR < −60◦), the transmission level differs in-
between the different rotation angle up to 5dB at ϕR = −89◦. Astonishingly, the
reference solution of the 2D experiment is in the centre of the possible transmission
levels (such that the best match is found for α = 15◦). The biggest difference between
the 3D and the 2D case occurs for α = 45◦ with up to 2.5dB for the lowest receiver
(ϕR = −89◦). These results are confirmed for different distances, too (see appendix
A.2.5.2).

The same good agreements are expected for the diffraction at a slit. The results are
shown in Fig. 7.20.
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Figure 7.20.: Validation of local coordinate systems at a slit (rS = rR = dy = 10). The
coordinate system is rotated by an angle of α.

The conclusions for the single wedge experiment are confirmed by the experiments
at a slit. Even for different distances (see appendix A.2.5.2), the maximum difference
between the 2D-reference method and the 3D-results are even smaller than for the
single wedge. These results are very astonishing and convincing, because the arbitrary
choice of the coordinate system seemed to be a weak point. This might be explained by
the sampling of the aperture by the intersecting sound particles, such that the choice
of the local coordinate system is of minor importance.

7.3.5.3. Oblique Incidence

Although the diffraction module is extended to three dimensions, all validations were
restricted to the sound source and receiver in the x−y−plane at z = 0. This restriction
is now abandoned by rotating the plane with the sound source and the receivers around
the y − axis by an angle of ϑ (see Fig. 7.21). It should be noted that the SSM yields
similar results (< 0.1dB) whether a single wedge or the complete aperture is modelled
(four wedges). An application of the 2D-DAPDF would result in a transmission level
independent of this rotation, because the geometrical scene in 2D can be considered in
the rotated plane, such that all distances and angles are constant.

source

virtual wall

solid wall

receiver arc
x

y

z
dz

dy

ϑ 

Figure 7.21.: Geometrical definitions of a rotation of the diffraction plane about an angle
of ϑ.
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Thus, the source and receiver positions read

~S =

(
−cos (ϕS) · cos (ϑ)

sin (ϕS)
−cos (ϕS) · sin (ϑ)

)
and ~R =

(
cos (ϕR) · cos (ϑ)

sin (ϕR)
cos (ϕR) · sin (ϑ)

)
. (7.44)

For a single wedge of length dz = 200, the results of the UBD for a rotation of the
diffraction plane by an angle of 0◦ < ϑ < 75◦ in steps of 15◦ are shown in Fig. 7.22a.
Due to the symmetrical geometry, the results of positive rotation angles equal the results
of negative rotation angles (not shown here). As these results are not comparable with
former 2D experiments, the Edge Diffraction ToolBox (EDB) using the SSM is utilized
to compute a reference solution for the same setup as shown in Fig. 7.22b. As described
above, the SSM shows almost the same results whether a single wedge or the complete
aperture is modelled. Thus, only the single wedge is used in this investigation.
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(a) Uncertainty relation Based Diffraction
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Figure 7.22.: Validation of oblique incidence at a wedge (rS = rR = 10). The diffraction
plane is rotated by an angle of ϑ.

In case of the UBD, the transmission level decreases in the complete shadow zone
with increasing rotation angles ϑ. For an almost parallel position of the diffraction
plane to the aperture (ϑ = 75◦), a decrease of up to 6dB is achieved at ϕR = −45◦.
From a physical point of view, even an increase of the transmission level is expected,

because for the case of ϑ = 90◦, theoretically, the sound wave does not propagate
through a slit howsoever. This expectation is confirmed by the SSM, where an increase
of up to 7dB for the transmission level is achieved at ϑ = 75◦. So, there is obviously a
strong discrepancy between the UBD and the SSM results.
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7.3. Uncertainty relation Based Diffraction

An explanation for this discrepancy is the 3D-diffraction conversion factorQ3D (ε2, η2)
of Eqn. 7.39. With respect to the aperture in the y− z− plane, both receiver positions
are located in regions with large secondary diffraction angles ε2, η2 � 1. In this region,
Q3D (ε2, η2) decreases fast to 0, such that the estimated transmission level of the UBD
is way too low. Another explanation is that the SSM includes specular reflections.
These reflections cause stronger effects for the sound sources and the receivers that are
close to the wedge surface. In these cases, the transmission level is increased by these
reflections. In the case of the UBD, this effect would be handled by reflected sound
particles when combined with the SPSM, but they are not handled in the evaluated
analytical formula. These angle regions contradict to the Kirchhoff assumptions. Thus,
a modification of the diffraction algorithm behind the diffraction module might be nec-
essary to achieve reasonable results for these angle ranges, since the Kirchhoff theory is
only made for small angles anyway. For example, the 3D-diffraction conversion factor
Q3D (ε2, η2) could be neglected. Fortunately, both models are nearly unaffected by a
rotation of the diffraction plane up to an angle of |ϑ| < 45◦. These observations are
confirmed for distances of rS = rR = 1 and rS = rR = 100 (see appendix A.2.5.3).

7.3.5.4. Diffraction Through Rectangular Shaped Apertures

The last investigation of the UBD in 3D handled only 2D cross-sections. In order to
investigate the complete angle ranges of the receivers, a whole receiver grid is defined
with a constant distance xR as shown in Fig. 7.23.

source

virtual wall

solid wall

receiver plane

x

y

z

10λ 

10λ 

10λ
 

Figure 7.23.: Geometrical definitions for a receiver grid.

The aperture is defined by dy = dz = 10 and symmetrically positioned around the
centre of the coordinate system (0, 0, 0). The sound source is placed in a distance of
rS = 10 on the x − axis. A grid of 100 receivers is placed in a distance xR = 10 in
the opposite direction of the aperture. These receivers are equally distributed within a
range of −20 < yR < 20 and −20 < zR < 20. Again, all distances are in wavelength λ.
As reference, the transmission level is computed by the EDB using the SSM. As the

geometrical scene has to be defined with finite dimensions when the SSM is applied,
the aperture is composed by four rigid wedges with an opening angle of ϕW = 1◦. As
the wall containing the aperture has to be of finite size, the height is set to 1000m
counted from the edges outwards, such that diffraction at the bottom of these wedges
is not computed. The conversion from the impulse response to the transmission level
is described in Sec. 5.1.1. The results of the SSM and the UBD are compared in Fig.
7.24. Additionally, the absolute level difference between both methods is shown.
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7. Transition to Three Dimensions

(a) Uncertainty relation Based
Diffraction

(b) Secondary Source Model (c) |UBD − SSM|

Figure 7.24.: Validation of the transmission level L for 3D-diffraction of Uncertainty rela-
tion Based Diffraction and Secondary Source Model for a rectangular aperture
(10x10), rS = 10 and a grid of receivers in the distance of xR = 10.

The transmission level L in the view zone (|yR, zR| < 10) is about 0dB for both
methods with one exception: the transmission level of the SSM is up to 1.9dB greater
due to the interference effect in a small range around |yR, zR| ≈ 7.
In the shadow zone of each wedge pair (|yR| < 10 and |zR| > 10 or vice versa),

the transmission levels of the UBD is on average 1.2dB above the transmission level
of the SSM (maximum 3.5dB). This difference, however, is caused by the simplified
2D-DAPDF Db (see Eqn. 5.15). As shown in Fig. 5.32, the new 2D-DAPDF Dg (see
Eqn. 5.15) increases the transmission level about 2.5dB in this region and, thus, is
expected to compensate this error at least by part.
A different effect is noticed in the shadow zone of both wedge pairs (|yR, zR| > 10),

where the transmission level of the SSM is on average 2.3dB (maximum 3dB) above
the transmission level computed with the UBD. Again the 3D-diffraction conversion
factor Q3D (ε2, η2) (see Eqn. 7.39) might be reasonable for this effect as discussed
in Sec. 7.3.5.3. The absolute level differences between the UBD and SSM over the
complete receiver grid is on average 1.4dB. Astonishingly, the mean difference, without
the neglection of the sign, shows nearly no difference (0.0dB) between the SSM and the
UBD.
A similar result is computed for distances of the sound source and the receivers
|xS = xR| = 1 as shown in Fig. 7.25. The receiver plane is adjusted to −2 < yR, zR < 2.

(a) Uncertainty relation Based
Diffraction

(b) Secondary Source Model (c) |UBD − SSM|

Figure 7.25.: Validation of the transmission level L for 3D-diffraction of Uncertainty rela-
tion Based Diffraction and Secondary Source Model for a rectangular aperture
(1x1), rS = 1 and a grid of receivers in the distance of xR = 1.
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7.4. Summary of the Extension to Three Dimensions

The effects for xR = xS = 10 are reproduced, but the errors in the shadow regions are
up to ±1dB in the same regions. The sign of these differences is equal to the results of
r = 10. Thus, the absolute difference of all receiver positions is on average only 0.7dB
(and −0.3dB for an averaging of the signed differences). The results are, as expected
in 2D, even better for smaller distances when the former 2D-DAPDF Db is used.
The same results are finally shown for r = 100 in Fig. 7.26. Again, the receiver grid

is adjusted to the modified distances by −100 < yR, zR < 100.

(a) Uncertainty relation Based
Diffraction

(b) Secondary Source Model (c) |UBD − SSM|

Figure 7.26.: Validation of the transmission level L for 3D-diffraction of Uncertainty rela-
tion Based Diffraction and Secondary Source Model for a rectangular aperture
(100x100), rS = 100 and a grid of receivers in the distance of xR = 100.

In this case, the difference in the shadow zone of one wedge pair (|yR| < 50 and
|zR| > 50 or vice versa) is confirmed. This is caused by a kind of convergence to a
far field distribution as discussed in 2D. Additionally, numerical errors occur when
integrating the UBD, which are not resolved yet.
In the shadow zone of both wedge pairs (|yR, zR| > 50), large differences of up to

10dB are computed between the SSM and the UBD in some small regions (red triangles
in Fig. 7.26c). These systematical differences have to be investigated in more detail in
the future.
In summary, the diffraction through a rectangularly shaped aperture showed very

good agreements with the wave-theoretical SSM for almost all combinations. In many
regions, even better agreements are expected, when the new 2D-DAPDF Dg is used.

7.4. Summary of the Extension to Three Dimensions

Different concepts of 3D convex sub-divisions were presented, which are summarized in
Tab. 7.1. The sub-division that extended the 3D approach is automatically performed
and optimized for diffraction, but not implemented yet.

Delaunay- extension of manual
Triangulation 2D approach sub-division

optimized
% " %"for diffraction

automatically
" " %performed

fully implemented " % %"

Table 7.1.: Comparison of different sub-division techniques.
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7. Transition to Three Dimensions

The SPR method was extended to 3D and it was shown that the core of the algo-
rithm is identical to the 2D version. The overall conclusions for the accuracy and the
computational effort (see chapter 6) are also applicable to 3D.
The UBD module was discussed in more detail. Different theoretical concepts of

diffraction through a polygonal aperture were presented. It was shown that the new
concepts of 1) two perpendicular diffraction planes and 2) its arbitrarily rotated version
are superior to the other concepts including the vectorial addition of the EDSs. The
arguments are summarized in Tab. 7.2.

circum- all closest perpendicular arbitrary vectorial
ference edges edge edges rotation addition

compatible
% " " " " "to 2D

robust for
" % % %" %" %"small edges

acceptable
% %" " %" %" "complexity

unquestionable
" % " " " %closed distance

diffraction in
" " % " " %all directions

Table 7.2.: Comparison of different 3D-diffraction concepts.

These two concepts were applied to both the extended versions (3D) of the DAPDF
and the EDS. In addition, an analytical equation for the transmission level behind an
arbitrarily shaped aperture was analytically derived and numerically validated for a rect-
angularly shaped aperture. Although the former 2D-DAPDF was used instead of the
optimized 2D-DAPDF to reduce the mathematical complexity, very good agreements
with the 2D case were observed for the perpendicular incidence. These agreements were
independent of the chosen local coordinate system, but differences occurred in the case
of an oblique incidence. A comparison of diffraction through a rectangularly shaped
aperture with the wave theoretical SSM showed good agreements for medium and small
distances, but errors occurred for large distances in some small angle regions (see Tab.
7.3).

checked with
analytical formula

compatible to 2D investigations
"of the single wedge and the slit

invariant with respect to a rotation
"of the local coordinate system

oblique incidence meets the results
%of the Secondary Source Model

diffraction through rectangular aperture meets
"the results of the Secondary Source Model

Table 7.3.: Results of different numerical experiments.

Some of the occurring problems might be compensated by further investigations of
the artificial 3D-diffraction conversion factor Q3D (ε2, η2) and the usage of the new
2D-DAPDF, but others can only be reduced by further improvement of the 3D-UBD
module.
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8. Summary and Outlook

8.1. Summary

The aim of this work was to find an energetic Geometrical Acoustic (GA) simulation
method that combines higher order reflections with higher order diffractions without an
explosion of the Computation Time (CT). These investigations were restricted to 2D
at first, because diffraction is a two dimensional effect and the statistical considerations
were easier.
The chosen diffraction method in this work was based on the Uncertainty relation

Based Diffraction (UBD) theory. It was investigated in detail and many improvements
were found. By detailed analytical investigations, both main fundamental functions of
the UBD (namely the Diffraction Angle Probability Density Function (DAPDF) and
the Edge Diffraction Strength (EDS)) were adjusted, such that good agreements with
the wave theoretical Secondary Source Model (SSM) were observed in many more cases
than before. Even in regions, where the underlying Kirchhoff diffraction theory failed
or other errors were expected, acceptable results were found. Although there were cases
of large errors in extreme cases, a significant improvement of the results compared to
the former results of Stephenson was presented.
For the combination of the modified diffraction module with the GA simulation meth-

ods, an improved spatial sub-division into convex sub-spaces was presented that effi-
ciently detected sound energy carriers that had to be diffracted. It was shown that the
CT with simulations using the presented sub-division technique was independent of the
number of vertices and, thus, the complexity of the scene.
The necessary split-up of sound particles needed for the simulation of diffraction

was compensated by a reunification of sound energy carriers. Both the Sound Particle
Radiosity (SPR) and Quantized Pyramidal Beam Tracing (QPBT) were implemented
(in 2D) for the first time. Here, analytical, statistical and numerical investigations
revealed that the reunification technique QPBT was both more inefficient and more
inaccurate than the SPR. The numerical errors and an estimation of the computational
effort of the SPR was given.
The combination of the SPR with the UBD module allowed the computation of higher

order diffraction as shown in Fig. 8.1.

(a) without diffraction (b) with diffraction

Figure 8.1.: Comparison of intensity maps with and without diffraction (see Fig. 1.1).

Both the SPR and the UBD were extended to 3D. Very good agreements of the
3D-UBD with the 2D-reference were shown already for the perpendicular incidence
of sound particles, but discrepancies occurred for oblique incidence. A first investiga-
tion of diffraction in 3D through a rectangularly shaped aperture showed acceptable
results, but a 3D-diffraction conversion factor Q3D (ε2, η2) generated errors in same
angle ranges.
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8. Summary and Outlook

8.2. Outlook

Although the UBD was evaluated for many crucial cases in 2D, still some cases have to
be investigated. Certainly to mention here is the definition of multiple wedges passed
by. The decisive point for the UBD is the distinction between edges that are passed
by simultaneously (forming a slit) or one after another (cascade). This is dependent on
the convex sub-division (see Fig. 8.2).

(a) three parallel slits (b) four perpendicular wedges

Figure 8.2.: Different solution to define simultaneously passed wedges. The physically rea-
sonable convex sub-division is indicated by the green Virtual Walls, whereas a
different version is indicated by the red Virtual Walls.

In spite of the fact that both the rotation of Virtual Walls (VWs) and the passing
through multiple VWs was inspected, complicated effects might occur for such cases.
More critical cases will occur, when these methods are applied to real scenarios.
To use the method in real scenarios, a pre-processing step is needed to optimize

the geometrical scene for acoustical simulations[SLSC08], such that acoustical irrele-
vant objects are removed out of the typical architectural CAD datasets. For these
pre-processing algorithms, it might be appropriate to result in different geometry files
for each frequency band[PVM10], because the definition of acoustical relevant objects
strongly depends on the wavelength since a factor of up to 1000 occurs in the audible
frequency range (20Hz < f < 20kHz). It might be necessary to fall back to the inde-
pendent simulation of the single frequency bands. In either case, material data (e.g.,
from [PSS+12]) has to be assigned to surfaces and objects of a geometrical model.
Once the problem of the huge memory effort of the Reunification Matrix (RUM) is

solved (either by more efficient usage or parallelization), the complete algorithm (SPR
with the UBD) has to be validated for even higher orders of diffraction. A (frequency-
dependent) approximation has to be derived to estimate the quantization parameter
fP = lP /l to a targeted accuracy, which will probably result in a dependency on the
patch length per wavelength lP /λ.
For the usage in 3D, the presented sub-division concept has to be implemented and

the 3D-diffraction module has to be investigated analytically. Especially the influence
of the 3D-diffraction conversion factor Q3D (ε2, η2) in Eqn. 7.39 seems to play an
important role and should be the first modification candidate. The optimized 2D-
DAPDF has to be used for further experiments. Furthermore, the UBD has to be
introduced in the SPR, such that more complicated apertures instead of just a rectangle
can be validated. Again, the Edge Diffraction ToolBox (EDB) by Svensson can be used
as reference method for simple test cases. Problems are more complicated cases of cities,
where wave-based reference methods fail and measurements are practically impossible.
Nevertheless, comparisons with measurements, e.g., in scaled models are aspired.
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A. Appendix

A.1. Datastructure

end pointstarting point

X Y

end point

X Y

starting point

patch patch

edge

convex room

complete scene

material parameter

absorption

scattering

direction vector

normal vector

X Y

X Y

sources

receivers

Figure A.1.: Datastructure in 2D.
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complete scene
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Y

X ZY X ZY

vertexvertex

X ZY X ZY

Figure A.2.: Datastructure in 3D.
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A. Appendix

A.2. Additional Validation Plots

A.2.1. Analytical Comparison of Diffraction at a Single Wedge (2D)

A.2.1.1. Changing Soure Distance
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Figure A.3.: Validation of a single wedge as a function of ϕR, with rS = 1
10λ, ϕS = 0◦ and

rR = 10λ.
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Figure A.4.: Validation of a single wedge as a function of ϕR, with rS = 1λ, ϕS = 0◦ and
rR = 10λ.
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Figure A.5.: Validation of a single wedge as a function of ϕR, with rS = 10λ, ϕS = 0◦ and
rR = 10λ.
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A.2. Additional Validation Plots
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Figure A.6.: Validation of a single wedge as a function of ϕR, with rS = 100λ, ϕS = 0◦
and rR = 10λ.
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Figure A.7.: Validation of a single wedge as a function of ϕR, with rS = 1000λ, ϕS = 0◦
and rR = 10λ.

rS [λ] region [dB] Min[dB] at[◦] Max[dB] at[◦]0 1 2 3

U
B
D

-
M
D
L

U
B
D
b

1
10 −0.1 −0.1 +0.6 +1.0 −0.1 −59 +2.5 +43
1 −1.8 −1.8 −1.8 −0.6 −2.1 −20 +1.4 +17
10 −1.4 −2.0 −2.4 −0.9 −2.7 −09 +1.0 +08
100 −0.4 −1.3 −2.4 −0.6 −2.8 −07 +1.0 +06
1000 −0.1 −1.1 −2.3 −0.5 −2.8 −07 +1.0 +06

U
B
D
g

1
10 −1.9 −1.0 +0.1 +0.6 −2.6 −89 +2.9 +46
1 −3.0 −2.8 −2.4 −1.0 −3.1 −89 +1.9 +17
10 −2.7 −3.2 −3.3 −1.4 −3.6 −29 +1.7 +08
100 −1.8 −2.6 −3.4 −1.2 −3.6 −09 +1.7 +06
1000 −1.5 −2.5 −3.4 −1.1 −3.6 −09 +1.7 +06

U
B
D

-
SS

M U
B
D
b

1
10 −1.8 −1.1 −0.6 −0.6 −2.2 −89 +0.2 +54
1 −0.9 −0.4 −0.4 −0.2 −1.4 −89 +0.6 +89
10 +1.4 +1.5 +0.5 +0.6 −0.9 +21 +1.6 −52
100 +1.3 +2.0 +0.9 +0.7 −0.9 +16 +2.1 −42
1000 +1.2 +2.1 +1.0 +0.7 −1.0 +15 +2.2 −42

U
B
D
g

1
10 −3.6 −2.1 −1.1 −1.0 −4.7 −89 +0.7 +55
1 −2.1 −1.4 −1.0 −0.7 −2.7 −89 +1.0 +21
10 +0.1 +0.3 −0.4 ±0.0 −0.8 +21 +1.0 +09
100 ±0.0 +0.7 −0.1 +0.1 −0.9 +16 +1.0 +06
1000 −0.2 +0.7 ±0.0 +0.1 −0.9 +16 +1.0 +06

Table A.1.: Numerical validation of a single wedge with ϕS = 0◦, rR = 10λ and varying
source distances rS .
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A. Appendix

A.2.1.2. Changing Receiver Distance

-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5

tr
an

sm
is

si
on

le
ve

lL
[d

B
]

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

receiver angle ϕR [◦]

UBDb

UBDg

MDL
SSM

UBDb-MDL
UBDb-SSM
UBDg-MDL
UBDg-SSM

Figure A.8.: Validation of a single wedge as a function of ϕR, with rS = 10λ, ϕS = 0◦ and
rR = 1

10λ.
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Figure A.9.: Validation of a single wedge as a function of ϕR, with rS = 10λ, ϕS = 0◦ and
rR = 1λ.
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Figure A.10.: Validation of a single wedge as a function of ϕR, with rS = 10λ, ϕS = 0◦
and rR = 10λ.
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A.2. Additional Validation Plots
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Figure A.11.: Validation of a single wedge as a function of ϕR, with rS = 10λ, ϕS = 0◦
and rR = 100λ.
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Figure A.12.: Validation of a single wedge as a function of ϕR, with rS = 10λ, ϕS = 0◦
and rR = 1000λ.

rR[λ] region [dB] Min[dB] at[◦] Max[dB] at[◦]0 1 2 3

U
B
D

-
M
D
L

U
B
D
b

1
10 +0.2 +0.1 +0.6 +1.5 ±0.0 −48 +4.1 +89
1 −1.4 −1.6 −1.7 −0.5 −2.0 −19 +1.4 +17
10 −1.4 −2.0 −2.4 −0.9 −2.7 −09 +1.0 +08
100 −0.7 −1.4 −2.4 −0.7 −2.8 −07 +1.0 +06
1000 −0.4 −1.3 −2.4 −0.6 −2.8 −07 +1.0 +06

U
B
D
g

1
10 −1.2 −0.8 +0.2 +1.1 −1.4 −89 +3.4 +89
1 −2.8 −2.7 −2.3 −0.9 −2.9 −89 +2.0 +18
10 −2.7 −3.2 −3.3 −1.4 −3.6 −29 +1.7 +08
100 −1.9 −2.7 −3.4 −1.2 −3.6 −09 +1.7 +06
1000 −1.7 −2.6 −3.4 −1.2 −3.6 −09 +1.7 +06

U
B
D

-
SS

M U
B
D
b

1
10 −1.5 −1.0 −0.6 −0.2 −1.8 −89 +2.6 +89
1 −0.6 −0.2 −0.3 −0.1 −1.0 −89 +0.5 +22
10 +1.4 +1.5 +0.5 +0.6 −0.9 +21 +1.6 −52
100 +1.1 +1.9 +0.9 +0.7 −0.9 +16 +2.0 −41
1000 +0.9 +1.9 +1.0 +0.6 −1.0 +15 +2.0 −39

U
B
D
g

1
10 −2.9 −1.9 −1.0 −0.6 −3.5 −89 +2.0 +89
1 −1.9 −1.3 −1.0 −0.6 −2.5 −89 +1.1 +21
10 +0.1 +0.3 −0.4 ±0.0 −0.8 +21 +1.0 +09
100 −0.2 +0.6 −0.1 +0.1 −0.9 +16 +1.0 +06
1000 −0.3 +0.6 ±0.0 +0.1 −1.1 −89 +1.0 +06

Table A.2.: Numerical validation of a single wedge with ϕS = 0◦, rS = 10λ and varying
receiver distances rR.
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A. Appendix

A.2.1.3. Changing All Distances
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Figure A.13.: Validation of a single wedge as a function of ϕR, with rS = 1
10λ, ϕS = 0◦

and rR = 1
10λ.

-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5

tr
an

sm
is

si
on

le
ve

lL
[d

B
]

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

receiver angle ϕR [◦]

UBDb

UBDg

MDL
SSM

UBDb-MDL
UBDb-SSM
UBDg-MDL
UBDg-SSM

Figure A.14.: Validation of a single wedge as a function of ϕR, with rS = 1λ, ϕS = 0◦ and
rR = 1λ.
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Figure A.15.: Validation of a single wedge as a function of ϕR, with rS = 10λ, ϕS = 0◦
and rR = 10λ.
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A.2. Additional Validation Plots
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Figure A.16.: Validation of a single wedge as a function of ϕR, with rS = 100λ, ϕS = 0◦
and rR = 100λ.
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Figure A.17.: Validation of a single wedge as a function of ϕR, with rS = 1000λ, ϕS = 0◦
and rR = 1000λ.

rS region [dB] Min[dB] at Max[dB] at= rR[λ] 0 1 2 3

U
B
D

-
M
D
L

U
B
D
b

1
10 −0.7 −0.1 +0.8 +1.4 −1.0 −89 +5.1 +89
1 −2.0 −1.9 −1.5 −0.5 −2.3 −89 +1.5 +23
10 −1.4 −2.0 −2.4 −0.9 −2.7 −09 +1.0 +08
100 +0.1 −0.2 −2.0 −0.3 −3.0 −03 +0.9 +03
1000 +1.2 +1.2 −0.5 +0.3 −2.9 −02 +1.3 −60

U
B
D
g

1
10 −2.6 −1.1 +0.4 +0.9 −3.4 −89 +4.7 +89
1 −3.3 −2.8 −2.0 −0.9 −3.8 −89 +2.1 +23
10 −2.7 −3.2 −3.3 −1.4 −3.6 −29 +1.7 +08
100 −1.2 −1.7 −3.2 −1.0 −3.9 −10 +1.6 +03
1000 −0.1 −0.3 −2.0 −0.4 −4.0 −03 +1.2 +01

U
B
D

-
SS

M U
B
D
b

1
10 −0.6 −0.9 −1.0 −0.4 −1.0 −19 +2.5 +89
1 −0.6 −0.7 −0.7 −0.2 −0.7 −23 +0.7 +89
10 +1.4 +1.5 +0.5 +0.6 −0.9 +21 +1.6 −52
100 +3.0 +3.6 +2.5 +1.5 −1.1 +07 +3.7 −36
1000 +4.1 +5.0 +4.5 +2.3 −0.8 +03 +5.4 −25

U
B
D
g

1
10 −2.4 −1.8 −1.3 −0.9 −2.8 −89 +2.1 +89
1 −1.9 −1.6 −1.2 −0.6 −2.2 −89 +1.0 +29
10 +0.1 +0.3 −0.4 ±0.0 −0.8 +21 +1.0 +09
100 +1.7 +2.2 +1.2 +0.9 −1.1 +07 +2.2 −37
1000 +2.8 +3.5 +3.1 +1.6 −0.8 +03 +3.8 −25

Table A.3.: Numerical validation of a single wedge with ϕS = 0◦ and varying source and
receiver distances rS = rR.
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A.2.1.4. Changing Source Angle
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Figure A.18.: Validation of a single wedge as a function of ϕR, with rS = 10λ, ϕS = −75◦
and rR = 10λ.
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Figure A.19.: Validation of a single wedge as a function of ϕR, with rS = 10λ, ϕS = −45◦
and rR = 10λ.
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Figure A.20.: Validation of a single wedge as a function of ϕR, with rS = 10λ, ϕS = −15◦
and rR = 10λ.
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A.2. Additional Validation Plots
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Figure A.21.: Validation of a single wedge as a function of ϕR, with rS = 10λ, ϕS = 15◦
and rR = 10λ.
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Figure A.22.: Validation of a single wedge as a function of ϕR, with rS = 10λ, ϕS = 45◦
and rR = 10λ.
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Figure A.23.: Validation of a single wedge as a function of ϕR, with rS = 10λ, ϕS = 75◦
and rR = 10λ.
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ϕS [◦] region [dB] Min[dB] at[◦] Max[dB] at[◦]0 1 2 3
U
B
D

-
M
D
L

U
B
D
b

−75◦ −5.2 −2.8 −1.9 −2.6 −7.5 −89 +1.7 +89
−45◦ −2.6 −1.8 −1.9 −1.6 −3.4 −89 +1.1 +53
−15◦ −1.6 −1.7 −2.4 −1.0 −2.8 +07 +1.1 +23
+15◦ −1.5 −2.2 −0.9 −0.7 −2.6 −24 +1.0 −08
+45◦ −1.9 −0.7 +0.2 −0.4 −2.4 −54 +1.1 −38
+75◦ −0.3 +0.2 +0.1 +0.0 −1.7 −83 +1.3 −69

U
B
D
g

−75◦ −8.0 −4.5 −3.2 −3.9 −11.4 −89 +2.2 +83
−45◦ −4.2 −3.1 −3.1 −2.5 −5.1 −89 +1.8 +52
−15◦ −2.9 −3.0 −3.5 −1.7 −3.6 −14 +1.7 +23
+15◦ −2.8 −3.4 −1.0 −1.1 −3.5 −27 +1.7 −08
+45◦ −3.1 −0.9 +0.2 −0.6 −3.3 −56 +1.7 −38
+75◦ −0.4 +0.2 +0.1 ±0.0 −2.5 −85 +1.8 −69

U
B
D

-
SS

M U
B
D
b

−75◦ +5.1 +2.8 +1.5 +1.3 −2.0 +69 +7.2 −89
−45◦ +2.9 +2.2 +1.7 +1.2 −0.6 +66 +3.4 −89
−15◦ +1.8 +1.8 +1.2 +0.8 −0.8 +36 +1.8 −57
+15◦ +1.0 +1.0 +0.1 +0.3 −0.9 +06 +1.3 −57
+45◦ −0.1 ±0.0 −0.1 ±0.0 −0.9 −89 +0.5 −13
+75◦ −0.9 ±0.0 +0.1 −0.1 −3.0 −89 +0.4 −43

U
B
D
g

−75◦ +2.3 +1.1 +0.2 ±0.0 −2.7 +65 +3.3 −89
−45◦ +1.3 +0.9 +0.4 +0.3 −1.2 +37 +1.7 −89
−15◦ +0.5 +0.5 ±0.0 +0.1 −0.8 +07 +1.0 +24
+15◦ −0.3 −0.2 −0.1 −0.1 −0.8 +06 +1.0 −07
+45◦ −1.3 −0.1 −0.1 −0.2 −2.1 −89 +0.9 −37
+75◦ −1.1 ±0.0 +0.1 −0.2 −4.1 −89 +0.7 −67

Table A.4.: Numerical validation of a single wedge with rS = rR = 10λ and varying source
angles ϕS .
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A.2. Additional Validation Plots

A.2.2. Analytical Comparison of Diffraction at a Slit (2D)

A.2.2.1. Changing Source Distance
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Figure A.24.: Validation of a slit (d = 10λ) as a function of ϕR, with rS = 1
10λ, ϕS = 0◦

and rR = 10λ.
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Figure A.25.: Validation of a slit (d = 10λ) as a function of ϕR, with rS = 1λ, ϕS = 0◦
and rR = 10λ.
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Figure A.26.: Validation of a slit (d = 10λ) as a function of ϕR, with rS = 10λ, ϕS = 0◦
and rR = 10λ.
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Figure A.27.: Validation of a slit (d = 10λ) as a function of ϕR, with rS = 100λ, ϕS = 0◦
and rR = 10λ.
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Figure A.28.: Validation of a slit (d = 10λ) as a function of ϕR, with rS = 1000λ, ϕS = 0◦
and rR = 10λ.

rS [λ] region [dB] Min[dB] at[◦] Max[dB] at[◦]0 1 2 3

U
B
D

-
SS

M U
B
D
b

1
10 −0.6 +0.3 +0.2 ±0.0 −3.4 ±89 +0.4 ±65
1 −0.5 +0.2 +0.1 −0.1 −2.6 ±89 +0.4 ±59
10 +1.1 −0.1 +0.2 +0.4 −0.9 ±36 +1.4 ±76
100 +2.3 +1.3 −0.1 +1.2 −0.9 ±17 +2.6 ±68
1000 +2.3 +1.6 −0.1 +1.3 −1.0 ±15 +2.7 ±63

U
B
D
g

1
10 −0.4 +0.2 +0.1 ±0.0 −3.4 ±89 +0.4 ±68
1 −0.4 +0.1 +0.1 −0.1 −3.4 ±89 +0.4 ±77
10 −0.2 ±0.0 +0.2 ±0.0 −0.8 ±36 +1.0 ±47
100 +0.9 +0.4 +0.1 +0.4 −0.9 ±17 +1.2 ±64
1000 +0.9 +0.5 +0.1 +0.5 −0.9 ±15 +1.3 ±63

Table A.5.: Numerical validation of a slit with ϕS = 0◦, rR = d = 10 and varying source
distance rS .
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A.2. Additional Validation Plots

A.2.2.2. Changing Receiver Distance
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Figure A.29.: Validation of a slit (d = 10λ) as a function of ϕR, with rS = 10λ, ϕS = 0◦
and rR = 1λ.
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Figure A.30.: Validation of a slit (d = 10λ) as a function of ϕR, with rS = 10λ, ϕS = 0◦
and rR = 10λ.
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Figure A.31.: Validation of a slit (d = 10λ) as a function of ϕR, with rS = 10λ, ϕS = 0◦
and rR = 100λ.
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Figure A.32.: Validation of a slit (d = 10λ) as a function of ϕR, with rS = 10λ, ϕS = 0◦
and rR = 1000λ.

rR[λ] region [dB] Min[dB] at[◦] Max[dB] at[◦]0 1 2 3

U
B
D

-
SS

M U
B
D
b

1
10 +0.2 +0.2 +0.2 +0.2 +0.2 ±25 +0.3 ±89
1 +0.2 +0.1 +0.1 +0.1 +0.1 ±35 +0.2 ±89
10 +1.1 −0.1 +0.2 +0.4 −0.9 ±36 +1.4 ±76
100 +2.4 +1.8 ±0.0 +1.4 −1.0 ±15 +2.7 ±65
1000 +2.4 +2.1 ±0.0 +1.5 −1.0 ±14 +2.9 ±60

U
B
D
g

1
10 +0.2 +0.1 +0.1 +0.1 +0.1 ±25 +0.2 ±89
1 +0.1 +0.1 +0.1 +0.1 +0.1 ±35 +0.2 ±89
10 −0.2 ±0.0 +0.2 ±0.0 −0.8 ±36 +1.0 ±47
100 +1.0 +0.6 +0.1 +0.6 −0.9 ±15 +1.4 ±65
1000 +1.0 +0.8 +0.1 +0.6 −0.9 ±13 +1.5 ±60

Table A.6.: Numerical validation of a slit with ϕS = 0◦, rS = d = 10 and varying receiver
distance rR.

A.2.2.3. Changing Wedge Distance
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Figure A.33.: Validation of a slit (d = 1
10λ) as a function of ϕR, with rS = 10λ, ϕS = 0◦

and rR = 10λ.
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A.2. Additional Validation Plots
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Figure A.34.: Validation of a slit (d = 1λ) as a function of ϕR, with rS = 10λ, ϕS = 0◦
and rR = 10λ.
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Figure A.35.: Validation of a slit (d = 10λ) as a function of ϕR, with rS = 10λ, ϕS = 0◦
and rR = 10λ.
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Figure A.36.: Validation of a slit (d = 100λ) as a function of ϕR, with rS = 10λ, ϕS = 0◦
and rR = 10λ.
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d[λ] region [dB] Min[dB] at[◦] Max[dB] at[◦]0 1 2 3
U
B
D

-
SS

M U
B
D
b

1
10 −0.7 −0.3 −0.3 −0.4 −1.1 ±89 −0.2 ±19
1 +3.3 +2.1 −0.6 +1.6 −1.0 ±18 +3.6 ±63
10 +1.1 −0.1 +0.2 +0.4 −0.9 ±36 +1.4 ±76
100 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±01 ±0.0 ±01
1000 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±01 ±0.0 ±01

U
B
D
g

1
10 −1.9 −0.3 +0.5 −0.5 −3.1 ±89 +0.6 ±16
1 +1.8 +0.9 −0.5 +0.7 −1.6 ±23 +2.3 ±62
10 −0.2 ±0.0 +0.2 ±0.0 −0.8 ±36 +1.0 ±47
100 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±1 ±0.0 ±1
1000 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±1 ±0.0 ±1

Table A.7.: Numerical validation of a slit with ϕS = 0◦, rS = rR = 10 and varying slit
width d.

A.2.2.4. Changing All Distances
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Figure A.37.: Validation of a slit (d = 1
10λ) as a function of ϕR, with rS = 1

10λ , ϕS = 0◦
and rR = 1

10λ.
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Figure A.38.: Validation of a slit (d = 1λ) as a function of ϕR, with rS = 1λ, ϕS = 0◦ and
rR = 1λ.
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A.2. Additional Validation Plots
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Figure A.39.: Validation of a slit (d = 10λ) as a function of ϕR, with rS = 10λ, ϕS = 0◦
and rR = 10λ.
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Figure A.40.: Validation of a slit (d = 100λ) as a function of ϕR, with rS = 100λ, ϕS = 0◦
and rR = 100λ.
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Figure A.41.: Validation of a slit (d = 1000λ) as a function of ϕR, with rS = 1000λ,
ϕS = 0◦ and rR = 1000λ.
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ϕS [◦] region [dB] Min[dB] at[◦] Max[dB] at[◦]0 1 2 3
U
B
D

-
SS

M U
B
D
b

1
10 ±0.0 −0.2 −0.2 −0.1 −0.2 ±10 +0.2 ±89
1 ±0.0 +0.5 −0.1 +0.1 −0.5 ±89 +0.6 ±42
10 +1.1 −0.1 +0.2 +0.4 −0.9 ±36 +1.4 ±76
100 +3.0 +0.2 ±0.0 +1.1 −1.1 ±48 +3.5 ±74
1000 +4.7 +0.7 ±0.0 +1.7 −1.2 ±52 +5.2 ±66

U
B
D
g

1
10 −0.8 ±0.0 +0.4 −0.1 −1.4 ±89 +0.5 ±01
1 −1.0 +0.5 +0.1 −0.1 −1.8 ±89 +0.9 ±34
10 −0.2 ±0.0 +0.2 ±0.0 −0.8 ±36 +1.0 ±47
100 +1.6 ±0.0 ±0.0 +0.5 −1.1 ±48 +2.0 ±74
1000 +3.1 +0.4 ±0.0 +1.2 −1.1 ±52 +3.6 ±66

Table A.8.: Numerical validation of a slit with ϕS = 0◦ and varying source and receiver
distances as well as slit width rS = rR = d.

A.2.2.5. Changing Source Angle
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Figure A.42.: Validation of a slit (d = 10λ) as a function of ϕR, with rS = 10λ, ϕS = −75◦
and rR = 10λ.
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Figure A.43.: Validation of a slit (d = 10λ) as a function of ϕR, with rS = 10λ, ϕS = −45◦
and rR = 10λ.
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A.2. Additional Validation Plots
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Figure A.44.: Validation of a slit (d = 10λ) as a function of ϕR, with rS = 10λ, ϕS = −15◦
and rR = 10λ.

ϕS [◦] region [dB] Min[dB] at[◦] Max[dB] at[◦]0 1 2 3

U
B
D

-
SS

M U
B
D
b

−75◦ +3.4 +1.9 +1.3 +1.2 −0.7 +89 +4.9 −89
−45◦ +2.0 +1.4 +0.2 +0.6 −0.8 +15 +2.1 −77
−15◦ +1.4 +0.4 −0.1 +0.4 −0.9 −23 +1.6 −76
+15◦ +0.7 ±0.0 +0.1 +0.4 −0.9 +23 +1.6 +76
+45◦ +0.1 +0.2 −0.3 +0.6 −0.8 −15 +2.1 +77
+75◦ ±0.0 ±0.0 +0.5 +1.2 −0.7 −89 +4.9 +89

U
B
D
g

−75◦ +1.4 +0.6 ±0.0 +0.2 −1.6 +89 +2.2 −89
−45◦ +0.7 +0.2 ±0.0 +0.1 −1.8 +89 +1.0 −03
−15◦ +0.1 +0.1 −0.1 ±0.0 −1.0 +89 +1.0 −37
+15◦ −0.4 +0.1 +0.1 ±0.0 −1.0 −89 +1.0 +37
+45◦ −0.3 +0.2 −0.2 +0.1 −1.8 −89 +1.0 +03
+75◦ +0.1 −0.3 −0.7 +0.2 −1.6 −89 +2.2 +89

Table A.9.: Numerical validation of a slit with rS = rR = d = 10 and varying source angles
ϕS .
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A.2.3. Analytical Comparison of Diffraction at a Double Wedge (2D)

A.2.3.1. Changing Source Distance
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Figure A.45.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 1
10λ,

ϕS = 0◦ and rR = 10λ.
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Figure A.46.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 1λ,
ϕS = 0◦ and rR = 10λ.

-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5

tr
an

sm
is

si
on

le
ve

lL
[d

B
]

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

receiver angle ϕR [◦]

UBDb

UBDg

MDL
SSM

UBDb-MDL
UBDb-SSM
UBDg-MDL
UBDg-SSM

Figure A.47.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 10λ,
ϕS = 0◦ and rR = 10λ.
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A.2. Additional Validation Plots
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Figure A.48.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 100λ,
ϕS = 0◦ and rR = 10λ.
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Figure A.49.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 1000λ,
ϕS = 0◦ and rR = 10λ.

rS [λ] region [dB] Min[dB] at[◦] Max[dB] at[◦]0 1 2 3

U
B
D

-
M
D
L

U
B
D
b

1
10 −4.6 −4.9 −5.2 −1.5 −5.4 −09 +2.6 +89
1 −5.4 −5.9 −6.1 −2.6 −6.3 −09 +1.4 +34
10 −4.5 −4.9 −5.0 −2.4 −5.2 −27 +0.6 +15
100 −3.3 −3.6 −3.9 −1.8 −4.1 −23 +0.5 +10
1000 −3.5 −3.5 −3.8 −1.8 −4.0 −24 +0.4 +09

U
B
D
g

1
10 −6.0 −6.4 −6.2 −2.1 −6.6 −31 +3.0 +89
1 −6.5 −7.1 −7.1 −3.0 −7.4 −29 +2.0 +34
10 −5.6 −6.1 −6.1 −2.8 −6.5 −28 +1.3 +15
100 −4.6 −5.0 −5.1 −2.4 −5.5 −25 +1.2 +10
1000 −4.9 −5.0 −5.0 −2.4 −5.4 −25 +1.2 +09

U
B
D

-
SS

M U
B
D
b

1
10 −3.5 −2.7 −5.6 −1.8 −1.8 −01 +17.6 +06
1 +2.3 +2.6 +1.6 +1.2 +1.2 −01 +5.7 +01
10 +3.8 +4.4 +3.8 +2.0 +2.0 +37 +4.5 −41
100 +4.3 +5.5 +5.2 +2.5 +2.5 +19 +5.8 −33
1000 +3.8 +5.5 +5.4 +2.5 +2.5 +18 +5.9 −33

U
B
D
g

1
10 −4.9 −4.1 −6.7 −2.4 −18.4 −01 +18.0 +06
1 +1.2 +1.4 +0.6 +0.8 −1.8 −01 +5.6 +01
10 +2.8 +3.2 +2.8 +1.5 −0.9 +37 +3.2 −42
100 +3.0 +4.1 +4.1 +1.9 −0.9 +19 +4.3 −31
1000 +2.4 +4.0 +4.2 +1.8 −1.0 +19 +4.4 −29

Table A.10.: Numerical validation of a double wedge with ϕS = 0◦, rR = d = 10 and
varying source distance rS .
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A.2.3.2. Changing Receiver Distance
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Figure A.50.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 10λ,
ϕS = 0◦ and rR = 1

10λ.
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Figure A.51.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 10λ,
ϕS = 0◦ and rR = 1λ.
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Figure A.52.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 10λ,
ϕS = 0◦ and rR = 10λ.
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A.2. Additional Validation Plots
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Figure A.53.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 10λ,
ϕS = 0◦ and rR = 100λ.
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Figure A.54.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 10λ,
ϕS = 0◦ and rR = 1000λ.

rR[λ] region [dB] Min[dB] at[◦] Max[dB] at[◦]0 1 2 3

U
B
D

-
M
D
L

U
B
D
b

1
10 −3.8 −4.2 −4.3 −2.7 −4.4 −24 +1.7 +89
1 −5.5 −5.6 −5.7 −2.9 −6.0 −18 +1.2 +89
10 −4.5 −4.9 −5.0 −2.4 −5.2 −27 +0.6 +15
100 −3.4 −3.5 −4.0 −1.8 −4.2 −18 +0.4 +08
1000 −2.9 −3.1 −3.7 −1.6 −3.9 −16 +0.4 +07

U
B
D
g

1
10 −5.1 −5.1 −4.8 −3.3 −5.1 −48 +1.0 +89
1 −6.7 −6.7 −6.4 −3.2 −6.8 −23 +1.7 +89
10 −5.6 −6.1 −6.1 −2.8 −6.5 −28 +1.3 +15
100 −4.5 −4.9 −5.2 −2.4 −5.6 −20 +1.2 +07
1000 −4.0 −4.5 −5.0 −2.3 −5.4 −18 +1.2 +07

U
B
D

-
SS

M U
B
D
b

1
10 −0.9 −0.4 −1.1 +0.4 −6.3 +01 +15.0 +05
1 +0.7 +1.2 +1.1 +0.7 −0.4 −01 +8.0 +01
10 +3.8 +4.4 +3.8 +2.0 −0.9 +37 +4.5 −41
100 +4.4 +5.7 +5.5 +2.6 −1.2 +13 +6.1 −28
1000 +4.2 +5.9 +5.8 +2.7 −1.2 +13 +6.4 −25

U
B
D
g

1
10 −2.3 −1.3 −1.6 −0.1 −6.6 +01 +14.8 +05
1 −0.5 +0.1 +0.4 +0.4 −1.0 −89 +7.8 +01
10 +2.8 +3.2 +2.8 +1.5 −0.9 +37 +3.2 −42
100 +3.3 +4.3 +4.3 +2.1 −0.8 +14 +4.6 −29
1000 +3.1 +4.5 +4.6 +2.1 −1.0 +13 +4.9 −27

Table A.11.: Numerical validation of a double wedge with ϕS = 0◦, rS = d = 10 and
varying receiver distance rR.
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A.2.3.3. Changing Wedge Distance
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Figure A.55.: Validation of a double wedge (d = 1
10λ) as a function of ϕR, with rS = 10λ,

ϕS = 0◦ and rR = 10λ.
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Figure A.56.: Validation of a double wedge (d = 1λ) as a function of ϕR, with rS = 10λ,
ϕS = 0◦ and rR = 10λ.
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Figure A.57.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 10λ,
ϕS = 0◦ and rR = 10λ.
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A.2. Additional Validation Plots
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Figure A.58.: Validation of a double wedge (d = 100λ) as a function of ϕR, with rS = 10λ,
ϕS = 0◦ and rR = 10λ.
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Figure A.59.: Validation of a double wedge (d = 1000λ) as a function of ϕR, with rS = 10λ,
ϕS = 0◦ and rR = 10λ.

d[λ] region [dB] Min[dB] at[◦] Max[dB] at[◦]0 1 2 3

U
B
D

-
M
D
L

U
B
D
b

1
10 −0.7 −0.5 −1.3 −0.4 −1.9 −06 +0.2 +33
1 −2.7 −2.3 −2.2 −1.1 −3.1 −89 +0.2 +30
10 −4.5 −4.9 −5.0 −2.4 −5.2 −27 +0.6 +15
100 −5.4 −6.1 −7.0 −3.0 −7.1 −19 +1.0 +89
1000 −3.8 −3.9 −4.1 −2.6 −6.7 +01 −0.9 +89

U
B
D
g

1
10 −1.8 −1.7 −2.1 −0.9 −2.5 −08 +0.7 +08
1 −3.8 −3.6 −3.1 −1.7 −4.1 −89 +0.8 +09
10 −5.6 −6.1 −6.1 −6.1 −6.5 −28 +1.3 +15
100 −6.6 −7.5 −8.1 −3.4 −8.4 −21 +1.7 +89
1000 −5.3 −5.4 −5.3 −3.4 −6.8 +01 −1.0 +89

U
B
D

-
SS

M U
B
D
b

1
10 +4.8 +6.2 +9.3 +3.3 −3.7 +05 +18.2 +01
1 +5.1 +6.2 +5.7 +3.1 −1.6 +21 +28.3 +01
10 +3.8 +4.4 +3.8 +2.0 −0.9 +37 +4.5 −41
100 +1.9 +2.6 +1.5 +1.1 −0.9 +15 +2.7 −43
1000 +0.8 +1.8 +0.9 +0.5 −1.1 +15 +1.9 −37

U
B
D
g

1
10 +3.6 +5.0 +8.4 +2.8 −3.4 +05 +18.1 +08
1 +3.9 +4.9 +4.8 +2.5 −1.3 +23 +28.2 +09
10 +2.8 +3.2 +2.8 +1.5 −0.9 +37 +3.2 +15
100 +0.6 +1.3 +0.4 +0.7 −0.8 +16 +1.3 +89
1000 −0.8 +0.3 −0.2 −0.2 −1.6 −89 +0.8 +89

Table A.12.: Numerical validation of a double wedge with ϕS = 0◦, rR = rS = 10 and
varying wedge distance d.
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A.2.3.4. Changing All Distances
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Figure A.60.: Validation of a double wedge (d = 1
10λ) as a function of ϕR, with rS = 1

10λ,
ϕS = 0◦ and rR = 1

10λ.
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Figure A.61.: Validation of a double wedge (d = 1λ) as a function of ϕR, with rS = 1λ,
ϕS = 0◦ and rR = 1λ.
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Figure A.62.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 10λ,
ϕS = 0◦ and rR = 10λ.
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A.2. Additional Validation Plots
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Figure A.63.: Validation of a double wedge (d = 100λ) as a function of ϕR, with rS = 100λ,
ϕS = 0◦ and rR = 100λ.
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Figure A.64.: Validation of a double wedge (d = 1000λ) as a function of ϕR, with rS =
1000λ, ϕS = 0◦ and rR = 1000λ.

rS = rR region [dB] Min[dB] at[◦] Max[dB] at[◦]= d[λ] 0 1 2 3

U
B
D

-
M
D
L

U
B
D
b

1
10 −2.7 −2.1 −1.2 −0.1 −2.9 −89 +4.9 +89
1 −5.0 −4.5 −4.0 −1.9 −5.3 −89 +1.3 +45
10 −4.5 −4.9 −4.0 −2.4 −5.2 −27 +0.6 +15
100 −7.3 −5.3 −5.4 −3.0 −8.0 −89 +0.2 +12
1000 −8.2 −8.1 −6.8 −3.9 −8.4 −89 +0.7 +03

U
B
D
g

1
10 −3.7 −2.7 −1.4 −0.4 −4.3 −89 +4.7 +89
1 −6.0 −5.4 −4.5 −2.2 −6.3 −89 +1.9 +43
10 −5.6 −6.1 −6.1 −2.8 −6.5 −28 +1.3 +15
100 −8.4 −7.4 −7.0 −3.8 −8.6 −89 +0.9 +06
1000 −9.5 −9.5 −8.6 −4.6 −9.7 −89 +1.4 +03

U
B
D

-
SS

M U
B
D
b

1
10 +0.1 +0.1 0.03 +0.4 +0.1 −60 +1.9 +89
1 +1.1 +1.5 +1.9 +1.1 +0.1 +49 +2.3 −01
10 +3.8 +4.4 +3.8 +2.0 −0.9 +37 +4.5 −41
100 +1.8 +4.9 +5.7 +2.1 −1.2 +13 +6.3 −19
1000 +2.7 +3.8 +6.1 +2.1 −1.2 +05 +7.8 −08

U
B
D
g

1
10 −1.0 −0.5 ±0.0 +0.1 −1.2 −89[◦] +1.7 +89
1 +0.1 +0.6 +1.4 +0.8 −0.2 −89[◦] +2.1 −01
10 +2.8 +3.2 +2.8 +1.5 −0.9 +37[◦] +3.2 −42
100 +0.7 +2.9 +4.0 +1.3 −1.1 +13[◦] +4.5 −14
1000 +1.4 +2.4 +4.2 +1.4 −1.2 +05[◦] +5.7 −06

Table A.13.: Numerical validation of a double wedge with ϕS = 0◦ and varying source and
receiver distances as well as wedge distance rS = rR = d.
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A.2.3.5. Changing Source Angle
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Figure A.65.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 10λ,
ϕS = −75◦ and rR = 10λ.
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Figure A.66.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 10λ,
ϕS = −45◦ and rR = 10λ.
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Figure A.67.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 10λ,
ϕS = −15◦ and rR = 10λ.
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A.2. Additional Validation Plots
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Figure A.68.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 10λ,
ϕS = +15◦ and rR = 10λ.
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Figure A.69.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 10λ,
ϕS = +75◦ and rR = 10λ.
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Figure A.70.: Validation of a double wedge (d = 10λ) as a function of ϕR, with rS = 10λ,
ϕS = +75◦ and rR = 10λ.
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ϕS [◦] region [dB] Min[dB] at[◦] Max[dB] at[◦]0 1 2 3
U
B
D

-
M
D
L

U
B
D
b

−75 −11.9 −9.9 −6.6 −5.7 −12.2 −80 −1.4 +20
−45 −10.1 −8.9 −6.6 −5.5 −10.4 −89 −1.4 +89
−15 −6.9 −6.7 −6.0 −3.6 −7.1 −89 +1.0 +43
+15 −1.2 −1.9 −1.6 −0.7 −2.6 −15 +0.8 −02
+45 −1.3 −2.1 −0.2 −0.5 −2.5 −30 +1.0 −17
+75 −1.7 −1.5 +0.3 −0.4 −2.5 −46 +1.0 −32

U
B
D
g

−75◦ −13.4 −11.0 −7.8 −6.9 −13.9 −82 −2.6 +17
−45◦ −11.2 −10.1 −8.1 −6.7 −11.4 −83 −1.5 +89
−15◦ −8.2 −8.2 −7.6 −4.4 −8.2 −34 +1.7 +43
+15◦ −2.4 −3.1 −2.1 −1.2 −3.4 −33 +1.5 −02
+45◦ −2.6 −3.3 −0.1 −0.9 −3.4 −33 +1.6 −17
+75◦ −3.0 −2.0 +0.4 −0.7 −3.4 −48 +1.7 −31

U
B
D

-
SS

M U
B
D
b

−75 +5.3 +6.5 +5.5 +3.2 −0.4 +89 +6.6 −39
−45 +6.4 +6.7 +5.6 +3.5 −0.5 +86 +6.7 −45
−15 +5.4 +5.7 +4.7 +2.7 −0.9 +67 +5.7 −46
+15 +1.1 +1.5 +0.1 +0.4 −1.6 +11 +1.6 −50
+45 +1.0 +1.0 −0.2 +0.4 −0.9 −05 +1.4 −58
+75 +0.5 +0.2 −0.1 +0.1 −0.9 −19 +0.8 −65

U
B
D
g

−75 +3.9 +5.4 +4.2 +2.0 −1.6 +89 +5.5 −42
−45 +5.3 +5.4 +4.1 +2.4 −1.1 +77 +5.5 −52
−15 +4.1 +4.1 +3.1 +1.9 −1.2 +19 +4.3 −57
+15 −0.1 +0.3 −0.4 ±0.0 −1.5 +11 +0.7 +23
+45 −0.3 −0.2 −0.1 ±0.0 −1.0 −89 +0.9 −16
+75 −0.8 −0.3 ±0.0 −0.2 −1.6 −89 +0.9 −31

Table A.14.: Numerical validation of a double wedge with rS = rR = d = 10 and varying
source angles ϕS .
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A.2. Additional Validation Plots

A.2.4. Analytical Comparison of Diffraction at a Single Wedge with a Reflecting Floor
(2D)
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Figure A.71.: Influence of a reflecting floor in front of wedge (r = 1λ).
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Figure A.72.: Influence of a reflecting floor behind wedge (r = 1)λ.
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Figure A.73.: Influence of a reflecting floor in front and behind a wedge (r = 1λ).
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Figure A.74.: Influence of a reflecting floor in front of wedge (r = 100λ).
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Figure A.75.: Influence of a reflecting floor behind wedge (r = 100λ).
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Figure A.76.: Influence of a reflecting floor in front and behind a wedge (r = 100λ).
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A.2. Additional Validation Plots

A.2.5. Analytical Comparison of Diffraction at a rectangular Aperture (3D)

A.2.5.1. Finite Wedge

-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5

tr
an

sm
is

si
on

le
ve

lL
[d

B
]

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

receiver angle ϕR [◦]

dz = 2 ·0.1
dz = 2 ·1
dz = 2 ·10
dz = 2 ·100
2D reference
difference (2D-dz,200)

Figure A.77.: Validation of 3D diffraction at an (in)finite wedge (rS = rR = 1).
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Figure A.78.: Validation of 3D diffraction at an (in)finite wedge (rS = rR = 100).
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Figure A.79.: Validation of 3D diffraction at an (in)finite slit (rS = rR = dy = 1).
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Figure A.80.: Validation of 3D diffraction at an (in)finite slit (rS = rR = dy = 100).

A.2.5.2. Local Coordiante System
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Figure A.81.: Validation of the local coordinate system at a wedge (rS = rR = 1). The
coordiante system is rotated by an angle of α.
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Figure A.82.: Validation of the local coordinate system at a wedge (rS = rR = 100). The
coordiante system is rotated by an angle of α.

234



A.2. Additional Validation Plots
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Figure A.83.: Validation of the local coordinate system at a slit (rS = rR = dy = 1). The
coordiante system is rotated by an angle of α.
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Figure A.84.: Validation of the local coordinate system at a slit (rS = rR = dy = 100).
The coordiante system is rotated by an angle of α.
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A.2.5.3. Oblique Incidence
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(a) Uncertainty relation Based Diffraction
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(b) Secondary Source Model

Figure A.85.: Validation of oblique incidence at a wedge (rS = rR = 1). The diffraction
plane is rotated by an angle of ϑ.
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A.2. Additional Validation Plots
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(a) Uncertainty relation Based Diffraction
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(b) Secondary Source Model

Figure A.86.: Validation of oblique incidence at a wedge (rS = rR = 100). The diffraction
plane is rotated by an angle of ϑ.
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A.2.6. Sound Intensity Maps for Diffraction at a Single Wedge Computed with Sound
Particle Radiosity

(a) SPSM (b) SPR with fP = 1
20 (c) SPR(fP = 1
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(f) SPR with fP = 1
100 (g) SPR(fP = 1

100 )-SPSM

Figure A.87.: The influence of the applied discretization in Sound Particle Radiosity on
diffraction simulation compared with the Sound Particle Simulation Method
for f = 31.5Hz.
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A.2. Additional Validation Plots

(a) SPSM (b) SPR with fP = 1
20 (c) SPR(fP = 1

20 )-SPSM

(d) SPR with fP = 1
50 (e) SPR(fP = 1

50 )-SPSM

(f) SPR with fP = 1
100 (g) SPR(fP = 1

100 )-SPSM

Figure A.88.: The influence of the applied discretization in Sound Particle Radiosity on
diffraction simulation compared with the Sound Particle Simulation Method
for f = 63Hz.
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(a) SPSM (b) SPR with fP = 1
20 (c) SPR(fP = 1

20 )-SPSM

(d) SPR with fP = 1
50 (e) SPR(fP = 1

50 )-SPSM

(f) SPR with fP = 1
100 (g) SPR(fP = 1

100 )-SPSM

Figure A.89.: The influence of the applied discretization in Sound Particle Radiosity on
diffraction simulation compared with the Sound Particle Simulation Method
for f = 125Hz.
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A.2. Additional Validation Plots

(a) SPSM (b) SPR with fP = 1
20 (c) SPR(fP = 1

20 )-SPSM

(d) SPR with fP = 1
50 (e) SPR(fP = 1

50 )-SPSM

(f) SPR with fP = 1
100 (g) SPR(fP = 1

100 )-SPSM

Figure A.90.: The influence of the applied discretization in Sound Particle Radiosity on
diffraction simulation compared with the Sound Particle Simulation Method
for f = 250Hz.
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(a) SPSM (b) SPR with fP = 1
20 (c) SPR(fP = 1

20 )-SPSM

(d) SPR with fP = 1
50 (e) SPR(fP = 1

50 )-SPSM

(f) SPR with fP = 1
100 (g) SPR(fP = 1

100 )-SPSM

Figure A.91.: The influence of the applied discretization in Sound Particle Radiosity on
diffraction simulation compared with the Sound Particle Simulation Method
for f = 500Hz.
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A.2. Additional Validation Plots

(a) SPSM (b) SPR with fP = 1
20 (c) SPR(fP = 1

20 )-SPSM

(d) SPR with fP = 1
50 (e) SPR(fP = 1

50 )-SPSM

(f) SPR with fP = 1
100 (g) SPR(fP = 1

100 )-SPSM

Figure A.92.: The influence of the applied discretization in Sound Particle Radiosity on
diffraction simulation compared with the Sound Particle Simulation Method
for f = 1000Hz = 1kHz.
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(a) SPSM (b) SPR with fP = 1
20 (c) SPR(fP = 1

20 )-SPSM

(d) SPR with fP = 1
50 (e) SPR(fP = 1

50 )-SPSM

(f) SPR with fP = 1
100 (g) SPR(fP = 1

100 )-SPSM

Figure A.93.: The influence of the applied discretization in Sound Particle Radiosity on
diffraction simulation compared with the Sound Particle Simulation Method
for f = 2kHz.
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A.2. Additional Validation Plots

(a) SPSM (b) SPR with fP = 1
20 (c) SPR(fP = 1

20 )-SPSM

(d) SPR with fP = 1
50 (e) SPR(fP = 1

50 )-SPSM

(f) SPR with fP = 1
100 (g) SPR(fP = 1

100 )-SPSM

Figure A.94.: The influence of the applied discretization in Sound Particle Radiosity on
diffraction simulation compared with the Sound Particle Simulation Method
for f = 4kHz.
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(a) SPSM (b) SPR with fP = 1
20 (c) SPR(fP = 1

20 )-SPSM

(d) SPR with fP = 1
50 (e) SPR(fP = 1

50 )-SPSM

(f) SPR with fP = 1
100 (g) SPR(fP = 1

100 )-SPSM

Figure A.95.: The influence of the applied discretization in Sound Particle Radiosity on
diffraction simulation compared with the Sound Particle Simulation Method
for f = 8kHz.
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A.2. Additional Validation Plots

(a) SPSM (b) SPR with fP = 1
20 (c) SPR(fP = 1

20 )-SPSM

(d) SPR with fP = 1
50 (e) SPR(fP = 1

50 )-SPSM

(f) SPR with fP = 1
100 (g) SPR(fP = 1

100 )-SPSM

Figure A.96.: The influence of the applied discretization in Sound Particle Radiosity on
diffraction simulation compared with the Sound Particle Simulation Method
for f = 16kHz.
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In both room and city acoustics, the simulation of sound propagation is still 

challenging. The handling of diffraction is still topic of current research, especially 

the diffraction of higher orders. Due to the large scale of the environment 

compared to the typical wavelengths of sound, Geometrical Acoustic (GA) 

simulation methods are used rather than exact wave theoretical simulation 

methods. These GA methods handle sound as particles instead of waves (wave-

particle dualism as known from optics). Based on this restriction, wave effects such 

as diffraction have to be modelled explicitly.

In this work, a diffraction formulation called Uncertainty relation Based Diffraction 

(UBD) by Stephenson is investigated and extended. The UBD is based on 

Heisenberg's uncertainty relation and the Fraunhofer diffraction theory. The great 

advantage of this formulation is that the straight forward propagation technique of 

particles can be used and integrated as a module in the simulation. However, it will 

be shown that some assumptions of former publications are not well founded, such 

that alternative formulations are presented. Good agreements with the wave 

theoretical reference methods are shown in almost all cases. In addition to former 

publications, the UBD method is extended to 3D. 
Unfortunately, the usage of the UBD diffraction module causes a split-up of 
particles, such that the computation time increases exponentially. To overcome this 
split-up, the reunification of particles is aspired. Quantized Pyramidal Beam Tracing 
(QPBT) and the Sound Particle Radiosity (SPR) aim at this reunification. It will be 
shown that SPR is both more efficient and more accurate than QPBT. However, the 
memory effort of the SPR yields a major bottleneck. First optimizations to decrease 
the memory effort will be presented to overcome this issue.
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