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Where we are coming from:

“There is an inherent difficulty, if not practical impossibility, in aggregating anything but

absurdly simple relationships about elemental decision-making units into comprehensible

relationships between large aggregative units such as industries, the household sector, and

the government sector.”

(Orcutt, 1957)

Where we are heading to:

“A simple behavioral model, with agents gradually switching to better performing heuristics,

explains individual, as well as emergent, macro behavior in these laboratory economies.”

(Battiston et al., 2016)





Abstract:

Motivation for the thesis is the need for coordinating urban planning and energy planning. The
emissions of the building sector can be reduced by the spatial coordination of building energy demand
and building energy supply, e.g. via the spatial prioritization of building energy retrofits, the creation of
heating grids and the integration of waste heat sources into the supply. As heat transport is associated
with losses, the spatial constellation of heat sinks and sources are highly relevant for supply concepts.
That is why a better understanding of the spatial distribution of heat consumption is needed – that
is, real heat consumption, not computed heat demand based on physical building characteristics. Heat
consumption can differ as much as 50% or more from pre-calculated heat demands. It is the building
users and their behavior and presence times that account for this spread. As heat supply and electric
power supply are increasingly integrated, and as there is a trend towards smaller heating grids, the
temporal distribution of urban heat demand, too, becomes more interesting. There is little systematic
analysis of this as of yet. This is where the present dissertation is making a contribution?

Aim of the thesis is to develop a model capable of simulating heat demand at the micro scale
(i.e. for individual buildings) in its spatial-temporal spread for large urban agglomerations. This re-
quires: (1) individual building models, (2) the explicit consideration of human behavior in estimating
heat consumption and (3) the simulation of a large number of different buildings defining an urban area.

Towards this objective, the thesis uses methods from different disciplines : (a) spatial microsi-
mulation (microsimulation originated in economics and has been taken up in geography and the social
sciences which enriched it with the spatial dimension), (b) building simulation which traces energy
flows in buildings (traditionally anchored in building physics and technical thermodynamics) and (c)
the classification of the building stock, and allocation of types onto buildings in various data
sets (practiced by many authors, e. g. in engineering and economics, for evaluation of policy measures
addressing the building stock).

The main result of this thesis is a model which can (1) generate a synthetic building stock with
households residing in buildings (whereby “synthetic” does not mean “invented”, but rather, satisfying
data on buildings and socio-demographics available at a certain (low) level of aggregation, but not at
the micro-level) (2) simulate heat demand of individual buildings at high temporal resolution, taking
explicit consideration of socio-demographic characteristics of building users. The model developed in
the thesis represents a simple urban environment containing geo-referenced buildings enriched with
energy relevant parameters. The synthetic households which are allocated to the buildings do match,
in sum and distribution of socio-demographic parameters, household data available at a certain level
of aggregation. These household data are enriched with national German time use survey data in order
to specify activities and occupancy times of household members.

The model is validated internally, meaning that the results of the mechanism which generates the syn-
thetic stock and the synthetic population is checked against the aggregated data on which the building
and population allocation process started. The primary metric used for this validation is the Total
Absolute Error (TAE). It was not possible, at this point, to validate the mechanism externally, as
there were too few heat consumption data for this purpose. Consumption data, however, are urgently
needed in this field, and there is work in the scientific community to produce this type of data and



make it accessible to the research community.

Using the spatial microsimulation approach made it possible, in this thesis, to project the building
stock into the year 2030, without major effort on data collection or model structure. The same applies
for scaling the model to the national level, which was also done in this thesis. The applicability of
the model to other geographical areas and research questions (e. g., concerning water consumption or
building sanitation technology) seems promising.

Keywords: Spatial Microsimulation, Digital Cadastre, Building Simulation, Building Stock Models,
Urban Heat Demand, User Behavior, Activity Based Models

Zusammenfassung:

Anlass der Arbeit ist die Notwendigkeit der Koordination von städtebaulicher und Energieplanung.
Die Emissionen des Gebäudesektors können durch räumliche Koordination von Energienachfrage und
–angebot gesenkt werden, z.B. durch die räumliche Priorisierung energetischer Sanierung, die Schaffung
von Wärmeverbünden und die Einbindung von Abwärmequellen. Wegen der mit Wärmetransport ver-
bundenen Verluste ist die räumliche Konstellation von Quellen und Senken für die Wärmeversorgung
hoch relevant. Deshalb braucht es ein besseres Verständnis der räumlichen Verteilung der Wärmenach-
frage, d.h. nicht der Bedarfe (ein terminus technicus für die mit Hilfe bautechnischer Information
vorausberechnete Nachfrage), sondern der tatsächlichen Verbräuche, die von Bedarfen um oft mehr
als 50% differieren und im Wesentlichen von Nutzern bestimmt sind. Mit der zunehmenden Verzah-
nung von Strom- und Wärmesektor und der Schaffung kleinerer Wärmeverbünde wird nicht nur das
räumliche, sondern auch das zeitliche Muster der Wärmverbräuche zunehmend interessant. Hierzu gibt
es noch kaum systematische Analysen. In diese Lücke stößt die Arbeit vor.

Ziel der Arbeit ist die Entwicklung eines Modells, das den Wärmeverbrauch auf der Mikro-ebene
(d.h. für einzelne Gebäude) in seiner räumlich-zeitlichen Verteilung für große städtische Agglomeratio-
nen simulieren kann. Dies erfordert: (1) Modelle einzelner Gebäude, (2) die explizite Berücksichtigung
des menschlichen Verhaltens in der Bestimmung der Wärmenachfrage und (3) die Simulation einer
großen Anzahl unterschiedlicher Gebäude, die ein Stadtgebiet definieren.

Dafür kombiniert die Arbeit Methoden aus mehreren Disziplinen: (a) die räumliche Mikro-
simulation (in den Wirtschaftswissenschaften entstanden, heute auch von Geografie und Sozialwis-
senschaften vorangetrieben), (b) die Gebäudesimulation, die Energieflüsse im einzelnen Gebäude
nachzeichnet (traditionell in Bauphysik und technischer Thermodynamik verankert) und (c) die Ty-
pisierung des Gebäudebestands und die Allokation der Typen auf Einzelgebäude, die von
vielen Autoren (meist aus den Ingenieur- und Wirtschaftswissenschaften) benutzt wird, um Politik-
maßnahmen für den Gebäudesektor zu evaluieren.



Das wichtigste Ergebnis dieser Arbeit ist ein Modell, das (1) einen synthetischen geo-refenzierten
Gebäudebestand mit darin wohnenden Haushalten erzeugen kann („synthetisch“ heißt nicht etwa „frei
erfunden“, sondern Daten über Gebäude und Soziodemografie genügend, die auf relativ niedrigem
räumlichen Niveau, aber nicht immer auf Mikro-ebene vorliegen) und (2) die Wärmenachfrage der
einzelnen Gebäude mit einer hohen zeitlichen Auflösung unter Berücksichtigung von Haushaltscharak-
teristika simulieren kann. Das in der Arbeit entwickelte Modell stellt eine einfache städtische Umgebung
mit Daten zu einzelnen Gebäuden dar, angereichert mit energetisch relevanten Parametern. Die syn-
thetischen Haushalte, die auf die Gebäude alloziiert werden, entsprechen in Summe und Verteilung
vorhandenen soziodemografischen Daten auf höherer Aggregationsebene. Diese Daten werden mit der
bundesweiten deutschen Zeitbudgeterhebung angereichert, um Aktivitäten und vor allem Aufenthalts-
zeiten der Haushaltsmitglieder im Gebäude zu beschreiben.

Das Modell ist intern validiert, d.h. der Mechanismus, der den synthetischen Gebäudebestand und
die synthetische Population erzeugt, wird in seiner Wirkung mit den aggregierten Ausgangsdaten ver-
glichen. Das primäre Maß für diese Validierung ist der Total Absolute Error (TAE). – Eine externe
Validierung des Modells war aufgrund fehlender Verbrauchsdaten in der Breite noch nicht möglich. Die
Forschergemeinde arbeitet jedoch daran, solche Datenbanken zu erzeugen und zur Verfügung zu stellen.

Die Nutzung der Methode der Spatial Microsimulation ermöglichte die Projektion des Gebäudebe-
stands ins Jahr 2030 ohne großen modell- und datentechnischen Aufwand. Dasselbe gilt für die in
dieser Arbeit vorgenommene Skalierung des Modells auf die nationale Ebene. Die Übertragbarkeit des
Modells auf andere geografische Gebiete sowie seine Anwendung auf andere Forschungsfragen (z.B.
Wasserverbräuche oder Sanitärtechnik) scheint vielversprechend.

Stichworte: Räumliche Mikrosimulation, Digitale Kataster, Gebäudesimulation, Modellierung des Ge-
bäudebestands, Städtischer Wärmeverbrauch, Gebäudenutzerverhalten, activity-based Modell
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1 The Need for a Multidisciplinary Approach to
Simulate Urban Heat Consumption

The development of integrated, activity based urban models able to simulate complex systems through
emergent processes is the umbrella under which this thesis has been developed. The presented method
aims to expand some of the methods developed by Peters, Brassel und Spörri (2002).

The focus of this thesis is on the simulation of heat demand, the topic of energy in Germany is high
positioned on its national research agenda. The scope of this thesis is the interaction between the
development of urban agglomerations and the needed energy supply infrastructure supporting this de-
velopment. Germany has a long tradition of using district heating networks for the provision of heat,
providing a clear link between urban development and the planning of heat supply infrastructures.

During the performed research we developed many simulation libraries, two of them build the core of
this thesis. The first library is an implementation of the German DIN norm regulating the computation
of heat demand (Muñoz H., 2015; Muñoz H., Dochev, Seller & Peters, 2016), the second library is an
implementation of the GREGWT algorithm used for the generation of synthetic populations (Muñoz
H., Vidyattama & Tanton, 2015a; Muñoz H., Tanton & Vidattama, 2015), commonly used for the
development of spatial microsimulation models.

On this thesis we show how we combined these two methods in order to generate a geo-referenced syn-
thetic building stock. This synthetic building stock describes the physical properties of the buildings
and the residents living on them. One of the innovations of the model is its ability to benchmark the
synthetic building stock to multiple aggregation levels.

With this model we have been able to compute the heat demand at a micro level for the entire country.
This method has proved to be robust and fast. We have also experimented with thermal dynamic
models for the estimation of heat demand with a high temporal resolution. The integration of user
behavior into heat demand models required a more elaborated heat demand model, for this we made
use of the well established EnergyPlus model, feeding it with occupational patterns of households.
This integration to a thermal-dynamic model allow us to simulate heat demand of Hamburg at a 15
minute resolution. With help of the GREGWT library we also projected the population (aging) and the
building stock (retrofits) into the future for the analysis of urban heat densities in the city of Hamburg.

For the future development of models we want to integrate external data sources for the simulation
of agents interaction. In order to create an activity based model we have used the national time-use
survey, we believe that by using other type of big-data-sets like cellphone usage or tweeter data we can



develop more realistic activity based urban models for the simulation of many urban phenomena.

The biggest challenge of this thesis has been the incorporation of different methods coming from differ-
ent disciplines. This incorporation of different method was essential for the development of the model
presented in this thesis. The main aim of this thesis is to develop a heat consumption model for large
urban agglomerations at a low aggregation level. In the following section we will explain in detail what
this means and what kind of methods where used to achieve this goal. After this explanation we will
describe the main structure of the thesis and how this structure fits with the model architecture and
its underlying methods.

Occupant behavior: The small distinction between consumption and demand is normally used
to distinguish between estimated demand and monitored consumption (see Sub-Section 2.1.2 for a more
detailed differentiation between these two definitions). This distinction is very important when talking
about the estimation of heat demand because current building simulation models can’t simulate the
interaction of human behavior (see Sub-section2.1.3 for an overview of heat demand models integrating
human behavior in their simulation routines). In the last decade the simulation of human interaction
with the building has gained attention in the building simulation community. This is because new
building regulations around the globe are making new constructed buildings more energy efficient.
The more efficient a building becomes the higher its sensitivity towards occupant influence becomes,
making it essential to include user behavior into energy simulation models.

The integration of user influence within the developed model emerge during the initial development
of the model. With a detail description of the synthetic population and the link to the building stock
the ability to simulate the influence of users on heat demand at a low aggregation level was evident.
In order to capture this influence we enriched the used survey for the creation of synthetic families
with a time-used survey. By enriching the German micro census with a time use survey we were able
to describe a detail schedule of every individual in my model. This information is used to generate
building specific schedules which are used as input in a thermal simulation model.

Urban model: The developed model in the framework of this thesis aims to simulate heat consump-
tion of urban areas. This means that the model has to be able to simulate many buildings with:
(a) as little input as possible, because data regarding individual buildings of urban areas is hard to
retrieve; (b) integrate user interaction with the buildings of the building stock; and (c) maintain the
spatial reference throughout the computation process of the model.

A major problem with this data intensive model structure was the proper data abstraction. The model
had to deal not only with large amounts of data but with complex data structures. The interpretation
of building geometries, needed for the computation of heat demand within a thermal simulation model,
needed to be simplified in order to achieve; (a) manageable computational times; and (b) transferabil-
ity within urban models and within urban agglomerations.
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Used methods: A list of the used methods to construct the developed model is:

1. Classification of the building stock through the use of building typologies (see Section 2.3 for
an overview of the different typologies and Section 4.2 for a detail description of the automatic
classification of the building stock);

2. Generate individual occupation schedules for each family using time use data (see Section 5.4
for a description of this process);

3. Generation of a synthetic population for each area to be allocated into the building stock (see
Section 2.2 for an overview of methods regarding the reweighting of surveys and the generation
of synthetic populations and Section 6.11 for the implemented method into de model); and

4. Simulation of heat consumption through the use of a heat demand model (see Section 7.1 for
the implementation of a heat balance model and Section 5.6 for the implementation of a thermal
simulation model).

Used and generated data: Below is a synthesis of all the data used as input to the developed
model and the output data generated by the model.

The following data is used as input to the model:

1. Small area census for the city of Hamburg for the year 2010 (see Section 3 for a description of
this dataset and Section 3.3 for the description of its integration into the model);

2. The German micro-census for the year 2010 (see Section 3 for a description of the micro census
and Section 7.4 for the description of the method used to reweight and synthesize this survey);

3. The 2011 German census is used as benchmarks at a national level. We use available statistics at
a NUTS-3 level “Kreise/Kreisfreie Städte”. We use this data in order to present the transferability
of the developed method. For the reweighting of the micro census we use the same method as
with the small area statistics for Hamburg (see Section 3). The results from the reweighting of
the micro census to the German NUTS-3 areas is presented and discussed in Section 6.

4. The German time use survey for year 2002 (see Section 5.4 for the use of this dataset for the
generation of family specific schedules);

5. The digital cadastre of the city of Hamburg for the year 2010, see Section 3 for a description
of this dataset; and

6. The IWU building typology tables (see Section 2.3 for a description of this and other typologies
and Section 4.1 for a description of the classification of the building stock)

The model output delivers following data:

1. A Simplified digital cadastre optimized for urban simulations. This digital cadastre represents
the building stock with a simplified geometry (LOD -1).

2. A synthetic population allocated to the individual buildings on the digital cadastre.
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3. A classification of the building stock on a user defined building typology.

4. An enriched building stock with detail information on the materials used for all construction
elements.

5. A high temporal resolution of simulated heat consumption at a building level.

Structure of this thesis:

Chapter 2 Presents a literature review of:

1. Energy demand models (see Section 2.1)

2. Occupant behavior on these models (see Section 2.1.2)

3. Construction of synthetic population (see Section 2.2)

4. Classification of the building stock (see Section 2.3)

Chapter 3 Describes of the model structure, its components and the data schema underneath the
model.

Chapter 4 Describes the classification of the building stock through the use of building typologies.

Chapter 5 Describes the use of time use data to generate occupant schedules of each individual of
the micro census.

Chapter 6 Presents the method used to generate a synthetic population for each small area and
the allocation of the individual families into the building stock.

Chapter 7 Describes two heat demand models and their application on the simulation model. The
heat demand models are:

1. A simple heat balance method; and

2. The use of a thermal simulation model.

Chapter 8 Present the Transferability of the model to national level, the consequences and chal-
lenges of this transfer, Description of the main simulation results, Conclusions and policy
implications and Further development strategies and application possibilities.

The use of the author’s we: Throughout the thesis I make an extensive use of the author’s we
out of respect towards my collogues that have contributed to this PhD (see footnotes on the different
chapters).
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2 People, Space and Energy: A Literature Review

2.1 Energy Demand Models

In the following section we present a literature review of: (a) energy models (see Sub-Section 2.1.1);
(b) Socio-demographic parameters influencing heat demand (see Sub-Section 2.1.2); and (c) Integra-
tion of user behavior into building simulation models (see Sub-Section 2.1.3). The literature review
concludes with a selection of the parameters influencing heat demand in the residential sector (see
Sub-Section 2.1.4).

The aim of this section is to present different approaches used to estimate urban heat demand. Most
of the approaches used for this estimation do not have any spatial reference and often simulate heat
demand at an aggregated level. The biggest problem of energy simulation model at a low level of
aggregation is the lack of data to: (a) develop the models; and (b) validate these models. Required
data for a validation of these models is very hard to get. This is because the necessary resolution and
amount of data required for a validation is vast. In order to identify behavioral patterns of energy
consumption on datasets, these datasets would have to contain a high temporal resolution. Another
challenge of energy estimation models is to control for all other variables, requiring such a large data
set of both records and variables. The number of variables affecting the consumption of energy demand
are vast. This literature review aims to get the reader an insight about the type of models developed
to estimate energy demand and the type of variables used in the different type of models.

This literature review is by no means exhaustive as the available methods for the estimation of energy
demand covers a vast set of disciplines and countries. The aim of this literature review is to get a
sense of the available methods, different approaches and findings regarding the development of energy
demand models around the world.

2.1.1 Overview of Recent and Current Energy Demand Modeling

Section 2.1.1 makes a review of current energy demand models specifically used for the estimation
of energy demand in urban environments. For a description of “energy demand models” used for the
estimation of individual buildings see Section 2.1.3, which explores the integration of user behavior
into building simulation models. This review focuses on models working at a disaggregated level, but
also considers its counterpart: model developed at a high aggregation level. The aim of this review is
to gain an insight into current methods and practices for the development of energy models among the
scientific community. The review also makes a small retrospective to models developed two decades



ago, in order to acquire an inside on the evolution of this type of models.

Many of the papers found on through the literature use available data at a household level (Micklewright,
1989) for the analysis of energy demand patterns.

The development of energy demand models has a long tradition in economic studies, many of the papers
produced from this community aim to estimate energy expenditure rather that energy consumption
of energy demand (Micklewright, 1989). This fact emerges, not only because of the research scope
of the community but because of the available data. The collection of expenditure is easier than the
monitoring of energy consumption, because of the needed technical infrastructure for the monitoring
of energy flows. In recent years we have seen an increase of monitoring efforts of energy demand, we
hope to see more energy consumption data in the future.

Schenk, Moll und Schoot Uiterkamp (2007) discuss the need for a meso-level approach for a systematic
policy analysis of the energy sector. Swan und Ugursal (2009) distinguish between statistical and
engineering models, we believe that a trend towards a combination of both methods is emerging. This
thesis uses many statistical methods, mainly for the generation of a synthetic population and building
stock and engineering models for the estimation of heat demand. The scientific community is aware of
the need to develop integrated urban models (Kavgic et al., 2010). Keirstead, Jennings und Sivakumar
(2012) propose the development of “activity based models” for the integration of different modeling
approaches.

Most recent approaches introduce a spatial constraint to the models (Mavrogianni, Davies, Kolokotroni
& Hamilton, 2009; Caputo, Costa & Ferrari, 2013). This added dimension to the models allows, not
only a result allocated in space, but allow the authors to recover data through the use of (1) automatic
recovery methods (Mavrogianni et al., 2009); (2) available geographical referenced databases (this the-
sis); or (3) on-site collected data (Caputo et al., 2013).

The topic of models estimating heat demand with a spatial reference is covered on Section 2.3 of this
chapter as well as the use of archetypes for the classification of the building stock. Caputo et al. (2013)
presents a modeling approach using building typologies for the classification of the building stock.

From the literature review we see a clear trend of energy demand models towards: (a) models working
at a low aggregation level; (b) a consideration of socio-demographic data and (c) the utilization of GIS
systems or geo-referenced data for the construction of urban models. All these trends are needed for
the planning of distributed energy systems (Manfren, Caputo & Costa, 2011).

2.1.2 Socio-demographic Parameters Influencing Heat Demand

Section 2.1.2 reviews the influential literature about behavioral and socio-demographic parameters that
may change the energy demand of households. This section concludes with a table listing the main
parameters found in the literature. The aims of this section are: (1) Identify methods used in this kind
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of analysis; (2) List the type and source of data used for the analysis; (3) List parameters identified in
the literature as “relevant”; and In his work Scott (1980) identifies the problem of combining all these
parameters in one model. The amount of data needed and the quality of the data required, makes such
an approach difficult.

Van Raaij und Verhallen (1983a) intend in their work to define influencing parameters in the household
energy demand and to establish relations between them. The focus of the work relays on behavioral
parameters. Another important factor that the authors describe is the constant or even rising energy
demand caused by a retrofit due to climate control mechanisms; this effect is further analyzed as the
“Rebound-Effect” The authors also describe other parameters besides behavior. In their work, building
specific parameters considered are: (a) building type; and (b) location (neighbors).

As part of the socio-demographic parameters, the authors try to incorporate the influence of income
correlating it to household size and floor space. The influence of energy price is considered by Van
Raaij und Verhallen (1983a) to play an important role. A correlation between the energy consumption
and the energy price cannot be demonstrated, one of the problems in correlating these parameters is
the time differences between them, as the payments are done on a yearly basis.

Douthitt (1986) based their work on a sample of 174 Canadian households, this dataset can be classi-
fied by previous retrofits and energy conservation activities to save energy, Douthitt (1986) intends to
quantify the influence of parameters on the energy consumption of these households. In order to show
this influence a model for the consumption of natural gas for space heating and water heating is created.
In order to estimate the influence of energy price measured consumption data of two years are analyzed.

The main findings of the work are: (a) households, which were retrofitted react with high price elastic-
ity to price variation; and (b) influencing factors, such as thermal efficiencies, floor space and building
shape are essential variables for an energy consumption model.

J. G. Anderson und Kushman (1987) provide a model approach for modeling households heating energy
demand. Their goal is to create an instrument to analyze the responses to energy-saving incentives.
The starting point of the model is the room temperature, which is seen as a direct relation to the user
behavior. The data sets used in this work are: phone interviews and data from previous studies. For
the evaluation of the model a sample of 629 households is used. This sample has technical as well as
socio-demographic parameters.

Wirl (1987) developed his work in a mixed economic-technical model for the heating demand of house-
holds. His model is based on the assumption that an individual consumer claims a service (thermal
comfort). In order to satisfy this claim the individual chooses from durable (buildings) and non-durable
(fuels) goods, which are entirely substitutable. The model calculates an optimal solution for that con-
sumer. Wirl (1987) notice in his work the problem of separating durable goods from a financial point
of view.
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Douthitt (1989) analyzed the energy consumption of 370 Canadian households and developed an econo-
metric model in which economic, sociological and structural parameters were taken into account.
Douthitt (1989) does not find significant dependencies between personal variables and internal tem-
peratures. The author underlines the importance of the found correlation between energy consumption
and energy prices.

Van Raaij und Verhallen (1983b) examined the behavioral influences on energy consumption based
on 145 Dutch households. The households are cluster on five households’ types based on following
characteristic: “cold”, “warm”, “wasteful”, “savers” and “average”. The “hot” and “wasteful” households
type have high room temperature, the “cold” and “wasteful” are characterized by a high level of interior
ventilation.

Van Raaij und Verhallen (1983b) prove that the “savers” group use significantly less energy, and the
group of “wasteful” significantly more energy than the “average” household consumes. As a result, the
authors attempt to combine socio-demographic characteristics and show the differences in the energy-
related household personal attitude of the inhabitants.

Cuijpers (1995) uses micro census data from about 2000 Belgian households as primary data set.
Cuijpers (1995) develops a model that considers households, both, as energy-consumer and supplier.
Cuijpers (1995) defines the parameter “Room-Temperature-Hour” in order to measure the thermal com-
fort in the household. This parameter presents a clear advantage as this parameter includes not only
internal temperature but volume of the room and time.

Baker, Blundell und Micklewright (1989) discuss how individual households have adjusted their con-
sumption patterns by implementing a model that joins determination of appliance demand and use
with micro data on households. The authors take into consideration the difficulties arising from the
often severe data requirements and the assumptions about price expectations and the housing market.
They also contemplate the possibility of households whose durable choice is constrained by their tenure
type, instead of the aforementioned which are restricted to owner occupiers. Given the lack of micro
level research into energy demand in the United Kingdom, they concentrate on modeling expenditure
on different fuels conditional on durable ownership. This allows them to consider the conditional de-
mands in more detail than typically occurs in the joint models of appliance choice and use. They
particularly allow for the marginal rate of substitution across disaggregated energy demands to differ
across households with different durable stocks. As a result, although energy demands are modeled
conditional on durable stocks, they are not assumed to be separable from these stocks. Data is drawn
from the annual Family Expenditure Survey (FES) of Great Britain.

Yamasaki und Tominaga (1997) argue in their work that the development of an aged society is expected
to increase residential energy demand in Japan. This study is designed to analyze various factors which
determine the energy demand of elderly households and aims to predict future trends in residential
energy demand.

Boonekamp (2007) propose the use of a bottom-up simulation model for the analysis of user response
to changing energy prices. In order to investigate this effect the authors, analyze trends in the period
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between 1990 and 2000. The authors define a set of “energy functions” for the analysis of energy
demand. Each of this “energy functions” has sets of driving factors that control the function and so
the energy consumption. In a following step the consumption of each system or appliance is defined by
three factors: (1) item the ownership rate; (2) item the intensity of use; and (3) item the energy effi-
ciency of the system or appliance From these three factors ownership rate and intensity of use (number
1 and number 2), are driven by Socio-economic-demographic parameters, see (Boonekamp, 2007, p.
135; Fig. 1). The author doesn’t find any relationship between energy demand and income.

Rehdanz (2007) makes use of the German socio-economic panel for the identification of determinants
influencing the heating expenditures in Germany. Rehdanz (2007) concludes with the confirmation of
the postulated hypothesis, showing a significant difference in expenditures for heating and hot water
supply between rented and owner occupied dwellings. The author points out that the results suggest
that this difference is likely to become smaller over time.

Guerra Santin, Itard und Visscher (2009) start arguing the importance of the building occupant while
analyzing the energy demand of building. The authors argue that through tighter building regulation
the quality of thermal properties of buildings is improving and therefore overall energy use associated
with building characteristics is decreasing, making the role of the occupant more important. The data
used in this study comes from the Kwalitatieve Woning Registratie (KWR) of the Ministry of Housing
of the Netherlands (VROM). The dataset used includes 15,000 houses across the Netherlands. This
dataset includes housing quality. Guerra Santin et al. (2009) conclude in their paper that a temper-
ature setting in dwelling units is an important predictor of energy use. The authors also present a
small correlation between temperature setting and occupant characteristics. The authors also conclude
that the continuous presence of people at home increases energy use in comparison to cases where the
users are almost never at home or their presence is very variable. The study showed that occupant
characteristics and behavior significantly affect energy use (4.2%), but building characteristics still
determine a large part of the energy use in a dwelling (42%).

Zhun Yu, Benjamin C.M. Fung, Fariborz Haghighat, Hiroshi Yoshino und Edward Morofsky (2011)
present in this paper a new method for examining the influence of occupant behavior on building en-
ergy consumption. The analysis method used in this method is a cluster analysis of consumption data
from a set of residential buildings. The data used in this analysis comes from a survey and monitoring
program from the architecture institute of Japan. The survey was carried on between 2002 and 2004.
This data set consist of monitors values from 80 residential buildings located in six different districts in
Japan. The monitored data consist of indoor temperature and consumption of electricity, gas, and/or
kerosene. Zhun Yu et al. (2011) identify indoor temperature as one of the most important factors
influencing energy use in the buildings. A significant difference between clusters can be seen, leading
to the conclusion that the impact of the user can be significant.

2.1.3 Integration of Occupant Behavior Into Building Simulation Models

Section 2.1.3 makes a brief overview of current methods used for the integration of socio-demographic
characteristics (and therefor the resulting behavior) into heat demand simulation models. The focus in
this section is on current methods rather than on the development of such methods through history. It
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is therefore that the literature review makes an exclusive selection of papers published in the last decade.

Statistical analysis This type of analysis have been performed since the eighties, see (Scott, 1980;
Bohi, op. 1981; Van Raaij & Verhallen, 1983b).

“. . . it is difficult to completely identify the influences of occupant behavior and activities
through simulation due to users’ behavior diversity and complexity. . . ”
(Zhun Yu et al., 2011, S. 1409).

The trend on this type of analysis is that it is too complicated to find concrete relationships between
all the relevant parameters. The big challenge of empirical studies is to control and monitor for all
parameters influencing heat demand. Most of the performed empirical analyses on this issue lack the
precision to pinpoint specific effects of individual behaviors’.

Special attention has been given in the literature to the occupation patterns of users as a proxy to
estimate the influence of user behavior, Guerra Santin et al. (2009) observed a significant influence of
this parameter in heat consumption. Page, Robinson, Morel und Scartezzini (2008) deliver interesting
methods for the integration of this parameter into simulation models.

The monitoring of specific user-driven actions in the residential sector (e.g.: opening of win-
dows) and the link to (1) demographic data and (2) the integration of these actions into simulation
models is extremely complicated because of (a) lack of empirical data in order to establish a robust
relationship between demographic characteristics and specific user behaviors’; and (b) the complex-
ity of the required simulation architecture for the computation of these effects. The measurement of
these actions have been reported in the scientific literature (Kah et al., 2010; Nouidui, Wetter & Zuo,
2012). Attempts to integrate the user behavior, exist (Hensen & Lamberts, 2011; Nouidui et al., 2012).

2.1.4 Distilling Parameters Influencing Heat Demand From the Literature

In Tables 2.1 through 2.5 an overview of the main parameters encountered in the literature is presented.
The tables are separated based on five main categories:

1. Economic parameters;

2. User behavior characteristics;

3. Socio-demographic characteristics;

4. Building characteristics; and

5. Exogenous parameters.
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This table can be seen as the synthesis from the performed literature review. The aim of this literature
review is to use the identified parameters for further analysis. A clear signal from the literature review
is that the hours spend at home may by a key parameter influencing energy demand. We consider
this parameter for the further creation of synthetic data and of the creation of families. In Germany
there is many information about the time budget of families and individuals, we want to generate the
parameter “hours spend at home” based on available statistics.

Table 2.1: Parameters used in different studies, arranged by type of parameter: Economic parameters

Economic parameters:

Price of energy Scott (1980); Douthitt (1986)
Heating included in rent Guerra Santin et al. (2009)
Price of services Scott (1980)
Household income Scott (1980); Van Raaij und Verhallen (1983b);

Douthitt (1986); Guerra Santin et al. (2009);
Lutzenheiser (2002)

Number of household members
being officially registered as
unemployed.

Rehdanz (2007)

Capital Scott (1980)
Purchase behavior Van Raaij und Verhallen (1983b)
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Table 2.2: Parameters used in different studies, arranged by type of parameter: User behavior

User behavior:

J. G. Anderson und Kushman (1987)
Maintenance behavior Van Raaij und Verhallen (1983b)
Bedroom temperature Van Raaij und Verhallen (1983b)
Room temperature Douthitt (1986); J. G. Anderson und Kushman

(1987)
Temperature during the night,
evening and day

Guerra Santin et al. (2009)

Thermostat adjustment during
absence and presence

Van Raaij und Verhallen (1983b)

Adjustment and use of window
shutter

Van Raaij und Verhallen (1983b)

Ventilation behavior Van Raaij und Verhallen (1983b)
Use of specific rooms Van Raaij und Verhallen (1983b)
Use of entrance door Van Raaij und Verhallen (1983b)
Energy conservation attitude J. G. Anderson und Kushman (1987)
Room-Temperature-Hour Cuijpers (1995)
Ownership and usage of elec-
tric appliances

Sanquist, Orr, Shui und Bittner (2011)
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Table 2.3: Parameters used in different studies, arranged by type of parameter: Socio-demographic
characteristics

Socio-demographic characteristics:

Scott (1980)
Race / Ethnicity. Lutzenheiser (2002)
Level of education. Van Raaij und Verhallen (1983b); J. G. Anderson

und Kushman (1987); Lutzenheiser (2002)
Number of persons per
dwelling unit.

Van Raaij und Verhallen (1983b); Douthitt (1986);
Lutzenheiser (2002); Rehdanz (2007); Boonekamp
(2007); Guerra Santin et al. (2009); Sanquist et al.
(2011)

Age structure in the house-
hold.

Van Raaij und Verhallen (1983b); J. G. Ander-
son und Kushman (1987); Lutzenheiser (2002);
Boonekamp (2007)

Number of adults. (Douthitt, 1986),
Number of persons under 18
years.

Douthitt (1986),

Average age of the adult house-
hold members.

Rehdanz (2007),

Age of respondent. Guerra Santin et al. (2009); Lutzenheiser (2002)
Internal gains. Douthitt (1986)
Always people during week-
ends.

Guerra Santin et al. (2009)

Always people during day. Guerra Santin et al. (2009)
Occupation rate Boonekamp (2007)
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Table 2.4: Parameters used in different studies, arranged by type of parameter: Building character-
istics

Building characteristics:

Scott (1980)
Presence of a pilot light. Van Raaij und Verhallen (1983b)
Building type. Van Raaij und Verhallen (1983b); Lutzenheiser

(2002); Rehdanz (2007); Boonekamp (2007);
Guerra Santin et al. (2009)

Location. Van Raaij und Verhallen (1983b)
Floor space. Van Raaij und Verhallen (1983b); Lutzenheiser

(2002); Rehdanz (2007); Guerra Santin et al.
(2009); Sanquist et al. (2011)

Number of rooms & Number of
heated bedrooms.

Guerra Santin et al. (2009)

Thermal quality of buildings. Douthitt (1986); Cuijpers (1995); Guerra Santin et
al. (2009)

Building envelope surfaces. Douthitt (1986)
Efficiency of the heating sys-
tem.

Douthitt (1986),

Type of heating device. Cuijpers (1995); Rehdanz (2007); Boonekamp
(2007)

If a new heating system. Rehdanz (2007)
Building age. Cuijpers (1995); Rehdanz (2007); Guerra Santin et

al. (2009); Sanquist et al. (2011)
State of renovation. Rehdanz (2007)
New windows were installed. Rehdanz (2007)
If a modernization took place
in the previous year.

Rehdanz (2007)

A bath or shower. Rehdanz (2007)
It is owner-occupied or a sub-
sidized apartment.

Lutzenheiser (2002); Rehdanz (2007)

Table 2.5: Parameters used in different studies, arranged by type of parameter: Exogenous parameters

Exogenous Parameters:

Extreme temperatures. Scott (1980)
Cooling degree days. Sanquist et al. (2011)
Heating degree days. Sanquist et al. (2011)
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2.2 Generation of Spatially Allocated Synthetic Population

In the following section of the thesis we present a short overview of common methods to generate a
spatially allocated synthetic population and the mathematical expression of the models. This procedure
is normally the first step in a microsimulation model as well as some agent based models. This section
is structured into four sub-sections:

1. a discussion about some methods used to reweight a survey sample to match aggregated values
of statistics with a geographic reference (see Section 2.2.1);

2. discussing the explicit generation of a synthetic population allocated in space (see Section 2.2.2);

3. The mathematical expression of some spatial microsimulation models (see Section 2.2.4 onwards);
and

4. A list of available measures for the internal validation of spatial microsimulation models (see
Section 2.2.5).

We have divided the discussion into these two categories as the method used to either achieves a
reweighting of a survey or the generation of a synthetic population differs on its core. In Section 2.2.2
we also briefly introduce the sequential process of reweighting a sample to further create a synthetic
population.

A classification of spatial microsimulation model can be found in Tanton (2014). In his paper Tanton
classifies the different methods using the following model characteristics:

1. Static or Dynamic; and

2. Reweighting or Synthetic reconstruction

The method highlighted in red in Figure 2.1 (GREGWT) is the method implemented in this thesis for
the generation of a synthetic population. As described in Section 2.2.2 the generation of a synthetic
population for the sequential allocation of individuals to the building stock is a two-step process: (1)
the initial population survey is reweighted— using the GREGWT algorithm— and a synthetic popu-
lation is created using the new weights as selection probabilities for the new synthetic population.

This section of the thesis aims to briefly present the most common methods used by the microsimu-
lation community to either create a synthetic population or reweight an initial survey to small area
benchmarks. The most used method by community is the IPF algorithm or the Simulating Annealing
algorithm. The first algorithm is a Deterministic algorithm while the former is a Probabilistic one.
In this thesis we will describe three algorithms used by the community. In Section 2.2.1 we briefly de-
scribe the use of two deterministic algorithms: the IPF and the GREGWT algorithms, in Section 2.2.4
we describe the use of the combinatorial optimization method: simulating annealing. This brief de-
scription of the algorithms aims to make a small literature review of methods and applications of the
algorithms. A detail description of the used algorithms is presented though the next Sections 2.2.4.
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Figure 2.1: Different methods for small area estimation. After (Tanton, 2014)

The deterministic reweighting methods do not create a synthetic population by default. The result
from these methods is a vector of new weights corresponding to each individual on the initial survey.
These weights are not integer numbers. In order to generate a truly synthetic population an extra
step is needed. This is not the case of the combinatorial optimization methods. In these algorithms
individual records from the initial survey are taken in order to generate a new survey. In this case
the resulting weights are all integer numbers, making it possible to interpret these file as a synthetic
population.

The process and importance of a synthetic population in the scientific literature is highlighted on
Section 2.2.2. A detail description of the algorithms used for the generation of synthetic population
as well as the developed algorithm for generation of a synthetic population in combination with the
GREGWT algorithm are described on Section 7.4.

An overview of methods used for the generation of synthetic populations and the underlying algorithms
are presented by Harland, Heppenstall, Smith und Birkin (2012). The authors evaluate the different
method by comparing the Total Absolute Error (TAE) as an internal validation of the algorithms.
The authors compare a deterministic reweighting algorithm and two stochastic algorithms for the
generation of synthetic populations. The results from their analysis shows that one of the stochastic
algorithm (simulating annealing) outperforms the other two methods.

2.2.1 Deterministic Reweighting Methods

Deterministic reweighting methods aim to reweight a survey to match known aggregate values of small
geographical areas. The size and available data of these geographical areas vary between countries.
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For the European Union a standard incorporating the different national definitions exist. This is the
Nomenclature of Territorial Units for Statistics (NUTS1) standard, This nomenclature describes four
hierarchies: (0) national territories; (1) NUTS–1; (2) NUTS–2; and NUTS–3. A reweighting of a
national survey could be implemented at any of the NUTS levels. Depending on the research question
a suitable geographical area should be selected. In the case of Germany there are some exceptions to
this hierarchy. The city of Hamburg is one of these examples. These geographical areas have different
names on each country and the authors referee then according to the used case location. These areas
are known as: (a) Summary Files in the U.S.; (b) Profile Tables or Basic Summary Tabulations (BSTs)
in Canada; (c) and Small Area Statistics in the U.K. (Pritchard & Miller, 2012).

The city of Hamburg is both a city and a federal state. The German statistical office “Statistische
Ämter des Bundes und der Länder” classifies Hamburg as one “Gemeinde”, which corresponds to the
European NUTS–3 aggregation level. Clearly we can use these geographical areas for the simulation
of urban processes. The regional statistical office “Statistik-Nord” provides aggregated statistics for
the city at different levels of aggregation (not regulated by the European Union NUTS nomenclature),
for a detail description of data structure and geographical levels available for the city of Hamburg see
Chapter 3.

In this thesis we will discuss two important deterministic methods used by the microsimulation com-
munity for the reweighing of survey to small geographical areas: (1) the Iterative Proportional Fitting
(IPF) approach, and (2) the Generalized Regression (GREGWT) approach.

2.2.2 Generating Synthetic Populations

Some of the most common methods to reweight a population survey to geographical areas deliver
non-integer weights. Depending on the aim of the simulation this can be a problem, this is the case
for most agent based simulation, these simulations need to describe every single micro unit within the
simulation. There are many methods developed for the integerization of reweighting results. Most
of the developed methods to generate a synthetic population are a form on integerization of the es-
timated new weights (Beckman, Baggerly & McKay, 1996; Lovelace & Ballas, 2013). Pritchard und
Miller (2012) propose a “Conditional Monte Carlo Synthesis Procedure” to create a synthetic pop-
ulation benchmarked to different aggregation units. Ma und Srinivasan (2015) developed another
method to create a synthetic population: “fitness-based synthesis” (FBS). The method presented by
Ma und Srinivasan proposed the computation of two fitness values expressing the adding and sub-
tracting probability of individuals from a random selected population from the initial sample survey,
this method is implemented in this thesis for the generation of synthetic populations (see Section 2.2.4).

2.2.3 Population Projections

An important use of microsimulation models is the construction and simulation of scenarios for the
analysis of specific events. For the particular case of estimated heat demand of urban areas the projec-

1http://ec.europa.eu/eurostat/web/nuts/overview
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tion of: (a) demographics and (b) the building stock, plays an important role. Because we integrate the
influence of occupant behavior into our simulation model the change in demographic characteristics
would have a direct effect on the resulting heat demand. This section will describe current meth-
ods used for the projection of demographic characteristics used in spatial microsimulation models.
Section 6.7 describes the projection of aggregated statistics for the reweighting of the sample survey
simulating an aging population and the retrofit of the building stock.

2.2.4 Algorithms of Spatial Microsimulation Models

In the literature there is some work describing and comparing these methods: Ballas, Clarke und Tur-
ton (1999) present an overview of methods and discuss in detail the use of the IPF method. Ballas,
Rossiter, Thomas, Clarke und Dorling (2005) present a detailed description of available methods of
static and dynamic spatial microsimulation models. Rahman, Harding, Tanton und Shuangzhe (2010)
discuss different methods used in the microsimulation community, provides a clear example for the
implementation of the methods and discusses the implementation of new methods for the community.
Tanton und Edwards (2013) provide an historical overview of the methods used in the community.
Williamson (2013) compares two methods on his contribution: (a) a synthetic reconstruction and (b)
a reweighting methodology. O’Donoghue, Morrissey und Lennon (2014) offers an overview of meth-
ods and common applications of spatial microsimualation in the scientific community. Schmid und
Münnich (2014) provide an overview of small area estimation methods not so common in the spatial
microsimulation community. Tanton (2014) provides an up to date overview of methods used in the
spatial microsimulation community and Tanton, Williamson und Harding (2014) provide a comparison
of a GREGWT method and a combinatorial optimization method.

In this chapter we present: (1) the mathematical expression of the different methods available for the
generation of synthetic populations, (2) a simple example for the comparison of some of the presented
methods; and (3) a collection of measures for the performance of the internal validation of microsimu-
lation models.

Simulated Annealing Section 2.2.4 describes the simulated Annealing method, this is the most com-
mon type of combinatorial optimization method in the spatial microsimulation community.

Iterative Proportional Fitting Section 2.2.4 describes the IPF method, commonly used my many spa-
tial microsimulation models and other urban models for the reweighting of surveys.

Generalized Regression and Weighting of Sample Survey Results Section 7.4 gives an overview of
the GREGWT method, Section 2.2.4 describes the GREGWT implementation of the Australian
Bureau of Statistics (ABS).

Synthetic population presents the developed method for the creation of synthetic populations, because
the IPF and GREGWT method compute non integer weights we need to post process this data
for the representation of individual persons of families on the small areas. The used algorithm to
achieve these are discussed on Section 2.2.2 and the implementation of the “Fitness based Model”
is discussed on Section 2.2.4.
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Internal validation of the model is presented on Section 2.2.5. On this section we describe and discuss
some of the implemented measures for the internal validation of spatial microsimulation models
available of the scientific literature.

Sample Population

The first step of most spatial microsimulation methods is the definition of a sample population. This
sample population is normally a survey containing information about the individuals. These records
can be categorical or numerical. Most of the microsimulation methods will assume parameters of cat-
egorical data.

The initial population sample is described by the number of records m. One important attribute of
these records is the attached weight to every record. These weights describe how representative this
record is to the population. The presented spatial microsimulation methods reweight these samples
(modify the initial weight) to match some aggregated statistics available at a small area level.

After the reweighting of the population sample we get a new set of weights w for each area. The sum
of the weights is equal to the population size of the small area. Each record on the sample will have
different weights for each area, the weight describes how representative an individual is for a specific
small area. In the case of remote areas the reweighting algorithm may fail to achieve convergence,
these is because none of the records (or any combination of them) available in the original population
sample is representative to these small area.

For the reweighting of the sample we define constraints. The constraints used in the simulation are
given by Ti. The individual modeled elements are estimated as:

Ti =
∑
i

wi,jxj (2.1)

Where: Ti is the observed individual characteristics for small area i.

The aim of the model is to minimize the distance between observed marginal totals and estimated
marginal totals. We minimize these by manipulating the initial weight of the sample survey. Depend-
ing on the implemented method the initial sample weights (also described as design weights) have
a lower impact on the simulated output weights. The IPF method has a lower sensitivity to initial
weights, in this case we can simple set all initial weights to 1. This is not the case for the GREGWT
method. The GREGWT method aims to minimize the distance between initial and final weights (see
description below). The used input weights, more specifically the weight distribution of the input
survey sample has a strong influence on the simulation results.
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A common measure of performance is the Total Absolute Error (TAE). This is not the only measure
of model performance, see Section 2.2.5 for an overview of performance measures of spatial microsim-
ulation models. The TAE is measures the total absolute difference between the observed individual
characteristics Ti and the model based estimated individual characteristics T̂i. The TAE is expressed
as:

TAE =
∑
i

‖T̂i − Ti‖ (2.2)

Where: T̂i is the model based estimate individual characteristics for small area i.

Simulated Annealing

In this section we describe the algorithm used for a combinatorial optimization model, more specifically
we describe a simulating annealing algorithm. The idea behind this method is to start with a random
population and change individuals at random, if the change reduces the distance between observed
and estimated marginal totals TAE, this change is accepted, otherwise rejected. A simpler version
of the simulated annealing is the hill climbing algorithm. The advantage of the simulating annealing
algorithm is that this algorithm will take steps back in order to avoid suboptimal results, in order to
achieve this, the algorithm defines “temperature steps”.

Temperature steps:

• stating temperature t0

• temperature steps of t(t0 >> t)

Initial Random State: All counters for the initial state are set to zero. A zero value of the survey
sample weights w means that the corresponding individual is not selected as part of the synthetic
population.

wi,j = dj (2.3)
wi,j = 0 ∀j = 1 . . .m

(2.4)

We select a random sample of Mi individuals. Set the weights of the selected individuals to 1. The
value of M corresponds to the number of units (e.g.: persons) on a particular geographical areas i.
Normally M is much smaller that the survey sample size. Nonetheless, each individual on the sample
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can be represented more than one time. Each time an individual is selected from the sample its weight
is increased by 1. Notice that in this procedure the weights will always be integers.

q = rnd(1 : m) (2.5)
wi,q = 1

Repeat equation 2.5 until the required number of individuals has been selected. The sum of the sample
weights has to be equal to the small area units total M .

m∑
j=1

wi,j = Mi (2.6)

Where:

m Number of individuals in the sample
wi,j A weight for small area i in the jth member of the population sample
Mi Number of individuals in small area i

Compute the total absolute error. See Section 2.2.4 “Sample population”:

T̂i =
∑
i

wi,jxj (2.7)

TAE =
∑
i

∣∣∣Ti − T̂i∣∣∣

Replace Individual at Random: Pick a random individual and subtract 1 from its weight.

k = rnd(1 : Mi) (2.8)

w
′
i,k = wi,k − 1

Pick a new random individual from the sample:
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q = rnd(1 : m) (2.9)

w
′
i,q = wi,q + 1

Calculate the goodness of fit for the new solution:

T̂
′
i =

∑
i

w
′
i,jxj (2.10)

TAE
′

=
∑
i

∣∣∣Ti − T̂ ′i ∣∣∣

Update the weights if the annealing threshold is exceeded:

if (TAE
′ − TAE) > e−kto then wi,j = w

′
i,j∀j (2.11)

Repeat Equations 6.7 to 2.11 until annealing threshold is zero:

to = to − t (2.12)
if (t0 ≤ 0) then Stop

The simulating annealing is computational expensive by design. This algorithm needs to perform many
iterations in order to find a good solution. Because the algorithm starts at a random state the time
needed to find a representative population for the corresponding area can take a lot of time, specially
is the difference between small area population size M and sample size m is large. The advantages of
this method are: (1) accuracy, there are many papers reporting that the performance of this algorithm
harvest better results that the IPF or GREGWT method; and (2) the representation of weights as
integers. Similar to the application of the fitness based method in this thesis for the generation of
integer weights (see Section 2.2.4) in combination with the GREGWT algorithm we could implement
a combination of method in order to take advantage of the speed of GREGWT and the accuracy
of simulating annealing methods. Instead of starting with a random population we could select the
observations based on the pre-computed weight by the GREGWT algorithm.
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Iterative Proportional Fitting

The IPF method is a commonly used method in the spatial microsimulation community and other ur-
ban simulation communities. This algorithm iterates through the individual parameters of the initial
sample and fits them to the know marginal totals of the small areas. Similar to the GREGWT method
the IPF method delivers non integer weights.

Initialize the Weights: Many of the IPF implementations initialize the weights before the iterative
process. This step is not always necessary and in some cases can be counterproductive, Section 6.6
discuss the role of initial weights on spatial microsimulation models. The IPF method has a low sen-
sitivity to initial weights and therefor the modification of the initial weights has a minimal impact to
final results. The GREGWT algorithm has a higher sensitivity to the modification of initial weights,
a modification of the initial weights would have a large impact on final results. The IPF method has
a low sensitivity to initial weights and therefor the modification of the initial weights has a minimal
impact to final results. The GREGWT algorithm has a higher sensitivity to the modification of initial
weights, a modification of the initial weights would have a large impact on final results.

wi,j = 1 ∀j = 1 . . .m (2.13)

Where: wi,j are the weights for small area i in the jth member of the population sample and m is
the number of individuals in the sample survey.

Implementing the Algorithm for Each of the Attributes in Turn: For each attribute (or
benchmark) the algorithm will compute a new vector of weights based on the share of estimated cell
sums of the attribute and the corresponding marginal sum of the small geographical areas.

Generate cell counts from the model using the current weights.

T̂i,k =
∑
j

wi,jxi,k (2.14)

Where: Ti,k is the model based estimate individual for attribute k for small area i

Update the weights based on the comparison between the model cell counts T̂ and the constraining
tables T .

wi,j = wi,j
Ti,k

T̂i,k
(2.15)
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Repeat steps 2.14 to 2.15 until there is no further reduction in the total absolute error. For the com-
putation of the total absolute error see section 2.2.4 “Sample population”.

TAE =
∑
j,k

|Ti,k − T̂i,k| (2.16)

Simple IPF example: Listing 2.1 shows a simplified version of the IPF procedure implemented in
the synthpop python library2 (Ye, Konduri, Pendyala, Sana & Waddell, 2009).

Listing 2.1: Simplified ipf procedure written in python as part of the synthpop library
1 while calc_diff(constraints , prev_constraints) > tolerance:
2 prev_constraints [:] = constraints
3 for loc , target in list_of_loc:
4 constraints[loc] *= target / constraints[loc].sum()
5 iterations += 1
6 if iterations > max_iterations: beak
7 return pd.Series(constraints , index=joint_dist.index), iterations

This implementation of the IPF algorithm iterated until the difference between observed and estimated
constrains are below a predefine tolerance level. The function calc_diff is actually an implemen-
tation of the TAE. The algorithm iterated through each constrain (or benchmark) and computes the
new weights as in equation 2.15. Code line 4 is a direct implementation of equation 2.15.

Generalized Regression and Weighting of Sample Survey Results (GREGWT)

In this section we describe the GREGWT algorithm as well as the implementation of the algorithm in
the R language. The implementation of the algorithm has been put into an R package. Through this
thesis we implement this algorithm for the creation of synthetic populations, see https://github.com/
emunozh/GREGWT.

Constraints function: The model constrain we are trying to satisfy is define by Equation 2.17. We
try to find a set of weights that multiply by the sample survey characteristics x is equal to the know
small area marginal sums T .

Ti =
∑
j

wjxj (2.17)

Where: Ti are the true population total and wj the estimated new weights

2https://github.com/UDST/synthpop/blob/master/synthpop/ipf/ipf.py
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Distance Measure and Minimization: GREGWT ties find a set of new weights satisfying Equa-
tion 2.17 by minimizing the distance between initial/design weights and final/estimated new weights.
This fact is important to keep in mind, GREGWT tries to keep the estimated weights very close to the
original population weights. Contrary to the IPF we do not modify the design weights of the survey
sample.

D =
∑
j

Gj (wj , dj) (2.18)

Where: D is the total distance over the sample and G(wj , dj) is the distance between new weights
wj and sampling design weights dj

Generation of New Weights: Now the problem consists of minimizing Equation 2.18 constrain
to Equation 2.17. We want to minimize equation 2.18, subject to constraint equation 2.17. There
are many ways to minimize this distance. The distance measure used in the GREGWT algorithm is
known as truncated Chi-squared distance function, see Rahman et al. (2010).

L = D +

p∑
k=1

λk

Ti −∑
j

wjxj

 (2.19)

By implementing the Chi-squared distance into Equation 7.4:

L =
1

2

∑
j

(wj − dj)2

dj
+

p∑
k=1

λk

Ti −∑
j

wjxj

 (2.20)

By differentiating 7.4 with respect to wk and then applying the first order condition, we have:

δL

δwj
=

(
wj − dj
dj

)
−

p∑
k=1

λkxj = 0 (2.21)

Where: λk are the Lagrange multipliers and p represents the pth constraint condition
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The new weights can be computed as:

wj = dj + djc
′
jλ (2.22)

Where: c′jλ =
∑
λkxj

The estimated new weights are the design weights multiplied by the sum of the Lagrange multipliers
times the sample survey values and summed to the original design weights. In the iterative section
of the GREGWT algorithm for the truncation of negative values (see below) the design weight of
observations causing a negative weight are set to zero. See code line 13 and 14 of Listing 2.4.

GRWGWT — The ABS Macro

The following section briefly describes the implementation of the GREGWT algorithm in the ABS
SAS macros as described in Bell (2000) and Bell (2000).

T =
∑
j

djxj (2.23)

Where:

T Row vector of benchmark totals
dj Initial weight for unit j
xj Row vector of characteristic for unit j

wj = dj

1 +
(
T̂ − T

)(∑
i djxix

′
j

cj

)−1
x
′
j

cj

 (2.24)

Where:

Tx Row vector of benchmark totals
t̂x New resulting marginal totals
wj Estimates new weights
dj Initial weight for unit j
xj Row vector of characteristic for unit j
x
′
j Inverse vector of xj
cj Typically cj = 1, giving an un-weighted least squares distance
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Y
′′

=
∑

j wjyj (2.25a)

=
∑

j djyj +
(
T − T̂

)(∑
j djxjx

′
j

cj

)−1
xj

cj
(2.25b)

= Ya +
(
T − T̂

)
βa (2.25c)

(1) Initial state

m = 0 (2.26a)

d
(0)
j = dj for all unitis j (2.26b)

T̂ (0) =
∑

j d
(0)
j xj (2.26c)

A(0) =
∑

j d
(0)
j xjx

′
j (2.26d)

λ(0) a solution of (T − T̂ (0)) = λ(0)A(0) (2.27)

(2) Start iterations: Truncate to upper and lower bounds

m = m+ 1 (2.28a)
For each unit of j:

w
(∗)
j = dj

(
1 + λ(m−1)x

′
j

)
(2.28b)

if w(∗)
j < L then w

(m)
j = L; d

(m)
j = 0 (2.28c)

else if w(∗)
j > U then w

(m)
j = U ; d

(m)
j = 0 (2.28d)

else w
(m)
j = w

(∗)
j ; d

(m)
j = dj (2.28e)

(3) Find a solution for λ∗
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T (m) =
∑

j w
(m)
j xj (2.29a)

A(m) =
∑

j d
(m)
j xjx

′
j (2.29b)

λ∗a solution of
(
T − T̂ (m)

)
= λ∗A(m) (2.29c)

λ(m) = λ(m−1) + λ∗ (2.29d)

(4) Convergence

|T − T̂ (m)| < εx (2.30a)
|λ(m) − λ(m−1)| < εA (2.30b)

Where:

m Iteration counter
aj Initial weight for unit j
wj Estimates new weights for unit j
xj Row vector of characteristic for unit j
T Row vector of benchmark totals
L Lower bound
U Upper bound
λ The Lagrange multipliers
T̂ New resulting marginal totals

If the algorithm does not converge after step (2) and (3), the algorithm repeats the process from step
(2) until either: (a) convergence is achieved; or (b) the predefined maximum number of iterations is
achieved. Convergence is achieved if either equation 2.30a (boundary conditions are met) or equa-
tion 2.30b (no improvement) are true.

Equation 2.30a, representing the boundary conditions to define convergence of the algorithm is in
fact the TAE used for the internal validation of the algorithm. In is important to mention that the
algorithm itself does not use the TAE metric for the estimation of the new weights but only as a
convergence measure. In many cases the computed TAE by the GREGWT algorithm will differ from
the “real” TAE. Because the GREGWT algorithm uses a general regression for the estimation of the
Lagrange multipliers (Equation 2.27) the input matrix can not be singular. We need to define one
of the input matrix attributes as a reference category, the distance between estimated and observed
values for this category is not computed for the convergence of the GREGWT algorithm, i.e. the
internal computed TAE does not take reference categories into account.
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The code: In this subsection we describe the GREGWT implementation on the R language. List-
ing 2.2 and Listing 2.3 present the simplest implementation of the GREGWT method. This compu-
tation can result in negative weights, for a spatial microsimulation this is not useful and therefor the
GRWGWT method integrates an iterative process in order to truncate the computed weights (Equa-
tions 2.28), Listing 2.4 implements the truncation of the computed weights.

Listing 2.2: Pseudo-code GREGWT simple
1 hT <- colSums(X * dx) # Sample totals
2 A <- crossprod(dx * X, X) # Crossproduct matrix
3 A <- ginv(A) # Inverse (A) matrix (MASS library)
4 lambda = A %*% (T - hT) # Lagrange multipliers
5 wx = dx * (1 + X %*% lambda) # New weights

Listing 2.3: Pseudo-code GREGWT using the R equation solver
1 hT <- colSums(X * dx) # Sample totals
2 A <- crossprod(dx * X, X) # Crossproduct matrix
3 lambda <- solve(A, (Tx - hTx)) # Lagrange multipliers
4 wx = dx * (1 + X %*% lambda) # New weights

Listing 2.4: Pseudo-code GREGWT using bound contains
1 hT <- colSums(X * dx) # Sample totals
2 A <- crossprod(dx * X, X) # Crossproduct matrix
3 lambda <- solve(A, (T - hT)) # Lagrange multipliers
4 convergence = F
5 number.iter = 0
6 while(!convergence ){
7 number.iter = number.iter + 1 # Iteration
8 wx = dx * (1 + X %*% lambda) # New weights
9 # Truncate weights

10 wx[wx<bounds [1]] <- bounds [1]
11 wx[wx>bounds [2]] <- bounds [2]
12 # Truncate initial wights
13 dx[wx<bounds [1]] <- 0
14 dx[wx>bounds [2]] <- 0
15 # Recompute Tx , A and lambda
16 hT <- colSums(X * wx) # Sample totals
17 A <- crossprod(dx * X, X) # Crossproduct matrix
18 lambdaS <- solve(A, (T - hT)) # Lagrange multipliers
19 # Save lambda m-1
20 lambdaO <- lambda
21 # Compute new lambda
22 lambda = lambda + lambdaS
23 # Compute values for convergence
24 delta.tx <- abs(T - hT)
25 delta.a <- abs(lambdaS -lambdaO)
26 convergence <- (
27 all(delta.tx < epsilon) |
28 all(delta.a < epsilon) |
29 number.iter >= max.iter)}
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Fitness-Based Synthesis (FBS)

In the following section we describe the implemented method for the construction of synthetic popula-
tions. The construction of synthetic populations consists of using the reweighted survey and using the
estimated new weights for the construction of a synthetic population. In the framework of this thesis
we refer to a synthetic population to a description of individuals within a geographical area, this type
of description is necessary for any type of agent based simulation. The described method to generate
this type of data implements the method developed by Ma und Srinivasan (2015). Ma und Srinivasan
(2015) proposed the computation of two fitness values expressing the adding and subtracting proba-
bility of individuals from the random selected population from the reweighted population survey.

F i,n
I =

J∑
j=1

Kj∑
k=1

[(
Rn−1

j,k

)2
−
(
Rn−1

j,k −HT
i
j,k

)2
]

(2.31)

F i,n
II =

J∑
j=1

Kj∑
k=1

[(
Rn−1

j,k

)2
−
(
Rn−1

j,k +HT i
j,k

)2
]

(2.32)

Where:

Rn−1
j,k = Tj,k−CTn−1

j,k , represents the number of households/persons requires to satisfy the target
for cell k in control table j after iteration n− 1

J is the total number of control tables
K is the total number of cells in the corresponding j table
Tj,k represents the k cell value in control table j
CTn−1

j,k represents the estimated k cell value in control table j after iteration n− 1

HT i
j,k is the contribution of record i in the seed data to cell k in control table j

Equations 2.31 and 2.32 represent the “fitness” values to decide if a specific record of the input data is
added or removed from the new sample:

1. Rn−1
j,k −HT

i
j,k is the number of households required to achieve the target in cell k of control table

j if household i is added; and

2. Rn−1
j,k +HT i

j,k is the number of households required to achieve the target in cell k of control table
j if household i is removed.

The algorithm iterates until no record in the input data has positive values for either type I or type II
fitness measure.

The above describe equations follow the notation of Ma und Srinivasan (2015), The equations are
design to be used with cross tabulation data. This is not the case for the analysis presented in this
thesis. Below we change Equations 2.31 and 2.32 to meet the thesis notation and data structure used
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in the analysis. Equations 2.33 and 2.34 describe the same process with a different notation.

FIj =
∑
k

Rk
2 − (Rk − xj,k)2 (2.33)

FIIj =
∑
k

Rk
2 − (Rk + xj,k)2 (2.34)

Where:

Rk = Tk −
∑

j xj,k × bwje
= Tk − T̂k

R is the difference between the small area totals T and estimated totals T̂ (with an integer weight w)
for benchmark category k. Both fitness measures are computed for each individual j of the sample.

On the algorithm implementation we introduced an extra constrain, the total absolute error TAE.
Performing a spatial microsimulation at a low level of aggregation with just a few people on each area
(10 individuals) is difficult. The FBS algorithm is able to reduce the TAE achieved by GREGWT.
The extra constrain introduced makes sure that changing individuals results in a reduction of TAE
(i.e. the change is only accepted if the achieved TAE is lower than the previous TAE value).

We implement this algorithm as an addition to the GREGWT method. This combination allows us
to speed up the creation of synthetic families. The big disadvantage of the FBS method is on speed.
Normally with the FBS method we start with a random sample of records, instead of starting with a
random sample of records, we start with a sample selected with the selection probability vector defined
by the GREGWT computed weights. With this implementation the FBS method just needs a couple
of iteration to find the best population instead of performing twice the number of the input sample
records iterations, as reported by Ma und Srinivasan (2015).

2.2.5 Performance Metrics

Weights Measures

(1) Total weight distance (D)

Measures the absolute distance between the initial design weights d and the estimated new weights w.

Di =

m∑
j

|wj − dj | (2.35)
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(2) Mean weight distance (θD)

The mean weight distance measures the distance between the initial design weights d and the estimated
new weights w. In this case the mean value is asses, this may be useful by comparing the performance
of the algorithm while using samples with different size.

θDi =

∑m
j |wj − dj |

m
(2.36)

(3) Chi-squared distance (Chi)

With help of the chi-squared distance we have a more precise description of the individual distance
measure between weights. This measure avoids for negative distances compensating positive ones.

Chii =
m∑
j

(wj × dj)2

2dj
(2.37)

(4) Mean chi-squared distance (θChi)

Similar to the chi-squared distance the mean chi-squared distance aims to measure the distance be-
tween weights at an individual level. The difference with the previous measure is that this measure
takes the size of the sample into account.

θChii =
m∑
j

(wj × dj)2

2dj
÷m (2.38)

(5) Total absolute distance (TAD)

The TAD measured the absolute distance between the actual population count and the estimated
population count.

TAD =
n∑
i

∣∣∣∣∣∣
m∑
j

wi,j − popi

∣∣∣∣∣∣ (2.39)

(6) Error in margins (EM)
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This measures the ratio between estimated and known number of individuals of households in the
simulated small areas.

EMi =

∑
wj − popi
popi

(2.40)

(7) Error in Distribution (ED)

This measures the ration between the absolute sum of residuals (estimated− known) and the actual
count of individuals of households in the simulated area or areas.

EDi =
|
∑
wj − popi|
popi

(2.41)

Where:

w new weights
d sampling design weights
n small area index
m survey sample size
popi actual population for simulation area i

Marginal Totals Measures

(8) Total absolute error (TAE)

Applied on: (Burden & Steel, 2015; B. Anderson, 2013; Edwards & Tanton, 2013; Harland et al., 2012;
Huang & Williamson, 2001; Tanton & Vidyattama, 2010).

This measure is commonly used for the internal validation of spatial microsimulation models. The total
absolute error measures the absolute difference between benchmark totals of small areas and estimated
marginal totals for the same area. Ideally this measure is close to 0.

TAE =
n∑
i

|T − T̂ | (2.42)

(9) Standardized absolute error (SAE)
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The SAE aims to make the TAE measure comparable between simulation which normally use different
samples for the simulation.

SAE =
n∑
i

|T − T̂ | ÷ popi (2.43)

(10) Percentage absolute error (PAE)

This measure is the same measure as the SAE measure but express its result as a percentage value.

PAE =

n∑
i

|T − T̂ | ÷ popi × 100 (2.44)

(11) Modified Z-statistic (Z)

The modified Z-statistic describes the performance of the individual attributes of the population used
as constrains in the simulation model, the Z-statistic proposed by (Blalock, 1979) has been used by
many authors to perform an internal validation of microsimulation methods (Birkin & Clarke, 1988;
Williamson, Birkin & Rees, 1998; Voas & Williamson, 2000).

Z =
r − p√

p× (1− p)÷
∑
T

(2.45)

r =
T̂∑
T

(2.46)

p =
T∑
T

(2.47)

(12) Independent samples t-test

The t-test allows for a comparison of the difference between simulated and expected proportions. This
test is useful to identify any statistical difference between the synthetic and real population.

Implemented in: (Edwards & Clarke, 2013).

1 ttest <- t.test(T, hT)
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(13) Pearson correlation

This test looks for correlation between simulated and expected marginal totals.

1 pearson <- cor(cbind(T, hT), use="complete.obs", method="pearson")

(14) Coefficient of determination

This test allows analyzing how well the simulated data fits the expected data.

1 lm.X <- lm(T~hT)
2 r2 <- summary(lm.X)$r.squared
3 r2.adj <- summary(lm.X)$adj.r.squared

Where:

T Row vector of benchmark totals
T̂ New resulting marginal totals
m survey sample size

(15a) Root mean squared error (SRMSE)

RMSE =

√∑(
T̂ − T

)2
/N (2.48)

(15b) Standardized root mean squared error (SRMSE)

Source: (Pritchard & Miller, 2012; Farooq, Bierlaire, Hurtubia & Flötteröd, 2013).

SRMSE =

√∑(
T̂ − T

)2
/N∑

(T ) /N
(2.49)

Where:

T Row vector of benchmark totals
T̂ New resulting marginal totals
N Population size

(16) Absolute Standardized Residual Estimate (ASRE)
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Source: (Rahman, Harding, Tanton & Liu, 2013).

ASRE =

∑∣∣∣Ti − T̂i∣∣∣√∑
(Ti−T̂i)

2

n

(2.50)

Where:

T Row vector of benchmark totals
T̂ New resulting marginal totals
n Number of geographical areas i

(17) Hellinger Distance

Source: (Rao, 1995) and implemented on: (Ma & Srinivasan, 2015)

H2 =
1

2

∑(√
Ti ÷ T −

√
T̂i ÷ T̂

)
(2.51)

Where:

T =
∑
Ti and T̂ =

∑
T̂i

(18) Standard Error around Identity (SEI)

Implemented on: (Ballas, Clarke, Dorling & Rossiter, 2007; Tanton, Vidyattama, Nepal & McNamara,
2011) and described on (Edwards & Tanton, 2013).

SEI = 1−

∑(
T̂i − Ti

)2

∑(
Ti − T̄

)2 (2.52)

Where:

T̄ = 1
n

∑n
i=1 Ti

(19) Chi squared

Chi =

(
T̂i − Ti

)2

Ti
(2.53)
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2.3 Classification of the Building Stock: Building Typologies

2.3.1 The Use of Building Typologies in Energy and Urban Planning

In the framework of this thesis we use and compare and asses five building typologies. All these ty-
pologies are constructed following a similar structure. In this section we will make a short description
of these typologies and briefly explain how these typologies are used: (a) to estimate energy (mainly
heat) demand in urban spaces; and (b) to perform macro analysis of the building stock.

The selected building typologies are following:

1. Blesl, a simplified typology developed by Blesl, Kempe, Ohl und Fahl (2007);

2. IWU-de, a typology developed for Germany by the IWU3 institute;

3. IWU-he, a typology developed for the federal state of Hessen by the IWU institute;

4. BSU, a typology developed for the city of Hamburg by the BSU4; and

5. EcoFYS, a typology developed for the city of Hamburg by the consultancy firm EcoFYS5.

These typologies have been developed for different federal states or for the entire federal Republic of
Germany. Often an available building typology for a specific region, city or state is a modified version
(or calibrated) of a national typology.

In the following section we present and discuss these building typologies. I start with a typology de-
veloped at a national level (IWU-de, see sub section 2.3.2), this is probably the most used typology in
Germany for the estimation of heat demand of the building stock. The second example is a derivation
from the first typology. The German typology developed by the IWU institute is calibrated for the
use of this typology to the specific federal state of Hessen (see sub section 2.3.3).

The behavior of these typologies differ depending on the simulation scale and location. With the
method developed in the framework of this thesis (see Chapter 4) we aim to show how the different
typologies perform in the estimation of heat demand for the city of Hamburg.

It is expected that the typology developed for Germany will perform better than the one calibrated
for the building stock of Hessen. We go further with our analysis and analyze two different typologies
specially developed for the city of Hamburg, expecting them to perform much better by the analysis
of a small urban area of the city. The difference between these typologies is the level of detail of both
typologies. While the first typology developed by the Ministry of Urban Development and Environment

3IWU Institut Wohnen und Umwelt GmbH http://www.iwu.de
4BSU (Behörde für Stadtentwicklung und Umwelt) Ministry of Urban Development and Environmenthttps://www
.hamburg.de/bsu/

5EcoFYShttp://www.ecofys.com/
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(BSU) presents a strong simplification of a typology (see Sub-Section 2.3.4), giving only specific heat
demand of the buildings based on two parameters:

1. Construction age; and

2. Construction type.

The second typology, developed for the city of Hamburg, delivers a comprehensive technical report
(see (Hermelink, Manteuffel, Lindner & John, 2011)) from which many parameters for the building
classification can be derived (see Sub-Section 2.3.5).

In order to present a complete overview of the building typologies we make a short review of the build-
ing typologies at a European level, driven by the European initiative TABULA (see Sub-Section 2.3.6).
This sub section also serves to build a stepping stone towards a systematic approach to building ty-
pologies and the implementation of them in energy and urban planning at a European scale. In the
final chapter of our thesis we revisit the use of building typologies at a European level to highlight our
envisioned next steps.

There are many building typologies for a lot of different regions all over Europe, a good overview of the
available building typologies in Europe, driven by the TABULA initiative, is provided in (TABULA
Project Team, 2010). In Germany there are many examples of these typologies calibrated for specific
regions or cities:

Düsseldorf (ebök, 2005);

Münster (Hildebrandt, Hellmann & Zantner, 2003);

Freistaat Sachsen (ebök, 2000);

Mannheim (ebök/ifeu, 1998); and

Heidelberg (ebök/ifeu, 1996)

Nonetheless, just a few have reached a scientific discussion, finding a way into the scientific literature,
few examples of these are: Kragh und Wittchen (2013); M. K. Singh, Mahapatra und Teller (2013);
Hrabovszky-Horváth, Pálvölgyi, Csoknyai und Talamon (2013); Caputo et al. (2013). Most of the
developed typologies are developed as technical reports or brochures targeting real estate developers
or home users, especially in Germany, this makes it difficult to reproduce or use the typologies in a
standardized fashion for the estimation of heat demand in urban areas.

In this section we present an overview of different building typologies used in Germany and Europe.
Chapter 4 describes our approach to automate the classification of the building stock, introducing the
concept of an array filter that will allocate the building types to the building stock in a stochastic
manner. In that chapter we also present the results from the postulated filter array and compare the
results with monitoring consumption for the same area.
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The use of building typologies is commonly used to estimate different retrofit scenarios for single build-
ings promoting this way energy-efficient measure through the building stock (Kragh & Wittchen, 2013;
M. K. Singh et al., 2013; Dascalaki, Droutsa, Balaras & Kontoyiannidis, 2011; TABULA Project Team,
2012a), the use of building typologies finds also use at estimating the mitigation potential and vul-
nerability of the residential building stock (Hrabovszky-Horváth et al., 2013). Through the literature
we also find approaches addressing the issue at an urban scale (Caputo et al., 2013), these approaches
make use of a GIS system for the systematic collection of building information and further classification
of the building stock. The collection of building data in GIS system presents an interesting tool for
the analysis of urban setting rather than the analysis of individual buildings or the analysis of the
national building stock at an aggregated level. Nonetheless, a big problem of such an approach is
the intensive data recovery needed to fill the building database. The aim of this thesis is to develop
and analyze a method that can deal with missing data on existing databases, as for example with the
use of a digital cadaster. Other free and open databases as is the use of open street map present an
interesting alternative to institutionalized data sources. The main challenges for the use of such open
source are: (1) the coverage rate of the building stock; and (2) the missing characteristics of the in-
dividual buildings, needed for the classification process (e.g. Construction year and construction type).

The main difference between an analysis of the national building stock, for which the building typologies
are developed, and an analysis of new decentralized energy supply systems, which is the scope of our
research, relies on scale. While the first analysis focuses exclusively on the aggregated effect of energy
efficiency measures of the building stock, the planning of decentralized energy supply needs to:

1. Estimate the heat demand of small urban areas, suitable for small decentralized energy supply
systems; and

2. Identify heat spots in urban areas in order to allocate retrofit priorities.

For the proper dimensioning of heat supply systems the estimation of heat demand is a key issue,
especially at a low aggregation level. The use of building typologies for the simulation of heat demand
improves as the numbers of buildings are summed together (Blesl et al., 2007), this is because many
key parameters like internal heat gains, internal temperature, ventilation rates, thermal bridges, etc.,
cannot be recovered for every single building. In order to perform the heat demand computation the
authors have to use average values defined in national guidelines. For the construction of the typology
the authors classify the buildings by construction epoch and construction type (single family house,
terrace house, etc.). This type of classification is a standard in the construction of building typologies
(Ebel, 1990; ebök/ifeu, 1996, 1998; ebök, 2000, 2005; Hildebrandt et al., 2003; IWU, 2003; Loga,
Diefenbach & Born, 2011; BSU, 2011; Hermelink et al., 2011; Kragh & Wittchen, 2013; M. K. Singh
et al., 2013; Hrabovszky-Horváth et al., 2013; Caputo et al., 2013).

An example of such an approach can be seen in Table 2.6. This approach does not use a building stock
database for its construction, neither uses real consumption data for its construction. The construction
of such a typology is based on average parameters taken from national guideline VDI 3807 (Verein
Deutscher Ingenieure, 1994). Not only for heat demand is a simulation at a low aggregation level im-
portant. We see a trend towards decentralized heat and electricity production (KEMA, 2012), driven
mainly by the expansion of renewable energies. High temporal simulation of energy signatures of small
urban areas for on site generation may be a key development towards low energy demand neighbor-
hoods (Koch & Girard, 2013). In order to perform, either a simple energy balance of the individual
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Table 2.6: Building matrix with specific building parameters (Blesl et al., 2007)

Baualtersklassen <
19

18

19
19

-1
94

8

19
49

-1
95

7

19
58

-1
96

8

19
69

-1
97

8

19
79

-1
98

3

19
84

-1
99

5

19
96

-2
00

0

20
01

-2
00

5

EFH Fla 132.0 220.0 101.0 242.0 158.0 161.0 136.0 134.0 142.0
WBb 22.0 33.0 17.8 36.3 26.1 26.6 21.3 13.6 10.3
WKZc 167.0 150.0 176.0 150.0 165.0 165.0 156.0 101.0 72.0

RDH Fl 103.0 103.0 136.0 72.0 97.0 99.0 81.0 128.0 128.0
WB 15.6 14.5 23.8 11.7 18.6 17.0 10.5 11.4 9.0
WKZ 152.0 141.0 175.0 162.0 192.0 171.0 129.0 89.0 70.0

KMH Fl 616.0 349.0 593.0 2 845.0 1 500.0 595.0 1 263.0 351.0 351.0
WB 110.9 58.5 69.1 543.0 253.7 74.5 128.1 32.9 22.8
WKZ 180.0 167.0 117.0 191.0 169.0 125.0 101.0 94.0 65.0

GMH Fl 649.0 1 349.0 1 457.0 3 534.0 3 020.0 595.0 2 075.0 2 075.0 2 075.0
WB 121.0 249.4 246.9 524.4 438.9 68.9 170.6 151.1 105.5
WKZ 187.0 185.0 169.0 148.0 145.0 116.0 82.0 73.0 51.0

HH Fl 10 408.0 18 012.0
WB 1 074.0 2 114.0
WKZ 103.0 117.0

(a) (Fl) Heated living space (Nutzwärmefläche) [m2]; (b) (WB) Heat demand (Wärmebedarf) [MWh/a]; (c) (WKZ)
Specific Heat demand (spez. Wärmebedarfskennzahl) [kWh/m2a]

(EFH) Einfamilienhaus (single family house); (RDH) Reihenhaus (row house); (KMH) Kleines Mehrfamilienhaus
(small multi-family house); (GMH) Großes Mehrfamilienhaus (big multi-family house); and (HH) Hochhaus (high-rise

building);

buildings or a high temporal thermal simulation model, the input data of the buildings has to be avail-
able. Although digital cadaster data offer a vast amount of information of the individual buildings,
needed U-values of the building components are not available in the digital cadaster of the city of
Hamburg ALKIS6. The use of building typologies to fill this information gap may be an interesting
option.

2.3.2 IWU-de — a Typology for Germany

The first German typology, although developed under a scope aiming at energy measures for the federal
state of Hessen, was developed in (1990) by Ebel. The author was part of the IWU team at that time.
This typology has been further developed and improved through the years, the current “base typology”
for Germany was developed in (2003) by the IWO institute IWU. The “base typology” defines key
parameters needed for the computation of heat demand of the individual types, like average heating
space or roof type. The method used for the construction of building typologies developed by (Ebel,
1990) is essentially the same method used on all available building typologies. For a technical descrip-
tion of the approach currently used for the Germany building typology, see (Loga, Diefenbach, Stein

6ALKIS (Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland (AdV), 2006)
http://www.hmdk.de/trefferanzeige?docuuid=AB8C6B21-BAFF-4230-A686-0C918FEBEE2F
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& Born, 2012). A synthesis of the typology can be seen in Table 7.1 derived from (Loga et al., 2011),
this typology is the one used in this analysis.

2.3.3 IWU-he — a Typology for Hessen

Derived from the “base typology” (IWU, 2003), the IWU institute developed a tailored typology for the
federal state of Hessen (Born, Diefenbach & Loga, 2003). We present this typology as an example of a
derived typology “calibrated” for a specific region and use it as control within my analysis. Because this
typology has been specifically developed for a different region than the one we are analyzing, we expect
that this typology will perform poorly in comparison to typologies developed for Germany (Loga et
al., 2012) (see sub Section 2.3.2) or to typologies developed for the city of Hamburg (BSU, 2011) (see
Section 2.3.4); and (Hermelink et al., 2011) (see Section 2.3.5).

The aim of this typology is to determine the potential energy savings of the residential building stock
through: (1) retrofit of the thermal envelope of buildings; and (2) a modernization of the heating
system (Born et al., 2003). The study by Born et al. analyses typical residential buildings for the
federal state of Hessen. As basis for the energy balancing of the building types the authors use the
national regulation DIN V 4108–6 (Deutsches Institut für Normung e. V, 2003b) and DIN V 4701–
10 (Deutsches Institut für Normung e. V, 2003a). The typology is represented by 31 building types.
Table 2.8 describes this typology.

2.3.4 BSU — a Typology for Hamburg

The data for the Hamburger building typology is based on the results from the presented energy passes
since 1997 (BSU, 2011). Following the European directive “Energy Performance of Buildings Directive,
EPBD” 2002/91/EC (The European Parliament and the Council of the European Union, 16 December
2002) and the subsequent directive 2010/31/EU (The European Parliament and the Council of the Eu-
ropean Union, 19 May 2010) all member states are required to implement measures for the reduction
of energy in the building stock. As part of the application of this directive, Germany introduced step
by step mandatory issue of an “energy pass”. Since the introduction of the German energy demand
regulation law EnEV in 2007, all new constructions have to issue such an energy pass. Subsequently
since 2008 all buildings constructed previous to 1965 had to issue an energy pass, previous to being
rented or sold. Since 2009 all buildings have to issue an energy pass in order to sell them or rent
them (BMVBS Bundesministerium für Verkehr, Bau und Stadtentwicklung, 2008).

The BSU typology is very simple and does not offer much background information, In the first analysis
we only want to compare the performance of different typologies. In order to achieve this we don’t
need the background information of the typology. In Chapter 4 we present a method to classify the
building stock, the performance of this classification method is influenced by the available background
information of the building typologies.
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Table 2.8: IWU-he building typology matrix for Germany (Born et al., 2003)

Baualtersklassen <
19
18

19
19

–1
94

8

19
49

–1
95

7

19
58

–1
96

8

19
69

–1
97

8

19
79

–1
98

3

19
84

–1
99

4

EFH WKZa 250/210 194 223 166 182/123 120 140
RDH WKZ 204 166 163 135 159 129 97
KMH WKZ 241/180 193 211 168 139 118 122
GMH WKZ 159 164 173 172 140
HH WKZ 119 103

(a) (WKZ) Specific Heat demand (spez. Wärmebedarfskennzahl) [kWh/m2a]

(EFH), Einfamilienhaus (single family house); (RDH), Reihenhaus (row house); (KMH), Mehrfamilienhaus
(multi-family house); (GMH), großes Mehrfamilienhaus (big multi-family house); and (HH), Hochhaus (high-rise

building);

The available background information on building typologies is essential for the next steps of this
analysis. After a classification of the building stock into building typologies, the individual buildings
inherit attributes from the corresponding building type. These attributes are this background informa-
tion, particularly important are the U-values used to estimate the heat demand of the individual types.

In this thesis the use of this typology contributes to the discussion7. This analysis can be seen as
the missing documentation of this typology, with this typology we are able to compare two typologies
specifically developed for the same urban space. In Chapter 4 we present a comparison of the BSU
typology, presented in this Section and the Ecofys typology presented in the next Section 2.3.5, both
typologies developed for the city of Hamburg.

The BSU typology is build analog to the rest of the typologies described in this thesis. The buildings
are classified by construction epoch and construction type. For each type of the matrix we find 2
values:

1. (WKZ) Specific Heat demand [kWh/m2a]; and

2. (PWKZ) Potential specific Heat demand after a renovation [kWh/m2a]

Due to lack of information for some types no values are presented in the typology, in order to in-
clude them in the analysis we perform a simple polynomial interpolation to estimate these values. We
used the available values from the same construction type in order to performed the polynomial in-
terpolation. This values are presented in Table 2.9, the interpolated values are marked with an asterisk.

7This typology is no longer available online, making it even more important to discuss the role of this typology in the
framework of my thesis
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Table 2.9: BSU building typology matrix for Hamburg (BSU, 2011)

Construction period <
19

18

19
19

-1
94

8

19
49

-1
95

8

19
59

-1
96

8

19
69

-1
97

8

19
79

-1
98

3

19
84

-1
99

4

EFH/DHH WKZa 260 262 258 262 204 170 126
RDH WKZ 235 225 238 221 202 ∗198 ∗117
KMH WKZ 194 171 171 156 146 105 85
GMH WKZ 165 150 157 138 117 112 ∗88

∗ Values have been computed using a polynomial interpolation method as values for these types were not available on
the original typology.

a) (WKZ) Specific Heat demand (spez. Wärmebedarfskennzahl) [kWh/m2a]; (EFH) Single family house
“Einfamilienhaus”; (RDH) Terrace house “Reihenhaus”; (KMH) Small apartment house “Kleines Mehrfamilienhaus”; and

(GMH) Large apartment house “Großes Mehrfamilienhaus”

2.3.5 Ecofys — a Typology for Hamburg

In contrast to the previous typology, the typology presented by Ecofys, delivers detailed information
on the individual types as well as good documentation of the applied methodology. In contrast to
the BSU typology we use the results, rather than the formal definition of the typology, to perform
the analysis (see Chapter 4 for methodological details). In Table 2.10 the postulated typology, with
specific heat demand values can be seen. In the subsequent table, Table 2.11 a more detailed descrip-
tion of the typology, describing the number of floors and roof type, is presented. This table represents
the result of the analysis performed by Hermelink et al. (2011). We use these results to create an
“extended typology”. For our analysis we base the typical building typology on construction epoch and
construction type and include other parameters like roof type or number of stories for further classifi-
cation of buildings that do not have either a construction year or a construction type. In Chapter 4 we
describe this process in more detail. Because this typology contains more parameters that we can use
for the classification of the building stock into building types we expect that this typology (Ecofys)
will perform better than the previous typology (BSU).

The detailed description of the building typology, containing the “extra” parameters, described in Ta-
ble 2.11 shows the percentage of buildings of each type allocated to the specific parameter. In their
work the authors (Hermelink et al., 2011) conducted a classification of the building stock for the city
of Hamburg.

2.3.6 TABULA — European Building Typologies

In the EU-financed project TABULA8 15 European countries have developed building typologies fol-
lowing the structure proposed and implemented by the IWU Institute from Germany, see (TABULA
Project Team, 2012b) for an overview of the single country reports involved in the tabular project.

8(TABULA) typology approach for building stock energy assessment http://www.building-typology.eu/
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Table 2.10: Building typology for the city of Hamburg developed by EcoFYS showing the heat
demand per residential space∗ in [kWh/m2a] (Hermelink et al., 2011, pp. 18)

Construction pe-
riod

<
19

18

19
19

-1
94

8

19
49

-1
95

7

19
58

-1
96

8

19
69

-1
97

8

19
79

-1
98

3

19
84

-1
99

4

>
19

95

EFH/DHH WKZa 223 245 232 221 209 194 138 120
RDH WKZ 147 154 129 140 126 99 88 78
MFH-E WKZ 204 191 204 195 191 147 120 97
MFH-G WKZ 136 145 145 145 115 111 94 91
MFH-W WKZ 161 159 158 160 145 121 106 92
MFH-H WKZ 131 132

a) (WKZ) Specific Heat demand (spez. Wärmebedarfskennzahl) [kWh/m2a]

(EFH) Single family house “Einfamilienhaus”; (RDH) terrace house “Reihenhaus,”; (MFH-E) Single apartment house
“Mehrfamilienhaus Einzelhaus”; (MFH-G) Group apartment house “Mehrfamilienhaus Gruppenhaus”; (MFH-W)

Building block apartment house “Mehrfamilienhaus Wohnblock”; (MFH-H) High-rise apartment house
“Mehrfamilienhaus Hochhaus”;

One of the aims of this project is the estimation of national energy potential savings of the residential
building stock.

“One important objective of the set-up of national building typologies is the elaboration of
bottom-up models which enable a calculation of the energy consumption of the respective
building stocks. A typical application field is the investigation of energy saving potentials
for a national or regional building stock as well as the design and evaluation of instruments
and political strategies.” (TABULA Project Team, 2012a, p.28)

The report presented by (TABULA Project Team, 2012a) points towards the development of national
building stock models, the development of a building stock model at a city level is not explicit men-
tioned in the report. The development of a specific typology for a given city proves to be complicated
because of lack of available and homogeneous statistics. For an overview of the different data sources
used in the project by the participant institutions see Table 2.12.

For some typologies presented in the TABULA report, a differentiation between climate zones is per-
formed. This is especially important for large countries expanding through different climate zones.
Countries expanding through climate zones with a substantial difference in air temperatures will have
different building types. Countries differentiating climate zones in the projects are:

1. Denmark (TABULA Project Team, 2012c, p. 49);

2. Greece (TABULA Project Team, 2012c, p. 59);

3. Sweden (TABULA Project Team, 2012c, p. 101); and
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Table 2.11: Building typology for the city of Hamburg developed by EcoFYS showing the parameters
of each Type, in percentage. (Hermelink et al., 2011, pp. 18)

Year (BAJ) Floor (AOG) Roof (DAF)

01
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e <1918 94 6 0 0 0 0 0 51 13 26 5 5

1919-1948 99 2 0 0 0 0 0 60 5 26 4 5
1949-1957 99 1 0 0 0 0 0 71 2 19 4 4
1958-1968 98 2 0 0 0 0 0 65 3 20 9 3
1969-1978 99 2 0 0 0 0 0 61 3 24 10 3
1979-1983 99 1 0 0 0 0 0 65 4 22 6 3
1984-1994 99 1 0 0 0 0 0 47 5 42 3 2
>1995 98 2 0 0 0 0 0 50 3 36 5 6

R
ei
he
nh

au
s

T
er
ra
ce

ho
us
e

<1918 84 13 3 0 0 0 0 37 24 14 23 2
1919-1948 95 5 0 0 0 0 0 68 3 19 10 1
1949-1957 99 1 0 0 0 0 0 85 1 2 11 1
1958-1968 100 0 0 0 0 0 0 77 1 1 20 1
1969-1978 97 3 0 0 0 0 0 52 2 1 43 2
1979-1983 96 4 0 0 0 0 0 79 7 1 10 2
1984-1994 98 2 0 0 0 0 0 72 12 9 2 5
>1995 76 23 0 0 0 0 0 50 0 6 24 19

M
F
H
-E
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ze
lh
au

s
Si
ng
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m
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ho
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e <1918 49 38 11 1 0 0 0 30 29 25 10 6

1919-1948 69 26 4 0 0 0 0 24 12 53 7 4
1949-1957 68 22 10 1 0 0 0 44 8 28 17 3
1958-1968 68 21 8 3 0 0 0 57 8 13 19 3
1969-1978 59 32 8 0 0 0 0 44 8 12 34 2
1979-1983 65 26 8 1 0 0 0 39 24 15 20 2
1984-1994 72 21 6 1 0 0 0 36 27 24 7 6
>1995 48 31 18 2 0 0 0 31 6 22 29 12

M
F
H
-W

oh
nb

lo
ck

B
lo
ck

fa
m
ily

ho
us
e <1918 6 19 67 8 0 0 0 19 66 2 11 2

1919-1948 13 26 51 9 0 0 0 29 40 11 18 3
1949-1957 7 25 63 5 0 0 0 51 20 11 17 1
1958-1968 10 25 59 7 0 0 0 48 28 5 18 2
1969-1978 4 22 65 8 0 0 0 34 39 6 19 2
1979-1983 6 23 63 9 0 0 0 35 38 7 17 3
1984-1994 7 23 61 8 0 0 0 34 43 5 14 4
>1995 25 31 34 9 0 0 0 30 18 6 38 8

M
F
H
-G

ru
pp

en
ha

us
G
ro
up
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m
ily

ho
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e <1918 6 33 55 6 0 0 0 41 38 10 7 4

1919-1948 8 28 54 10 0 0 0 33 4 37 25 1
1949-1957 12 23 62 3 0 0 0 62 1 20 17 1
1958-1968 17 43 38 3 0 0 0 59 2 4 34 1
1969-1978 12 29 49 9 0 0 0 35 3 11 51 1
1979-1983 12 30 48 10 0 0 0 44 11 11 33 1
1984-1994 19 37 40 5 0 0 0 49 18 15 15 3
>1995 14 33 45 9 0 0 0 29 4 13 45 9

H
H

∗ 1958-1968 0 0 0 55 32 5 6 5 3 0 89 3
1969-1978 0 0 1 39 47 7 6 0 0 0 99 0
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4. Spain (TABULA Project Team, 2012c, p. 115).

The implementation of a regional typology could be derived from this classification. The representa-
tion of the Hellenic building stock with help of the developed building typologies in the TABULAR
project are presented by Dascalaki et al., in their paper publish on (2011) the authors present an
assessment of various energy conservation measures used for the estimation of heat consumption of the
residential sector in Greece. Kragh und Wittchen deliver an overview of the Danish building typology
in their paper from (2013), This typology is based on the database of the Danish Energy Performance
Certificate Scheme. The Danish building typology presents two types of buildings models:

1. Real example models; and

2. Average designed models

The calculation of the heat demand of the models is performed trough an energy balancing method.
An example of the use of building typologies in the scientific community is delivered by M. K. Singh
et al. in their paper from (2013). The performed analysis by the authors focus on Liege, Belgium. The
aim of this work is to apply the developed building typologies to estimate building characteristics and
subsequent its heat consumption. The result is used for the identification of possible measures that
the federal state can implement in order to efficiently reduce the heat demand of the residential in the
specific region.

The use of building typologies to estimate the mitigation potential and vulnerability of the residential
sector is addressed by Hrabovszky-Horváth et al. in their paper from (2013), developed for Hungary.
An application of Building typologies at an urban scale is performed by Caputo et al. in their paper
presented in (2013). The authors make use of a GIS system to collect and classify the building stock in
the city of Milan. The aim of their work is to support energy policies at an urban level. The authors
validate their model with help of an energy information system (SIRENA), which contains aggregated
energy consumption for the Lombardy region. The authors make an important contribution in the
analysis of small urban areas and show the potential of such an analysis for the further development
of cities evaluating possible expansion areas for district heating and cogeneration systems. Dall’O’,
Galante und Torri (2012) present an analysis for the same region also focusing on urban scale.
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Table 2.12: Used data for the different building typologies of the TABULA project (TABULA
Project Team, 2012c)

Country Data source. As quoted in (TABULA Project Team, 2012c)

Belgium (1) General Socio-economic Survey performed in 2001 by the National Institute
of Statistics NIS (2) Energy Advice Procedure database

Czech Republic (1) Public database of the Czech Statistical Office (2) National census 2001
(3) Microcensus ENERGO 2004

Denmark (4) The Danish building stock register (BBR) (5) The building Energy Perfor-
mance Certification (EMO) database

Germany (6) Energy certificate data base of the German Energy Agency (dena) (7)
“Daten-basis Gebäudebestand" (Diefenbach, Cischinsky & Rodenfels, 2010)

Greece (1) National Census 1990 and 2000 (2) Hellenic Ministry for the Environment,
Physical Planning and Public Works, Directorate Urban Planning & Housing
- MEPPPW

Italy (1) National Institute of Statistics (ISTAT - Report 2004) (2) Centre Economi-
cal, Social and Market Surveys in the Building Sector (CRESME) (3) National
Energy Agency (ENEA)

Slovenia (1) Registry of buildings of Slovenia

2.4 Allocating People to the Building Stock in Space

The aim of this thesis is the simulation of heat consumption in space at a low level of aggregation. In
order to further explain what this is and why do we need such a vast literature base (presented in the
last 4 sections) to achieve this, we need to break up this aim into individual parts:

1. Simulation of heat consumption (see Section 2.1);

2. The need to take demographic characteristics of the population into account (see Sub-Section 2.1.3
for the integration of user behavior into simulation models and Section 2.2 for the generation of
a synthetic population);

3. A spatial referenced classified building stock, see Section 2.3 for a classification of the building
stock using building typologies; and

4. The allocation of individual families into the classified building stock.

The first point distinguish the simulation of heat consumption from the simulation of heat demand.
This small distinction drives the architecture and data structure of the entire model and of this thesis.
The differentiation between consumption and demand is normally applied between estimated values
(demand) and monitored values (consumption). In this case we talk about the simulation of heat con-
sumption because the developed model doesn’t aim to capture an average heat demand of the building
but to simulate a possible heat consumption of this building. In order to simulate this consumption
we need to consider human behavior in the model.
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The explicit consideration on human behavior in a traditional heat demand model presents itself as
a big challenge, especially for the residential sector where behavior patterns vary considerably among
individuals. For the simulation of heat demand at a building level we could design a stochastic simu-
lation model to consider a wide range of behaviors’ influencing heat consumption, but not its driving
heat demand pattern. By doing this on small geographical areas we can allocate specific individuals
to specific buildings. This advantage allows us to analyze consumption patterns of these small areas
and quantify the effect of user behavior at a low aggregation level. The quantification of this effect is
important for the proper dimensioning of decentralized supply systems (outside the scope of this thesis).

In the following chapters we present a step by step description and discussion of the individual com-
ponents of the developed model. The scope of this thesis is divided into two main topics: (1) building
simulation; and (2) spatial microsimulation. The first topic deals with the underlying physics for the
simulation of energy demand mainly at a building level, while the second topic deals with the develop-
ment of simulation models at a micro level with a spatial reference. Commonly on the second topic the
individual simulation units are either families of individuals. An essential part of the microsimulation
models is the generation of a synthetic population for small urban areas that matches the aggregated
statistics for the same area. In this thesis we make use of these methods for the generation of synthetic
families and in a second step allocate these families to the classified buildings stock. We use all this
generated micro-data to feed a thermal simulation model for the estimation of heat demand at a low
aggregation level with an explicit consideration of user behavior.
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3 Model Architecture and Data Sources

Most of the model is implemented using the python language using some common python libraries,
see (Payne, 2010; Oliphant, 2007) for the numpy and scipy python library used for the scientific
computation and (Hunter, 2007; Tosi, 2009) for the matplotlib for the used library for plotting and
visualization. Most of the data processing performed on the model uses the Pandas library (Pandas
development team, o. J.).See McKinney (2012) for an overview of the library. Many of the examples
presented in this thesis are implemented in the IPython Notebook (Pérez & Granger, 2007).For a ref-
erence on the IPython interface see (Rossant, 2013).The manipulation of spatial elements as well as
most spatial analysis are performed using the shapely library (Gillies, 2013). Most of the spatial ele-
ments stored in the PostgreSQL database (see below) are parsed as shapely objects within the model.
For the integration of the developed R libraries into the model architecture we make use of the RPy
library (Moreira & Warnes, 2004). Specially the spatial microsimulation model GREGWT and the
corresponding library written in the R language are used in a python environment through the use of
the RPy library. In addition to these libraries, the relational database management system (RDBMS)
MySQL is used to store the input data as well as part of the constructed data. See (DuBois, 2007;
Oracle, 2011) for more information regarding the database functionality and (Dustman, 2013, 2007;
Python Software Foundation, o. J.-a) for the python interface to MySQL.

For the storage and process of spatial data the PostgreSQL object-relational database is used (see
Section 3.2 for data specifications). See (The PostgreSQL Global Development Group, 2012, 2013)
for documentation of the PostgreSQL database. In addition to the PostgreSQL database the PostGIS
database extender is used to add support for geographic objects. See (PostGIS, 2013) for further
information. For the storage and process of spatial data the PostgreSQL object-relational database is
used (see Section 3.2 for data further information and application possibilities see (Python Software
Foundation, o. J.-b; psycopg, 2013). Westra (2010) provides an overview of spatial analysis using the
python language.

The model architecture is based on an object oriented programing principle, not only because it is
built upon an object oriented programming language (python) but the structure of the model uses
all the advantages of an object oriented language, representing so each individual unit as an object
described by a language class. Many authors argue in favor of a true object oriented model (Ballas et
al., 1999; Miller, Hunt, Abraham & Salvini, 2004; Rahman et al., 2010). Having an object oriented
architecture sets the ideal platform for a development of the model towards an agent-based model
(ABM). Many authors acknowledge the benefits of an agent-based simulation, a simulation capable
of computing the emergence of properties arising from the interaction of single individuals (Birkin &
Wu, 2012). We see the combination of this (and other approaches e.g. Cellular Automata) as the di-
rection to go and therefore prepare our model for our future work towards an agent based urban model.



The objects in our model are not only objects interacting with each other but are build hierarchical,
where spatial objects are able to contain objects on a smaller geographical aggregation level. That
means that the object “Ward” contains “Building Blocks” which contain “Buildings” with have “Dwelling
Units” that have “Individuals”. This hierarchical architecture is not a simple relationship within the
tables stored in the database but the object is created with a node to the corresponding upper and
lower levels. This hierarchical architecture gives the developer a lot of flexibility, making it possible to
iterate trough all items in a given ward without having to connect them first, either through a spatial
join or through an id in a database table.

In the framework of my thesis I tested some of the most common approaches for the generation of
synthetic micro data: (1) Iterative Proportional Fitting (IPF); (2) Combinatorial Optimization (CO);
and (3) Generalized Regression and Weighting (GREGWT). All of these approaches present some ad-
vantage over the others.

The Combinatorial Optimization algorithm, more specifically a Simulated Annealing, based on the
guidelines presented by Harland et al. (2012) its particularly interesting for the case of Hamburg
because:

1. available data for the city of Hamburg is ideal for a simulated annealing, as I am able to directly
construct households containing individuals based on the micro-census data;

2. I can take advantage of an object oriented programming structure, simulating households and
individuals as object from the initial state of the simulation.

3. I need individual families (rather that weights) in order to allocate them to the building stock.

The IPF algorithm is a well-studied algorithm not only in the microsimulation community. Imple-
mentations of this algorithm are fast and robust. The output of the algorithm are weights of the
individual records of the initial survey. This algorithm does not take initial weights into account for
the simulation. The use of initial weights can be useful in certain scenarios where the generation of
synthetic population needs to be alight to a second aggregate.

GREGWT tries to minimize the weight distance, that is the distance between the initial weights of the
original survey and the estimated new weights. This minimization can be useful for certain scenarios,
but can also create problems during the simulation. Because of this extra constraint, the GREGWT
algorithm can fail to find appropriate estimations in remote areas where the population differs signifi-
cantly from the survey used in the re-weighting process.

3.1 Data Storage and Management

One of the most time consuming tasks of this thesis has been the data processing and data manage-
ment. We decide to store and maintain all the data on two different databases: (1) a MySQL database
dedicated to store all the demographic data and (2) a PostgreSQL database dedicated to store all the
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spatial data.

3.2 Data Storage and Management

database and create a synthetic population. On a second step we populate the buildings store in the
PostgreSQL database with the created synthetic families. An alternative to this method is discussed
on Section 7.2 where we create not only synthetic families but also a synthetic building stock. The
advantage of this method is that it allows us to simulate the heat consumption at a micro scale for the
entire country at a NUTS-3 level.

Figure 3.1 gives a schematic overview of the simulation architecture. In this figure both databases
are represented as well as the different available aggregation levels. The available spatial layers stored
in the postgreSQL database are used at different stages of the simulation. From aggregated statistics
we generate a synthetic population, in theory a synthetic population can be generated at any spatial
aggregation level. Limits to which level of aggregation a generation of a synthetic population are
attached to the availability of data. Problems with the presented method may also occur at a low
aggregation scale. Because the presented method is a reweighting algorithm rather that a synthetic
reconstruction mechanism the reweighting of a population at a very low aggregation level may have
difficulties achieving convergence because populations at these levels may be specific to the reweighted
population. This case is not very common as data at a very low level of aggregation is hard to get or
protected through data scrambling mechanisms.

The classification of the building stock can be achieved through the use of building typologies, see
Section 2.3 for a description of building typologies and Section 4.2 for the implemented method for the
automatic classification of the building stock through the use of building typologies.

The building stock data is retrieved from the city digital cadastre ALKIS and stored in the postgreSQL
database. The “raw” data is then processed into hierarchical python objects.

The classified building stock is populated by the synthetic families. The data of each individual
building (building geometry and other energy relevant parameters) and the resident living on them
(demographic characteristics and specific family schedules) is used as input for the estimation of heat
demand. The computation of heat demand can be performed via: (a) a heat balance method (see
Section 7.1) or a more detailed thermal simulation model (see Section 5.6).

Table 3.1 lists the used spatial layers in the analysis. Most of these layers are available directly from
the digital cadastre except for the layer containing the boundaries of the statistical areas. Most of the
data from the digital cadastre is very clean and does not need any special cleaning. The “extra” layer
added to the database, containing the boundaries of the statistical areas is not as accurate as the rest
of the digital cadastre. In this case problems can arise at the edges of the areas. In order to avoid
this, the internal engine of the model always takes the building (and other spatial objects) centroid to
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perform spatial joins between data layers.

Table 3.1: Main layers / data sources from ALKIS and the constructed spatial joins. This table
shows the example of the building (Geb) layer, similar spatial joins are constructed for the other layers
and follow a similar syntax

ID Layer-de Layer-en Layer-ALKIS

a HH Hamburg
b Bez Bezirk Borough Bezirke
c Std Stadtteil District Stadtteile_2010
d Sg S. Gebiete S. Area Statistische_Gebiete_utm
e BBZ Baublock Building Block AX75001
f USE Nutzung Actual use SD41000
g Gr Grundstück Lots AX11001
h Geb Gebaude Buildings AX31001

BJA Construction year AX31001_BJA
i Add Adresse Address AX12006-UTF

Probably the most important data layer is AX32001, this layer contains the geometrical and attribute
data from the building stock. The data containing information about the construction years of the
building stock is not stored in the same spatial layer, an attribute join is necessary in order to create a
layer with both: construction year and building geometry. The digital cadastre also provides address
points, this information is relevant for the allocation of consumption data to the individual buildings.
The lots data is used to extend the address information to all the buildings on the same lot.
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Figure 3.1: Geographical and population databases with main relationships of the simulation model
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3.3 Main Data Sources

For the presented method in this thesis we use the following data sets:

1. The 2010 German micro census1.

2. Census records available at a district level, which correspond to the Nomenclature of Territorial
Units for Statistics2,3 (NUTS 3) aggregation level.

3. The time-use survey4.

4. Historic demographic benchmarks for Hamburg districts5. This data set contains historical data,
describing the following parameters: (1) total population, (2) gender distribution and (3) foreign
national share.

5. Demographic projections for Hamburg until year 20306. The available projections for the city of
Hamburg are age/gender tables projected from base year 2008 until 2030.

6. The digital cadastre of the city of Hamburg ALKIS7 for the year 2010. The digital cadastre
contains information regarding the building stock of the city. This dataset contains: (1) the
geometry of the entire building stock of the city; and (2) some attributes of the individual
buildings like: construction year, construction type (single family house, terrace house, etc.),
number of stories, etc. We use a pre classified version of the cadastre performed by Muñoz H.
und Peters (2014a), describing the buildings as types of a defined building typology.

In order to create synthetic population at a small geographical level we need two base data sets: (1) a
micro data set containing individual records and (2) aggregated statistics available at the geographical
level we aim to reweight the dataset containing individual records. For the purpose of this simulation
we want to create a synthetic population describing the demographic characteristics of the individuals
and characteristics of the dwelling units these individuals reside on. In order to generate such a data
set we select data describing three different aggregation units: (1) individuals, (2) household/dwelling
units and (3) buildings. Table 3.4 list the used variables from the two data sets.

1forschungsdatenzentrum.de/bestand/mikrozensus
2http://ec.europa.eu/eurostat/web/nuts/overview
3http://database.espon.eu/db2/jsf/DicoSpatialUnits/DicoSpatialUnits_html/ch01s01.html
4forschungsdatenzentrum.de/bestand/zeitbudget
5Bevölkerungsentwicklung in Hamburg
www.statistik-nord.de/daten/bevoelkerung-und-gebiet/bevoelkerungsstand-und-entwicklung
Years 2011–2013 Update based on Zensus 2011 (Fortschreibung auf Basis des Zensus 2011) Years 2003–92011 Update
based on Zensus 1987 (Fortschreibung nach den Ergebnissen der Volkszählung 1987)

6Bevölkerungsvorausberechnung für Hamburg
www.statistik-nord.de/publikationen/publikationen/statistische-berichte/bevoelkerung-und-gebiet/

7ALKIS Amtliches Liegenschaftskatasterinformationssystem
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3.3.1 The Micro Census

The micro census contains 489 630 individual entries. Each entry in the data set corresponds to a
real person living at the time in Germany. The individual records can be group into families with
help on one of its attributes. The data set has a detailed description of each individual, describing the
individual with help of 529 attributes. Out of this 529 attributes we use 11 to fetch a representative
individual form the time-use survey.

The free available German micro census contains 23, 374 records and corresponds to the 3% of the of-
ficial micro census data for scientific use containing 1% of the total German population. This data set
represents 0.03% of the German population. The file can be downloaded from the German Scientific
Data Center8.

Table 3.2 shows the data structure of the micro census. Both R libraries, GREGWT and IPF, accept
this data format as input. In the case of the SAS implementation of the GREGWT algorithm this table
had to be translated to binary data, because the GREGWT method requires all individual categories
listed as columns on the input matrix. The R implementation of the GREGWT algorithm will make
this conversion internally.

Table 3.2: Survey data structure

ID Age Marital Status Household Size Weights

1 65. . . 74 Divorced 1.person 90,173
2 40. . . 49 Married 4.persons 119,987
3 40. . . 49 Married 4.persons 119,987
4 18. . . 24 Single 4.persons 119,987
5 75.and.over Widowed 4.persons 119,987
...

...
...

...
...

3.3.2 The Census Data

The synthetic population is represented as the reweighted German micro census, we reweight this sur-
vey with help of an R library implementing the GREGWT method (Muñoz H., Vidyattama & Tanton,
2015a). The GREGWT method is classified as a deterministic reweight method (Tanton et al., 2014).
Deterministic reweighting methods aim to reweight a survey to match known aggregated values of
geographical areas. The size and available data of these geographical areas vary between countries.
For the European Union a standard incorporating the different national definitions exist. This is the
Nomenclature of Territorial Units for Statistics (NUTS9) standard. This nomenclature described four
hierarchies: (0) national territories; (1) NUTS–1; (2) NUTS–2; and NUTS–3. A reweighting of a na-
tional survey could be implemented at any of the NUTS levels. Depending on the research question a
suitable geographical area should be selected. These geographical areas have different names on each

8http://www.forschungsdatenzentrum.de/bestand/mikrozensus/cf/2010/
9http://ec.europa.eu/eurostat/web/nuts/overview
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country and the authors referee them according to the use case location. These areas are known as:
(a) Summary Files in the U.S.; (b) Profile Tables or Basic Summary Tabulations (BSTs) in Canada;
(c) and Small Area Statistics in the U.K. (Pritchard & Miller, 2012).

The census data listed on Table 3.4 comes from the census 2011 and can be accessed through the offi-
cial web portal of the census 201110. All the results from the census can be accessed through the web
portal. Unfortunately there is no API to retrieve the data remotely. In order to download the data,
the desired table has to be created giving as input the desire parameters and areas to be downloaded,
we export this table as a CSV file but the data can be exported into different data types.

Table 3.3: Used benchmarks from the 2011 Census and corresponding micro census attributes

MC Code∗ Census Code Unit∗∗ Description

EF1 / / Federal State (NUTS 2)
EF952 / Person Weight
EF44 ALTER_01JS Person Age (yearly stages)
EF44 ALTER_KURZ Person Age (five classes of years)
EF49 FAMSTND_AUSF Person Marital status (in detail)

FAMSTND_KURZ Person Marital status
EF809 FAMTYP_LEB Person Type of family nucleus (by living

arrangement)
EF46 GESCHLECHT Person Sex
EF20 HHGROESS_KLASS Person Size of private household
EF809 HHTYP_FAM Person Type of private household (by

family)
EF368 STAATSANGE_KURZ Person Citizenship

RAUMANZAHL Dwelling Number of rooms
EF491/95 WOHNEIGENTUM Dwelling Ownership of dwelling
EF492 WOHNFLAECHE_20S Dwelling Floor area of the dwelling (20m2

intervals)

EF494 BAUJAHR_MZ Building Year of construction (micro cen-
sus classes)

EF495 EIGENTUM Building Type of ownership of building
EF570 GEBTYPBAUWEISE Building Type of building (construction)
EF496 HEIZTYP Building Type of heating
EF635 ZAHLWOHNGN_HHG Building Number of dwellings in a building
∗Micro Census Code
∗∗Refers only to Census

The structure of the table describes geographical areas by parameters categories. This table represents
the total number of individuals corresponding to the parameter in a specific area. In this case the
categories of the parameters from both datasets match, this is not the normal case. Many times a time
intensive preparation of the input data is needed in order to reweight the sample.

10https://ergebnisse.zensus2011.de/

73

https://ergebnisse.zensus2011.de/


Table 3.4: Structure of the census data for the four simulation areas

Area Area Code Under.3 3. . . 5 . . . Divorced . . . 1.person . . .

Hamburg 2 47757 45575 . . . 143354 . . . 400440 . . .
Berlin 11 94867 86753 . . . 333989 . . . 860542 . . .
Bremen 4011 12996 12714 . . . 48267 . . . 121056 . . .
Bremerhaven 4012 2643 2822 . . . 9723 . . . 26444 . . .

3.3.3 Time-Use Survey

Similar to the micro census, the time-use survey consists of individual records of people. Each record
contains a wide set of attributes, for the method described on this thesis we make use of just a small
section of the survey. In order to handle this data set in a more efficient way, we divided the survey
into 11 different tables. Two of these tables are used to generate the needed data for the analysis on
this thesis. The first table describes general characteristics of the individuals. This table contains 397
attributes and 13 691 records. The second table contains more records because each individual may
have recorded a time use journal for more than one day. This table contains 148 attributes, 144 of these
attributes represent the location of the individual in a 10 minute interval. The other four attributes
are: (1) an internal unique ID;(2) a household ID;(3) the individual ID; and (3) a day ID.

74





4 The Use of Building Typologies1

4.1 Estimating Heat Demand for Small Urban Areas

The planning of cities and the planning of the underlying infrastructure to support the resources de-
mand of the individual buildings is a challenge for both urban planners and infrastructure planners. In
this section we discuss the first step into a knowledge base urban planning schema. In order to achieve
such a planning schema we need information about the urban areas, here we present an approach to
classify the building stock into building types for the estimation of heat demand.

We want to provide a reproducible and flexible method for the estimation of heat demand of ur-
ban areas at a low aggregation level. In this section we describe our first attempt to produce such
a method. In order to make the method reproducible we create a github repository containing all
the required scripts to reproduce the presented computations and the data used in this analysis. The
provided data had to be decoupled from its spatial reference to ensure anonymity. We also provide an
Ipython notebook containing step by step explanations on how to reproduce the classification process
and estimation of heat demand with the provided scripts. All this data can be found under the link:
https://github.com/emunozh/btyp.

In order to ensure flexibility we have constructed our set of scripts so that these scripts can be ex-
panded to incorporate new parameters and new functions. The definition of individual typologies are
hard coded into individual python files. The addition of new typologies would require to only provide
a new python file. In order to facilitate this process we also provide a small script to generate a base
typology for the easy generation of new typologies. The syntax used for this file can be compared to
a JSON file. A knowledge of the python language is not a requirement for the use of these scripts.

We present a method for the estimation of heat demand of small urban areas at a low aggregation
(individual buildings). For this estimation we make use of building typologies which provide us with
a specific heat demand for each building type. Because the use of building typologies is central to
this endeavor we present a comparison of different building typologies used for the estimation of heat
demand in space. In this chapter we compare and asses the performance of these typologies.

We divide this chapter into three main sections: (1) Section 2.3.1 describes the used typologies and
the general structure and use of building typologies. This section focuses on German typologies but
mentions also the use of building typologies for other European countries; (2) Section 4.2 presents the
developed method for the classification of the buildings stock; and (3) Section 4.3 presents and discuss

1This chapter is heavily based on: Muñoz Hidalgo, Dochev & Peters (2015) and Muñoz Hidalgo & Peters (2015)

https://github.com/emunozh/btyp


the performance of the individual building typologies presented in Section 2.3.1.

In order to give a first comparison between typologies we plot the heat demand values of the types of
the typologies we want to analyze. In Figure 4.1 we can see difference between typologies, we are able
to compare the typologies in this way because all of them follow a similar classification structure. All
the typologies compared in this section classify the single types by construction epoch and construction
type. There are some small differences by the exact construction epoch of some typologies, there are
differences between the division years (±1 year) and between the number or epochs. So, for example,
in the last epoch not all typologies have a type representing this last construction epoch.

Heat demand for all building types arrange by construction year

0

100

200

300

typo

H
ea
t
de
m
an

d
[k
W
h
/m

2
a
]

Typologies
Blesl
IWUde
IWUhe
BSU
EcoFYZ

data source: (Born et al., 2003; Blesl et al., 2007; BSU, 2011; Hermelink et al., 2011; Loga et al., 2011)

Figure 4.1: Different values for heat demand of building typologies used in Germany. The building
types are arrange by construction year and construction type along the X-axis. The Y-axis shows the
specific heat demand of the single typologies in [kWh/m2a]

In Figure 4.1 the types of the different typologies are arranged by construction year (construction
epoch), the graph clearly shows the improvements in heat demand over the years, independent of con-
struction type. The figure only contains typologies developed for Germany as are these typologies the
ones we want to understand and analyzed.
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4.2 Automatic Classification of the Building Stock

In this section we present the developed methodology to classify the building stock into the different
types of the presented typologies in the previous section. The buildings from the digital cadaster
cannot be directly classified into the building typologies because: (1) the building attributes from
the digital cadaster do not correspond to the building attributes of the building typologies; and (2)
some attributes of the digital cadaster are not available for the entire building stock. The digital
cadaster has a different classification for construction types to that of the buildings from the building
typologies. In Sub-Section 4.2.2 we present the constructed method to cope with this problem. Some
attributes available in the digital cadaster are not available for the entire building stock, this is spe-
cially problematic for buildings without a construction year, because the construction epoch is one of
the key parameters to classify the buildings. The proposed algorithm for the classification can cope
with unknown parameters, taking a random type from the used typology is case of missing attributes.
We present two methods, or two arrays as are the arrays which differentiate the methods: (1) using a
binary array; and (2) using a float array.

The aim of our research is to develop a generic method that can be used with any typology on any
given building stock at a micro level, that is, each building has a building type and all its attributes.
The combination of both data-sets: a building typology and a the geometry of the digital cadastre,
create an optimal base for the estimation of heat demand. The building typology provides information
about building materials and other characteristics of the individual building that are not present in
the digital cadastre. The digital cadastre provides two important characteristics of the building stock:
(1) the building geometry; and (2) the building location in space. The first attribute is important for
the calculation of building heating space and transmission area of the building envelope, the second
parameter is essential for the planning the distribution of heat.

In order to achieve these goals we developed a methodology that is able to cope with data gaps, both
in the building stock database and in the building typology itself. The first step is to develop a data
structure for the formal definition of the typologies, our computer program has to be able to read
and understand the typology. In order to achieve this we have design a simple data structure, that is
flexible and can be adapted to a new or to a different typology (see Sub-Section 4.2.2). We call this
process “Typology Hard Code” as we translate the information of each individual typology (until now
represented in simple tables) into a data structure expressed in the python language, that is, machine
readable. We use the python language because the rest of the algorithm is also developed in this
language, nonetheless, this data type may as well be defined in other more common data types like
JSON2 or xml3.

In this section we: (a) describe the data used in the analysis; (b) present the postulated data structure
to represent the typologies; and (c) conclude the section with the definition and discussion the filter
array.

2JavaScript Object Notation (JSON)
3Extensible Markup Language (xml)
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4.2.1 Data Sources: The Digital Cadastre and Gas Consumption Data

For the analysis performed in this section we make use of two main data sources (excluding the ty-
pology data): (1) the digital cadaster system of the city of Hamburg, ALKIS; and (2) monitored gas
consumption values provided by the heat provider E.On-Hanse4. The data from the digital cadaster
is a snapshot of the year 2010. With the available information of the digital cadaster we classify the
buildings into types of the building typology under analysis and attribute each building with a specific
heat consumption value (the corresponding value of the building type). We then estimate the living
space of the buildings for the computation of absolute energy demand of the individual buildings. A
detailed description of this process is presented in Section 4.3. The monitored gas consumption has
been converted by the provider into heat demand values, presenting them as heat consumption in
[kWh/a]. The consumption values used in this analysis correspond to the same year of the available
digital cadastre 2010.

The original gas consumption dataset contains 308 observations. Each observation represents the gas
consumption of a set of buildings. This forces us to analyze the performance of the individual typologies
at this aggregation level. We are able to aggregate the estimated heat demand (through the typologies)
because we know the address of each building within the buildings sets of the gas consumption data.
Out of the original 308 observation we filter some implausible values e.g. the gas consumption was too
low to be used as heating, leaving 290 observations in the data set.

The digital cadastre for the city of Hamburg has information on 369,416 individual buildings. We only
classify the buildings that are represented in the gas consumption data (5,300 buildings). Although the
building typologies are designed for the classification of the residential sector only, we have classified
all the buildings including non-residential buildings. In our analysis we distinguish between residential
and non-residential buildings for the computation of typology performance.

4.2.2 Typology Hard Code

The data structure presented here expands the building typology beyond the commonly used parame-
ters of construction year and construction type. The definition of a typology under this data structure
makes use of 6 parameters: (1) building use; (2) construction type; (3) construction year; (4) living
space; (5) number of floors; and (6) roof type. The selection of these parameters arise from the available
parameters on the digital cadaster and define parameters in the building typologies. This data struc-
ture is open and flexible, meaning that it could be expanded, including different parameters depending
on the available information on the analyzed urban area and the available data. The parameters used
in our analysis are the combination of available parameters form the digital cadaster and parameters
used on the individual typologies. The algorithm processing these parameters will eventually have to
be updated, it is therefore imperative to use a transparent and open source algorithm.

4http://www.eon-hanse.com
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In the following sub-sections we describe these parameters, the relevance of the individual parameters
and the use of these parameters within the typologies.

Building Use

The first parameter, building use, is important in order to define the analysis scope of the typology.
With this parameter we can filter buildings from the digital cadaster by use. So for example if we use
a typology design for the residential sector we can filter all buildings that have a not residential use.
In our specific case the available consumption data, delivered by the gas provider, are aggregated in a
way in which it is impossible to filter just the heat consumption from the residential sector. Therefore
for our analysis we have to use the same typology for both residential and for non-residential buildings,
in this case we simply change the typology code so that no building gets filtered by its use.

Integrating this parameter will allow us to eventually expand the analysis scope, to include an anal-
ysis of the non-residential sector. For such an analysis the parameter building use will make a first
classification of the individual buildings into residential, commercial and other common uses. There
are similar approaches, implementing building typologies, for the classification of the tertiary sector.
Such an approach is presented by Loga et al. (2011), where an analog typology was developed for the
non-residential sector. A different approach is presented by Blesl et al. (2007), in his approach build-
ings are classified by the required temperature demand for a specific building use and its underlying
process. The integration of the last approach will require a redefinition of the source code under our
postulated classification model.

Construction Type

The construction type is a very important parameter in the definition of the different buildings typolo-
gies and for the classification. The challenge dealing with this parameter, is that the classification of
buildings into a construction type is a rather subjective matter. There is not a numerical definition or
a systematic behind the construction types. That’s why each typology may have a different definition
and a different classification of construction types. The second problem is that the digital cadaster for
the city of Hamburg has its own classification scheme.

In order to cope with this problem we had to define rules to merge the different construction types
from the typology with the construction types from the digital cadaster.

These rules are defined in the form of a simple table (see Table 4.1). Because of the stochastic nature of
the algorithm the rules in the table show possible combinations between the construction types, rather
than deterministic rules to combine the different construction types. In Table 4.1 the construction
types from the different typologies are represented horizontally in the table and the construction types
from the digital cadaster, vertically. The X marks a possible combination between this construction
types. This method may define that all construction types are possible, for example if the building
is classified as of construction type “other” in the digital cadaster this building can be attributed to
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construction type from the typology. This attribute is also used to filter constructions that have a
residential use but are not necessarily heated, at least not with the same intensity. So, for example we
filter all the garage floor area from our analysis with this parameter.

Table 4.1: Construction types defined in the digital cadaster and aggregation scheme for typologies

Building typologies

E
F
H

R
D
H
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M
H

M
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SH X
DSB X
HR X X X X
TH X

FBB X X X X
BBCD X X X

GH X X X
O X X X X X X X X X

OH X X X X X X X X X
SG
DG
CG

(EFH) Single family house (RDH) Terrace house (KMH) Small apartment house (MFH-E) Single apartment house (MFH-G) Group apartment house

(MFH-W) Building block apartment house (MFH-H) High-rise apartment house (GMH) Large apartment house (HH) High-rise (SH) Semi-detached

building (DSB) Detached single building (HR) House in a row (TH) Terrace house (FBB) Free-standing building block (BBCD)Building block in

closed design (GH) Group building (OH) Open hall (O) Other (SG) Single garage (DG) Double garage (CG) Collective garage

Construction Year

The third parameter is the most common parameter, especially for the German typologies. This is be-
cause in Germany the quality of the building envelope has been regulated since the first “Wärmeschutzverord-
nung” (WSVO) Heat conservation ordinance in 1977. Since its first introduction, the German govern-
ment has systematically introduced new regulations over the past decades creating substantial gaps in
the quality of the building envelope over the years.

Other approaches in Europe developed for estimating heat demand at a neighborhood level do not
take the building construction epoch into account but rather population density of the neighbor-
hood (Finney, Chen et al., 2012; Finney, Sharifi et al., 2012; Finney et al., 2013). A classification of
the building stock by construction epoch may not be well suited for areas where there is no substantial
difference of the thermal properties of the building envelope between epochs.

The defined ranges of construction years in the algorithm are design to be used by any of the typologies
analyzed in this section. For example the IWU-de typology has an extra construction period that none
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of the other building typologies have (see Table 7.1). The defined data structure contains construction
periods that satisfy all the construction periods define in the individual typologies. If a single typology
contains fewer periods than the ones define in the data structure, the periods will be simply merge
together. See next subsection for a more detailed example.

Based on these two parameters (construction period and construction type), a “base typology” is gen-
erated, able to contain all the analyzed typologies. Table 4.2 is a graphical representation of this base
typology with all the different typologies filling it. The table also contains the type number for each
typology. These numbers are important as these are used within the algorithm to filter the single types
of each typology. In the case of the construction year the extreme range of the typology will include
all the lower or upper values. So for example in typology (3) IWU-he (highlighted green in the table)
construction period [1860–1910] will be translated to construction period [< 1910]. This is defined in
the hard code of the typology by defining both periods equally [1860–1910] = [< 1859].

Table 4.2: Base typology for the algorithm and position of
the analyzed typologies
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(a) EFH 01 05 09 13 18 23 27 31 35
(c) RDH 02 06 10 14 19 24 28 32 36
(d) KMH 03 07 11 15 20 25 29 33 37
(g) GMH 04 08 12 16 21 26 30 34 38
(j) HH 17 22

(a) EFH 01 03 07 11 15 20 25 28 31 34
(c) RDH 04 08 12 16 21 26 29 32 35
(d) KMH 02 05 09 13 17 22 27 30 33 36
(g) GMH 06 10 14 18 23
(j) HH 19 24

(a) EFH 01 07 11 15 20 26 29
(b) EFH-b 02
(c) RDH 03 08 12 16 21 27 30
(d) KMH 04 09 13 17 22 28 31
(e) KMH-b 05 23
(g) GMH 06 10 14 18 24
(j) HH 19 25

(a) EFH 01 05 09 13 17 21 25
(c) RDH 02 06 10 14 18 22 26
(d) KMH 03 07 11 15 19 23 27
(g) GMH 04 08 12 16 20 24 28
...

...
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Table 4.2: (continued)

<
18

60

18
60

-1
91

8

19
19

-1
94

8

19
49

-1
95

8

19
59

-1
96

8

19
69

-1
97

8

19
79

-1
98

3

19
84

-1
99

4

19
95

-2
00

0

>
20

00

(a) EFH 01 06 11 16 22 28 33 38
(c) RDH 02 07 12 17 23 29 34 39
(f) MFH-E 03 08 13 18 24 30 35 40
(h) MFH-G 04 09 14 19 25 31 36 41
(i) MFH-W 05 10 15 20 26 32 37 42
(k) MFH-H 21 27

(EFH) Single family house “Einfamilienhaus”; (RDH) Terrace house “Reihen-
haus”; (KMH) Small apartment house “Kleines Mehrfamilienhaus”; (MFH-E) Sin-
gle apartment house “Mehrfamilienhaus Einzelhaus”; (MFH-G) Goroup apartment
house “Mehrfamilienhaus Gruppenhaus”; (MFH-W) Building block apartment house
“Mehrfamilienhaus Wohnblock”; (MFH-H) High-rise apartment house “Mehrfamilien-
haus Hochhaus”; (GMH) Large apartment house “Großes Mehrfamilienhaus”; (HH)

High-rise “Hochhaus”. Blesl ; IWU-de ; IWU-he ; BSU ; (5) EcoFYS ;

Floor Space

The floor space is an important parameter used in many of the typologies, this parameter can be used
to differentiate between small apartment house (KMH) and big apartment house (GMH). Not all ty-
pologies define the average floor area of its types. In Figure 4.2 we plot the floor space used to estimate
heat demand of three building typologies for which the floor space is defined (a, d) Blesl, (b, e) IWU-de
and (c, f) IWU-he. The figure shows in the first row (a, b and c) the floor space for all types while the
second row (d, e and f) shows only types with more than 4,000 m2. In the figure we also plot the limits
line (red), this limits represent the rules for the classification of buildings into building types based on
floor space. With these limits a probability for the filter array (see Sub-Section 4.2.3) can be defined.
The definition of this probability uses 4 values representing: (1) probable, no building gets filtered out
(1.0); (2) less probable, 20% of buildings are not attributed to this typo (0.8); (3) un-probable, 40% of
buildings are not attributed to this typo (0.6); and (4) impossible, 100% of buildings are not attributed
to this typo (0.0). A summary of these probabilities for the typologies are described in Table 4.3.

The living space is estimated for all the buildings in the digital cadaster. We estimate the floor space
as:

sqm = groundarea× stories× k (4.1)

Where; sqm is the living space in m2; groundarea is the polygon area of the building in the digital
cadaster; and k is a constant (0.6), differentiating so construction space (exterior end internal walls)
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Table 4.3: Probabilities assign to building types as function of floor space

EFH (a) KMH (d) GMH (g) HH (j)
living space EFH-b (b) KMH-b (e) MFH-G (h) MFH-H (k)

[m2] RDH (c) MFH-E (f) MFH-W (i)

< - 400 1.0 0.6 0.0 0.0
400 - 600 0.6 1.0 0.6 0.0
600 - 4 000 0.0 0.6 1.0 0.6

4 000 - 10 000 0.0 0.0 0.6 1.0
> - 10 000 0.0 0.0 0.0 1.0

from living space.

This parameter is only used with the float array filter (see Sub-Section 4.2.3 for a detail description
of the array filter) and only for the three typologies (blesl, iwu-de, iwu-he) which define the average
living space of its types.

Number of Floors

The number of floors is directly retrieved from the digital cadaster. This parameter is defined in some
typologies and can help us to classify the buildings between construction types. This parameter is only
used with the float array filter (see Sub-Section 4.2.3 for a detail description of the array filter), as
defining this parameter in the binary filter may lead to inconsistencies within the data. E.g.: a building
in the digital cadaster may have no possible type because it eliminates all possible types, if the building
is of construction type (KMH) and is 10 stories high. In the defined typology, a particular building
may be correctly attributed a construction type, but may be filtered out, because of a deterministic
definition of a limit in the number of stories category. In the float array this will only decrease the
probability of a type being peeked out.

The “rules” for the attribution of probabilities for the individual types, as function of number of
stories, works similarly to the attribution of probabilities as a function of the living space (see sub
Sub-Section 4.2.2). In Table 4.4 the number of stories for the different types of two typologies (iwu-he
and Ecofys) are plotted along with the defined limits needed for the probability definition. The defi-
nition of these probabilities can be seen in Table 4.4.

Roof Type

Some typologies define the type of roof of the individual types. Because we can gather this informa-
tion from the digital cadaster, the parameter can be used to classify the buildings. This parameter is
only used with the float array filter (see Sub-Section 4.2.3 for a detail description of the filter array).
Figure 4.4 shows the different roof types per construction type for two typologies.
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Table 4.4: Probabilities assign to building types as function of number of stories

EFH (a) KMH (d) GMH (g) HH (j)
EFH-b (b) KMH-b (e) MFH-G (h) MFH-H (k)

# stories RDH (c) MFH-E (f) MFH-W (i)

< - 4 1.0 0.6 0.0 0.0
4 - 5 0.6 1.0 0.6 0.0
6 - 9 0.0 0.6 1.0 0.6
9 - 15 0.0 0.0 0.6 1.0
> - 15 0.0 0.0 0.0 1.0

4.2.3 Filter Array

In this subsection we present the functionality of the filter array with a small example, presenting both
array types: (1) the binary array; and (2) the float array.

Imagine we define construction period [< 1859] as att1 and construction period [1860 − 1918] as att2
and we analyze typology IWU-de (see Table 7.1) and typology BSU (see Table 2.9). Typology IWU-de
has 36 types and typology BSU has 28 types. We create two binary vectors, one for each attribute att1
and att2, for each typology, represented in Equation 4.2 and 4.3 for the BSU and IWU-de typology.
The length of these vectors correspond to the number of types on the corresponding typology.

att1 bsu = [1, 0, 0, . . . , 0]

att2 bsu = [1, 0, 0, . . . , 0] (4.2)
att1 iwu−de = [1, 0, 0, . . . , 0]

att2 iwu−de = [0, 1, 0, . . . , 0] (4.3)

Each element in the vector represents the probability of being of certain building type, given that atti
is true. In the binary vector we only define the probability as yes/no values represented by 1 and
0. In this case, position 1 of vector atti bsu corresponds to building type [efh/dhh < 1918], position 2
corresponds to type [efh/dhh 1919–1948] ans so forth (see table 2.9). If we want to give a probability to
two different buildings having two different construction years, e.g.: (1) building (a) has a construction
year = 1900; and (2) building (b) has a construction year = 1800. In this example all types that do not
correspond to the given construction period will have a probability of 0, they will be filtered out. We
still have different types that satisfy this restriction. In a second step we apply the same procedure,
but using the construction type as filter. After this filter we may still have two options, in this case one
of these types will be randomly selected (see Figure 4.5a). We perform this filtering a defined number
of times (i.e. Monte Carlo) defining so the possible distribution of building types of that particular
building and subsequent, the heat distribution, and therefore the attached uncertainties, of heat supply
for small urban areas.
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Because some typologies define the average living area and the average number of stories we can use
these parameters to further filter possible types for a specific building. In order to do this we apply
a float array, which defines the probability of being from a certain type as? float5 values between 1.0
and 0.0 (see Figure 4.5b).

With this method we can define a matrix containing all the filter probabilities for each attribute de-
fined in the typology, if an attribute is not defined in the typology the probabilities for this attribute
(vector) will all be equal to 1. The matrix can be defined as in Equation 4.4, and a probability vector
for each single building can be extracted, given the individual parameters of the building taken out
of the digital cadaster. This vector is used to choose a single type for the typology, the mathematical
expression of this vector is written in Equation 4.5 and Equation 4.6. The entire system is graphically
described on Figure 4.5.

attm,n =


typ1 typ2 · · · typn

att1 att1,1 att1,2 · · · att1,n
att2 att2,1 att2,2 · · · att2,n
...

...
...

. . .
...

attm attm,1 attm,2 · · · attm,n

 (4.4)

min =
(
min(typ1) min(typ2) · · · min(typn)

)
(4.5)

p =
(
min1 min2 · · · minn

)
÷
∑

min (4.6)

Figure 4.5 shows the two developed arrays, the first line of the arrays represent the possible building
types (A, B, C, etc. . . ). Each array has 4 attributes (Atti) that will filter the typologies depend-
ing on the building characteristics. The first example (a) representing the use of a binary array, in
which attributes filter certain typologies deterministically. In this example the building X has at-
tributed Att1 and therefore the probability of building X of being of type A is 0. and the second array
(b) representing the use of a float array, in which attributes filter the typologies in a probabilistic
way. In this example the building X has attribute Att1, the probability of building X of being of type
A remains 0, but the probability of this building of being of a different type is also defined in this array.

5float as in number definition in the python language, see http://docs.python.org/2/library/stdtypes.html
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(d) Blesl < 4000m2 (e) IWU-de < 4000m2 (f) IWU-he < 4000m2

data source: (a-d) (Blesl et al., 2007) (b-e) (Loga et al., 2011) (c-f) (Born et al., 2003)

Figure 4.2: Different values for living space of building typologies used in Germany. The building
types are arrange by construction type in alphabetical order along the X-axis. The Y-axis shows the
living space of the single typologies in [m2]. EFH; EFH-b; GMH; HH; KMH; KMH-b; MFH-E; MFH-G;
MFH-H; MFH-W; RDH
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(a) IWU-he (b) EcoFYS
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data source: (Born et al., 2003; Hermelink et al., 2011)

Figure 4.3: Different values for number of floors of building typologies used in Germany. The building
types are arrange by construction type in alphabetical order along the X-axis. The Y-axis shows the
number of stories of the individual typologies. EFH; EFH-b; GMH; HH; KMH; KMH-b; MFH-E;
MFH-G; MFH-H; MFH-W; RDH
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Roof types for construction types of two typologies

EFH HH MFH-E RDH
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0.
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0

data source: (Born et al., 2003; Hermelink et al., 2011)

Figure 4.4: Different values for roof types of building typologies used in Germany. The building
types are arrange construction type in alphabetical order along the X-axis. The Y-axis shows the roof
types of the single typologies. EFH; EFH-b; GMH; HH; KMH; KMH-b; MFH-E; MFH-E; MFH-G;
MFH-H; MFH-W; RDH. (sa) pitched roof, “Satteldach”; (m) curg roof, “Mansardendach”; (w) hip roof,
“Walmdach”; (f) flat roof, “Flachdach”; (so) other, “Sonstiges”.
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(a) Filter using a binary array (b) Filter using a float array

A B C D E F
⇓ ⇓ ⇓ ⇓ ⇓ ⇓

Att1 0 1 1 1 1 1
Att2 1 1 0 1 0 1
Att3 1 1 1 1 1 1
Att4 1 1 1 1 1 0

min 0 1 0 1 0 0

p 0 .5 0 .5 0 0

A B C D E F
⇓ ⇓ ⇓ ⇓ ⇓ ⇓

Att1 0 1 2 3 4 4
Att2 4 4 0 4 0 4
Att3 4 4 4 4 4 4
Att4 4 4 3 2 1 0

min 0 1 0 2 0 0

p 0 .3 0 .6 0 0

–, B, –, D, –, – –, B, –, D, –, –

⇓ ⇓
B D

Figure 4.5: Example of the two developed arrays
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4.3 Heat Demand and Heat Consumption

In this section we present: (1) the performance of the analyzed typologies; (2) a simple visualization
of the result in space; (3) a discussion regarding the performance of buildings typologies for the anal-
ysis of heat demand in space; and (4) present some possible implementation of the presented method
and future path in our analysis. We present a comparison of the typologies and analyze their perfor-
mance in a small urban area in the city of Hamburg, Germany. We use this urban area because we
have access to gas consumption data for this area, supplied as part of a monitoring program, mak-
ing it possible to analyze the performance of the different typologies for the estimation of heat demand.

The monitoring data is suboptimal for this analysis but is the only data we have access to for an urban
area for which we also have data regarding the characteristics of the building stock. The monitoring
data consists of gas consumption data given as consumed volume of gas, this has been transformed
to heat consumption data. The major problem of this data set for the analysis of the performance of
building typologies for the estimation of heat demand is the aggregation format. The data set records
monitoring points, each point represents a group of buildings, the building groups contain both resi-
dential and non-residential buildings. The building typologies analyzed in this section are calibrated
to estimate the residential part of the building stock only. Because we know which building is in each
group, we can at least know what percent of the heated area corresponds to the residential sector. This
makes it possible to weight the observation points by heated residential floor area.

4.3.1 Performance of the Individual Typologies

In order to quantify the performance of the individual typologies we calculate the relative difference
between consumption and demand for each single monitoring point, defined as Wd. The weighted
mean of the single monitored points serves as a parameter to define the performance of the typologies
and compare them, see Equation 4.7. The mean is weighted by the share of residential floor space
per aggregation level (monitoring point), define by ri. The share of residential floor space is simple
calculated as the percentage of residential floor space form the total estimated floor space in that
monitoring point. So for example, if a given monitoring point has only non-residential buildings ri = 0
the difference between consumption and demand for that given point will not be considered for the
weighted mean.

This method performs relatively well for this particular urban area, but might not be the best ap-
proach for other urban areas with a larger and more energy intensive non-residential building stock.
The floor space of buildings is good indicator for heat demand of the residential sector, but might not
be adequate as an indicator of gas consumption for the non-residential sector. A small business might
be using large quantities of gas for more than just heating in this case the weighting by floor space
would not be enough for the performance analysis of building typologies. On this specific area the
non-residential buildings do not affect the overall performance of the individual typologies, Figure 4.8
shows the result for monitoring points which contain exclusively residential buildings and the resulting
weighting mean. Although the figures are different the performance of the individual typologies follows

90



the same order as with the sample containing non-residential buildings.

Wd = 1÷ n
n∑
i

Ci ÷Di ×Ri (4.7)

Where C represent the monitored gas consumption for measure point i, D represents the average (1000
iterations) heat demand aggregated to point i and R represents the share of residential floor space in
point i

We present four results from the comparison as: (1) the relative difference between demand and con-
sumption weighted by share of residential floor area (see Table 4.5); (2) the difference of the sum of
demand and consumption for the entire analyzed area (see Table 4.6); (3) the percentage of measuring
points for which the developed algorithm over estimated heat demand (see Table 4.7); and (4) devia-
tion of a weighted Z-statistic (see Table 4.8). In all four tables we present the results for both types
of arrays (B) binary and (F) float, for three limit values l. These limit values define the maximum
value taken into account for the analysis. These limit allows us to differentiate the performance of the
typology for different consumption levels.

Table 4.5: Average relative difference between demand and consumption for three different limit point
l

l = 1e+ 07 l = 1e+ 06 l = 1e+ 05
B F B F B F

Blesl 1.09 1.09 0.98 0.99 0.53 0.55
IWUde 1.12 1.12 1.01 1.02 0.54 0.55
IWUhe 0.95 0.95 0.85 0.86 0.46 0.47
BSU 0.94 0.94 0.81 0.81 0.42 0.42
EcoFYS 0.98 0.98 0.86 0.86 0.43 0.43

Table 4.6: Difference between monitored gas consumption and estimated heat demand in GWh

l = 1e+ 07 l = 1e+ 06 l = 1e+ 05
B F B F B F

Blesl 73.64 99.62 77.68 86.61 7.74 7.93
IWUde 56.57 83.83 71.85 81.71 7.28 7.35
IWUhe 60.81 108.23 83.35 98.04 8.18 8.15
BSU 172.30 172.88 125.76 126.48 8.74 8.73
EcoFYS 129.04 129.33 105.24 105.73 8.73 8.72

In addition to both tables we present the comparison between consumption and demand for all five
typologies in form of tree graphs: (1) Figure 4.6 shows the comparison limited to values below 1e+ 07;
(2) Figure 4.7 shows the comparison limited to values below 1e + 06; and (3) Figure 4.8 shows the
comparison between estimated heat demand and monitored gas consumption for all monitored point
with exclusively residential buildings limited to values below 1e + 06. The first observation in these
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Table 4.7: Percentage of measuring point for with the algorithm over estimates the heat demand

l = 1e+ 07 l = 1e+ 06 l = 1e+ 05
B F B F B F

Blesl .52 .53 .60 .58 .84 .84
IWUde .47 .47 .54 .54 .84 .84
IWUhe .59 .59 .68 .67 .88 .84
BSU .69 .69 .76 .76 .92 .92
EcoFYS .65 .65 .74 .74 .92 .92

Table 4.8: Weighted sum of Z-statistic deviation of the single typologies

l = 1e+ 07 l = 1e+ 06 l = 1e+ 05
B F B F B F

Blesl -76.46 -78.95 -70.08 -76.94 - 825.76 - 708.57
IWUde -72.68 -73.73 -67.95 -73.07 -1983.75 - 1376.57
IWUhe -82.53 -89.89 -76.14 -84.06 -3534.62 -12094.36
BSU -79.41 -78.93 -72.56 -71.83 -1973.63 - 2022.98
EcoFYS -75.54 -74.98 -71.30 -70.59 -5726.72 - 4507.83

plots is a clear over estimation of the heat demand, This overestimation disappears when filtering
monitoring points with non-residential buildings on them. This overestimation may relay not on the
typologies itself but on the estimation of floor space of the individual buildings (see Equation 4.1) as
the total heat demand is computed by multiplying the specific heat demand of the assigned type by the
estimated living space. Another alternative explanation could be achieved by looking at the climate
conditions at the specific monitored year. The monitored year may have been an especially warm year,
making the heat consumption lower than the average, for which the typologies are designed. As the
aim of this section is to compare the performance between typologies, the overall performance of the
typologies plays a secondary role in this analysis.

Z = 1÷ n
n∑
i

di − ci√√√√∥∥∥∥∥ci − (1− ci)∑
Di × ri

∥∥∥∥∥
(4.8)

c =
Ci∑
iCi

(4.9)

d =
Di × ri∑
i (Di × ri)

(4.10)

Where Ci represents the monitored gas consumption for measured point i, Di the estimated heat de-
mand aggregated to measure point i and ri the share of non-residential floor space in measure point i
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Estimated heat demand [kWh/a]

Figure 4.6: Shows the monitored consumption of the measuring points and the computed demand
aggregated at the same level (gas consumption measuring point) using the float array, For values lower
than 1e+ 07

The result from this analysis shows little variation between typologies. This is very interesting because
the underlying data and methodology for the construction of the typologies differs between typologies.
While the typology from (Blesl, 2002) does not use any consumption values for the construction of
the building typology the IWUde typology (IWU, 2003) used data from the entire country. The per-
formance of the EcoFYS typology does not perform significantly better than the other typologies but
uses Hamburg specific data for the construction of the typology.

The result from our first analysis, comparing the performance of the typologies by the weighted mean
difference between estimated heat demand and monitored gas consumption, show little variation be-
tween the typologies. The use of the float array has a small effect on the typologies that provide
more background information, needed for the classification with the float array. In the case of the
BSU typology, that provides little background information, the use of the float typology has almost
no impact on the performance of the typology.

As expected both typologies developed for the city of Hamburg (BSU and EcoFYS) achieve the best
performance. This good performance applies only for consumption levels lover than 1e + 05kWh/a,
for the higher consumption levels the best performing typology is the IWU-he typology.
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Estimated heat demand [kWh/a]

Figure 4.7: Shows the monitored consumption of the measuring points and the computed demand
aggregated at the same level (gas consumption measuring point) using the float array, For values lower
than 1e+ 06

For the absolute difference between consumption and demand we observe the same pattern, for low
consumption levels the typologies constructed for Hamburg outperform the ones constructed for Ger-
many. At a higher consumption level the IWU-he typology performs best.

The percentage of estimation points that were overestimated follows a different pattern. Typology
IWU-de has the lowest share of overestimated points among all typologies. The share of overestimated
points does not vary much with a change in consumption level for this typology. The share of overesti-
mated points can be explained by the non-residential sector. The share of overestimated points reduced
drastically by analyzing only monitoring points with only residential buildings. For monitoring points
with only residential sector we see the opposite pattern, the building typologies underestimate heat
demand.

The Z-statistic gives us a sense of the typology performance at an individual level rather that the
overall performance of the typology. The performance at an individual level show that the typologies
constructed for Germany outperformed the typologies design for Hamburg.

We identify five points of action in order to increase the performance of building typologies for the
estimation of heat demand at low aggregation level:
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Figure 4.8: Shows the monitored consumption of the measuring points and the computed demand
aggregated at the same level (gas consumption measuring point) using the float array, For values lower
than 1e+ 06 and measuring point with only residential buildings.

1. The number of types is not enough to distinguish relevant building characteristics at a low level
of aggregation, we need a more precise classification of the building stock.

2. The typologies do not consider user influence on the consumption of heat demand, we argue for
the integration of demographic characteristics of the occupants for a specific modeling of user
behavior in the computation of heat demand. See (Muñoz H. & Peters, 2014b) for the allocation
of families to the building stock and (Muñoz H., 2014) for the integration of user behavior in
urban heat demand models.

3. The used data for the construction of the typologies is rarely monitored heat consumption but
estimated values. We pledge the community to for a transparent and open share of monitored
data for the construction of better building typologies.

4. There is much room for improvement for the classification of the building stock. We see this
endeavor as part of our ongoing research. Available analysis tools can be used for a better classi-
fication of the building stock, an improvement of the classification can improve the performance
of these building typologies.

5. The building typologies are design for the estimation of yearly heat demand. In order to estimate
heat demand at a lower temporal resolution the user has to perform their own heat balance for
each individual building. In this case the use of the building types is not the primary data set
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but the underlying values of the building components (U-values, share of glassing, etc.). We need
a typology design for this specific cases.

For the proper classification of the building stock plays a significant role in the accurate estimation of
heat demand in small urban areas. The use of a digital cadastre for this classification presents itself as
a great data source, to achieve a good classification, unfortunately this data source alone is not enough
for a proper classification of the building stock.

We want to develop methods to enrich the digital cadastre previous to the classification of the building
stock. We identify two key parameters for the classification of the buildings stock and for the estima-
tion of heat demand: (1) construction year; and (2) floor space. The proper estimation of construction
year would reduce the uncertainty of the classification procedure. The second parameter, floor space, is
extremely important for the estimation of heat demand because building typologies provide a specific
value for heat demand in [kWh/m2a] we multiply this value by the “heated space” to estimate absolute
heat demand in [kWh/a].

The resulting temporal resolution achieve with this method is not enough to perform an appropriate
heat planning distribution strategy. None of these typologies are constructed for the estimation of heat
demand a lower resolution level. There is a need for another type of typologies addressing this issue.

4.3.2 Visualizing the Result in Space

The visualization of the computed result in space may help us understand the problems of the devel-
oped algorithm. For this we present two maps (see Figure 4.9): (1) showing the estimated absolute
heat demand for the single buildings using the EcoFYS typology; and (2) showing all the buildings
connected to the gas grid for which we have the monitored consumption values at an aggregated level.
See Section 4.2.1 for details on data sources.

We have identified two important observations in these maps: (1) an over estimated heat demand for
non-residential buildings, agglomerated in the north part of the map; and (2) a possible identification
of “heat spots” in urban areas. These two observations are particularly interesting. The first may ex-
plain an overestimation of the heat demand for some monitored points and the second one presents an
interesting application of this method. We briefly discuss the first observation in the next subsection
(Sub-Section 8.1) making the argument for the need to expand this analysis to the non-residential sec-
tor. In the subsequent section (Sub-Section 8.2) we discuss the further implementation of the analysis
and discuss further paths to expand this method.
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(a) Map showing the estimated heat demand in MWh using typology EcoFYS. The red circles mark: (1) an over estimation of heat demand for non-residential
buildings; and (2) identification of a (residential) heat spot in the urban area. (b) Map showing the buildings connected to the gas grid (pink)

Figure 4.9: Maps showing the estimated heat demand and the monitored gas consumption
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5 Integrating User Behavior Into Thermal
Simulation Models1

5.1 Using Family Specific Occupancy Rates to Simulate Heat
Consumption

A significant variation between estimated heat demand and monitored heat consumption among res-
idential buildings with similar physical characteristics has lead the scientific community to the con-
clusion that this variation has to be explained trough occupant behavior (Guerra Santin et al., 2009;
Haldi & Robinson, 2011; Durand-Daubin et al., 2013; D’Oca, Fabi, Corgnati & Andersen, 2014). The
aim of this section is to present a strategy to use time-use data to enrich the population census, dif-
ferent families taken from the census are allocated to a generic building with a simple geometry for
the estimation of heat demand. The estimation of heat demand is performed with the well-established
building simulation software EnergyPlus2. The generated occupancy rates are parsed as input files to
the building simulation model in form of a CSV file. This file contains 52560 (144×365) record points,
144 points for each day, because the data from the time-use dataset describes events in a 10 minute
interval. For the integration of building occupants at an urban scale we propose to allocate synthetic
families, with their corresponding time budget, into the digital cadastre. The biggest challenge in these
endeavors is to develop robust models able to create plausible scenarios for this merge. First steps in
this direction have been taken (Muñoz H. & Peters, 2014b). This section marks an important step
towards this goal.

5.2 The User Influence on Heat Consumption

The influence of the user on heat demand is a topic of much debate among the community. There
is little empirical data available at: (1) the required resolution, needed to identify difference between
behavioral patterns during the day; and (2) required amount of data, needed to control for all other
variables influencing heat demand (Zhun Yu et al., 2011). An important factor for the simulation of
energy demand seems to be occupant presence (Guerra Santin et al., 2009). The later authors observe
this effect in their work, (Page, Robinson & Scartezzini, 2007) developed an interesting method for
the integration of this parameter into simulation models generating stochastic occupation patters us-
ing Markov chains. The integration of user behavior into building simulation models can be achieved,
difficulties arise by the validation of such simulations as empirical data at the needed temporal and dis-
aggregation resolution is difficult to recover. The integration of behavior models into well-established

1This chapter is heavily based on: Muñoz Hidalgo (2014)
2http://apps1.eere.energy.gov/buildings/energyplus/

http://apps1.eere.energy.gov/buildings/energyplus/


energy demand models have presented into two forms: (a) probabilistic and (b) deterministic ap-
proaches, the latter being the “native” method for common simulation models (D’Oca et al., 2014).
A good example of this distinction can be found in the simulation of window opening (Borgeson &
Brager, 2008), the integration of user behavior models (e.g.: natural ventilation rate through open-
ing windows) into energy demand models has posed a challenge for models, because resulting models
from empirical observation deliver probabilistic models which are hard to integrate into the “classic”
deterministic architecture of conventional building simulation models. (Bourgeois, 2005) develop the
model SHOCC (Sub-Hourly Occupancy Control) which can be directly used with the common thermal
simulation model ESP-r.

5.3 Allocating Occupancy Patterns to Individuals

For each individual described in the micro census a representative record from the time-use dataset is
selected. In table 5.1 the available attributes present in both datasets: (a) the micro-census; and (b)
the time-use data set are listed by relevance. The order of the attributes is important for the selection
of a matching record in the time-time use dataset because of two reasons: (1) the number of records in
the time-use data is smaller than of the micro census and; (2) the attributes classes are not equal for
both data sets. It is possible that the developed algorithm can’t find a matching using all the attributes
as query constraints, in such a case the algorithm drops the last constraint and performs the query
with one constrain less, this procedure is performed until at least one matching record is recovered from
the database. In the case than more than one journal is recovered an average is constructed upon all
retrieved records. The recovered data contains information regarding the location of the individual in
a 10 minute step for workdays and weekends (day types). This information is simplified to two one di-
mensional vectors for each day type. Each vector of size 144 represents the probability of being at home.

Table 5.1: Attributes used to allocate occupancy schedules to individuals from the census

# Time-use ID Microcenssus ID Attribute name

1. P27X EF131 Working hours
2. P2610 EF171 Work-at-home
3. VO_TE_N EF129 Full-time or part-time job
4. P281 EF149 Work on Saturday
5. P282 EF150 Work on Sunday
6. PH01B2X EF44 Age
7. PH01E EF49 Family status
8. BERUF_N EF117 Occupational status
9. P11 EF287 Attending school
10. PH01C EF46 Gender
11. P29X EF436 Net-income
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5.4 Generating a Schedule File for the Simulation

Based on the matched profile from the time-use data a file for the entire simulation year is generated.
Two files are given as input for this computation describing the probability of being home at: (1) week-
days and (2) weekends. Based on these files the occupation patterns for the entire year are generated.
Figure 5.1 shows this probability for the average individual and for two sample households, see below
for details on the definition of households. The file containing the presence of the single individual for
the entire year in a 10 minute interval is generated based on the retrieved information from the time-use
data set. This data-set delivers the probability of the specific individual of being home at a particular
hour of the day. This probability is used as base to generate the schedule of the individual. In order
to avoid fluctuations during time period without a clear probability (50%) a transition probability
is added to the equation, labeled trans in equation 5.1 and equation 5.2. Because out of the micro
census we can group the individuals into families, the generated schedule used as input for the thermal
simulation model is the average occupation of the building for the number of persons living in the house.
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Figure 5.1: Average probability of being at home and two probability curves for two individual
households

Bt(i, dt) =

{
0 if rnd > Pt(i, dt) + trans(t− 1)

1 if rnd < Pt(i, dt) + trans(t− 1)
(5.1)

trans(t) =

{
+0.4 if Bt = 1

−0.4 if Bt = 0
(5.2)

Where:
Bt Determinant of being home at time step t
trans Transition probability
Pt Probability of being home at time step t
i Unique individual from the micro census
dt day type (Workday/Weekend)
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5.5 Building Geometry Used in the Simulation

For the purpose of this section we defined a simple building geometry, A box of 6 × 8 meters with a
ceiling height of 2.7 meters. A double glazed window was located on each side of the building. We
aim to expand this approach by defining the building characteristics, including geometry and heat
transmission coefficient of components through the use of the available digital cadastre for the city of
Hamburg. Using the digital cadastre to acquire geometrical information of the individual buildings is
not the only advantage of the digital cadastre, because the buildings are geo-referenced an allocation
of representative synthetic families to the building stock is possible (Muñoz H. & Peters, 2014b). A
detail description of the building stock geometry and schedules of its occupants is the development
goal we am working on. The presented contribution represents an important step to achieve this goal.

5.6 Estimating Heat Demand with Family Specific Occupational
Schedules

For the simulation of heat demand the energy simulation software EnergyPlus, was used. The *.idf
input file used for the simulation is dynamically generated with the new data. For now, only two
variables of the input file are modified for the different simulations: (1) the generated schedule for the
specific family, third variable in listing 5.6; and (2) the number of occupants, or in this case household
size, listed as the fifth variable on listing 5.6. In order to show the function of this method we have
only used the generated schedule to control for internal gains, this method can be expanded to control
other relevant parts of the simulation e.g.: ventilation rates, appliance used, lighting or temperature
set points. For the defined building we run 100 simulations with the first 100 families in the micro
census. This type of simulation could also been achieved with the use a stochastic model. The aim
of the presented method is not to simulate possible spreads of heat demands for a single building
but aims to simulate building agglomerations while taking into account the specific socio demographic
characteristics of its residents. The efforts presented in this section make a significant contribution
toward the development of urban heat demand models which take the user behavior into account? The
resulting heat demand estimation from the simulation is depicted in figure 5.2. There is a significant
variation in the consumption of heat for the different family types. We expect to see a similar variation
at an urban scale. Such a heat demand model may prove interesting for the proper dimensioning of
decentralized heat supply systems.

Schedule:File,
OCCUP, !- Name
Fraction, !- Schedule Type Limits Name
shedules\shedule.csv, !- File Name
1, !- Column Number
0, !- Rows to Skip at Top
8760, !- Number of Hours of Data
Comma, !- Column Separator
no, !- Interpolation
10; !- Minutes per item
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Definition in the .idf input file for the schedule controlling the presence of occupants during the simu-
lation

People,
SPACE1-1 People 1, !- Name
ZONE ONE, !- Zone or ZoneList Name
OCCUP, !- Number of People Schedule Name
people, !- Number of People Calculation Method
3, !- Number of People
, !- People per Zone Floor Area
, !- Zone Floor Area per Person
0.3, !- Fraction Radiant
0.55, !- Sensible Heat Fraction
ACTIVITY_SCH; !- Activity Level Schedule Name

Base code used in the input .idf file for the simulation of internal heat gains

Figure 5.2: Simulated heat demand for 100 different occupation schedules of 100 different families
occupying the generic building
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Figure 5.3: Heat demand profiles for selected small areas

Table 5.2: Socio-demographic data from selected small areas
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16007 0.0633 36 0.0066 1.7 64.10 18.60 3332
25014 0.0871 13 0.0061 1.4 74.30 8.60 1803

16002 0.0000 100 45.9286 1.0 100.00 0.00 14
15002 0.1059 31 2.3529 1.4 69.40 5.60 170

97002 0.0211 42 2.1789 1.3 82.40 3.90 95
1009 0.1189 17 0.0492 1.2 80.30 2.30 244
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(a) 02:00 (b) 07:00 (c) 12:00

(d) 16:00 (e) 22:00 (f) 23:00

Figure 5.4: Heat demand maps for different hours of the 21 of January 2010
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Figure 5.5: Heat demand for the city of Hamburg
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6 Using Spatial Microsimulation to Populate the
Building Stock1

6.1 Generating Synthetic Populations for Microsimulation Models

Microsimulation, introduced by Orcutt in 1957 is a widely used method in social sciences, the gener-
ation of a synthetic population is the first step of most microsimulation models. The methods used
for the generation of synthetic population constitute the scope of this section. Synthetic populations
are used as input for simulation models of a diverse set of disciplines, among them: health (Brown
& Harding, 2002); transport (Farooq et al., 2013); water (Williamson, Clarke & McDonald, 1996;
Williamson, Mitchell & McDonald, 2002); energy (Chingcuanco & Miller, 2012; Muñoz H. & Peters,
2014b). A synthetic population is also used on many urban simulation models, e.g.: ILUTE2, MAT-
Sim3, UrbanSim4. O’Donoghue et al. (2014) provides an overview of applications of microsimulation
models, the used methods to generate synthetic populations and a description of validation techniques.

Deterministic reweighting algorithms are not the only method for the generation of synthetic popula-
tions. An alternative to these algorithms is a combinatorial optimization (CO) algorithm (Williamson
et al., 1998; Voas & Williamson, 2000), the advantage of a combinatorial optimization algorithm is
that this algorithms produce integer weights. Integer weights are needed for the representation of
individuals within a simulation framework, this is a requirement for many microsimulation models,
especially agent-based models. The performance of deterministic reweighting algorithms declines with
a post-processing of weights for the generation of integer weights (Pritchard & Miller, 2012). Newer
approaches to the generation of synthetic populations exist, Farooq et al. (2013) propose the use of
a Markov Chain Monte Carlo (MCMC) simulation based approach for the generation of synthetic
populations, with the presented method the authors were able to achieve a better performance than
by using an IPF algorithm. Depending on the simulation model and the model scope, a synthetic
population with integer weight may not be required.

There are many reviews of methods for the generation of synthetic populations. Harland et al. (2012)
make a comparison between three methods: (1) a deterministic reweighting algorithm (IPF); (2) a
stochastic synthetic reconstruction method; and (3) a stochastic Combinatorial Optimization (CO)
method (simulating annealing). The authors compare the simulation results by means of the Total
Absolute Error (TAE). The results from the CO algorithm achieves the best results out of these three

1Sections of this chapter are based on: Muñoz H. & Peters (2014) Muñoz H. Tanton & Vidyattama (2015) and Muñoz
H, Vidyattama & Tanton (2015b)

2Integrated Land Use, Transportation, Environment (ILUTE) Modeling System http://www.civ.utoronto.ca/sect/
traeng/ilute/ilute_microsimulation.htm

3Multi-Agent Transport Simulation http://www.matsim.org/
4Simulation system for supporting planning and analysis of urban development http://www.urbansim.org

http://www.civ.utoronto.ca/sect/traeng/ilute/ilute_microsimulation.htm
http://www.civ.utoronto.ca/sect/traeng/ilute/ilute_microsimulation.htm
http://www.matsim.org/
http://www.urbansim.org


algorithms. Hermes und Poulsen (2012) deliver a review of spatial microsimulation method, the au-
thors also speak in favor of a CO algorithm, the analysis does not perform any test of the method but
based this observation on literature review only. Müller, Axhausen, Axhausen und Axhausen (2010)
discuss in their paper different implementations of the IPF algorithm. Rahman et al. (2013) presents
a comparison on microsimulation method and a detailed description of the GREGWT algorithm, the
paper also discusses the use of a “new” microsimulation method implementing Bayesian statistics for
the generation of synthetic populations. Tanton (2014) presents a comprehensive review of microsim-
ulation methods and its applications. Williamson (2013) presents a comparison of two methods to
generate a synthetic population: (1) a Synthetic Reconstruction (SR), and (2) a CO method. The
author concludes that the CO method outperforms the SR method. Tanton et al. (2014) compare the
performance of a CO and a GREGWT algorithm, the performed analysis shows that the CO outper-
forms the GREGWT method.

6.2 Deterministic Reweighting Algorithms

The following section aims to: (1) compare different methods commonly used in the microsimulation
community to generate geographical allocated synthetic populations; (2) asses the performance of our
new R package implementing the GREGWT method; and (3) discuss the role of the initial weights of
the individual record survey.

In order to assess the performance of the new R library implementing the GREGWT algorithm we
perform the same reweighting for four small areas using both implementations of the GREGWT algo-
rithm and a reweighting using an R implementation of the IPF method. We compare the results using:

1. An implementation of the GREGWT algorithm in the SAS language (Bell, 2000);

2. An implementation of the GREGWT algorithm in the R language (Muñoz H., Vidyattama &
Tanton, 2015a).

3. An implementation of the IPF algorithm in the R language (Blocker, 2013).

For each simulation we use the same input data (see Section 3.3). All the data used in this analysis
is freely available and can be directly downloaded from the corresponding German statistical offices.
The R implementation of the GREGWT algorithm allows us to specify the reference category with the
prepareData function. We make use of these feature in order to select the category resulting in the
minimal error within the reweighting process. This process is described in Section 6.3.

The comparison of the different algorithms and libraries is discussed on Section 6.4. First we compare
the resulting new weights from each simulation and each small area. In this section we also compare
the internal errors of the different simulations by means of the Total Absolute Error (TAE) and Per-
centage Specific Absolute Error (PSAE).
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Under Section 6.5 we compare the weight distance for each simulation area and each algorithm imple-
mentation. The weight distance is defined as the Chi-Squared-Distance. In Section 6.6 we present a
summary of the simulation results and discuss the role of initial weights in the reweighting process. The
section concludes with a discussion of further developments and implementations of the reweighting
algorithms (see Section 8.5).

6.2.1 GREGWT

The GREGWT method is part of the model SpartialMSM developed by the National Center for Social
and Economic Modeling (NATSEM) (Tanton, 2007). The GREGWT algorithm used by NATSEM is
a SAS macros developed by the Australian Bureau of Statistics (ABS) (Bell, 2000). The method for
reweighting the survey sample is based on method number 5 of A. Singh und Mohl (1996). Tanton et al.
(2011) make a detailed description of the algorithm. The mathematical description of the GREGWT
algorithm presented below is taken from Rahman et al. (2010).

Aim of the GREGWT algorithm is to find a set of new weights w that can be used to match a survey
X to a set of given benchmarks T so that T =

∑
wjXj (e.g. small area aggregates) by minimizing the

difference between new weights w and the sample design weights d from the survey. For the distance
D between design and estimated weights the GREGWT algorithm makes used of the truncated Chi-
Squared-Distance function, represented in Equation 7.4.

D =
1

2

∑
j

(wj − dj)2

dj
(6.1)

The equation needed to minimize the weight distance constraint to some given marginal totals of a
geographical area T can be expressed as the Lagrangian function of the chi-squared function, as follows:

L =
1

2

∑
j

(wj − dj)2

dj
+
∑
k

λk

Tk −∑
j

wj,kXj,k

 (6.2)

By differentiating (7.4) with respect to wj and applying the first order condition, we have:

δL

δwj
=

(
wj − dj
dj

)
−
∑
j

λjXj = 0 (6.3)
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With this equation we can formulate an equation for the new weights. Where X ′j =
∑
λkXj,k.

wj = dj + djX
′
j (6.4)

The new weights computed by the GREGWT algorithm are float values. Without any restrictions the
algorithm will produce negative weights, both implementations of the algorithm introduce boundary
constraints as a user input. The user is able to define an upper and lower bound, if the algorithm
computes weights outside these bounds the weights will be truncated to the corresponding bounds.
In this case the algorithm will iterate with the new computed weights until a predefined convergence
parameter is met or there is no improvement in the iteration.

In this section we make use of two implementations of the algorithm. The first implementation is a SAS
implementation of the algorithm developed and maintained by the Australian Bureau of Statistics (Bell,
2000). The second implementation of the algorithm — developed to replicate the results from the SAS
algorithm — is an R implementation of the procedure. The development of this library has been per-
formed by the same author of this thesis (Muñoz H., Vidyattama & Tanton, 2015a). A development
version of the library is available on a github repository under: github.com/emunozh/GREGWT. This li-
brary is still under development, this section aims to present the first results of our development efforts.

6.2.2 IPF

The IPF has a long tradition within the microsimulation community (Birkin & Clarke, 1989, 1988).
This method is used not only among the spatial-microsimulation community but is also implemented
as the first step to generate synthetic populations of many agent-based models.

The IPF algorithm computes the new weight in an iterative manner. The algorithm estimates a
new weight for each small area benchmark in sequence. The new weights are estimated as the share
between survey marginal totals T and the observed geographical areas marginal totals T (Obs) (see
Equation 6.5). The initial design weights of the survey d are also taken into account, although many
implementations of the IPF method will just set all initial weights to 1.

wt = dt ×
Tt(Obs)

Tt
(6.5)

The new weights are computed for each constraint sequentially, for each constraint the new weights
are computed as the ratio between the observed marginal totals (benchmarks) and the marginal to-
tals on the original survey. The order of the input benchmarks has an impact on the simulation
results (Lovelace, Birkin, Ballas & van Leeuwen, 2015).
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The R implementation of the IPF method is a package called ipfp(Blocker, 2013), the package is a
wrapper of a C implementation of the IPF algorithm. We use all the defaults of the package to run
the simulation. These are: (1) a maximal iteration number of 1e3 and (2) a tolerance level define as
.Machine$double.eps, in our case this value is equal to 2.22e− 16. Because the main computation of
the IPF is performed by the C code, the computation is extremely fast. Both implementations of the
GREGWT algorithm are implemented natively on the SAS and R languages correspondingly. The R
implementation of the GREGWT is almost 100 times faster than the IPF library.

6.3 Selection of Reference Categories for the Simulation

As described before the R implementation of the GREGWT algorithm uses a generalized regression
for the computation of new weights, for this reason the input matrix cannot contain correlated vari-
ables and therefore we need to define a reference category. The R implementation of the GREGWT
algorithm will use the function model.matrix to automatically define the reference categories. The
use of this default option is suboptimal because this function will reduce the number of observations
in case of missing values, this is not always desire for the reweighting of a survey. We aim to expand
the R library in future releases in order to provide a more robust default function for the selection
of reference categories. There are many factors to consider for the selection of the reference category.
Because the algorithm does not benchmark the weights to the reference category this category will
allocate the biggest error (see Section 6.4). The reference category should be selected depending on
the research question, for this analysis we have selected the “optimal” (In terms of lowest PSAE value)
category. In order to identify this optimal category we reweight to every possible combination of ref-
erence categories, the result of this iterative simulation if plotted in Figure 6.5. The selected reference
categories are specific to the four simulation areas. The figure shows the sorted PSAE values for
each combination of reference category, the values are read independently, for each area the “optimal”
reference categories are different. The SAS implementation of the GREGWT algorithm will drop the
last category in case of a correlation in the input matrix.

The implemented process to find the “optimal” combination of reference categories was possible in this
case because the presented use case contains only 3 benchmarks with a total of 23 categories and 4
simulation areas. This computational expensive process is not viable for a real world simulation. We
do not prioritize a development of a method able to identify the “optimal” reference categories, because
this decision should be based on the specific research question rather than on the internal performance
of the algorithm.
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Figure 6.1: Performance of the algorithm based on the selected reference category (sorted at each
area individually)

6.4 Internal Error of the Simulations

In the following section we compare the simulation results from the three reweighting algorithms. We
compare two measures of the simulation results: (1) the distance between initial and estimated new
weights and (2) the internal error of the simulation measured by means of the Total Absolute Error
(TAE) and the Percentage Specific Absolute Error (PSAE).

6.4.1 Weight Distance

The weight distance is a useful measure to visualize and quantify the algorithm output. Figure 6.2
shows a weight comparison between the three reweighting algorithms, as expected both implementa-
tions of the GREGWT algorithm delivers almost the same weights. In order to see the small difference
in the estimated weights we show in Table 6.1 shows the estimated new weights for the first five records
of the input survey. In order to quantify the difference between the algorithms we define an absolute
weight distance (see Equation 6.6). The computed absolute weight distances WD between the algo-
rithms are presented on Tables 6.2.

WDj =

∣∣∣wR
i,j − wSAS

i,j

∣∣∣
popj

÷ n (6.6)

Where the weight distanceWD is calculated as the mean absolute difference between estimated weights.
In this case we compare the estimated weights from the R implementation of the GREGWT algorithm
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with the SAS implementation of the same algorithm. In order to compare this result between geograph-
ical areas we calculate the specific weights by dividing them by the population size of geographical
area j. The results are listed on Table 6.1.

Table 6.1: Merged data from the different simulation methods showing estimated weight for the first
5 records in the survey

Algorithm # 02 11 4011 4012

R 1 80.046 194.129 27.633 5.945
SAS 1 80.046 193.978 27.521 5.924
IPF 1 79.434 197.644 27.752 6.078

R 2 59.225 85.885 19.430 3.432
SAS 2 59.225 85.854 19.456 3.428
IPF 2 60.707 92.272 19.682 3.550

R 3 59.225 85.885 19.430 3.432
SAS 3 59.225 85.854 19.456 3.428
IPF 3 60.707 92.272 19.682 3.551

R 4 76.039 129.754 29.137 4.350
SAS 4 76.039 129.819 28.987 4.359
IPF 4 74.670 125.042 28.379 4.297

R 5 70.084 92.604 32.682 5.273
SAS 5 70.084 93.172 32.313 5.350
IPF 5 69.924 100.678 32.264 4.994
...

...
...

...
...

Although the GRWGWT algorithm implements a deterministic procedure, the R implementation of
the algorithm was not able to exactly reproduce the resulting weights from the SAS implementation.
We attribute this small discrepancy between the implementations to the internal mechanics and se-
lected reference category on both implementations rather than discrepancies in the core GREGWT
algorithm. We were able to exactly reproduce the results presented by Rahman et al. (2010), in their
paper the authors present a simple example and implement the GREGWT algorithm to reweight a
theoretical survey. In order to perform a “real” reweight of a survey — as opposed to a simplified hypo-
thetical example — there are many factors that can influence the results. In this case both GREGWT
implementations need to perform some preprocessing of the data in order to feed these data to the
core GREGWT algorithm. These small manipulations of the data are: (1) not well documented and
therefore hard to reproduce; (2) many of these manipulations are performed using language internal
functions, we did not investigate the exact procedure behind these functions and (3) the selection of
the reference category within the GREGWT algorithm has an impact on the algorithm results.

6.4.2 Total Absolute Error (TAE) and Percentage Absolute Error (PSAE)

This measure is commonly used for the internal validation of spatial microsimulation models and has
an extensive use in the spatial microsimulation community (Burden & Steel, 2015; B. Anderson, 2013;
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Figure 6.2: Comparison between estimated weights of the GREGWT SAS and R implementations
and IPF for simulation area 02.

Table 6.2: Absolute weight difference between implementations

IPF — SAS R — SAS

Area 02 1.771e-02 8.048e-12
Area 11 2.941e-02 8.850e-04
Area 4011 2.002e-02 3.309e-03
Area 4012 1.589e-02 2.795e-03

Edwards & Tanton, 2013; Harland et al., 2012; Huang & Williamson, 2001; Tanton & Vidyattama,
2010). The total absolute error measures the absolute difference between used benchmark totals T of
small areas and estimated marginal totals T̂ for the same area. Ideally this measure is close to 0. The
mathematical expression of the TAE measure is presented in Equation 6.7.

TAE =

n∑
i

|T − T̂ | (6.7)

The comparison between observed marginal sums (benchmarks) and simulated marginal sums show
a very good performance of all three implementations. Figure 6.3 plots the observed marginal sums
in the y-axis and the different estimations of the algorithm implementations in the x-axis. The use
of the TAE and the PSAE measures to validate spatial microsimulation models give us an idea of
how the algorithms are performing. With these measures we can verify that the algorithms are in fact
behaving in the way they supposed to. Nonetheless, an internal validation of spatial microsimulation
models cannot replace an external validation of simulation results. An external validation of spatial
microsimulation models is normally not possible at a micro level but can be validated at an aggregated
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level.

The error of the reweighting process is minimal, on Table 6.3 we can see the difference in TAE between
implementations. The difference between the two GREGWT implementations differ only on simulation
area 4011. This difference is attributed to the selected reference category by the two implementations.
The TAE of the IPF is slightly higher than both GREGWT implementations, except for geographical
area 4011. A summary comparing all implementations and simulation areas in terms of the TAE is
depicted on Figure 6.4. This figure clearly shows the disproportional error in simulation area 4011 of
the SAS implementation of the GREGWT algorithm.

Figure 6.3: Comparison between simulated marginal sums and census constrains for: (a) the R
implementation of the GREGWT algorithm; (b) the SAS macros; and (c) IPF.

Figure 6.4: Total Absolute Error for all simulation methods

The Standardized Absolute Error (SAE) aims to make the TAE measure comparable between simu-
lations which normally use different samples for the simulation and between geographical areas with

114



Table 6.3: TAE, PSAE and Chi-Square-Distance for all areas and all simulation methods

Method Area TAE PSAE Chi Sqrt Diss

R 02 206.00 0.01 2.26E + 05
SAS 02 206.00 0.01 2.26E + 05
IPF 02 219.43 0.01 2.28E + 05

R 11 739.00 0.02 7.36E + 05
SAS 11 739.00 0.02 7.36E + 05
IPF 11 788.03 0.02 7.40E + 05

R 4011 247.00 0.05 6.36E + 04
SAS 4011 1435.34 0.26 6.35E + 04
IPF 4011 260.79 0.05 6.39E + 04

R 4012 100.00 0.09 1.21E + 04
SAS 4012 100.00 0.09 1.21E + 04
IPF 4012 105.65 0.10 1.21E + 04

different population size. The PSAE measure is the same measure as the SAE but expresses its
result as a percentage value. The PSAE is calculated as the TAE divided by the geographical area
population size and is expressed as percentage. The mathematical expression of this relationship is
expressed on Equation 6.8.

PSAE =

n∑
i

|T − T̂ | ÷ popi × 100 (6.8)

The resulting values from the PSAE are listed on Table 6.3. The error is minimal for all implemen-
tation and all geographical areas, the highest PASA value (0.26%) is for geographical area 4011 with
the GREGWT SAS implementation. The error for these geographical areas is so small that can be
attributed to missing information on the aggregated values of the individual geographical areas. All the
algorithms perform extremely good because we use a limited number of benchmarks and performed the
simulation for just four geographical areas, we expect this value to increase as we add more constrains
to the model and perform the simulation for a larger number of geographical areas.

With this measure we can compare the performance of the algorithm for different geographical areas
and for each benchmark independently. The PSAE by benchmark and geographical is plotted in Fig-
ure 6.5. The analysis of the PSAE allows us to compare the results from the different implementations
at a finer scale. In this figure we can see how the error is distributed among the defined benchmarks.
We can see the differences between the GREGWT and IPF implementations. While the GREGWT
tends to allocate most of the error to the reference category, the IPF implementation distributes it
among all categories of each benchmark. The exception to this observation is area 4011.
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Figure 6.5: Percentage specific error for all categories by area and implementation

6.5 Chi-Squared-Distance Between Weights

The chi squared distance is used in this analysis to measure the distance between estimated new weights
w and initial weights d. The chi squared distance is calculated as in Equation 6.9. In this section we
compare the difference in chi squared distance between the three implementations. A summary of this
measure is listed on Table 6.3 for all implementations and simulation areas. On this table we see that
the values of the chi squared distance is very similar for both GREGWT implementations. In this case
the chi square distance of the reweighted survey with the SAS implementation for simulation area 4011
shows the lowest figure from all other implementations.

It is important not only to assess the performance of a reweighting algorithm by means of the TAE but
to observed the movement of initial weights. One of the biggest advantages of reweighting a survey for
the generation of spatially allocated micro-data is that we maintain all the information of the survey
even if we only benchmark this reweighting process to a few variables of the survey. The initial weights
define the distribution of the individuals represented in the survey, this reweighting algorithms takes an
“extra” parameter as a reweighting constrain: weight distance (the IPF algorithm is also constrained
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to weight distance, see next section for details). This means that the initial weights are very important
within the reweighting process. In most cases we have a design weight attached to the input survey
that we can use and trust. On some other case we do not have an input weight and we need to be aware
of the induced error by defining a uniform distributed weight (e.g. all weights set to 1). Vidyattama,
Tanton und Biddle (2015) present an example of a synthetic input survey for which all input weights
are unknown. The authors generate a synthetic input survey using a probability table to ensure the
distribution of the data is similar enough to the aggregate known distribution, then the authors set a
uniform distributed weight matching the total population size of the corresponding aggregation unit.

Figure 6.6: Chi-squared distance

All three implementations analyze in this section present a similar value for the chi squared distance.
The distance for the individual records of the survey are plotted on Figure 6.6. The plot shows the Chi
squared distance of all implementations sorted by the values of the R implementation of the GREGWT
algorithm. As expected, the difference between both GREGWT implementations is minimal. The val-
ues for the IPF implementation follow the same pattern as the GREGWT implementations but are
not as close as both GREGWT implementations are.
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Chii =
m∑
j

(wj − dj)2

2dj
(6.9)

6.6 Manipulating the Initial Weights

Because the GREGWT algorithm aims to minimize the chi square distance between, we can use this
as a simulation tool. In the following section we present an application of this in a simple spatial
microsimulation and discuss other possibilities for the application of this method in the context of the
design of spatial microsimulation models.

For the purpose of this section we manipulate the weight distribution of the initial survey based on
the construction year of the buildings on which individuals represented in the survey reside. This
manipulation of the initial weights represents a “retrofit” of the building stock by re allocating weights
to buildings with a newer construction year, and there for a better energy standard. The example is
a modification of the spatial microsimulation performed by Muñoz H., Vidyattama und Tanton (2015b).

Lovelace et al. (2015) shows that a manipulation of initial weights has a negligible impact on TAE using
an IPF algorithm. We make a similar observation for TAE values using the IPF and the GREGWT
R implementations. In this case the TAE values do not vary much, 2.95e − 08 and 3.95 − 06 for the
GREGWT and the IPF implementations correspondingly for a manipulation of initial weights assum-
ing an 80% retrofit of the entire building stock (See Table 6.4). A variation of the TAE does not mean
that there is no variation on the resulting weights. This variation of the weights is depicted on Fig-
ure 6.7 for the GREGWT (a) and IPF (b) implementations. These plots show that the modifications
made on the input weights of the survey have a direct effect on the resulting weights by maintaining
an almost constant TAE value. The change on the resulting weights is almost a factor 10 lower for
the IPF algorithm. These means that the IPF algorithm is less sensitive to a modification of the input
weights. Depending on the model design a low sensitivity to input weights might be desired. This
could be the case for which design weights are not available. In the other hand if we want to explicitly
use the input weights as part of the model design we might prefer an algorithm with a higher sensitiv-
ity to modifications to input weights. Therefore we recommend taking a conscious decision regarding
the defined initial weights of the input survey. In the case of unavailable input weights we need to
understand that the implicit decision of a uniform distributed weight has to be assumed. For many
cases the assumption of a uniform distribution might be the correct one, but we might find better
distributions more accurately representing the population of a particular geographical area.

In the case of the GREGWT algorithm, the input weights have a direct impact on the resulting weights.
The GREGWT algorithm does not only reweight a survey to meet given area benchmarks but also
minimized the distance between initial and estimated weights (see Equation 7.4). We see this as an
opportunity to control a simulation process by manipulating the initial weights of the input survey. In
the following section we present a small use case of this technique. In this example we change the initial
weights based on the construction year of buildings, aiming to simulate retrofits on the building stock.
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(a)

(b)

Figure 6.7: Modified Weights and reweighted with (a) GREGWT and (b) IPF
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Figure 6.8: Number of people living in buildings by construction year for: (a) survey design weights
and (b) manipulated weight representing a 50% retrofit of the building stock

The input survey data, describing individuals, contains also some information describing the residence
of the individual, construction year of the building in which the individual resides in one of these
parameters. Muñoz H., Vidyattama und Tanton (2015b) use these parameters to simulate retrofits of
the building stock by benchmarking the survey to construction year, the retrofit rates are estimated
at a geographical area level. This projection at a low aggregation level is not always accurate. An
alternative to this method it a manipulation of the initial weights, in this case we won’t benchmark
the survey to construction year but will modify the initial weights. The way in which we modify the
initial weight is by changing the weight distribution. Figure 6.8 compares the weight distribution by
construction year, Figure 6.8a shows the distribution of the design weights, in this distribution we can
clearly see the post war reconstruction period that dominates the building stock in Germany. In this
example we want to represent a 50% retrofit of the building stock, a simple way to model this is to move
the weight of the older buildings into the newest category. Figure 6.8b shows the new distribution. Of
course, more accurate and elaborated manipulations of the initial weights are possible with this method.

With this new modified weight we rerun the reweighting procedure and as expected, the GREGWT
algorithm respects the modification made to the initial weights. Table 6.4 lists the TAE for the differ-
ent modifications of the weights (expressed as percentage of retrofitted building stock), the difference
from the initial TAE (00%, survey design weights), and the Chi squared distance between: (a) sur-
vey design weights and estimated new weights and (b) modified survey weights and estimated new
weight. From this table we can see that the variation in TAE is minimal while the Chi square distance
changes, the change on both Chi square distances is bigger with the GREGWT implementation than
with the IPF one. It is important to notice that we do not benchmark the survey to construction year
in this example. The manipulation of the initial weights presents an alternative method to constrain
the reweighting process to known or projected values at a more aggregated level. The advantage of
constraining the model at a different aggregation level can be useful in many model designs scenarios,
for example: (1) we may have important data available at a higher aggregation level, in this case we can
modify the initial weight to match this value and subsequently reweight the survey to the underlying
geographical areas, Vidyattama et al. (2015) uses a similar method for the creation of a synthetic unit
record survey of indigenous population in Australia; or (2) we can modify, as briefly presented in this
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Table 6.4: TAE, Difference from initial TAE and Chi squared distance for different modifications of
the initial weights d and modified initial weight md reweighted with: (a) GREGWT and (b) IPF

00% 01% 05% 10% 20% 50% 80%

(a) GREGWT

TAE 3.79e+ 04 3.79e+ 04 3.79e+ 04 3.79e+ 04 3.79e+ 04 3.79e+ 04 3.79e+ 04
Diff 0.00e+ 00 8.07e− 08 9.46e− 08 7.49e− 08 9.31e− 08 5.69e− 08 9.26e− 08
Chi d 1.60e+ 07 1.61e+ 07 1.27e+ 08 6.96e+ 08 4.15e+ 09 4.73e+ 10 4.88e+ 11
Chi md 1.60e+ 07 1.61e+ 07 1.18e+ 08 6.39e+ 08 3.83e+ 09 4.33e+ 10 4.61e+ 11

(b) IPF

TAE 3.79e+ 04 3.79e+ 04 3.79e+ 04 3.79e+ 04 3.79e+ 04 3.79e+ 04 3.79e+ 04
Diff 0.00e+ 00 0.00e+ 00 2.03e− 06 1.60e− 05 5.90e− 06 3.12e− 06 3.95e− 06
Chi d 1.40e+ 07 1.40e+ 07 1.44e+ 07 1.79e+ 07 3.54e+ 07 3.14e+ 08 1.09e+ 09
Chi md 1.40e+ 07 1.40e+ 07 1.41e+ 07 1.61e+ 07 2.64e+ 07 1.85e+ 08 6.10e+ 08

section, the input weight to project the survey matching target distributions define by a postulated
scenario or target values define on policies.

6.7 Projecting the Synthetic Population Into the Future

In this section we analyze a plausible scenario for many developed countries, this is: a parallel increase
in the energy efficiency of the building stock and an ageing of population. The consequences of this
development for a secure heat supply of the residential sector is the focus of this section.

The influence of users on domestic heat demand has been identified as an important factor to reduce
the gap between estimated heat demand and consumed heat demand (D’Oca et al., 2014; Durand-
Daubin et al., 2013; Haldi & Robinson, 2011; Guerra Santin et al., 2009). In a scenario with a large
share of energy efficient buildings and an old population the incorporation of residents influence on
energy demand models could be essential for: (a) securing heat supply of the residential sector, and
(b) achieving an optimal heat supply in this sector.

In order to assess these consequences we: (1) project demographic benchmarks at a district level fitted
to national statistics; and (2) project the characteristics of the building stock at the same aggregation
level. We use these benchmarks to reweight the German micro census survey for each district in the
city and each simulation year.

The method presented here makes use of microsimulation techniques developed for the reweighting of
surveys to small areas, see (Tanton, 2014) for an overview of these techniques and their applications.
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Microsimulation is a simulation working at a micro scale (individuals, households, firms, buildings).
This would include tax transfer, transport and land use models. In this section we make use of two
methods used by the spatial microsimulation community: (1) a survey reweighting for the creation of
synthetic populations allocated to geographical areas, this method is the starting point of many spatial
microsimulation models (a reweighing of a population survey is not the only method for the generation
of synthetic populations); and (2) the reweighting of the same survey to projected statistics of the same
geographical areas. These methods allow us to generate a synthetic population for each simulation
year. The use of these methods to estimate energy demand is not very common among the microsimu-
lation community, some examples of this application are (Muñoz H., 2014; Muñoz H. & Peters, 2014b).

Static spatial microsimulation models have also been used to project micro-data, benchmarking the
survey to projections at a small area level (Vidyattama & Tanton, 2013).

The section is organized as follows: (1) we present the data used for this analysis; (2) we discuss the
used methods; and (3) discuss the results and future improvements of the developed method.

6.8 Data Extrapolation

In order to project the population growth at district level we: (1) extrapolate the growth rate based on
historical data for the corresponding district; and (2) fit this extrapolation to the national population
projections.

For the extrapolation of historical values we use a linear function. We created a sample with eight
observations (2003–2010), being all the available records online at this aggregation level.

In a second step we fit these extrapolations to the available national projections.

G(y) = Py ÷ P 1/∆y
y−1 (6.10)

E(y, s) = asy + bs (6.11)

Where G(y) is the growth rate as a function of year y, Py is the projected population in year y, E(y, s)
is the extrapolated growth rate as a function of year y and district s and as and bs are the resulting
coefficients from the extrapolation function as a function of the historical data for district s.

Gy =
n∑

s=1

Es,y (6.12)
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D(y) ∼ N (Gy, sd) (6.13)

sort(Ey) = sort(Dy); by s (6.14)

Where N (Gs, sd) is a set of random numbers with a normal distribution with mean Gy and standard
deviation sd (default set at 1e− 3).

Figure 6.9: Extrapolated and fitted growth rates for all districts

Figure 6.9 shows the fitted extrapolated growth rates for all districts in the city of Hamburg. These
growth rates are capped in order to meet the aggregated projections of the city.

The available projections for the city contain information about age, gender and foreign national share,
but historical data from individual districts contain only information about gender and foreign national
share. At this time we do not make any assumptions regarding different changes in age distribution
for the individual district, but simply inflate these values to match the city official projections.

6.9 Synthetic Building Stock

Because we use the micro census to create a synthetic population for each district of the city, con-
strained by aggregated statistics, we decided to define a synthetic building stock based on the micro
census. We define a synthetic building for each individual in the micro census. We use the following
available parameters to generate the synthetic buildings: (1) household size, (2) construction year, (3)
dwelling unit size and (4) number of dwelling units in the building.
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With these variables we create a micro building stock that in its aggregation represents the “real”
building stock of each district. The advantages of describing the building stock in this fashion are
many. This simplification allows us to perform a relatively simple reweighting of the micro census,
making the method transferable to many cities around the world, for German cities we only have to
change the aggregated district statistics, a simulation at a national level is also possible.

6.10 Estimating Heat Demand

For the estimation of heat demand we use a simple heat demand balance method (Muñoz H., 2015)
developed in the R language. This library is a simplification of the German DIN V 18599 standard.

The library does only compute heat gain and losses. The difference of these values are interpreted as
the heat demand. Factors like heat recovery systems of mechanical ventilations or the efficiency of the
heat supply infrastructure are not considered within the library.

We vary the following input parameters for the estimation of heat demand:

• Geometry of the buildings, expressed as: (a) length, (b) width and (c) height. See previous
Section “Creating a Synthetic Building Stock”

• Heat transmission coefficients of building components, U-values of: (a) roof, (b) walls and (c)
widows. See next subsection “Building typology”

• Ratio of glazing surface. See next subsection “Building typology”

• User influenced parameters: (a) Internal heat gains Qi, (b) Internal temperature set point Ti and
(c) Air exchange rate n. See subsection “Estimation with user influence” and Table 6.5.

Because the focus of this model is primarily on method we decided to use a heat balance model instead
of a thermal simulation model like EnergyPlus or ESP-r because of: (a) the heat balance model re-
quires less input parameters and less complicated input parameters; and (b) the computation time of
the heat balance model is less that of the thermal simulation model. The use of a thermal simulation
model is possible (see (Muñoz H., 2014)), the advantage of using a thermal simulation model is its
ability to take occupational schedules as input.
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Table 6.5: User influenced variables used in the model as function of working hours (WH)

WH n[h−1] Ti[C
◦] Qi[W/m

2]

≤ 1 0.7 22 7
≤ 4 0.6 21 6
≤ 8 0.5 20 5
≤ 9 0.4 19 4
> 9 0.3 18 3

6.10.1 Building Typology

For the estimation of heat demand we make use of the well-established building typology from the
IWU institute (Loga et al., 2011). We use this typology to define heat transmission coefficients and
glazing ratio of the building stock. The same typology is used by Muñoz H. und Peters (2014b) to
classify the building by building type. With the heat transmission coefficients and glazing ratio from
the building typology we compute two absolute heat demand values for each synthetic building on
the survey: (1) only taking into account characteristics of the building stock — building geometry
and heat transmission coefficients — variables influenced by the user are maintained constant for all
buildings; and (2) including demographic characteristics, by manipulating variables influenced by the
user as function of the working hours of each individual in the sample.

Because of the nature of the model the synthetic population is generated for each simulation year,
benchmarked to aggregated statistics of both: the population (demographic parameters); and charac-
teristics of the building stock (capture by the distribution of building types). A retrofit rate of the
building stock modifies the distribution of building types at an aggregated level, a 2% retrofit rate
will pick 2% of the buildings of each geographical area and attribute them to the new energy efficient
building types. See section “Benchmarking population” for a more detailed description of this compu-
tation step.

6.10.2 Estimation With User Influence

The variables used to simulate the user influence on heat demand are listed in Table 6.5. These vari-
ables are modified as a function of the occupant working hours. The variation in these parameters
has not been empirically validated. The aim of this modification is to represent a hypothetical change
in heat consumption based on demographic characteristics. We use the variable Working Hours as a
proxy to induce this influence based on empirical analysis of other authors. A brief literature review
by Muñoz H. und Peters (2015a) concludes that occupancy rates of users seem to be the determinant
of user influence in heat demand in the residential sector.

One of the attributes of the population survey is “working hours”. We use this attribute in order
to define: (a) ventilation rates; (b) internal temperatures; and (c) internal heat gains. These three
parameters are given as input to the heat demand model.
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There exist approaches to simulate occupancy rates in a stochastic fashion (Page et al., 2008; Hoes,
Hensen, Loomans, de Vries & Bourgeois, 2009). We aim to contribute to these efforts by simulating
the influence of a specific group of users on heat demand at a district level.

Figure 6.10 shows the relative difference between both estimations of heat demand: (1) taking user
influence into account; and (2) maintaining variables influenced by the user constant. As expected, the
influence of users is higher on more efficient buildings. Building type 18 (large multifamily houses of
construction period 1958–1968) shows a lower variation and lower mean than the rest of the building
typologies, this effect is caused by the low number of individuals from the micro census attributed to
this type.

Figure 6.10: Difference between estimated heat demand with and without demographic parameters,
grouped by building type.

An analogue comparison of relative heat difference is presented in Figure 6.11, in this plot the difference
is grouped by age class. This plot shows a higher variation in heat demand for ages older than 15. We
can see that the mean of both age classes, 21–45 and 46–65 are exactly on the zero line (no difference),
these are the values used in the models that do not take user influence into account.
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Figure 6.11: Difference between estimated heat demand with and without demographic parameters,
grouped by age class of user.

6.11 Benchmarking Population

In order to assess the impact of: (1) an ageing population; and (2) a rising of efficiency rates of the
building stock, we reweight the survey to demographic and building stock benchmarks projected until
2030 in a five year step at a district level.

For the reweighting of the survey, containing heat demand values for each individual in the sample,
we use an implementation of the GREGWT algorithm in the R language (Muñoz H., Vidyattama &
Tanton, 2015a). This method is used in the spatial microsimulation community to generate synthetic
populations of small areas, Tanton et al. (2011) deliver a detail description of the algorithm and its
application. The GREGWT algorithm is based on “method 5” from A. Singh und Mohl (1996). For a
technical description of the algorithm see (Bell, 2000) and for applications of it see (Tanton & Vidyat-
tama, 2010; Tanton, Harding & McNamara, 2013).

6.12 Simulation Scenarios

For the development of simulation scenarios we define six different scenarios divided into two groups:
(1) base scenarios, and (2) Different retrofit rates.

1. Base scenarios
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Scenario 1 Base scenario.
The building stock benchmarks are constant through the simulation. The distribution of
building types is constant.

Scenario 2 New buildings scenario.
New buildings added to the building stock (driven by population growth) are attributed to
the newest building type.

2. Different retrofit rates

• Average user.
User parameters (n, Ti and Qi) are constant for all buildings and all simulation years.

Scenario 3 0.5% retrofit rate

Scenario 4 1.0% retrofit rate

Scenario 5 1.5% retrofit rate

Scenario 6 2.0% retrofit rate

• User influence.
User parameters (n, Ti and Qi) are defined based on the working hours of the building
residents.

Scenario 3-User 0.5% retrofit rate

Scenario 4-User 1.0% retrofit rate

Scenario 5-User 1.5% retrofit rate

Scenario 6-User 2.0% retrofit rate

6.12.1 Base Scenarios

For this analysis we define six different scenarios. The first “base” scenario only considers changes in
the population, maintaining the state of the building stock constant. This “base” scenario is not very
realistic as all new families introduced into the district will be attributed a building with the charac-
teristics of the district. A more realistic “base” scenario is therefore introduced, we call this scenario
“new buildings”. In this scenario each new family introduced to the district is attributed a new building
with energy efficiency standards corresponding to the last four types of the building typology.
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6.12.2 Different Retrofit Rates

The following scenarios define different retrofit rates for the entire city. In these scenarios we take a
weighted sample of the entire building stock and “retrofit” these buildings to new construction stan-
dards defined by taking one of the last four building types of the building typology.

In order to pick the buildings to be retrofitted we take a sample with a given probability based on the
building construction year, which is embedded in the building typology.

This probability is expressed with help of an exponential function in Equation 6.15 where p(b) is the
sampling probability as a function of building type. This function is used to assign probabilities to
the survey, V contains these probabilities (Equation6.16). We select m number of buildings from the
sample with the estimated probability (Equation 6.17). Set S contains the m buildings that will get
retrofit in the specific simulation step.

p(b) = e1/b (6.15)

V = p(Bi); for i = 1 to l (6.16)

Sk = vi ;∈ V − S
;while k < m

; if vi ≥ rand
(
e1/max(b), e1/min(b)

) (6.17)

m(r, y) = B × (1 + r)y−2010 −B (6.18)

We define four annual retrofit rates, which define our scenarios: (1) 0.5%, (2) 1.0%, (3) 1.5%, and (4)
2.0%. For each one of these scenarios we run two simulations: (1) taking the occupant influence into
account (“user”) and (2) using the same “average” occupant for all buildings. The number of buildings
selected for retrofitting at a specific at a specific simulation year is defined by Equation 6.18.

6.13 Results

The simulation results show: (1) the impact of the different retrofit scenarios on total heat demand for
the city of Hamburg, see normal lines on Figure 6.12; and (2) the difference between the model that
takes user influence into account and the one that maintains this variation constant, see dotted line
in Figure 6.12. A map showing this difference for simulation year 2030 is depicted on Figure 6.13 for
all districts in Hamburg. The map shows the simulated difference between the “user” scenario (taking
occupant influence into account) and the “average user” scenario. The difference is expressed as heat
density for simulation year 2030 with a 2% retrofit rate. We see a concentration in the city center
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Figure 6.12: Estimated development for all four retrofit scenarios in heat demand for the city of
Hamburg expressed as difference from base scenario, simulations including user influence are depicted
with dashed lines

where most of the old buildings are located.
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Figure 6.13: Difference in heat density [MWh/km2a] between model including and not including user influence in the computation for all
districts.
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An interesting observation in the results is that the difference in heat demand (absolute difference from
base scenario) is bigger (more net savings) when we include user behavior in the model. This obser-
vation does not occur on all scenarios. On scenario “0.5% retrofits” we observe the expected behavior,
this is a higher heat demand under explicit consideration of user behavior. On Scenario “1.0% retrofits”
we see a breakpoint on simulation year 2025. For all the other scenarios this breakpoint occur in 2020
and 2015 for scenario “1.5% and 2.0% retrofits” respectively.

We observe this effect because the absolute influence of user behavior is higher (more kWh) on older
buildings while the relative user influence (higher %) is higher on energy efficient buildings. Figure 4
shows the net energy savings for the different scenarios. For scenarios including user behavior (dotted
lines), the line represents the simulated heat demand of corresponding scenario minus the simulated
heat demand of the “base” scenario (no retrofits) also taking user influence into account. For the base
scenario, the absolute user influence on heat demand is higher than the influence on simulation sce-
narios with more energy efficient buildings. This result on higher net savings for scenarios with user
behavior. It must be noted that the relative influence of user behavior increases as does the energy
efficiency of the building. This is important for the dimensioning of heat supply systems. This effect
is also represented in the map plotted in Figure 5, we see a concentration of the highest difference in
the city center where most of the old buildings are located.
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7 Estimating Heat Demand with a Heat Balance
Method1

7.1 Heat Balance Method

Following equations show a simple procedure to estimate the heat demand of a building (see equa-
tions 7.9 and 7.1.4). As input parameter for such calculation a table containing the solar radiation on
the vertical plane for the city of Hamburg is used (needed for solar gains). This table contains values
for the monthly average solar radiation at different orientations. The second input needed in order to
perform this calculation is the geometry of the building. Furthermore the computation of final and
primary heat demand, are presented in equations 7.1.5 and 7.1.5.

Specific values corresponding to the building types, needed for this calculation, are calculated based
on a building stock analysis for the city of Hamburg. This analysis calculates the average floor space
and average height for the specific building types define in the process. U-values for the building types
are estimated based on literature review.

The performed calculation represents a simplified variation from the DIN V 18599 (2011) standard
calculation method. This method is widely used for the estimation of heat demand in buildings.

7.1.1 Heat Gains Qg

Qg(m) = 0.024× (Ss(m) + Si)× t(m) (7.1)

Where: m Month of the year.

0.024 kWh = 1Wd
Ss average monthly solar heat flow [W ]
Si heat flow by internal heat sources [W ]
t number of the days in a particular month [d/m]

The heat gains, as well as the rest of the computations, are performed on a monthly basis. In Equa-
tion 7.1 the heat gains (both solar and from internal heat sources) are computed for each month of the

1Sections of this chapter are based on: Muñoz H., Seller, & Peters (2015)



year.

Internal heat gains Si

Si = qi×An (7.2)

Where: qi Average value for internal heat emissions.

An Heated area.

The internal heat gains are computed with help of a factor qi. This factor is constant through all
computed months. The used value is to be understood as an average value for the whole year. The
factor represents the heat emissions of a household per m2 living space.

Monthly solar heat flows Ss

Ss(m,j) = I(m,j) ×A(j) (7.3)

Where: m Month of the year.

Ss average monthly solar heat flow [W ]
I average monthly solar intensity of radiation [W/m2]
A actual collector surface [m2]
j orientation (direction and down-grade to vertical)

The monthly heat gains are computed for each month based on the preloaded table of solar emissions
for the city of Hamburg. The solar gains are computed for each window based on its orientation.

7.1.2 Heat Losses Ql

Ql(m) = 0.024×H ×
(
Ti− Te(m)

)
× t(m) (7.4)

Where: m Month of the year.

0.024 kWh = 1 Wd
H Specific total heat loss [W/K]
Ti− Te Difference between internal and ambient temperature [K]
t Number of the days in a particular month [d/M ]
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As a contra part to the heat gains the heat losses are computed. The heat losses of the building are
computed for each month, as the transmission of heat directly depends on the temperature differ-
ence between the inside and the outside of the building. Here we define a constant operative internal
temperature, define by the corresponding family class. The outside temperature is taken from the pre-
viously loaded climate date for the city of Hamburg. In order to compute the heat losses we first have
to compute the specific total heat loss H (see equation 7.9) compose of: Ventilation losses Hv define
in equation 7.5, a correction factor for thermal bridges Hwb define in equation 7.6 and transmission
losses Ht define in equation 7.7.

Ventilation losses Hv

Hv = AirCRate× V × plCpl; (7.5)

Where: AirCRate air change rate [h− 1]

V volume of air in heated building = 0.8× V e
V e building volume
plCpl heat storage capacity of air = 0.34[Wh/(m3K)]

The ventilation losses depend directly on the air exchange rate AirCRate. This value varies according
to the defined family class. The ventilation losses are computed only taking into account natural ven-
tilation and therefor no heat recovery measures are taken into account. This simplification is needed
as the aim of this computation is to compare plCpl heat storage capacity of air = 0.34[Wh/(m3K)]
An extension of this computation will have to take place in order to incorporate such a technology
from special interest in low energy consumption buildings.

Correction value for thermal bridges Hwb

Hwb = Uwb×A (7.6)

Where: Uwb correction value for thermal bridges [W/m2K]

A total heat transmitting building envelope [m2]

The correction for thermal bridges is computed with help of a correction factor define in DIN V 18559.
This factor is multiplied by the heat transmitting envelope of the building, this fact makes the building
very reactive to the well-known A/V relationship influencing heat consumption.

Transmission losses Ht

Ht =
n∑

i=1

(
U(i) ×A(i)

)
(7.7)
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Where: n Number of building components encounter with ambient air

U(i) Heat transfer coefficient in countercurrent with ambient air [W/(m2K)]

A(i) Analogical to building part surface [m2]

For every building envelope component (walls, roof, slabs) the transmission losses are computed. The
heat transfer coefficient for the building components are defined trough the building typologies.

Specific total heat loss H

H = Hv +Ht+Hwb (7.8)

7.1.3 Monthly Heat Demand Qh

Qh(m) = Ql(m) − η ×Qg(m) (7.9)

Where: m Month of the year.

η Factor for heat gains
Qg Heat gains
Ql Heat losses

The heat supply is computed using the previously computed heat gains and heat losses. The heat de-
mand is the heat needed to maintain the operative temperature and cover the heat losses. A fraction
of all the computed heat gains are subtracted from the heat losses, this fraction is the usable share of
the total heat gains. The fraction is computed with help of the eta (η) Factor.

Factor η

The factor η is computed as:

η =

{
a(m) ÷

(
a(m) + 1

)
for y = 1(

1− ya(m)

(m)

)
÷
(

1− ya(m)+1

(m)

)
for y 6= 1

(7.10)

Where: m Month of the year.

a Numerical parameter considering thermal inertia of building.
y heat-gain-loss relation.

136



Numerical parameter a(m)

a(m) = 1 + StorageCapacity × V e÷H(m) ÷ 16 (7.11)

Where: m Month of the year.

H Specific total heat loss (see equation 7.8)
V e Heated volume of building
a(m) = 1 + StorageCapacity × V e÷H(m) ÷ 16

Heat-gain-loss relation.

y(m) = Qg(m) ÷Ql(m)

StorageCapacityStoragecapacityofbuilding

Where: Qg Heat gains (see equation 7.1)

Ql Heat losses (see equation 7.4)

7.1.4 Specific Heat Demand Qhs [kWh/m2a] and Specific Transmission Losses Hts
[W/m2K]

Qhs = Qh/An (7.12)

Hts = Ht/An (7.12)

7.1.5 Final Heat Demand Qeh [kWh/a] and Primary Heat Demand Qph [kWh/a]

Qph = eP ×Qh (7.12)

Qeh = Qph/fP (7.12)
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7.1.6 Specific Final Heat Demand Qehs [kWh/m2a] and Specific Primary Heat
Demand Qphs [kWh/m2a]

Qphs = Qph/An (7.12)

Qehs = Qeh/An (7.12)

7.2 Creating a Synthetic Building Stock

The development of a synthetic city representing the urban fabric of urban agglomerations has proved
helpful for the development of urban models, the focus of this endeavor has been the use of remote
sensing data or other type of image and laser data available at a low aggregation level in order to gener-
ate urban structures. Laycock und Day (2003) presents an overview of used data sources and methods
for the generation of urban structures. Parish und Müller (2001) used a procedural approach based on
L-systems to generate urban structures. The authors use different maps as input for the generation of
the geometrical representation of the city. Our aim is to expand these methods by creating appropriate
data regarding the building stock and the population living and working on this building stock that
can be used as input to these models for the generation of synthetic cities. Kang, Ma, Tong und Liu
(2012) create a set of synthetic cities in order to assess the relationship between urban morphologies
and human mobility. Kii, Akimoto und Doi (2014) develop a simple synthetic city for the assessment
of urban transport policies, the authors generate the synthetic city and use this data as input for a land
use model, subsequently the authors apply the postulated policies to the model in order to assess them.
The authors argue in favor of including user behavior in urban models. Farber, Neutens, Miller und
Li (2013) generate eighty different synthetic cities in order to analyze the Social Interaction Potential
of these environments based on commuting patterns and land use distribution. Bagchi, Sprintson und
Singh (2013) use a synthetic city for the simulation of fire dispersion on an electrical distribution grid,
in this case the authors represent the building stock and an electrical grid. Mei et al. (2015) develop a
synthetic city in order to study the diffusion of infectious diseases. The authors use the synthetic city
in order to understand the outbreak of influenza in dense populated urban areas in China. In this case
the authors do not require a detail description of the building stock geometry but only the building
use. Stötzer, Hauer, Richter und Styczynski (2015) define a simple synthetic city for the estimation
of the potential load shift of commercial and residential electricity demand. Because the authors are
only interested in electric consumption, they do not create a geometrical representation of the building
stock not do they have any type of geo-reference in the synthetic city. In this chapter the authors
define the electric consumption as a function of household size. Many of the examples presented above
could be implemented on a more realistic environment describing the characteristics of the building
stock and the population living on them.

The development of a robust method for the creation of synthetic cities representing specific urban
agglomerations with known population aggregates constitutes the scope of this chapter. This chapter
presents first results from this endeavor. It is shown the developed method for the representation of a
synthetic city, describing individuals and the characteristics of their households and the building they
reside on. Here we do not discuss in detail the pursued method for the representation of geo-referenced
geometrical objects. We present some discussion regarding the different alternatives to generate a
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geometrical representation of the synthetic city extending the methods described in this chapter.

The method used in this analysis is a spatial microsimulation method. Microsimulation, introduced
by Orcutt (1957) is a commonly used method among social scientist used to simulate a large range of so-
cial phenomena at a micro-level. The first step of this method is normally the generation of a synthetic
population representing the population under analysis. The spatial microsimulation methodology ex-
tends this concept by allocating estimated synthetic populations to geographical areas (Clarke & Holm,
1987). This simulation method is applied by many disciplines. Brown und Harding (2002) and Smith,
Pearce und Harland (2011) argue the use of this type of models for the analysis of health systems, the
modeling of resources consumption is addressed by Williamson et al. (1996, 2002) for the estimation
of water consumption and Chingcuanco und Miller (2012) and Muñoz H. und Peters (2014b) for the
estimation of energy demand. Many transport models use this approach for the generation of synthetic
populations (Farooq et al., 2013). For overview of spatial microsimulation models, its applications and
methods see (Tanton, 2014; O’Donoghue et al., 2014). In this chapter we make use of the GREGWT
algorithm to create a synthetic population. We use the available R library (Muñoz H., Vidyattama
& Tanton, 2015a), implementing the GREGWT algorithm, originally developed by the Australian
Bureau of Statistics (ABS) (Bell, 2000). This algorithm is used by the National Center for Social and
Economic Modeling (NATSEM) on their spatial microsimulation model spatialMSM (Tanton, 2007).

The presented chapter is structured as follows: Section 3.3 presents and describes the used data for
the analysis and the undertaken steps in preparing the data for the simulation, the next section, Sec-
tion 7.3, describes the computation method to estimate heat demand for each individual on the micro
census and the assumptions made for this computation. Section 7.4 describes the method used for the
reweighting of the micro census with the computed heat demand values. We benchmark the survey
to benchmarks describing individuals, dwelling units and buildings. This process is described under
Section 7.5. The results from the simulation are described and discussed under Section 7.6. On Sec-
tion 7.7 we highlight the benefits and shortcomings of the developed method and propose extensions
to this method in order to address some shortcomings of the method.

7.3 Heat Demand

In order to estimate heat demand we estimate it for each individual in the micro census. For the esti-
mation of heat demand of each individual we need to consider the characteristics of the building stock.
In order to take these characteristics into account we make use of a building typology (Diefenbach,
Cischinsky, Rodenfels & Clausnitzer, 2010; Loga et al., 2011). We classify each individual to one of the
36 types. When aggregating these values we need to take into account the household size and divide
the estimated heat demand by this value. This is necessary because the computed heat demand is the
estimated heat demand per dwelling unit squared meter. An alternative to this would be to divide the
dwelling unit area by household size.

In order to classify the micro census into the building types we use three parameters from the micro
census: (1) building construction year, (2) dwelling unit size, and (3) number of dwelling units per
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building.

The main parameter used for the classification is the building construction year. We use the number
of dwelling units to differentiate between single-family and multi-family houses. Finally, the dwelling
unit size multiply by the number of dwelling units is used to distinguish between small multi-family
housed, large multi-family houses and high rise buildings. The specific heat values used in this analysis
are listed in Table 7.1.

Table 7.1: IWU-de building typology matrix for Germany
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EFHa 183 180 164 181 146 155 118 132 110 88
RH 153 137 156 106 127 127 98 78 86
KMH 190 143 168 156 129 134 118 122 92 79
GMH 127 144 142 131 117
HH 114 113

source: (Loga et al., 2011) (a) Specific Heat demand (spez. Wärmebedarfskennzahl) [kWh/m2a]

(EFH) Single family house “Einfamilienhaus”; (RH) Terrace house “Reihenhaus”; (KMH) Apartment house
“Mehrfamilienhaus”; (GMH) Large apartment house “Großes Mehrfamilienhaus”; (HH) High-rise “Hochhaus”;

The advantage of using a building typology for the estimation of heat demand is that we don’t need to
take assumptions about the building geometry. This is because the numbers listed under the building
typology represent specific heat demand values (per square meter). In order to compute the absolute
heat demand we simply multiply this value by the building size, in square meters. In order to explic-
itly account for building geometry we need to allocate individuals to a digital cadastre describing the
building properties, see (Muñoz H. & Peters, 2014b).

The disadvantages of using the digital cadastre for the computation of heat demand are: (1) the digi-
tal cadastre of other type of building information data are not as homogeneous as demographic data
and building typologies, there are many building typologies available for Europe (Caputo et al., 2013;
Hrabovszky-Horváth et al., 2013; Kragh & Wittchen, 2013; M. K. Singh et al., 2013; Dall’O’ et al.,
2012; Dascalaki et al., 2011; Balaras et al., 2007), as is demographic data. (2) the complexity of data
representing the building stock makes it difficult to make projections into the future, Muñoz H., Vidyat-
tama und Tanton (2015b) present an application of a synthetic building stock projected into the future.

7.4 Simulation: Using GREGWT to Reweight the Micro-census

For this analysis we use an implementation of the GREGWT method in the R language (Muñoz H.,
Vidyattama & Tanton, 2015a). The GREGWT method is used in the SpatialMSM model of the
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National Center for Social and Economic Modeling (NATSEM) (Tanton, 2007). This method was
developed by the Australian Bureau of Statistics (ABS) (Bell, 2000). The aim of the GREGWT is
to reweight a survey implementing method number 5 from A. Singh und Mohl (1996). Tanton et al.
(2011) makes a detail description of the algorithm and its applications. The mathematical description
of the GREGWT algorithm presented below is taken from Rahman et al. (2010) and the algorithm
description from Muñoz H., Tanton und Vidattama (2015).

Aim of the GREGWT algorithm is to find a set of new weights w that can be used to match a survey
X to a set of given benchmarks T so that T =

∑
wjXj (e.g. small area aggregates) by minimizing

the weight difference between these new weights w and the sample design weights d from the survey.
For the distance D between design and estimated weights the GREGWT algorithm makes used of the
truncated Chi-Squared distance function, represented in Equation 7.4.

D =
1

2

∑
j

(wj − dj)2

dj
(7.12)

The equation needed to minimize the weight distance constraint to some given marginal totals of a geo-
graphical area (T ) can be expressed as the Lagrangian function of the Chi-Squared function, as follows:

L =
1

2

∑
j

(wj − dj)2

dj
+
∑
k

λk

Tk −∑
j

wj,kXj,k

 (7.12)

By differentiating (7.4) with respect to wj and applying the first order condition, we have:

δL

δwj
=

(
wj − dj
dj

)
−
∑
j

λjXj = 0 (7.12)

With this equation we can formulate an equation for the new weights. Where X ′j =
∑
λkXj,k.

wj = dj + djX
′
j (7.12)

The new weights computed by the GREGWT algorithm are float values. Without any restrictions the
algorithm will produce negative weights, both implementations of the algorithm introduce boundaries
constrains as user input. The user can define an upper and lower bound, if the algorithm computes
weights outside these bounds the weights will be truncated to the corresponding bounds. In this case
the algorithm will iterate with the new computed weights until a predefine convergence parameter is
met or there is no improvement in the iteration.
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The implementation of the GREGWT algorithm in the R language add an extra calibration method
for the new estimated weights. This last process makes sure that the sum of the new weights is equal
to the total population of the specific area. Equation 7.4 shows the alignment used to calibrate the
resulting weights.

woi =
p× wi∑

wi
(7.12)

Where wo are the new calibrated weights, p is the population total and w are the computed new
weights from the GREGWT algorithm.

7.5 Benchmarking to Different Aggregation Units

The defined benchmarks for the reweighting of the survey are aggregated by different units: (1) Indi-
viduals, (2) Families, and (3) Buildings (see Table 3.4 and Section 3.3). The used R implementation
of GREGWT algorithm is able to perform integrated reweights. This is important for maintaining
unit aggregations, e.g. to maintain the family structure given by the survey. Nonetheless, this does
not allow us to benchmark to different aggregation units. Attempts to address this issue exist in the
literature, Guo und Bhat (2007) benchmark an initial survey to household characteristics and fit the
result to individual benchmarks in the integerization of the weights via a Monte Carlo process. This
method allows to “benchmark” to both aggregation units. The disadvantage of this problem relies on
the integerization process, this process is only required for the construction of agents at the cost of a
decline of the algorithm precision and performance (computational time). For the presented simulation
we do not require individual agents and therefor any form of integerization would be contra productive
for the final result. For a description of other similar approaches see Pritchard und Miller (2012) and
Ma und Srinivasan (2015). Pritchard und Miller (2012) propose a “Conditional Monte Carlo Synthesis
Procedure” to fit the synthetic population to both: household and individual benchmarks. Again this
procedure assumes an integerization of the survey. As describe above we aim to develop a method
that does not require an integerization step in order to avoid: (a) a decline in the performance of the
algorithm, (b) an explosion of computational time, and (c) introduction of a stochastic element to a
deterministic approach. Ma und Srinivasan (2015) developed another method to create a synthetic
population: “fitness-based synthesis” (FBS). The method presented by Ma.2015 proposed the compu-
tation of two fitness values expressing the adding and subtracting probability of individuals from the
random selected population from the reweighted population survey.

For our simulation we make use of a simpler method. Because we don’t need an integerized survey,
we reweight the original survey to three benchmark groups (aggregation units): (1) individuals, (2)
families and (3) buildings. For each of these groups there is available data at a NUTS 3 level.

The GREGWT algorithm need to transform the input matrix X (micro census) to a binary matrix,
each 1 on the matrix corresponds to an individual. This works well if we benchmark the survey to
aggregates counting individuals (e.g. number of individuals on age category 18 to 20) but fails if we
try to benchmark to an aggregate, counting dwelling units (e.g. number of dwelling units with floor
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space of 60 m2). We need to control for this difference. With the available information of the input
survey we can manipulate the binary matrix in order to make the benchmarking to different aggre-
gation units possible. For variables benchmarked to dwelling units we divide them by household size,
an individual with household size 3 will get a 1/3 instead of 1 in the X input matrix. For all vari-
ables counting buildings we divide the values by the household size and number of dwelling units, the
same individual living in a building with 6 dwelling units will have a value of 1/3/6. This calibration
is formalized in Equation 7.5 and 7.5, where HH is household size and DU is number of dwelling units.

Xdu
i = Xi ÷HHi (7.12)

Xbu
i = Xi ÷HHi ÷DUi (7.12)

With this simple modification of the survey we are able to benchmark the input survey to three ag-
gregation levels. In theory this method allows us to benchmark to any number of aggregation units.
The used library implements three aggregation levels: (1) individuals, (2) households; and (3) buildings.

7.6 Results: German Heat Demand

In this section we present the main results from the performed spatial microsimulation. The results
show the estimated heat demand for the German residential sector. First we present an internal valida-
tion of the spatial microsimulation model and the resulting heat demand. The results are aggregated
back to the geographical areas in order to visualize them.

In order to internally validate the model we compare the results at the NUTS 3 level. We compare
the output results with the benchmarks used in the reweighting process. For the comparison we make
use of the Total Absolute Error TAE and the Percentage Absolute Error PTAE as measures of the
model internal error. The TAE is the absolute difference between the simulated T̂ and observed T
benchmarks, the PTAE is an extension of the TAE measure. The PTAE divides the computed TAE
by the total population pop of the geographical area i. The mathematical expressions of both measures
are expressed below.

TAEi =
∑
i

∣∣∣Ti − T̂i∣∣∣ (7.12)

PTAEi = TAEi ÷ popi × 100 (7.12)

The resulting PTAE values show a very low miss-allocation of individuals at this aggregation level.
There are only four areas with a PTAE value higher than 0.2% and 52 areas with a value higher than
0.1%. Figure 7.1 shows: (a) the distribution of the PTAE values for all simulation areas; and (b) a
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(a) (b)

Figure 7.1: Distribution of PTAE and difference between estimated and simulated population

scatter plot comparing the observed and simulated marginal sums.

The Internal validation of the model shows extremely good results, these good results do not reflect on
the accuracy of the estimated heat demand. An external validation of the model is necessary in order
to validate the estimation of heat demand. This chapter shows that the use of a spatial microsimulation
model for the estimation of heat demand at low aggregation levels is possible, the underlying model
used for the estimation of heat demand has not yet been validated, still the estimation is able to show
plausible differences in heat demand between small geographical areas. This method can be applied
at a city level, differentiating the heat demand at a neighborhood level.

An external validation of the model is not possible because available energy consumption data is not
available at this disaggregation level. Available energy consumption data exist at a higher aggregation
level. A problem with this data is that this data does not differentiate between consumption sectors
neither between primary and end energy consumption. Our model simulates residential end heat de-
mand. There is also a difference between heat demand and heat consumption, our model does not
consider efficiency rates of heat supply infrastructure. Further steps are planned to make an external
validation possible. The first step we envision towards a validation of estimated heat demand is the
integration of the non-residential sector to the model. With an estimate of the non-residential sector
we might be able to validate the sum of residential and non-residential heat demand at a higher ag-
gregation level. We also plan to include efficiency rates of the underlying heat supply infrastructure
as well as the energy carrier used to supply the heat.

In order to show the results in a more meaningful way we divide the estimated total heat demand
by the number of dwelling units in each geographical area and by a constant (60) representing the
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∗ for a 60 m2 dwelling unit

Figure 7.2: Mean heat consumption per dwelling unit

average dwelling unit size in m2 for Germany2. The resulting specific heat demand allows us to assess
the performance of the model. The distribution of this value for all simulation areas is plotted on
Figure 7.2, the values and distribution shown in this plot are consistent to known consumption values
for the German building stock.

We present a figure showing the estimated heat demand at a NUTS-3 level. The first map (Figure 7.3)
shows the distribution of specific heat demand for the entire country. The second map shows the
detail of four specific areas of Germany. In addition to the estimated heat demand we plot urban
agglomerations retrieved from Landsat images, we make use of the GADM dataset containing this
information (Hijmans et al., 2014).

On the first map (see Figure 7.3) we can identify a differentiation between West- and East-Germany.
The specific heat consumption is higher on East-Germany. The specific heat consumption on East-
Germany is higher because the building stock on this part of Germany is older. This regional differen-
tiation on heat demand shows that the presented model is sensitive to regional characteristics of the
building stock. The model does not take other regional characteristics into account like temperature,
solar radiation or heat supply infrastructure. There is a big difference between East and West regard-
ing the heat supply infrastructure. The share of households connected to a district heating network in
East-Germany is much higher than in West-Germany.

The second map (Figure 7.4), showing a detail of the distribution of heat demand for the two largest
cities in Germany: (a) Berlin and its surroundings, (b) Hamburg and its surroundings and two urban
agglomerations: (c) the south-east part of North Rhine-Westphalia “Nordrhein Westfalen” and (d)
Thuringia “Thüringen”, a federal state of East-Germany. In the case of the German cities, Berlin and
Hamburg, the official NUTS 3 level corresponds is equivalent to the NUTS 2 and NUTS 1 level. Both
areas have a disproportional large population size compare to all the other geographical areas. Available
statistics at a lower aggregation level are available for both cities and a second reweighting algorithm
could be perform for these two areas separately. In both cases we see that the areas corresponding to
the cities have a higher specific heat demand and the peripheries show a lower specific heat demand,

271,5 m2 (2013 west Germany) & 63.4 m2 (2013 east Germany) from: Income and Consumption survey “Einkommens-
und Verbrauchsstichprobe” (EVS) as quoted in: “Haushalte zur Miete und im Wohneigentum nach Anteilen und
Wohnfläche in den Gebietsständen am 1.1.” destatis.de
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we find an explanation for this differentiation in the construction year of the corresponding building
stock. We expect to have an old building stock within the historical urban fabric of the cities, this
part of the city will be well within the corresponding geographical area. Both cities have outgrowth
the boundaries of these geographical areas. The development of urban settlements at the periphery of
the city, constructed in more recent years, are constrained to newer building codes regulating the heat
transmission losses of the building shell and therefore consuming less heat demand.

We see a similar effect on the large urban agglomeration of North Rhine-Westphalia (see Figure 7.4c),
the high values of heat demand correspond to the original settlements in the region. These settle-
ments have the oldest building stock in the region. Large parts of these settlements are under heritage
protection, making a retrofit of the buildings extremely expensive and difficult. We can’t see this
differentiation on the East-German urban agglomeration in the Thuringia state (see Figure 7.3d).
The urban agglomeration is not a big as in North Rhine-Westphalia and the urban and population
growth hasn’t been as big ans in other German regions. In the case of North Rhine-Westphalia we
see the opposite phenomena in which more rural areas in the periphery have higher consumption values.

The results presented in this chapter show that an estimation of heat demand at this level of aggre-
gation with relative little input data is possible. Future developments of the models aim to integrate
projections of the heat demand consumption at the same area of aggregation. A theoretical back-
ground to perform a projection of heat demand with a spatial microsimulation model exist (Muñoz H.,
Vidyattama & Tanton, 2015b). Muñoz H., Vidyattama und Tanton (2015b) project the heat demand
at a low aggregation level for the city of Hamburg using a spatial microsimulation model. Recent
developments show an alternative method to project heat demand by simulating retrofits through the
manipulation of the input weights of the micro census (Muñoz H., Tanton & Vidattama, 2015), this
method present a clear advantage while simulating and projecting heat demand for the entire country
at a low level of aggregation because we do not have to make assumptions for the projection of retrofit
levels at a low level of aggregation. A possible implementation of this method is to align the initial
weight distribution to proposed policies implemented at a federal level. In this scenario the aggregated
retrofit rates are defined at a federal level and the allocation of these retrofits could be simulated as
function of demographic characteristics at a lower geographical level.

146



Per capita
heat demand
[kWh/cap]

Figure 7.3: Simulated heat demand for Germany at a NUTS-3 level as per capita heat demand in
kWh/cap
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(a) Berlin (b) Hamburg

(c) Nordrhein Westfalen (d) Thüringen

Per capita heat demand

[kWh/cap]

Figure 7.4: Simulated heat demand for selected regions of Germany

148



7.7 Next Steps: Integrated Reweighting

The next envisioned step is to group the synthetic individuals into: (a) households and (b) into build-
ings. The advantage of grouping individuals into single buildings are: (1) the ability to represent
energy consumption at a building level and (2) the possibility to geo-reference these buildings at a
finer spatial resolution.

One of the applications for this synthetic data is the dimensioning and planning of decentralized energy
supply systems. In order to make this data usable for this application we need to represent energy
demand at a finer spatial resolution. We may achieve this by obtaining aggregated benchmarks at a
finer spatial resolution, this may not be possible due to data protection concerns. For this reason we
want to develop new method to further disaggregate heat consumption values. For this disaggregation
we see two possible paths, the first step for both paths is the grouping of individual data into buildings.

The first approach makes use of the digital cadastre. The problem of this method is that a digital
cadastre may not always be able for the desire area, this is especially true for rural areas. The second
approach makes use of satellite images for the computation of spatial probability distributions of rele-
vant building parameters (e.g. density, construction year, etc.) and stochastically allocated buildings
to build up areas based on the computed spatial probabilities. The advantage of this method is that
satellites are available for the entire world, making the transferability of the method higher.

With a more efficient building stock in place the role of user-behavior will take a dominant place in
the estimation of heat demand (Hong, D’Oca, Turner & Taylor-Lange, 2015). The presented method
already solves the biggest problem of urban models aimed at the estimation of residential heat demand
with an explicit consideration of human behavior, this is the allocation of families to the building
stock. Muñoz H. und Peters (2014b) use a spatial microsimulation model to describe households and
the building characteristics they reside on for the estimation of heat demand varying user related
parameters on the model according to the demographics of the user. A more elaborated approach
is presented by Muñoz H. (2014), in this paper the author enriches the German micro census with a
time-use survey for the generation of household schedules, these schedules are use as input in a thermal
simulation model.
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8 Conclusions and Outlook

In this section we discuss the use of building typologies at a European and global level as well a short
discussion on the use of building components as an alternative to building typologies. We argue the
need to work on method rather than on specific national building typologies with focus on available
data of individual countries. We also make a small excursion to the use of urban typologies for the
estimation of heat demand and highlight the benefits and problems of using urban typologies rather
that building typologies. We highlight the need to include the non-residential sector in this type of
analysis.

A reflection on the use of time-use data for the description of human activity on urban environments
is presented. We argue in favor of an activity-based model for the simulation of urban processes. The
generation of rich micro data-sets can be used for many type of urban simulations.

We present a brief discussion on the use of demographic data for the projection of urban environments.
The decision of which building is to be retrofitted within the projected model is based on this thesis
only on building characteristics. Such a decision should be simulated based not only on characteristics
of the building stock but on the characteristics of the population living on them.

An important contribution of this thesis to the spatial microsimulation community is the performed
analysis of the initial weights of the sample survey. We argue that the manipulation of the initial survey
sample weights can be used as a modeling tool. The projection of the building stock within a spatial
microsimulation model needs to take assumptions at a small area level. Projected data at this level
of aggregation is normally not available and assumptions are hard to make. We see the manipulation
of initial weights as an alternative to this method for the projection of synthetic populations into the
future.

8.1 The Need to Include Non Residential Buildings in the Analysis
Scope

Many of the developed typologies have extended their approach to the non-residential sector (Loga
et al., 2011; Hermelink et al., 2011). An estimation of the industrial sector will differ too much from
the typology approach in order to be include into this methodology. A different approach is presented
by (Blesl et al., 2007), in which the authors attempt to classify the non-residential sector by the re-
quired temperature of the processes within the building. An automatic classification of buildings by
the driving needed temperature may be possible thanks to the comprehensive classification of building
use in the digital cadastre (231 classes). A parallel comprehensive classification of building uses and



their corresponding energy demand was developed by (Zeine, Gebhardt, Bockting, Mantai & Wei,
2007). The connection of these both data sets may be an interesting option for the estimation of
nonresidential buildings.

Another interesting alternative, especially for an urban setting without a comprehensive digital cadas-
tre, can be the use of urban typologies. An example for such a typology is the one developed by Hegger
et al. (2014), which divides the urban territory into areas with specific heat demand and potential for
renewable energy sources. The heat demand is based upon the character of the urban fabric, for
example predominantly single family houses, terrace houses, prefabricated blocks etc. The potential
for renewable energy is derived again by the character of the areas with the amount of non-built up
areas being a signal for the potential of geothermal and biomass energy and the typical roof form
(slope, aspect), for the given area, –a signal for solar energy potential. In this typology, however, the
heat demand of the non-residential buildings is taken down to the building level, being analyzed as
“single-elements” rather than urban areas (with one urban area exception, in which the demand of the
nonresidential sector is calculated per area of the urban type). Since almost the entire heat demand
of these urban areas does come from the buildings (and the nonresidential sector is actually tackled
at the building level), it becomes arguable if the switching from buildings to areas presents a benefit
to the analysis. It can be argued that it is useful for areas without a digital cadastre, however the
lack of such a cadastre may render the assignment of the urban areas into types impossible or at least
with low precision. Therefore, simply methodologically, estimating the heat demand of urban areas
rather than buildings may not bring benefits precisely because areas do not demand any heat, apart
from the buildings on them (there are marginal exceptions, street lightning demands electrical power
for example). Looking at the supply of heat however, the urban area typology approach presents a
more solid case. Generally, the supply of a building is external to it, thus exploring the areas outside
of the buildings as well, makes more sense. Therefore, if the aim of the analysis relies not on the
single buildings but on entire urban areas taking into account not only the single heat demand of the
buildings but the underlying infrastructure supporting the area, a more holistic approach, using areas
rather than buildings, may be useful. Roth und Häubi (1980) developed an urban typology design for
the dimension of district heating systems. In Germany and Switzerland, the use of urban typologies
for the description of the building stock and the underlying infrastructure has a long tradition. For
the use of urban typologies in relationship with: (1) heat supply, see (Roth & Häubi, 1980; Sieverts
und Volwahsen, Roth & Volwahsen, 1980; Blesl, 2002; Jentsch et al., 2008); (2) for the estimation of
the potential of solar power generation, see (Everding, 2004); (3) a general description of the potential
for renewable energies in open spaces, see (Genske, Jödecke & Ruff, 2009); (4) transportation volume
estimation and transportation patterns, see (Marconi, 2006; Krug, 2006); and (5) for a description of
general infrastructure networks see (Buchert, 2004; Ecoplan & Schweiz. Bundesamt für Raumentwick-
lung., 2000; Einig, 2006; Erhorn-Kluttig, 2011).

8.2 Next Steps: Expanding the Method

Having access to a detailed digital cadaster of the city offers a vast set of possibilities for the simulation
of heat demand of urban areas. A simple balance of heat demand can be performed without much
effort and with a relative low input of data. Much of the needed data for an energy balance of a
single building can be recover through the digital cadaster. The missing data for such a computation
are the U-values of the individual building components. The implemented building typologies are not
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constructed for this purpose. There is an alternative to the use of building typologies, this is the use
of a building component typology. For Germany there is a regional material catalog developed by
the Center for Environmental Friendly Construction1 (Klauß, Kirchhof & Gissel, 2009). With help of
this catalog we can simulate heat consumption based on building components rather than on building
typologies. First attempts have been performed (Muñoz H., 2016). The simulation at such level of
detail may foster further insights on different topics needed for a holistic understanding of urban sys-
tems. This method could be applied for the simulation of material flows in urban systems as well as
an estimation of retrofit cost and the construction and demolition waste arising from such retrofits.

8.3 Extending the Use of Occupation Schedules

In the presented approach the generated occupation schedule distinguish only between workdays and
weekends, this method can be expanded to distinguish occupational patterns between seasons. This
method can also be expanded to other type of simulation models. The simulation of electricity demand
can directly profit from this approach. The available data in the time-use survey delivers not only in-
formation about the location of single individuals over time but describes the specific activity as well
as appliances used in the household. We expect that this type of information, in combination with a
spatial microsimulation (that is the selection of representative individuals from the micro census for
specific urban areas) make a contribution towards the reduction of the variation between simulated
heat demand and monitored heat consumption. When occupants have control over the system, they
can adapt, and this can lead to a significant reduction of energy (Bourgeois, 2005; Toftum, Andersen
& Jensen, 2009; Fabi, Andersen, Corgnati & Olesen, 2012), especially on new or retrofitted buildings
where heat transmission losses through the wall and through ventilation are rather low. We need
models able to capture this influence for the proper design of future district heating supply systems.

8.4 Expanding the Use of Demographic Data Onto Urban Models

This thesis shows the application of a microsimulation model used for the estimation of heat con-
sumption with an explicit consideration of user influence. We project this estimation into the future
considering: (a) the aging population of the city of Hamburg, Germany and (b) ambitious scenarios
to retrofit a substantial share of the buildings stock. The estimate indicates that the biggest changes
could be concentrated in the city center where most of the old buildings are located. Nevertheless,
this estimation can still be improved by integrating further characteristics of both the population and
the building stock into the model. For future analysis we want to take other demographic parame-
ters to sample the building stock and include new building typologies in order to simulate retrofit cycles.

Further applications of this method may integrate more elaborated user behavior models developed by
the building simulation community. The developed model architecture also can accommodate the use
of weather files projected under different climate change scenarios. A dataset describing the building
stock and the individuals living on it can be used for many analyses. The impact of fluctuating tem-
peratures has a health consequence, especially on the elderly population (Shi, Kloog, Zanobetti, Liu

1(Zentrum für Umweltbewusstes Bauen e.V.) http://www.zub-kassel.de/
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& Schwartz, 2015). Models projecting this type of effects on the population need to take the build
environment and possible developments of the build environment into account.

The presented method shows a model to project the building stock and the population living on it.
The developed scenarios can growth in complexity as the model matures. We aim to include more
parameters (and the corresponding algorithms) driving: (a) the selection of buildings to be retrofitted
and (b) the interaction between buildings and residents.

8.5 Using the Initial Weights of Population as a Modeling Tool

The presented thesis makes a comparison of two well established methods for the reweighting of pop-
ulation surveys to geographical areas. This comparison is based on the results of three reweighting
processes using different implementations of the algorithms: (1) an implementation in the R language
of the GREGWT algorithm, developed by author of this thesis (Muñoz H., Vidyattama & Tanton,
2015a); (2) an implementation in the SAS language of the GREGWT algorithm (Bell, 2000), devel-
oped by the Australian Bureau of Statistics; and (3) an implementation into the R language of the IPF
algorithm (Blocker, 2013). The results from these three implementations are compared in terms of the
weight distance and in terms of total absolute error (TAE). Results from the reweighting process show
that all three implementations deliver robust results, the resulting weights from the GREGWT and
IPF implementations are very similar. The resulting weights from both GREGWT implementations
are almost identical, we attribute the difference in weights between the GREGWT implementations
to the internal architecture of both implementations and the selected reference categories used on the
two implementations.

The achieved percentage specific absolute error (PSAE) is extremely low for all three implementa-
tions, the highest PSAE value is for geographical area 4011 reweighted with the GREGWT SAS
implementations. These values are still extremely low with a 0.26%. We attribute this larger error to
the selection of reference categories within the SAS implementation.

In this thesis we also discuss the role of initial weights and discuss the advantages of having a reweight-
ing algorithm sensitive to a modification of the initial weights. The manipulation of the initial weights
of the input population survey offers an extra tool to the user for the design of simulation models.
In this thesis we discuss the use of this tool within static projections, the manipulation of initial
weights can be used to make projections of the population without the need to project the desired
benchmark at a low aggregation level. Form a model design a projection at a low level aggregation
might be difficult or undesired, in these cases a manipulation of the weight distribution might be a
better solution. It is important to mention that a manipulation of the initial weights will only be ef-
fective if the reweight is not performed on the same variable used to manipulate the weight distribution.
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