
Multilinear Design of Decentralized Controller Networks for
Building Automation Systems

Vorgelegt im Promotionsausschuss der
HafenCity Universität Hamburg

zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

Dissertation

von
Kai Kruppa

aus
Elmshorn

2018

1. Gutachter: Prof. Dr.-Ing. Harald Sternberg
2. Gutachter: Prof. Dr.-Ing. habil. Gerwald Lichtenberg

Vorsitzender der Prüfungsausschusses: Prof. Dr.-Ing. Jochen Schiewe
Zusätzliche Professorin im Prüfungsausschuss: Prof. Dr.-Ing. Annette Eicker

Tag der mündlichen Prüfung: 30.10.2018

Abstract

In Germany 35% of the end energy is currently consumed in the buildings sector. Model-
based controller design methods offer the possibility to use the high energy saving potential
to reduce this energy demand. Several tools for model-based design are available for linear
state space models. But linear methods may fail when nonlinear effects are essential as e.g. in
the area of buildings. Multilinear time-invariant (MTI) models extend the linear model class
and lead to better modeling properties, e.g. for heating systems. Today’s applications focus
more and more on complex systems. To deal with these large-scale systems a MTI model
representation with different decomposed tensor methods is derived here to get a memory
efficient model description. Tensor methods are used to develop different model analysis and
controller design methods especially for MTI models. Since decomposed MTI models allow
to describe the dynamics of large-scale systems, methods for distributed controller design of
such systems are derived based on the decomposed tensor structure of the models to reduce
the communication effort as well as the computational complexity. The controller algorithms
are applied in simulation to different heating systems examples to show their advantages for
building automation. The results of a successful realtime application of a predictive controller
at a realworld office building using the MTI tensor structure are presented.

In Deutschland werden 35% der Endenergie im Gebäudebereich verbraucht. Modellbasierte
Reglerentwurfsmethoden ermöglichen das große Energieeinsparpotenzial zu nutzen, um den
Energieverbrauch zu reduzieren. Für lineare Zustandsraummodelle sind dazu zahlreiche
Methoden bekannt. Jedoch können diese Methoden versagen, wenn nichtlineare Effekte
entscheidend sind, wie im Gebäudebereich. Multilineare zeitinvariante (MTI) Modelle er-
weitern die lineare Modellklasse und führen zu besseren Modellierungseigenschaften, z.B.
für Heizungssysteme. In heutigen Anwendungen werden die betrachteten Systeme immer
komplexer. Zur Modellierung solch großer Systeme werden hier Tensorzerlegungsverfahren
angewendet, um eine speicherplatzeffiziente Modelldarstellung zu erreichen. Tensormetho-
den werden weiterhin dazu verwendet, verschiedene Methoden zur Modellanalyse und zum
Reglerentwurf zu entwickeln. Da sich MTI Modelle dazu eignen das Verhalten sehr großer
Systeme zu beschreiben, werden, basierend auf der Tensorstruktur, Methoden für verteilte
Regelungen entworfen, um den Kommunikationsaufwand und die Komplexität der Regler zu
reduzieren. Die entworfenen Regler werden in der Simulation auf verschiedene Beispiele aus
dem Bereich der Heizungssysteme angewendet, um deren Vorteile zu zeigen. Zudem erfolgt
die erfolgreiche Echtzeitanwendung eines prädiktiven Reglers auf ein reales Bürogebäude,
der die multilineare Tensorstruktur des Modells nutzt.

Acknowledgement

During the years of research resulting in this thesis many people supported me in an extra-
ordinary way. I am very thankful for that. I like to mention some special people that had a
lot of influence on me during that time.
I like to thank you, Gerwald Lichtenberg, for being my supervisor. You gave many inspira-
tions as well on topic as off topic and gave me a lot of support through my whole studies
from Bachelor to Master degree and finally for my PhD research. Our discussions opened
a wide view on control engineering for me. Thank you, Harald Sternberg for giving me the
possibility to come to the HafenCity University and being my supervisor. Thank you, Jochen
Schiewe and Annette Eicker for leading the examination committee and being part of it.
Another important factor was the team at the Hamburg University of Applied Sciences and
my other PhD colleagues. Björn Lautenschlager, we took the whole journey of the research
project together. This was a great time inside and outside the office together with you.
Thank you for that. Without you Georg Pangalos I might never started this PhD adventure.
Thank you for all the fruitful discussions we had. Our coffee rounds with Dagmar Rokita
and Carsten Westarp were always great possibilities to open the mind again. Thank you for
always taking time for talking about the current topics or problems. I also like to thank Erik
Sewe and Thorsten Müller-Eping for the way through the project and the successful fights
with the tensors.
A very special and great thank you goes to my parents, girlfriend and my whole family. You
always believed in me and supported me in a way that is amazing.
You and all others who supported me, gave me a great background for my work. You are
great people. All this would not have been possible without you.
Thank you!!!

Contents

List of Figures iv

List of Tables vii

List of Abbreviations viii

1 Introduction 1
1.1 Motivation . 1
1.2 Research questions . 3
1.3 State of research . 4
1.4 Modeling of heating systems . 6
1.5 Main contributions . 9
1.6 Outline . 11

2 Tensor operations 12
2.1 Tensor basics . 13

2.1.1 Operations . 16
2.1.2 Decomposition methods . 21
2.1.3 Guiding questions . 31

2.2 Operations for canonical polyadic (CP) tensors 32
2.2.1 Outer product . 33
2.2.2 Contracted product . 35
2.2.3 Tensor concatenation . 36

2.3 Polynomial calculus by operational tensors 37
2.3.1 Tensor form of polynomials . 38
2.3.2 Multiplication . 44
2.3.3 Differentiation . 45
2.3.4 Lie derivative . 47
2.3.5 Jacobian and Hessian matrix . 50

2.4 Open and guiding questions . 56

3 Modeling for multilinear systems 57
3.1 Multilinear time-invariant (MTI) systems . 57

3.1.1 Model classes . 57
3.1.2 Tensor representation . 62
3.1.3 Guiding questions . 64

3.2 Decomposed MTI system representation and simulation 66
3.2.1 Canonical polyadic decomposition . 67

i

Contents

3.2.2 Tucker decomposition . 69
3.2.3 Tensor Trains . 71
3.2.4 Hierarchical Tucker . 74
3.2.5 Comparison of the decomposed representations 77

3.3 Linearization . 82
3.4 Discretization . 86
3.5 Scaling . 88
3.6 Multi-step transitions of discrete-time MTI models 91
3.7 Distributed systems with MTI subsystems 99

3.7.1 MTI subsystem representation . 100
3.7.2 Affine MTI systems . 101
3.7.3 Augmentation of affine MTI systems 104
3.7.4 Serial connection . 106
3.7.5 Parallel connection . 111
3.7.6 Feedback connection . 114

3.8 Open questions . 116

4 Controller design for MTI systems 119
4.1 Controller design basics . 119

4.1.1 State feedback control . 120
4.1.2 Feedback linearization . 123
4.1.3 Model predictive control . 125
4.1.4 Guiding questions . 129

4.2 Feedback linearization . 129
4.3 Decentralized state feedback design . 134
4.4 Model predictive control . 143

4.4.1 Optimization problem for MTI systems 144
4.4.2 Convexity analysis . 149

4.5 Adaptive model predictive control with successive linearization 153
4.6 Distributed model predictive control . 160
4.7 Open questions . 166

5 Application of decomposed MTI systems in heating systems 168
5.1 Application systems . 168

5.1.1 Large non-residential heating system 168
5.1.2 Heating, ventilation and air-conditioning (HVAC) system 173
5.1.3 MTI Toolbox . 177

5.2 Representation as decomposed MTI systems 179
5.2.1 Heating system . 179
5.2.2 HVAC system . 182
5.2.3 Comparison of the decomposition methods 183

5.3 Controller design for heating systems . 186
5.3.1 Feedback linearization . 187
5.3.2 Decentralized feedback design . 190
5.3.3 Adaptive model predictive control with successive linearization 194

ii

Contents

5.3.4 Distributed model predictive control 204
5.3.5 Real-time implementation . 212

6 Conclusion 221
6.1 Summary . 221
6.2 Outlook . 223

A Proofs 234
A.1 Outer product in CP form . 234
A.2 Contracted product in CP form . 235
A.3 Concatenation of tensors in CP form . 236
A.4 Multiplication in tensor form . 237
A.5 Differentiation in tensor form . 237
A.6 Lie derivative and bracket in tensor form . 240
A.7 Scaling of MTI models . 241
A.8 Feedback linearization for MTI systems . 243

B Application models 244
B.1 Heating system . 244
B.2 HVAC system . 244
B.3 Lie derivatives for the feedback linearzation controller 246

iii

List of Figures

1.1 Heat distribution with state feedback controller 2
1.2 Radiator example . 7
1.3 Simulation result of the radiator with a constant flow 8
1.4 Simulation result of the radiator with a varying flow 9

2.1 Tensor T containing one year data with one minute sampling time 12
2.2 Elements of a three dimensional tensor X . 13
2.3 Three dimensional tensor X with fibers . 14
2.4 Three dimensional tensor X with slices . 14
2.5 Matricizations of a three dimensional tensor X 16
2.6 Mode-2 tensor matrix product . 18
2.7 Contracted product of a three dimensional tensor X and a matrix Y 19
2.8 Concatenation of two tensors in the second mode 20
2.9 Direct sum of two three dimensional tensors X and Y 21
2.10 Rank-1 tensor . 22
2.11 Third order CP tensor . 23
2.12 Third order Tucker tensor . 25
2.13 Fourth order Tensor Train . 27
2.14 Tree of a 6th order tensor . 28
2.15 Parent node with left and right children . 29
2.16 Tree of a 6th order tensor in HT format . 29
2.17 Tree of a 3rd order tensor in HT format . 29
2.18 CP representation and structure of the factor matrices of X 34
2.19 CP representation and structure of the factor matrices of Y 34
2.20 Structure of the CP factor matrices of Z = X ◦ Y 34
2.21 Structure of the factor matrices of the result Z = ⟨ X | Y ⟩ 36
2.22 Structure of the factor matrices of Z = X �2 Y 37
2.23 CP representation of Z . 37
2.24 Monomial tensor M (x1, x2, x3) of a function in three variables 39
2.25 Multilinear polynomial in tensor representation 40
2.26 Subtensors of the monomial tensor for a polynomial of maximal order 2 . . . 41
2.27 Tensor representation with full tensors . 51

3.1 System with inputs, outputs and states . 58
3.2 System classes . 61
3.3 Number of parameters for MTI systems in full representation 65
3.4 Core tensors Fx1 and Fx2 . 73

iv

List of Figures

3.5 Tree of a parameter tensor F of a system with two states and one input . . . 75
3.6 Evaluation of the right hand side of the state equation with a HT tensor . . 76
3.7 Construction of the parameter tensor with different decomposition methods . 78
3.8 Storage complexities ξi of the different decomposition techniques 79
3.9 Simulation result of the truncated system without loss of dynamics 80
3.10 Simulation result of the truncated system with loss of dynamics 80
3.11 Discrete-time system . 86
3.12 Simulation result of the scaled system with parameter tensor F̃ 91
3.13 Extended tensors F and Fu . 98
3.14 Plant decomposed into three subsystems . 101
3.15 Serial connection . 106
3.16 Parallel connection . 112
3.17 Feedback connection . 114

4.1 State feedback control with central controller 120
4.2 State feedback control with sparse controller 122
4.3 Closed loop state feedback . 123
4.4 Closed loop structure of model predictive control (MPC) 125
4.5 Principle of MPC . 127
4.6 Exemplary comparison between PI and MPC controller 128
4.7 Closed loop simulation . 133
4.8 Upper bound for number of parameters for a feedback linearizing controller . 134
4.9 Performance loss depending on tuning factor γ 136
4.10 Flow chart of the preprocessing step . 138
4.11 Flow chart of the decentralized feedback controller during operation 139
4.12 Decentralized state feedback with sparse gain K 139
4.13 System representation as serial connection 140
4.14 Example system with decentralized controller structure 142
4.15 Closed loop simulation results with central and decentralized controller . . . 143
4.16 Closed loop simulation result result for state x2 148
4.17 Closed loop of the adaptive MPC with successive linearization 155
4.18 Flow chart of the adaptive MPC algorithm 158
4.19 Closed loop simulation results of the example for adaptive MPC 159
4.20 Centralized MPC . 160
4.21 Decentralized MPC . 161
4.22 Distributed MPC . 162
4.23 Local control loop of subsystem i . 164
4.24 Coordinator for distributed MPC . 165
4.25 Overall controller setup for the distributed MPC 165

5.1 Scheme of the heating circuit with NB boilers and NHC heating circuits . . . 169
5.2 Consumer with heat transfers . 170
5.3 Mixing circuit of the consumer . 170
5.4 Boiler structure . 171
5.5 Setup of the HVAC system . 173

v

List of Figures

5.6 Top view of the room with its modeled heat transfers 174
5.7 Air handling unit . 175
5.8 Mixing box . 176
5.9 Heating coil . 176
5.10 MTI toolbox overview . 178
5.11 Closed loop of the consumer and feedback linearization controller 188
5.12 Closed loop simulation of the consumer and feedback linerization controller . 190
5.13 Heating curve . 191
5.14 Performance loss ∆J of the decentralized controller 192
5.15 Sparsity structure of K . 192
5.16 Decentralized controller structure for the heating system 193
5.17 Comparison of the closed loop simulation for central and decentralized design 194
5.18 Setup of the consumer circuit with conventional controller design 195
5.19 Setup of the consumer circuit with adaptive MPC 195
5.20 Inputs and outputs of the consumer model for the adaptive MPC 196
5.21 Rectangular reference signal for the room temperature 198
5.22 Closed loop simulation of a first order system with a MPC and ramp reference 199
5.23 Estimation of the slope of the reference ramp 199
5.24 Reference and constraints of the room temperature 200
5.25 Reference of the room temperature and its prediction 200
5.26 Closed loop simulation with a consumer and adaptive MPC for one day . . . 201
5.27 Closed loop simulation with a consumer and adaptive MPC for a weekend . 202
5.28 Estimation of the heating curve of the standard controller 203
5.29 Comparison of supply temperature references 203
5.30 Central MPC for the heating system example 205
5.31 Local control loop of a consumer . 207
5.32 Local control loop of the boiler . 208
5.33 Coordinator of the boiler . 208
5.34 Distributed predictive controller for the overall system 209
5.35 Simulation result of the building temperatures for one day 209
5.36 Time for the solution of the optimization problem 211
5.37 Basic Simulink implementation of the adaptive MPC 215
5.38 Hardware-in-the-loop environment . 216
5.39 Communication setup . 217
5.40 Measurements of the adaptive MPC tests . 218

vi

List of Tables

2.1 Basic notations of elements in the real domain with different dimensions . . 15
2.2 Storage complexity of different tensor representations 30
2.3 Storage complexity of different tensor representations of a tensor K 31

3.1 Comparison of general properties of the decomposed formats of MTI systems 82

4.1 Controller structures with different degree of sparsity 141
4.2 Average computation times for solving the MPC optimization problem . . . 149

5.1 Memory demand of F of the heating system 181
5.2 Memory demand of F for the HVAC system 183
5.3 Comparison of the memory demand of the heating and HVAC systems . . . 185
5.4 Result of the comparison of the decomposition application 186
5.5 Comparison of the mean times for solving the optimization problems 210

vii

List of Abbreviations

ADMM alternating direction method of multipliers
AHU air handling unit
ALS alternating least squares
AMPC-SL adaptive model predictive control with successive linearization

BACnet Building Automation and Control Networks
BMS building management system

CP canonical polyadic

DDC direct digital control
DMPC distributed model predictive control

EMPC economic model predictive control

GPIO general purpose input output

HIL hardware-in-the-loop
HOSVD higher order singular value decomposition
HT hierarchical Tucker
HVAC heating, ventilation and air conditioning

LPV linear parameter-varying
LQR linear quadratic regulator

MIMO multiple-input multiple-output
MPC model predictive control
MTI multilinear time-invariant

NMPC nonlinear model predictive control

ODE ordinary differential equation

PI proportional and integral

viii

List of Abbreviations

SISO single-input single-output
SVD singular value decomposition

TT tensor train

UDP user datagram protocol

ix

1 Introduction

At the beginning of this introduction a motivation for modeling and control of heating
systems is given. The research questions are stated and the current state of research is
described. A simple example motivates the description of the thermal behavior of heating
systems components by multilinear models. This leads to the main contributions of the
thesis. Finally an outline is given.

1.1 Motivation

Heating and warm water generation have a great impact on the overall energy consump-
tion in Germany. Current reports state, that 35% of the end energy is consumed in the
buildings sector. With a high rate of 37%, non-residential buildings contribute significantly
to this consumption. A relevant group of buildings in this sector are office buildings. The
main part of the energy is consumed for room temperature regulation, [10, 100, 111]. To
reduce this high energy consumption e.g. the German government stated the following goals
in its sixth energy research program concerning the buildings sector. It is declared, that
until 2020 the heat demand of the building sector has to be reduced by 20% and the green-
house gas emission should be decreased by 40% compared to the year 1990. Until 2050, a
nearly climate-neutral building stock should be realized, meaning a reduction of the primary
energy demand by 80%. The rate of building renovation has to be doubled.
Current studies showed, that these ambitious goals will not be reached with the actual activi-
ties, [10]. New strategies have to be taken into consideration. It is not sufficient to construct
new buildings only with high energy efficiency standards to fullfill the requirements. The
existing building stock has to be optimized, too. Making constructive changes e.g. at the
building envelope is often related to high costs. But very often a high energy consumption
is caused because the provided energy is not used properly. In many buildings basic cont-
rol concepts like simple switching rules or PID controllers are used. Experiences show that
furthermore these controllers are often badly tuned. In [29] it is estimated, that an appropri-
ate controller management in buildings offer a energy saving potential of nearly 30%. This
shows, that with an improved building control a high amount of energy can be saved and a
waste of energy is prevented. To achieve that, no major constructional changes have to be
made, but the controller structure must be improved. It is stated that these potentials can
just be exploited by applying advanced controller concepts using e.g. models of the buildings
or weather forecasts. The application of those advanced methods is challenging but offers
the possibility to save a lot of energy.
Standard controller design leads to a centralized controller who needs the full system infor-
mation, i.e. measurements of all system states to compute the control inputs for the whole

1

1 Introduction

plant. Today’s applications lead to more and more complex systems, like in smart grids,
complex heating, ventilation and air conditioning (HVAC) systems or multi-agent systems.
A centralized design would result on the one hand in large communication effort and very
complex communication infrastructure and on the other hand to very much computational
effort for the central controller node, [70]. This suggests the implementation of controller
networks, where the control task is distributed to several nodes as shown exemplary in the
following example, [6, 102].

Example 1.1 Consider a large-scale system, where a heat generation unit supplies many
houses of a district with heat. Each house and the heat generation unit has its own sensors
and actuators. The setup is schematically illustrated in Figure 1.1.

Heat
Gen.

C

(a) Central

Heat
Gen.

C1 C2

C3

(b) Distributed

Heat
Generator

C2 C4 C6

C3 C5 C7

C1

(c) Decentralized

Figure 1.1: Heat distribution with state feedback controller

In central design each of the sensors and actuators have to be connected to the central control-
ler C. As shown in Figure 1.1a, this leads to a large communication effort especially when
the consumers are locally distanced. Furthermore large computations inside the controller
are necessary since many control signals for the heat generation unit and each consumer
have to be determined. The idea is to find a controller with an acceptable loss in control
performance, that does not need access to the full system information. Cutting some of the
communication links as shown in Figure 1.1b leads to a less complicated implementation of
the control system since less components, e.g. cables, have to be installed. During operation
the communication traffic is reduced, too. Maybe some communication between the control-
lers C1, C2 and C3 is necessary. The problems, that have to be solved inside the controllers
are of lower complexity too. A very high degree of decentralization would have been reached
if each component has its own feedback controller that uses only the sensors and actuators
of its own subsystem without any information of the other systems as in Figure 1.1c. The

2

1 Introduction

controller simply have to compute the control signals of their own subsystem. But this might
have a negative effect on the controller performance. Which degree of decentralization is pos-
sible depends on the application, i.e. the plant that should be controlled. How to determine
a suitable structure is investigated in Section 4.2.

The exemplary illustration shows, that with a distributed controller setup the complexity
of the communication infrastructure and the computational complexity of the controller
nodes can be reduced, which is necessary, when advanced controller strategies are applied to
systems of large-scale, as they occur in today’s applications.

1.2 Research questions

The scientific interest in this thesis is based on the development of new methods for model-
based controller design and their application to heating systems to benefit from the unused
energy saving potential of these plants. In control theory a well established approach is the
linear model-based controller design. Therefore, at first a nonlinear model of the considered
plant is derived. To determine a simpler model description and a controller design of lower
complexity, the nonlinear model is approximated around an operating point by a linear
model. This linear model is used for controller synthesis or inside the controller depending
on the particular design method. The class of linear models is very well analyzed and a
widepread theory is available, [4, 23]. But the linear approximation of the plant behavior
is only valid with a sufficient accuracy in a limited surrounding area of the operating point.
This leads to inaccuracies, if this area is too small compared to the operating range of
the plant. In this case the performance of the controller designed with the linear model is
limited, because the control quality depends directly on the model accuracy. To avoid this
modeling error due to the linear approximation, the nonlinear model may be used directly
for a nonlinear controller design. Then the controller works with a model that captures the
dynamics of the model better than a linear one. But because of the general model structure
without any restrictions of the nonlinear models the computational effort for controller design
and operation can get very high. An efficient computation gets complicated, which can lead
to problems for real-time implementation.
To close this gap between linear and nonlinear controller design, in this thesis methods
for multilinear controller design are investigated. In [63] and [85] the model class of MTI
state space models were introduced, that are very efficiently represented by using tensor
decomposition methods. The multilinear models extend the class of linear models and thus
capture more dynamics but they are not as general as nonlinear models since they imply
a certain model structure. The idea is to benefit from the better description of the system
dynamics compared to the linear case with a robust controller design method of medium
complexity compared to nonlinear design with the specialization to multilinear models. The
focus here is on optimal control strategies, since they allow by definition an optimal operation
of the plant. Because multilinear models are described by decomposed tensors in a very
efficient way, modeling and controller design for large-scale system is considered, too, leading
to distributed methods. This results in the following research questions.

3

1 Introduction

• Which tensor decomposition methods are suitable for the complexity reduction of MTI
models and their controller design methods?

• How can tensor methods and the multilinear model structure improve the controller
design process of known methods like feedback linearization or predictive control?

• How to derive efficient distributed controller design methods for a multilinear model
in tensor representation?

• What are the benefits for the application of decomposed models and design methods
to heating systems?

• Is it possible to implement a multilinear model-based controller on real-time hardware?

1.3 State of research

Model-based controller design methods are applied in many areas in industry. Especially
in the automotive and process industry they are widely used, [30]. However in the field
of building automation they are mostly unused in application. But since heating system
structures get more and more complex, advanced controller methods will be necessary to use
the high energy saving potential, that is available, [3]. In research modeling and controller
design is an active field. In a current large control conference, the IFAC World congress 2017
many papers where presented related to this task, e.g. [25, 38, 69, 77, 93, 105, 110] and a
special session ”Modeling, Control and Fault Diagnosis for Building Energy Management
Systems” was provided, which shows the importance of this task.
A big challenge for the construction of building models is, that they are unique and individu-
ally planned in many cases. A building is not a mass product. In many modelling approaches
this leads to very complex nonlinear models, that are very detailed, [33]. Controlling nonli-
near systems by either linear or nonlinear controllers are challenges of today’s applications.
But such complex nonlinear models result in complex controller design processes in many
cases, [43]. That is why models of lower complexity are of interest. In control theory many
methods exist for modeling and controller design of linear systems, [4, 23]. For systems,
where nonlinear effects are essential, these methods may fail, since the linear model does not
capture the dynamical behavior of the plant sufficiently well. Other approaches are available,
that focus on special classes of nonlinear systems, like the bilinear, [26]. Usually specializa-
tion on specific classes of systems lowers the complexity and improves the robustness of the
design process. Therefore, e.g. the nonlinear design method of feedback linearization was
investigated for a subclass of nonlinear systems, that can be approximated well by bilinear
systems, [78]. But for some applications, smaller model classes are too restrictive, like the
bilinear one for heating systems, [86].
Many physical systems can be modeled by mass, energy or heat flow balances, like heating
systems or chemical systems, resulting in a state space model. The right hand sides often
show a multilinear structure in relevant applications, i.e. they are linear if all but one state
or input are held constant, [85]. It also extends the class of bilinear systems. Even though
the systems have no inherent multilinear structure, it was shown, that the system behavior
can be approximated adequately by an MTI model, [50]. This model class offers a structure,

4

1 Introduction

that fits to the application of heating systems, since they are modeled by heat balances, [62].
This allows to develop models of heating systems, that capture more dynamics than a linear
model and with less generality than nonlinear models. By modeling subsystems, that occur
several times in different applications in this structure, helps to reuse the models and to
encounter the individuality of the plants in the building field.
It was shown, that MTI systems can be presented in a tensor framework, [63, 85]. In mat-
hematics tensor calculus is an active field of research and applied in the areas of signal
processing, neuroscience, data analysis and machine learning, [19, 31, 60]. Since the number
of parameters for MTI systems increase exponentially with the number of states and inputs,
a full tensor representation leads to a severe memory demand for large-scale systems. Thus,
tensor decomposition techniques can be used to reduce the storage effort and makes them
computationally manageable. The applicability of decomposed tensors in the field of control-
ler design and diagnosis was shown in [85] or [79]. From mathematics several decomposition
methods are offered to reduce the storage demand of tensors. The four most common are
canonical polyadic (CP), [44], Tucker, [18], tensor train (TT), [83] and hierarchical Tuc-
ker (HT) decomposition [45], that are focused on here for model representation, simulation
and controller design for MTI systems. Several toolboxes for tensor calculus are available for
MATLAB which supports to use these methods from mathematics in control, [5, 45, 84, 109].
The decomposed tensor representation offers the possibility to represent large-scale heating
systems with multilinear models with a manageable amount of parameters, that will be in-
vestigated in this thesis. Good modeling properties of MTI systems in the field of heating
system were already shown in [86]. First applications of the multilinear model structure in
model-based controller design were successfully tested in simulation by [85].
Because of its capability to control multiple-input multiple-output (MIMO) systems with
large time constants and delay as well as considering e.g. disturbance estimations and
plant constraints directly in the design process, the model-based control method model
predictive control (MPC) turned out to be a promising control strategy for heating systems,
e.g. for temperature regulation, [35]. Also for temperature regulation problems in other
application areas, like the precise control of the cooling system of are large free electron
laser, the MPC control strategy showed good results, [51]. Much research is going on in this
field, [75, 101]. In many cases MPC is applied using linear models, [1]. With a quadratic
cost function, this leads to a convex optimization problem, that can be solved efficiently by
standard solvers during controller operation to determine an optimal control input to the
plant, [73]. But if nonlinear effects have a lot of influence the resulting modeling error leads
to a control error directly. Using a nonlinear model inside the MPC leads in general to a high
computational effort, because of the in general non-convexity of the optimization problem.
For the class of bilinear systems different adapted optimization algorithms were derived, [42].
Convexity could be reached by linearization around an input trajectory with the drawback
of a suboptimal solution of the control problem caused by the approximation, [11, 26]. With
MTI models a better approximation compared to the linear case can be achieved, [50].
The MPC optimization problem with multilinear models was investigated in [56]. Further
investigations are given in this thesis.
To apply the controller at a realworld plant, several real-time implementations of MPC in
the field of heating systems were published, [37, 74]. Different hardware platforms were used.

5

1 Introduction

Due to the convexity properties of the optimization problems, linear MPC designs were used
for these applications. In this work the focus is on MTI models.
In the area of heating systems the plants get more and more complex by e.g. larger buil-
dings, a mix of different generation units, the integration of renewable energy sources or the
connection to the smart grid, [88]. This leads on the one hand to a large communication
effort and on the other hand to complex computations, if a central controller is used. Decen-
tralized or distributed controller networks help to overcome this problem, [6, 70, 102]. To
reduce the communication effort, [66], [89] and [97] proposed methods to find a decentralized
state feedback structure with less communication links than in the central case. This could
lead to an enormous simplification of the communication structure.
For optimal control methods like MPC large-scale systems lead to a huge computational
effort, if a central design is used, since a large optimization problem has to be solved.
Therefore, methods were developed to split the global control task to several controller
nodes, such that subproblems of lower complexity have to be solved only, [16, 80, 95]. But
the published approaches do not consider the special multilinear system structure and the
representation with the help of decomposed tensors as it is investigated in this thesis.

1.4 Modeling of heating systems

Models of the thermal dynamics of physical systems can be derived by thermal balances
using the law of conservation of energy. The thermal energy is described by

Q = cρV T,

with specific heat coefficient c, density ρ, volume V and temperature T of the medium, [99].
The heat flow follows from the time derivative by

Q̇ = cρV̇ T + cρV Ṫ .

For a water flow V̇ ̸= 0 the heat flow simplifies to

Q̇ = cρV̇ T.

The change of heat stored inside a system is given by

Q̇ = cρV Ṫ ,

since the volume of the system is assumed to be constant, which holds for many heating
systems, [85]. The heat balance is built by setting the sum of all heat flows entering and
exiting the system equal to the change of heat stored inside a system. The flow into the
system contributes with a positive sign to the sum and the flow leaving the system with a
negative sign.
The approach is illustrated by a simple heating systems example of a radiator, as depicted
in Figure 1.2.

6

1 Introduction

ϕ

Ts

V̇

V̇ , Tr

Q̇heat

[commons.wikimedia.org]

Figure 1.2: Radiator example

The radiator is fed with water of a given supply temperature Ts. A pump is installed, that
generates a flow V̇ through the radiator. The pump is controlled by a signal ϕ ∈ [0, 1], such
that a maximal flow V̇max can be generated. It is assumed, that the pump does not react
instantaneously on a change in the control signal, such that the flow is modeled as a first
order system by

V̈ = − 1
τV̇

V̇ + V̇max

τV̇

ϕ,

with time constant τV̇ . To heat the room, a constant heat flow Q̇heat of the radiator to the
environment is assumed for reasons of simplicity for this example. Cooled down water with
return temperature Tr leaves the radiator. Thus, with the assumption, that the water inside
the radiator is perfectly mixed at temperature Tr, the heat balance for the radiator is given
by

cρVradṪr = cρV̇ Ts − cρV̇ Tr − Q̇heat,

where Vrad is the volume of the radiator. These two equations describe the dynamical
behavior of the radiator leading to a state space model

ẋ1 = p1 (u1x2 − x1x2) + p2,

ẋ2 = p3x2 + p4u2.

The parameters of the model are given by

p1 = 1
Vrad

, p2 = − 1
cρVrad

Q̇heat,

p3 = − 1
τV̇

, p4 = V̇max

τV̇
.

The model has two states x =
(︂
x1 x2

)︂T
=
(︂
Tr V̇

)︂T
and two inputs u=

(︂
u1 u2

)︂T
=
(︂
Ts ϕ

)︂T
.

The output of the model is the return temperature y = Tr. This simple example shows
already, that the models of heating systems do not belong to the class of linear models.
Multilinear models extend the class of linear models by allowing multiplications between

7

1 Introduction

states and inputs, such that the model is linear if all but one state or input is held constant.
The model of the radiator contains terms x1x2 and u1x2. The multiplication of inputs and
sates is included in the bilinear model class. The multiplication of two states is not bilinear
anymore but multilinear, such that the model is not linear or bilinear, but multilinear. For
control applications often linear approximations around an operating point are used. The
effect of the approximation should be illustrated by two example simulations.

Example 1.2 The multilinear model perfectly describes the thermal plant dynamics. Fi-
gure 1.3 shows the simulation result of the radiator with a constant flow.

0 1 2 3 4 5 6 7 8 9 10 11 12
60
70
80

T
r

[◦ C
] LTI MTI OP

0 1 2 3 4 5 6 7 8 9 10 11 120
0.2
0.4
0.6
0.8

1

Time [h]

ϕ

u2 OP

0 1 2 3 4 5 6 7 8 9 10 11 12
2
3
4
5

·10−4

V̇
[m

3 /s
] LTI MTI OP

0 1 2 3 4 5 6 7 8 9 10 11 12
75
80
85

T
s

[◦ C
]

u1 OP

Figure 1.3: Simulation result of the radiator with a constant flow

In the figure the resulting trajectories of the state, i.e. the return temperature and the volume
flow and the inputs, i.e. the pump signal and the supply temperature are depicted together
with the corresponding operating point. In this case the linear model describes the plant
dynamics resulting from a changing supply temperature as well perfectly as can be seen in
the simulation results of the return temperature Tr. The reason for that is, that the flow
is held constant at the operating point. The situation changes, if the flow is varying, as
Figure 1.4 illustrates.
The figure shows the same signals with same linearization and supply temperature input. But
now the pump signal is varying - leading to flow changes. The simulated return temperature
of the linear approximation shows differences to the multilinear model. Whereas the multi-

8

1 Introduction

linear model can deal with the changing flow and still describes the dynamics perfectly, with
the linear model an approximation error occurs, since the changing flow dynamics are not
captured by the linear model. Thus already this simple model shows the benefits of a mul-
tilinear model for applications in the field of heating systems. This is especially of interest
for model-based controller design, since an error of the model as it is observed here with a
linear approximation leads to a control error directly. With a multilinear model it is expected,
that this error can be reduced for heating systems applications in general, leading to a better
controller performance.

0 1 2 3 4 5 6 7 8 9 10 11 12
60
70
80

T
r

[◦ C
] LTI MTI OP

0 1 2 3 4 5 6 7 8 9 10 11 120
0.2
0.4
0.6
0.8

1

Time [h]

ϕ

u2 OP

0 1 2 3 4 5 6 7 8 9 10 11 12
2
3
4
5

·10−4

V̇
[m

3 /s
] LTI MTI OP

0 1 2 3 4 5 6 7 8 9 10 11 12
75
80
85

T
s

[◦ C
]

u1 OP

Figure 1.4: Simulation result of the radiator with a varying flow

1.5 Main contributions

This section briefly summarizes the main contributions of this thesis.

Tensor representation of polynomials and basic operators

From [63] or [82] it is known, that polynomials of multilinear structure can be represented
in a tensor framework with one tensor containing the parameters and a second tensor con-
taining the monomials. This concept is extended to polynomials of arbitrary order here.

9

1 Introduction

With this generalized formulation it is possible to compute analytically exact solutions of
standard polynomial operations like multiplication or partial differentiation just by nume-
rical computations on the parameter tensor. This means e.g. for differentiation, that the
parameter tensor of the derivative can be computed simply by using the parameter tensor
of the given function.
Furthermore formulations of tensor operations, that are necessary in this thesis, are given,
such that they are computed in decomposed format. No full tensors have to be built, if the
operands have a decomposed tensor representation. The result is in decomposed form too,
which allows an efficient computation on the factors.

Tensor methods for MTI systems

State space models of multilinear systems can be represented in a tensor framework. Since
the number of parameters for MTI systems increases exponentially with the number of states
and inputs, they are computationally not manageable for large-scale system representation.
Tensor decomposition methods break this curse of dimensionality. Therefore representations
of MTI models in the four most common tensor decomposition methods, CP, Tucker, TT
and HT decomposition are derived. Evaluation methods of the right hand sides of the
models based on the decomposed structure are provided. Several tools for work with MTI
models are given like linearization or discritization, that work with the decomposed tensor
structure. Additionally, a representation of distributed models as well as the serial, parallel
and feedback connection, where the subsystems are in MTI representation, are investigated.

Central and distributed controller design for MTI systems

Controller design methods for linear or nonlinear systems are known in the literature. To
derive design techniques for MTI systems two approaches are investigated. It is possible to
adapt nonlinear controller synthesis methods like feedback linearization to the special model
structure of MTI systems, resulting in a controller of fixed structure, that is parameterized
by decomposed tensors and is computed analytically exact without any symbolic computa-
tions. It is also possible to apply linear methods like linear MPC to MTI systems. By using
the multilinear model to adapt the linearization inside the controller, the good modeling
properties of the MTI models are connected to the good algorithmic properties of the linear
models. Since MTI systems allow to represent large-scale systems, when described in de-
composed format, a distributed controller structure can be determined and the control task
can be splitted to several controller nodes also when the subsystems are multilinear.

Application of MTI systems to heating systems in modeling and control

Models of large-scale heating and HVAC systems can be represented efficiently as MTI mo-
dels by different decomposed tensor decomposition method. Using the decomposed multili-
near model structure, different controller design methods are tested successfully with heating
systems examples. To apply a predictive controller, that uses an MTI model, to a real world

10

1 Introduction

plant, the controller as well as a plant simulator are implemented on real-time hardware to
build a HIL environment. After passing the tests, the controller is implemented successfully
to a heating circuit of an office building.

1.6 Outline

The thesis is structured as follows. Chapter 2 gives basics on tensors, tensor operations and
tensor decomposition methods. Special operations for CP decomposed tensors are derived
and tensor representations of polynomials and polynomials operations, like multiplication
and differentiation are given. The tensor methods are used to represent state space models
of MTI systems in decomposed format. Methods like linearization or discretization and
a distributed model representation are developed for MTI systems in Chapter 3 in this
framework. In Chapter 4 model-based controller synthesis methods are introduced, that use
the decomposed structure of MTI models for central and distributed designs. The developed
methods for modeling and controller design of MTI systems are applied to different examples
in the field of building automation systems in Chapter 5. Efficient model representations
are derived. The models are used to design different controllers, which are tested in closed
loop simulations. Measurement results of an implementation of a predictive controller with
MTI models at a real world heating circuit are provided. The main results of the thesis are
summarized in Chapter 6 and an outlook is given.
Readers with different interest may follow different paths through the thesis. Chapter 2 gives
a mathematical background. The first sections focus on tensors and tensor calculus, whereas
the last Section 2.3 gives the mathematical base for the operations derived for MTI models
and design in the following. For the reader, who is interested in modeling, Chapter 3 is
the most important, where decomposed MTI model representations, simulation and model
operations are introduced, such that Chapter 4 can be skipped and continued with the
application to heating systems examples in Section 5.1. An implementation of a model
as plant simulator on real-time hardware is described in Section 5.3.5. Another possible
reading path focuses on model-based controller design for MTI systems. As MTI models are
the base for the design methods, Sections 3.1 and 3.2 should be read first before going to
the design methods in Chapter 4. Central design methods for MTI systems are described in
Sections 4.2, 4.4 and 4.5, whereas decentralized methods are given in Sections 4.3 and 4.6.
Applications for the controller design methods in simulation and in real-time are provided
in Section 5.3.

11

2 Tensor operations

In mathematics, tensor calculus is an active field of research. Tensors are applied in the
areas of signal processing, neuroscience, data analysis or machine learning, [19, 31]. A multi-
dimensional structure can be found in many data sets as shown in the following example.

Example 2.1 Consider a dataset of a temperature measurement of one year, that is sam-
pled with one minute time step. In a simple time series notation this data is stored in a
vector t ∈ R525 600. But it is possible to rearrange the data according to the time structure
of minutes, hours and days, resulting in a three dimensional tensor T ∈ R60×24×365, that is
depicted in Figure 2.1. This is one of many possible tensorizations of the data.

Hours

Minutes

Days

60

24

365

Figure 2.1: Tensor T∈R60×24×365 containing one year data with one minute sampling time

The first index denotes the minute, the second index the hour and the third index repre-
sents the day. E.g. the temperature of the fifth day at 11:30 AM can be easily accessed
by t(30, 11, 5). Compared to the vector notation this makes it e.g. much easier to get the
temperature profile of a certain day. The temperature profile of day 32 is accessed by indexing
the slice T(:, :, 32). Here the colon notation used like MATLAB provides access to subma-
trices, see page 14. In the vector notation some index computations would be necessary to
extract the same information. If e.g. another year of data is available, the tensor structure
is simply extended by adding an additional dimension depicting the year and leading to a
four dimensional tensor T ∈ R60×24×365×2.

The basic concept of tensors is introduced in Section 2.1. To perform calculations on the
data stored in a tensor, different operations are necessary that are shortly described here.
When dealing with big data sets tensor calculus offers enormous data compression by tensor
decomposition techniques, [31]. The four most common methods, CP, Tucker, TT and HT

12

2 Tensor operations

decomposition, are shown here. When the operands of tensor operations are available in
decomposed form, the operations can be computed very efficiently such that the result is
directly given in decomposed form too, which is presented in Section 2.2. Finally, Section 2.3
investigates how tensors can be used to represent polynomial functions by describing them
with a parameter tensor and a monomial tensor. In the following chapters these concepts,
operations and methods will be used to describe state space models of MTI systems in an
efficient way and to design controllers for this special class of systems.

2.1 Tensor basics

Data is often represented by scalar values, vectors or matrices. But in many cases the data
has a multidimensional structure. This structure cannot be used when it is described by
scalars, vectors or matrices. Therefore, it is desirable to generalize these concepts and store
the values in multidimensional arrays, i.e. tensors. The following definitions are necessary
for the application of tensors to MTI systems and can be found for example in [18] or [44].

Definition 2.1 (Tensor) A tensor

X ∈ RI1×I2×···×In

of order n is an n-way array. Elements x(i1, i2, . . . , in) are indexed by ij ∈ {1, 2, . . . , Ij} in
each dimension j = 1, . . . , n.

Example 2.2 A three dimensional tensor X ∈ RI1×I2×I3 with I1 = 6, I2 = 8 and I3 = 5 is
depicted in Figure 2.2, [18].

x(4, 2, 1)

x(4, 8, 2)

Mode-2
(i2 = 1, . . . , I2)

M
ode-1

(i1
=

1
,...,I1)

M
od

e-3
(i 3

=
1,

. .
. ,

I 3)

Figure 2.2: Elements of a three dimensional tensor X ∈ R6×8×5, [18]

Although this framework has been developed for complex domain C, here only real dom-
ains R are assumed because the numbers stored inside the tensor result from real physical
parameters.

13

2 Tensor operations

Definition 2.2 (Multiple order notation) The set R

N times⏟ ⏞⏞ ⏟
I × I × · · · × I where each dimen-

sion has the same size I1 = · · · = IN = I is alternatively described by R×(N)I .

To extract parts of a tensor X ∈ RI1×···×IN by fixing part of the indices, a MATLAB or
Scilab like notation is used. The resulting tensor is called subtensor of X. A scalar element
is selected by an index vector i =

(︂
i1 i2 · · · iN

)︂
or by giving the indices directly as in

Definition 2.1

x(i) = x(i1, i2, . . . , iN) ∈ R.

If all elements of a certain dimension are selected, the symbol ”:” is used according to the
MATLAB or Scilab notation.

Example 2.3 A subtensor of a tensor X ∈ R5×2×4×6×3 is given by X(2, :, 3, :, :), that is of
dimension R2×6×3. The subtensor contains the second, fourth and fifth dimension of X.

Definition 2.3 (Tensor fiber and slice) Fixing all but one index of a tensor results in
a one-dimensional subtensor, that is called a tensor fiber. If all indices except for two are
fixed, a two dimensional subtensor is selected, i.e. a tensor slice.

Example 2.4 Figures 2.3 and 2.4 show tensor fibers and slices of a three dimensional
tensor.

x(:, 3, 4)

x(2, :, 2)

x(4, 2, :)

Mode-1 fiber Mode-2 fiber Mode-3 fiber

Figure 2.3: Three dimensional tensor X with fibers, [44]

X(:, 3, :)

X(2, :, :)
X(:, :, 4)

Lateral slice Horizontal slice Frontal slice

Figure 2.4: Three dimensional tensor X with slices, [44]

14

2 Tensor operations

Based on the introduced definitions the notations of scalars, matrices and tensors are sum-
marized in Table 2.1.

Table 2.1: Basic notations of elements in the real domain with different dimensions

Scalar x ∈ R

Vector x ∈ RI1

Vector element x(i1) ∈ R

Matrix X ∈ RI1×I2

Matrix row x(i1, :) ∈ RI2

Matrix column x(:, i2) ∈ RI1

Matrix element x(i1, i2) ∈ R

Tensor X ∈ RI1×I2×I3

Tensor slice X(:, :, i3) ∈ RI1×I2

Tensor fiber x(i1, :, i3) ∈ RI2

Tensor element x(i1, i2, i3) ∈ R

For some applications it is useful to rearrange the elements of a tensor in a vector or matrix.
This is called unfolding, matricization or vectorization, respectively. The elements of the
tensor have to be stored at specific positions in a matrix or a vector. Therefore, it is
necessary to map the indices of the tensor to scalar values.

Definition 2.4 (Multi-indices) All possible combinations of values i1, i2, . . . , iN of the
indices for in = 1, 2, . . . , In, n = 1, 2, . . . , N are mapped in a specific order to a scalar value
by

i = i1i2 · · · iN = i1 + (i2 − 1)I1 + (i3 − 1)I1I2 + · · · + (iN − 1)I1 · · · IN−1.

Different orders are possible. The little-endian convention (reverse lexicographic ordering)
known from MATLAB or Scilab is used here, [20].

For a tensor different matricizations are possible, depending on the assignment of the dimen-
sions of the tensor to the rows and columns of the matrix. The following definition describes
the mapping of the tensor elements to its positions in the matrix.

Definition 2.5 (Matricization) Consider an N-dimensional tensor X ∈ RI1×I2×···×IN

and a splitting of its modes into two disjoint sets {1, . . . , N}= t ∪ s with t={t1, . . . , tk}
and s = {s1, . . . , sN−k}. The matricization

X(t) ∈ R with X(t)(it1 . . . itk
, is1 . . . isN−k

) = x(i1, . . . , iN) (2.1)

is constructed by merging the modes contained in t to the row indices and the modes in s to
the column indices, [45].

15

2 Tensor operations

A special case is the mode-n matricization

X(n) ∈ RIn×I1I2···In−1In+1···IN

where the set t = {n} contains one mode only. The indices of this mode are mapped to the
rows of the matrix, i.e. all mode-n fibers of the tensor are arranged into the columns of the
matrix.

Example 2.5 Different matricizations of a third order tensor X ∈ RI1×I2×I3 are shown in
Figure 2.5.

X ∈ RI1×2×3 X(1) ∈ RI1×6

X({1,2}) ∈ R2I1×3

Figure 2.5: Matricizations of a three dimensional tensor X, [45]

Definition 2.6 (Vectorization) When all indices are mapped to the rows of the matrix,
the elements of the tensor are rearranged as vector. This vectorization is denoted by

vec(X) = X({1,...,N}) ∈ RI1I2···IN .

The reverse operation, i.e. rearranging the elements of a vector or a matrix in a tensor is
called tensorization.

2.1.1 Operations

In linear algebra, operations for multiplication like matrix products or inner porducts are
defined. These operations have to be adapted to tensors to deal with the multidimensional
structure. Some new operations have to be defined, too. These operations are necessary
to perform computations with data in tensor format and to define tensor decomposition
methods. Definitions of operations used in this thesis are summarized here and can be found
in more detail in [18] or [44]. The notations are more complicated than in the matrix case.
But they are also based on standard operations as summation or multiplication.

16

2 Tensor operations

Definition 2.7 (Kronecker product) The Kronecker product of two matrices X∈RI×J

and Y∈RK×L is a matrix

Z = X ⊗ Y =

⎛⎜⎜⎜⎜⎝
x(1, 1)Y x(1, 2)Y · · · x(1, J)Y
x(2, 1)Y x(2, 2)Y · · · x(2, J)Y

...
x(I, 1)Y x(I, 2)Y · · · x(I, J)Y

⎞⎟⎟⎟⎟⎠
of dimension RIK×JL.

Definition 2.8 (Outer product) The outer product

Z = X ◦ Y ∈ RI1×I2×···×IN ×J1×J2×···×JM , (2.2)

of two tensors X ∈ RI1×I2×···×IN and Y ∈ RJ1×J2×···×JM is a tensor of order N + M with
elements

z(i1, . . . , iN , j1, . . . , jM) = x(i1, . . . , iN)y(j1, . . . , jM). (2.3)

As the outer product is associative, it can be applied in sequence denoted by
N

⃝
i=1

Xi = X1 ◦ X2 ◦ · · · ◦ XN .

Example 2.6 The outer product of two first order tensors X ∈ RI and Y ∈ RJ written as
vectors is a tensor of order two, which can be unfolded as matrix

X ◦ Y=

⎛⎜⎜⎝
x1
...

xI

⎞⎟⎟⎠(︂y1 · · · yJ

)︂
=

⎛⎜⎜⎜⎜⎝
x1y1 · · · x1yJ

x2y1 · · · x2yJ
...

xIy1 · · · xIyJ

⎞⎟⎟⎟⎟⎠∈RI×J.

For multiplications of tensors and matrices or vectors a special product is defined that
performs the standard matrix-matrix or matrix-vector multiplication with one mode of the
tensor.

Definition 2.9 (Mode-k tensor matrix product) The mode-k tensor matrix product
of a tensor X ∈ RI1×···×IN and a matrix W ∈ RJ×Ik is a tensor

Y = X ×k W ∈ RI1×···×Ik−1×J×Ik+1×···×IN .

The resulting tensor is given elementwise by

y(i1, . . . , ik−1, j, ik+1, . . . , iN) =
Ik∑︂

ik=1
x(i1, . . . , iN)w(j, ik), j = 1, . . . , J,

by the multiplication of the fibers of X with the matrix W

y(i1, . . . , ik−1, :, ik+1, . . . , iN) = Wx(i1, . . . , ik−1, :, ik+1, . . . , iN).

17

2 Tensor operations

Example 2.7 The mode-2 product of a three dimensional tensor X and a matrix W is
illustrated in Figure 2.6. The second mode fibers of the resulting tensor Y = X ×2 W are
computed by

y(i1, :, i3) = Wx(i1, :, i3).

×2=

X ∈ R3×4×5 W ∈ R2×4Y ∈ R3×2×5

Figure 2.6: Mode-2 tensor matrix product

The mode-k product of a tensor and a vector gives a tensor of dimension RI1×···×Ik−1×1×Ik+1×IN,
where the singleton dimension can be removed. The result is a tensor with (N − 1) dimen-
sions RI1×···×Ik−1×Ik+1×IN .

Definition 2.10 (Mode-k tensor vector product) The product of a N th order ten-
sor X ∈ RI1×···×IN and a vector w ∈ RIk in the kth mode is a tensor

Y = X×̄kw ∈ RI1×···×Ik−1×Ik+1×···×IN

of order N −1. The elements of the resulting tensor are computed by multiplying the mode-k
fiber of X by w

y(i1, . . . , ik−1, ik+1, . . . , iN) = wT x(i1, . . . , ik−1, :, ik+1, . . . , iN)

=
Ik∑︂

ik=1
x(i1, . . . , iN)w(ik).

For the representation of the right hand sides of MTI systems in tensor format the contracted
product of two tensors is very important.

Definition 2.11 (Contracted product) The contracted product along the first N di-
mensions of two tensors X∈RI1×···×IN ×IN+1×···×IN+M and Y∈RI1×···×IN

z(k1, . . . , km) = ⟨ X | Y ⟩1,...,N ;1,...,N (k1, . . . , km)

=
I1∑︂

i1=1
· · ·

In∑︂
in=1

x(i1, . . . , in, k1, . . . , km)y(i1 . . . in), (2.4)

with ki ∈ {1, 2, . . . , IN+i}, i = 1, . . . , M , is a tensor Z of dimension RIN+1×···×IN+M .

18

2 Tensor operations

Example 2.8 The contracted product of a tensor X ∈ RI1×I2×3 and a matrix Y∈RI1×I2

is depicted in Figure 2.7. The elements in z(k), k = 1, 2, 3, are computed by multiplying a
slice X(:, :, k) of X elementwise with Y and sum up all the elements of the result

z(k) = ⟨ X | Y ⟩1:2;1:2 (k) =
I1∑︂

i1=1

I2∑︂
i2=1

x(i1, i2, k)y(i1, i2).

The colors in Figure 2.7 show which slice of X belongs to which element in z.

=

X ∈ RI1×I2×3 Y ∈ RI1×I2 z ∈ R3

Figure 2.7: Contracted product of a three dimensional tensor X and a matrix Y

The contracted product can be computed along arbitrary dimensions of both tensors. But
it is necessary that the corresponding dimensions have the same sizes.

Example 2.9 The contracted product of two tensors X ∈ R5×2×3 and Y ∈ R2×4×3×5 along
the modes 1, 2 and 4, 1 respectively is a tensor ⟨ X | Y ⟩1,2;4,1 ∈ R3×4×3.

For ease of notation the subscript will be neglected in the following, if the contracted product
is computed along the first N same modes of two tenors

⟨ X | Y ⟩1,...,N ;1,...,N = ⟨ X | Y ⟩ ,

as in (2.4). If two tensors X, Y ∈ RI1×I2×···×IN have the same sizes of each dimension, their
contracted product along all modes is called inner product

⟨ X | Y ⟩ =
I1∑︂

i1=1
· · ·

IN∑︂
iN =1

x(i1, . . . , iN)y(i1, . . . , iN) ∈ R.

and the result is a scalar. To simplify the notation the contracted product of two tensors
in the last mode of the first tensor and the first mode of the second tensors gets a special
symbol, [59].

Definition 2.12 (Mode-(M, 1) contracted product) The mode-(M,1) contracted pro-
duct of two tensors X ∈ RI1×···×IM and Y ∈ RIM ×J2×···×JN is a tensor

Z = ⟨ X | Y ⟩M ;1 = X • Y ∈ RI1×···×IM−1×J2×···×JN ,

with elements
z(i1, . . . , iM−1, j2, . . . , jN) =

IM∑︂
iM =1

x(i1, . . . , iM)y(iM , j2, . . . , jN).

19

2 Tensor operations

Two tensors can be merged in different modes by operations like the concatenation.

Definition 2.13 (Concatenation) Consider two N th order tensors X ∈ RI1×···×IN as well
as Y ∈ RJ1×···×JN with same number of elements in each dimension except the kth, i.e. Im =Jm

for all m ̸= k. The concatenation along mode-k is a tensor

Z = X �k Y ∈ RI1×···×Ik−1×(Ik+Jk)×Ik+1×···×IN , (2.5)

where the fibers of Z are composed by the fibers of X and Y

z(i1, . . . , ik−1, :, ik+1, . . . , iN) =
(︄

x(i1, . . . , ik−1, :, ik+1, . . . , iN)
y(i1, . . . , ik−1, :, ik+1, . . . , iN)

)︄
. (2.6)

Example 2.10 The concatenation of two 3rd order tensors X∈RI1×I2×I3 and Y∈RJ1×J2×J3

with I1 = J1 and I3 = J3 in the second mode is a tensor

Z = X �2 Y ∈ RI1×(I2+J2)×I3

and depicted in Figure 2.8.

�2 =

X ∈ RI1×I2×I3 Y ∈ RJ1×J2×J3 Z ∈ RI1×(I2+J2)×I3

Figure 2.8: Concatenation of two tensors in the second mode

If the concatenation operation is applied in series to concatenate several tensors X1, . . . , Xn

in the same dimension, this is abbreviated by

Z = X1 �k X2 �k · · · �k Xn =
n

k
i=1

Xi.

Another way to connect two tensors is the direct sum that is introduced in the following.

Definition 2.14 (Direct sum) The direct sum of two N th order tensors X and Y of di-
mensions RI1×···×IN and RJ1×···×JN , respectively is a tensor

Z = X ⊕ Y ∈ R(I1+J1)×···×(IN +JN), (2.7)

where the elements are given by

z(k1, . . . , kN)=

⎧⎪⎪⎨⎪⎪⎩
x(k1, . . . , kN) , for 1 ≤ kn ≤ In, ∀n=1, . . . , N,

y(k1 − I1, . . . , kN − IN) , for In < kn ≤ In+Jn, ∀n=1, . . . , N,

0 , else.
(2.8)

20

2 Tensor operations

Example 2.11 Consider two three dimensional tensors X ∈ RI1×I2×I3 and Y∈RJ1×J2×J3.
The direct sum of both tensors results in a tensor

Z = X ⊕ Y ∈ R(I1+J1)×(I2+J2)×(I3+J3),

that is depicted in Figure 2.9.

⊕ =

X ∈ RI1×I2×I3 Y ∈ RJ1×J2×J3

Z ∈ R(I1+J1)×(I2+J2)×(I3+J3)

Figure 2.9: Direct sum of two three dimensional tensors X and Y

2.1.2 Decomposition methods

For tensors with a large number of dimensions the memory demand increases immensely,
since the number of elements to be stored in a tensor rises exponentially with the number
of dimensions. For a tensor K of dimension R×(N)I ,

ξF ull(K) = IN

elements have to be stored. The memory demand is measured by the number of scalar
elements, that have to be stored for the tensor representation, [17].

Example 2.12 For a 20th order tensor with I = 5 entries in each dimension, the storage
amount leads to approximately ξF ull(K) ≈ 9 · 1013 values to be stored.

To reduce the memory effort, linear algebra provides several methods for matrices, like SVD
to approximate the data by low-rank representations, [14]. In the last decades several de-
composition techniques were developed in the field of mathematics to reduce the storage
amount of tensors. Four of the most common methods are CP, Tucker, TT and HT decom-
position, [31]. Therefore these techniques are introduced here for the decomposition of a
N -dimensional tensor K ∈ RI1×···×IN and will be used in Section 3 to represent state space
models of MTI systems. More details on the decompositions can be found in the referenced
literature, e.g. [20, 21, 31].

21

2 Tensor operations

Canonic polyadic decomposition

In CP decomposition a tensor is factorized to a sum of rank-1 components, [36].

Definition 2.15 (Rank-1 tensor) A N th order tensor K ∈ RI1×···×IN is a rank-1 tensor,
if it can be computed by the outer product of N vectors xi ∈ RIi

X = x1 ◦ x2 ◦ · · · ◦ xN =
N

⃝
i=1

xi. (2.9)

Example 2.13 A 3rd order rank-1 tensor K ∈ RI1×I2×I3 is depicted in Figure 2.10 as outer
product of three vectors x1 ∈ RI1, x2 ∈ RI2 and x3 ∈ RI3 .

K

x1

x2

x3

=

Figure 2.10: Rank-1 tensor

Definition 2.16 (CP tensor) A CP tensor of dimension I1 × · · · × IN is given by

K = [X1, X2, . . . , XN] · λ =
rcp(K)∑︂

l=1
λ(l)x1(:, l) ◦ · · · ◦ xN(:, l), (2.10)

where elements are computed by the sums of the outer products of the column vectors of
factor matrices Xi ∈ RIi×rcp(K), weighted by the elements of the weighting (or parameter)
vector λ ∈ Rrcp(K), [36]. The lth column of the matrix Xi is denoted by xi(:, l). An element
of the tensor K is given by

k(i1, . . . , in) =
rcp(K)∑︂

l=1
λ(l) · x1(i1, l) · · · xn(in, l), (2.11)

with the entries λ(l) and xj(ij, l), j = 1, . . . , n, l = 1, . . . , rcp(K) of the weighting vector and
the factor matrices, respectively.

Example 2.14 A 3rd order CP tensor is written as

K = [X1, X2, X3] · λ =
rcp(K)∑︂

l=1
λ(l)x1(:, l) ◦ x2(:, l) ◦ x3(:, l).

Figure 2.11 shows the tensor as the sum of outer products of the column vectors Xi(:, l) of
the factor matrices. The tensor K is constructed by the sum of rcp(K) rank-1 elements.

22

2 Tensor operations

K

x1(:, 1)

x2(:, 1)

x3(:, 1)

= λ(1)

x1(:, rcp(K))

x2(:, rcp(K))

x3(:, rcp(K))

+ · · · + λ(rcp(K))

Figure 2.11: Third order CP tensor

Weighting the different outer products by a factor λ(l) allows to normalize the column
vectors Xi(:, l) of the factor matrices to length of one, which is useful in some applications.

Definition 2.17 (CP rank of a tensor) The minimal number of rank-1 tensors, that
are summed up in (2.10) to get K exactly is defined as CP rank of the tensor, [19]. An exact
decompostion with a minimal number of rank-1 elements is called rank decomposition, [44].

Focusing on the storage effort in CP decomposition, the number of elements to be stored
does not depend exponentially on the number of dimensions N anymore, as it is in the full
case. Each rank-1 component contains of

N∑︁
i=1

Ii values. To represent the tensor K, rcp(K)
rank-1 elements are summed up. Together with the weighting vector of length rcp(K) the
storage effort is given by

ξcp(K) = rcp(K)
(︄

1 +
N∑︂

i=1
Ii

)︄
, (2.12)

which depends only linear on the number of dimensions and sizes of each dimension. This
leads to an enormous reduction in storage complexity, especially for big data as shown in
the following example.

Example 2.15 For the 20th order tensor with I = 5 entries in each dimension of Exam-
ple 2.12, a CP decomposition leads to 100 elements to be stored for each rank-1 component.
Therefore a rank-3 approximation results in ξcp(K) = 303 values to be stored. Thus, if a
representation with a low number of rank-1 terms can be found, an immense reduction of
storage demand is achieved, compared to ξF ull(K) = 9 · 1013 elements in the full tensor repre-
sentation.

The CP representation of a tensor can be computed by finding an approximation of the
original tensor by a CP tensor of a fixed rank rcp(K). This is called low-rank approximation
or rank-rcp(K) approximation, [18]. The CP decomposition of a tensor K ∈ RI1×···×IN is
computed by solving the optimization problem

min
λ,X1,X2,...,XN

∥K − [X1, X2, . . . , XN] · λ∥F , (2.13)

23

2 Tensor operations

with fixed rank rcp(K), where ∥·∥F denotes the Frobenius norm of a tensor, [14, 44]. The
problem of finding the best low-rank approximation is ill-posed, [31]. Computing the rank
of a tensor is an NP-hard problem, [19]. Since the optimization problem is not convex, the
solution depends on the initial value for the factor matrices. Thus, the standard procedure is
to compute several decompositions with different ranks and initial values until an approxima-
tion is found that fulfills the desired accuracy. Choosing the rank of the CP approximation
is a trade-off between the accuracy of the approximation and the number of parameters
to be stored. There are several different algorithms available to solve the approximation
problem (2.13). Very common is the alternating least squares (ALS) algorithm, [44].
Finding a CP represenation of a tensor is not advantegous for the storing effort only. The
decomposed structure can be used to compute operations as introduced in Section 2.1.1 very
efficiently. Once the operands are given as decomposed tensors, it does not make sense to
construct the full tensor and to compute the operation in the full format. The operations
should be defined on the decomposition factors only such that the result is in decomposed
representation, too. For CP tensors some of these operations are defined and implemented
in [5] like the mode-k tensor matrix product.

Proposition 2.1 (Mode-k tensor matrix product in CP form) The mode-k tensor
matrix product

Y = X ×k W

of a N th order CP tensor

X = [U1, . . . , UN] · λX ∈ RI1×···×IN

and a matrix W ∈ RJ×Ik is a CP tensor

Y = [V1, . . . , VN] · λY

with weighting vector and factor matrices given by, [5]

λY = λX, (2.14)

Vi =

⎧⎨⎩WUi , for i = k,

Ui , else.
(2.15)

This shows that no full tensor is computed. The CP factors of the result are computed, by
using the factors of the operands. Other operations especially introduced for CP tensors, that
are not available in the literature but required for MTI systems, are derived in Section 2.2.

Tucker decomposition

The second decomposition method considered is the Tucker decomposition, where the tensor
is decomposed to N factor matrices and a core tensor, [18].

24

2 Tensor operations

Definition 2.18 (Tucker) A Tucker tensor is given by

K = [X1, X2, . . . , XN] · Λ, (2.16)

with core tensor Λ ∈Rrt,1(K)×···×rt,N (K) with ranks rt,i(K) and factor matrices Xi ∈ RIi×rt,i(K).
The full tensor is created from the Tucker representation by multiplying the core tensor by
one factor matrix along each mode

K = Λ ×1 X1 ×2 X2 ×3 · · · ×N XN =
rt,1(K)∑︂
j1=1

· · ·
rt,N (K)∑︂
jN =1

λ(j1, . . . , jN)x(:, j1) ◦ · · · ◦ x(:, jN).

An element of K is computed by using the factor matrices and core tensor by

k(i1, . . . , iN) =
rt,1(K)∑︂
j1=1

· · ·
rt,N (K)∑︂
jN =1

λ(j1, . . . , jN)x(i1, j1) · · · x(iN , jN),

with il = 1, . . . , Il ∀l = 1, . . . , N , [18].

Example 2.16 A 3rd order Tucker tensor reads

K = [X1, X2, X3] · Λ = Λ ×1 X1 ×2 X2 ×3 X3.

The Tucker tensor is computed by tensor matrix products of the core tensor and one factor
matrix in each dimension as shown in Figure 2.12.

K
Λ

X1
X2

X3

=

Figure 2.12: Third order Tucker tensor, [63]

Definition 2.19 (Multilinear rank) The N-tuple (rt,1(K), rt,2(K), . . . , rt,N(K)) is called
the multilinear rank of K if the Tucker decomposition (2.16) holds exactly. The ranks for an
exact representation are computed by

rt,i(K) = rank(K(i)), i = 1, . . . , N, (2.17)

where rank(K(i)) is the matrix rank of the mode-i matricization of K, [44].

25

2 Tensor operations

The existence of different tensor ranks, like the rank of a CP tensor (2.10) of Definition 2.17
and the multilinear rank (2.17) in Definition 2.19 is a big difference to the matrix case with
its unique rank definition.
The storage reduction for Tucker tensors can be achieved by reducing the size of the core
tensor, i.e. by setting rt,i(K) < Ii, i = 1, . . . , N . The storage demand is composed of the
size of the core tensor and the factor matrices

ξt(K) =
N∏︂

i=1
rt,i(K) +

N∑︂
i=1

rt,i(K)Ii. (2.18)

Since the storage effort still depends exponentially on the number of dimensions, it is neces-
sary to find a small core tensor for a memory efficient representation. Since the number of
dimensions is equal to the number of dimensions of the original tensor, it is desirable to get
low ranks rt,i(K).

Example 2.17 For the 20th dimensional tensor K ∈ R×205 of Example 2.12 it is hard to
find a Tucker tensor of low memory demand, because of the high number of dimensions. For
a core tensor with multilinear rank of (3, . . . , 3) still more than 3 · 109 elements have to be
stored. A reshape of the tensor to get a lower number of dimensions might help in this case.

Tucker representations of tensors are often computed by using the higher-order SVD, which
is an extension of the matrix SVD to the multidimensional case, [55]. Therefore, truncated
SVDs of the matricizations K(i) are computed to get low-rank approximations of (2.17).
This yields a sub-optimal approximation. Based on that, iterative algorithms like ALS are
used to refine the approximation with fixed multilinear rank (rt,1(K), rt,2(K), . . . , rt,N(K)) by
solving the optimization problem, [44]

min
Λ,X1,X2,...,Xn

∥K − [X1, X2, . . . , Xn] · Λ∥F . (2.19)

Operations like the tensor matrix product as described in Section 2.1.1 are implemented
in [5] based on the Tucker structure.

Tensor Train decomposition

Different to the methods introduced before, in an TT decomposition, the N -dimensional
tensor is approximated by a product of N third order tensors, [83]. A TT has the advantage
of an SVD based truncation like the Tucker decomposition but avoids the exponential growth
in memory demand.

Definition 2.20 (Tensor Train) A tensor K in TT format

K = [G1, G2, . . . , GN−1, GN] , (2.20)

with three dimensional TT-core tensors Gj ∈ Rrtt,j−1(K)×Ij×rtt,j(K), j = 1, . . . , N and TT-
ranks rtt,j(K) is given by

K = G1 • G2 • · · · • GN .

26

2 Tensor operations

By construction, the first and the last ranks are equal to one rtt,0(K) = rtt,N(K) = 1, such
that the first and the last core element can be represented by matrices. An element of the
tensor is computed by

k(i1, . . . , iN) = g1(1, i1, :)G2(:, i2, :) · · · GN−1(:, iN−1, :)gN(:, iN , 1) (2.21)

=
rtt,1(K)∑︂

j1=1
· · ·

rtt,N (K)∑︂
jN =1

g1(1, i1, j1)g2(j1, i2, j2) · · · gN−1(jN−2, iN−1, jN−1)gN(jN−1, iN , 1),

where Gj(:, ij, :) ∈ RRj−1×Rj are slices of the core tensors Gj [83].

Example 2.18 The elementwise description of a fourth order tensor in TT format gives

k(i1, i2, i3, i4) = g1(1, i1, :)G2(:, i2, :)G3(:, i3, :)g4(:, i4, 1).

The cores are given by two tensors G1 and G4 with singleton dimensions, that can be interpre-
ted as matrices and two three dimensional tensors G2, G3. The elements of K are computed
by the product of a column vector, two matrices and a row vector as given in Figure 2.13.

k(i1, i2, i3, i4) = g1(1, i1, :) · G2(:, i2, :) · G3(:, i3, :) · g4(:, i4, 1)

Figure 2.13: Fourth order Tensor Train

Definition 2.21 (TT rank) The TT rank, written as N-tuple (rtt,1(K), . . . , rtt,N(K)), is
determined for an exact representation by computing the ranks of matricizations K({1,...,i})

with i = 1, . . . , N − 1 of the original tensor

rtt,i(K) = rank(K({1,...,i})).

The storage demand of the TT representation depends on the ranks, but not in an expo-
nential way as in the Tucker decomposition. For a TT tensor the elements of the three
dimensional TT cores have to be stored, leading to

ξtt(K) =
N∑︂

i=1
rtt,i−1(K)Iirtt,i(K)

elements to be stored.

Example 2.19 Considering the tensor from Example 2.12 with N = 20 and I = 5
this leads to 885 elements in TT representation for TT ranks of rtt,0(K) = rtt,20(K) = 1
and rtt,i(K) = 3, i = 1, . . . , 19, which is a reduction by 10 orders of magnitude compared
to the full tensor.

27

2 Tensor operations

To find low-rank approximations in TT representation, SVD based algorithms are used. The
SVDs of the matricizations K({1,...,i}), i = 1, . . . , N of the tensor are truncated, such that
less significant singular values are neglected. This makes it possible to determine an upper
bound of the approximation error

∥K − [G1, G2, . . . , GN−1, GN]∥F ≤ ϵ ∥K∥F , (2.22)

where ϵ is the desired accuracy of the decomposition, [83]. The ranks are determined by
the SVD based algorithm, such that the desired accuracy is met. This is an advantage e.g.
compared with CP, where several decompositions with different ranks have to be computed
to check, which number of rank-1 components gives a sufficient accuracy. The computation
of many tensor operations with operands given as TT, were introduced in [59] and [60].

Hierarchical Tucker decomposition

The HT decomposition is an alternative way to reduce the memory demand of the Tucker
decomposition and generalizes the TT decomposition, [31]. The method is based on a split-
ting of the modes of the tensor K resulting in a binary tree T . Each node contains a subset
of the modes t ⊂ {1, 2, . . . , N} as shown in Figure 2.14 for a 6th order tensor.

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1, 2} {3}

{1} {2}

{4, 5, 6}

{4, 5} {6}

{4} {5}

Figure 2.14: Tree of a 6th order tensor

Here balanced trees are considered with the additional assumption that left children nodes
contain always elements that are smaller than any element in the right children nodes, [45].
According to this splitting of the modes, matricizations K(t) of tensor K are determined. Base
matrices Ut are computed, such that their columns span the image of the matricization K(t)

for each t ∈ T . Thus, the base matrices have

rht,t(K) = rank(K(t))

columns for an exact representation. For each parent node there exists a so-called transfer
matrix Bt ∈ Rrht,tl

(K)rht,tr (K)×rht,t(K), such that the base matrix Ut is computed by its left Utl

and right Utr children

Ut = (Utr ⊗ Utl
) Bt, (2.23)

with ranks of the corresponding matricizations rht,t(K), rht,tl
(K), rht,tr(K) and t = tl ∪ tr as

well as tl ∩ tr = ∅. Figure 2.15 shows the considered subtree of a parent node with its left
and right children.

28

2 Tensor operations

Ut

Utl
Utr

Figure 2.15: Parent node with left and right children

For some applications it is advantageous to reshape the transfer matrices

Bt ∈ Rrht,tl
(K)rht,tr (K)×rht,t(K) ⇒ Bt ∈ Rrht,tl

(K)×rht,tr (K)×rht,t(K) ∀t ∈ T .

to three dimensional transfer tensors. The parent node of the subtree depicted in Figure 2.15
is computed from the child nodes equivalently to the matrix case (2.23) by

ut(:, q) =
rht,tl

(K)∑︂
i=1

rht,tr (K)∑︂
j=1

(utr(:, j) ⊗ utl
(:, i)) bt(i, j, q), q = 1, . . . , rht,t(K). (2.24)

This simplifies the notation in some case, [45]. In the definition of the HT decomposition
the matrix notation will be used here. But later for the representation of MTI systems
the tensor notation leads to a simpler formulation of the factors. Thus, the splitting as
shown in Figure 2.14 describes a hierarchy of matrices Ut. Because of (2.23) not all base
matrices (Ut)t∈T have to be stored explicitly, since Ut of a parent node can be computed
by its left Utl

and right Utr children. The recursive application of (2.23) leads to the HT
decomposition. Thus, the base matrices Ut ∈ RIt×rht,t(K) of the leaf nodes t = {1} , . . . , {N}
and the transfer matrices Bt for all other nodes have to be stored only, to reconstruct the
entries of the full tensor. For the six dimensional tensor the components to be stored are
depicted in Figure 2.16 in a tree structure.

B123456

B123

B12 U3

U1 U2

B456

B45 U6

U4 U5

Figure 2.16: Tree of a 6th order tensor in HT format

Example 2.20 A tree of a third order HT tensor is shown in Figure 2.17.

B123

U1 B23

U2 U3

Figure 2.17: Tree of a 3rd order tensor in HT format

29

2 Tensor operations

The recursive application of (2.23) leads to the vectorized reconstruction of K

vec(K) = K({1,2,3}) = (U23 ⊗ U1) B123 = (((U3 ⊗ U2) B23) ⊗ U1) B123

= (U3 ⊗ U2 ⊗ U1) (B23 ⊗ I) B123,

where I denotes an identity matrix of suitable dimensions.

Definition 2.22 (HT rank) The tuple (rtt,t(K))t∈T is defined as the HT rank of the ten-
sor, [45].

The number of elements for the storage requirement of the HT representation is

ξht(K) =
N∑︂

i=1
Iirht,{i}(K) +

∑︂
t∈T \{1},...,{N}

rht,t(K)rht,tl
(K)rht,tr(K),

resulting from the base matrices of the leaves and the transfer matrices of the other nodes.

Example 2.21 The tensor given in Example 2.12 of order 20 and I = 5 leads to a storage
requirement of 795 elements, with the assumption rtt,t(K) = 3 ∀t ∈ T on the HT-rank.

The memory demand depends cubic on the HT-rank. Thus, it is desirable to find low-
rank approximations here, too. The HT-rank is computed by SVDs of the matricizati-
ons K(t) ∀t ∈ T . For low-rank approximations small singular values are neglected. With
that it is possible to compute a decomposition of desired accuracy as for the TT. The com-
putation of operations like the mode-k tensor matrix product considering the HT tensor
structure are given in [45].

Comparison of the complexity

In full representation a N th order tensor suffers from the curse of dimensionality, because
the number of elements scales exponentially with the order. This makes storage and compu-
tation unmanageable for large N . The introduced decomposition techniques should help to
overcome this curse of dimensionality. The storage complexities of the decompositions are
summarized in Table 2.2.

Table 2.2: Storage complexity of different tensor representations, [17]

Representation Storage complexity ξi(K)
Full O(IN)
CP O(NIR + R)

Tucker O(NIR + RN)
TT O(NIR2)
HT O(NIR + (N − 2)R3 + R2)

30

2 Tensor operations

The storage complexity is measured by the number of elements that have to be stored. To
compare the decompositions maximum values for the sizes of the dimensions and ranks

I = max(I1, I2, . . . , IN),

R =

⎧⎨⎩max(ri,1(K), . . . , ri,N(K)) for i = Tucker, TT, HT
rcp(K) for CP

were chosen, to get a worst case estimate of the complexity, [17]. With the Tucker decom-
position, the number of elements can be reduced for R ≪ I, but for large N Tucker tensors
still suffer from the curse of dimensionality, because of the exponential growth with N . This
can be bypassed with TT and HT decomposed tensors, with their linear dependence on the
number of dimensions, only. Here the rank has a squared or cubic influence on the complex-
ity, which makes it desirable to find good approximations of low ranks. CP tensors allow a
very memory efficient representation, since the number of elements scales linearly with the
number of dimensions as well as with the rank.
In this investigation of the complexity it seems as if the number of dimensions and the rank
scale independently. But e.g. a linear dependence on N holds only for the assumption that R
stays constant. In many applications, for larger N a higher rank is necessary either to get
a good approximation result, such that R has to be increased. Thus, N and R are not
completely independent, which has to be considered when interpreting Table 2.2.

Example 2.22 The general results for the storage complexity are depicted in Table 2.2.
In the previously introduced decomposition techniques, the storage demands for low-rank ap-
proximations of a high dimensional tensor K ∈ R×(20)5 was investigated. The results of
Examples 2.15, 2.17, 2.19 and 2.21 are summarized in Table 2.3. The storage complexities
match with the general results of Table 2.2. The table gives some numbers for the complexity
to emphasize the enormous compression rates that are possible with the different decomposi-
tion techniques when low-rank approximations are found.

Table 2.3: Storage complexity of different tensor representations of a tensor K ∈ R×(20)5 with
ranks of 3 in the particular representations

Representation Storage complexity ξi(K)
Full 9 · 1013

CP 303
Tucker 3 · 109

TT 885
HT 795

2.1.3 Guiding questions

The previous sections showed, how tensors are used to store data. In contrast to the matrix
representation of data, the number of dimensions is not limited to two. Also higher orders

31

2 Tensor operations

are possible, which allows to capture multidimensional structures in the data. It was pre-
sented, how decomposition methods allow an efficient data representation with an enormous
reduction in storage effort. The tensor framework is used in many application areas, [31].
In many of those applications data, e.g. from measurements, is stored in tensors. After col-
lecting the data in a tensor suitable decompositions are searched. A multi-index structure
can be found often as shown in Example 2.1. This is just one example for the benefits of the
tensor notation. Using decomposition techniques offers the possibility to overcome the curse
of dimensionality, when working with large datasets. In contrast to the established approach
to store measurement data in decomposed tensors, here the representations of polynomials
and state space models in tensor notation is focused on.
In [63] and [85] CP tensors were used to describe state space models, where the right hand
sides are given by multilinear functions. The question now is, how different decomposition
techniques can be used to store the model information and to find memory efficient represen-
tations. As decomposed tensors offer the possibility to deal with large measurement datasets
or so called big data, the question arises if it is also possible to represent large-scale systems
with state space models in decomposed tensor notation. Since four decomposition methods
are proposed, it has to be determined, which one fits best and has benefits in the application
to multilinear systems.
Not only the model representation is of interest, but also the system analysis and controller
synthesis. Thus, computations with tensors are necessary, when the state space models
are given in this framework. Several operations are defined e.g. in [18] or [44]. Once the
tensor is available in decomposed form, no full tensor should be constructed again, even
in intermediate computation steps. This leads to the question, if all operations necessary
for analysis and design are defined for decomposed tensors. This means, if the operands are
given in decomposed format, the operations should work with the decomposition factors only
without building the full tensor again. The result should be given as decomposed tensor,
too.
Since [63] and [85] described the multilinear functions in tensor format, the third question
is, if this concept can be extended to arbitrary polynomials and if it is possible to com-
pute standard polynomial operations in the tensor framework, to use them for analysis and
controller design for MTI systems.

2.2 Operations for canonical polyadic (CP) tensors

As introduced in Section 2.1.1 many arithmetic operations for tensors are available. Tensors
can be represented in a very efficient way with respect to the memory demand by using
decomposition techniques. This efficient representation should be used for the computation of
the arithmetic operations if the operands are given in a decomposed way as well. It does not
make sense to rebuild the full representation of the tensors again to evaluate the operation.
The decomposition factors of the operands are used only to compute the decomposition
factors of the result, such that the result is given as decomposed tensor directly. Many of
these operations are already introduced in the literature [44, 45, 59] and implemented in
the different toolboxes for decomposed tensors, [5, 45, 84, 109]. But some of the operations

32

2 Tensor operations

necessary here for calculations in the field of MTI systems are not stated for CP tensors yet.
In the following Section the definitions for the outer and contracted product as well as the
concatenation are given, for the case that the operands are given in CP format.

2.2.1 Outer product

In Definition 2.8 the general form of the outer product was introduced. If both operands are
given in a CP structure the following Proposition shows, how to compute the outer product,
such that the result is also in CP.

Proposition 2.2 (Outer product in CP form) The outer product Z = X ◦ Y of two
CP tensors

X = [U1, . . . , Un] · λX ∈ RI1×···×In , (2.25)
Y = [V1, . . . , Vm] · λY ∈ RJ1×···×Jm , (2.26)

with rcp(X) and rcp(Y) rank-1 components respectively results in a tensor

Z=[W1, . . . , Wn+m] · λZ ∈RI1×···×In×J1×···×Jm , (2.27)

that can be represented in a CP format. The factor matrices and weighting vector are given
by

Wi = Ui ⊗ 1T
rcp(Y) ∈ RIi×rcp(X)rcp(Y), ∀ i = 1, . . . , n, (2.28)

Wn+i = 1T
rcp(X) ⊗ Vi ∈ RJi×rcp(X)rcp(Y), ∀ i = 1, . . . , m, (2.29)

λZ = λX ⊗ λY , (2.30)

with 1k ∈ Rk denoting a column vector full of ones of length k. Thus, the CP format
of Z follows directly from the factors of X and Y. The number of rank-1 components of the
resulting tensor Z is rcp(Z) = rcp(X)rcp(Y).

The proof of this proposition can be found in the appendix A.1.

Remark 2.1 Although the CP decomposition (2.27) is the exact result of the outer product
of (2.25) and (2.26), it is possible that a CP decomposition with a lower number of rank-1
elements rcp(Z) < rcp(X)rcp(Y) exist. Finding this memory saving representation is an NP-
hard problem as discussed in Section 2.1.2, [44].

Example 2.23 The outer product of two tensors in CP representation is illustrated in this
example. Figure 2.18 shows the CP representation and the structure of the factor matrices
of the three dimensional tensor X = [U1, U2, U3] · λX ∈ RI1×I2×I3 with rcp(X) = 2 rank-1
components.
The CP form of the second operand Y = [V1, V2] · λY ∈ RJ1×J2 of order two and rcp(Y) = 2
rank-1 components is depicted in Figure 2.19.

33

2 Tensor operations

X =

u1(:, 1)

u2(:, 1)

u3(:, 1)

λX(1) +

u1(:, 2)

u2(:, 2)

u3(:, 2)

λX(2) , Ui = ∈ RIi×rcp(X), i = 1, 2, 3

Figure 2.18: CP representation and structure of the factor matrices of X

Y =

v1(:, 1)

v2(:, 1)
λY (1) +

v1(:, 2)

v2(:, 2)
λY (2) , Vi = ∈ RJi×rcp(Y), i = 1, 2

Figure 2.19: CP representation and structure of the factor matrices of Y

The factors of the resulting tensor Z = X ◦ Y = [W1, W2, W3, W4, W5] · λZ of dimen-
sion RI1×I2×I3×J1×J2 are written as

λZ =
(︂
λX(1)λY (1) λX(1)λY (2) λX(2)λY (1) λX(2)λY (2)

)︂
,

Wr =
(︂
ur(:, 1) ur(:, 1) ur(:, 2) ur(:, 2)

)︂
, r = 1, 2, 3,

W3+r =
(︂
vr(:, 1) vr(:, 2) vr(:, 1) vr(:, 2)

)︂
, r = 1, 2,

according to (2.28) to (2.30). The structures of the factor matrices of Z are illustrated
in Figure 2.20. The figure shows how the matrices Wj, j = 1, . . . , 5 are constructed using
column vectors of the factor matrices of X and Y as they are depicted in Figures 2.18 and 2.19.

Wi = ∈ RIi×rcp(X)rcp(Y), i = 1, 2, 3

W3+i = ∈ RJi×rcp(X)rcp(Y), i = 1, 2

Figure 2.20: Structure of the CP factor matrices of Z = X ◦ Y

34

2 Tensor operations

2.2.2 Contracted product

For many calculations in the field of MTI systems, the evaluation of the contracted product
is necessary. When the operand tensors are given in CP format, the contracted product is
evaluated efficiently on the decomposition factors.

Proposition 2.3 (Contracted product in CP format) Consider two CP tensors

X = [U1, . . . , UP , UP +1 , . . . , UP +N] · λX ∈ RI1×···×IP ×J1×···×JN , (2.31)
Y = [V1, . . . , VP , VP +1, . . . , VP +M] · λY ∈ RI1×···×IP ×K1×···×KM , (2.32)

with same sizes in the first P dimensions and rcp(X) and rcp(Y) rank-1 components, respecti-
vely. The contracted product along the first P dimensions results in a tensor

Z = ⟨ X | Y ⟩ ∈ RJ1×···×JN ×K1×···×KM .

The CP representation of Z is computed using the factors of X (2.31) and Y (2.32)

Z = [W1, . . . , WN , WN+1, . . . , WN+M] · λZ ∈ RJ1×···×JN ×K1×···×KM ,

where the factor matrices and weighting vector are given by

λZ = λX ⊗ λY ~ vec
(︂(︂

UT
1 V1

)︂
~ · · · ~

(︂
UT

P VP

)︂)︂
, (2.33)

Wi = UP +i ⊗ 1T
rcp(Y), i = 1, . . . , N, (2.34)

WN+i = 1T
rcp(X) ⊗ VP +i, i = 1, . . . , M. (2.35)

The proof of the proposition is given in the appendix A.2.

Example 2.24 Consider two tensors in CP representation X = [U1, U2, U3] · λX of di-
mension RI1×I2×I3 and Y = [V1, V2] ·λY ∈ RJ1×J2 with rcp(X) = 2 rank-1 components. Their
structures are depicted in Figures 2.18 and 2.19 in Example 2.23. To compute the contracted
product

Z = ⟨ X | Y ⟩ ,

along the first dimension, it has to be assumed, that the first dimensions of X and Y have the
same sizes I1 = J1. Using (2.33) to (2.35) the parameter matrices and the weighting vector
of the result Z = [W1, W2, W3] · λZ ∈ RI2×I3×J2 are given by

Wi =
(︂
ui+1(:, 1) ui+1(:, 1) ui+1(:, 2) ui+1(:, 2)

)︂
, i = 1, 2,

W3 =
(︂
v2(:, 1) v2(:, 2) v2(:, 1) v2(:, 2)

)︂
,

λZ =
(︂

λX(1)λY (1)u1(:, 1)T v1(:, 1) λX(1)λY (2)u1(:, 1)T v1(:, 2) · · ·

λX(2)λY (1)u1(:, 2)T v1(:, 1) λX(2)λY (2)u1(:, 2)T v1(:, 2)
)︂

.

Figure 2.21 illustrates how the factor matrices of the result Z are composed of the factor
matrices of the operands. The rearrangement of the columns of the factor matrices of X and Y
to get the CP representation of Z is indicated by the different colors, that were introduced
for the factors X and Y in the Figures 2.18 and 2.19.

35

2 Tensor operations

Wi = ∈ RIi+1×rcp(X)rcpY , i = 1, 2

W3 = ∈ RJ2×rcp(X)rcp(Y)

Figure 2.21: Structure of the factor matrices of the result Z = ⟨ X | Y ⟩

2.2.3 Tensor concatenation

The concatenation of two tensors is described for general tensors in Definition 2.13. If the
operands are given in CP form, the resulting tensor can be computed as a CP tensor directly.

Proposition 2.4 (Concatenation of tensors in CP format) The concatenation in
dimension k of two tensors

X = [U1, . . . , UN] · λX ∈ RI1×···×IN ,

Y = [V1, . . . , VN] · λY ∈ RJ1×···×JN ,

with Im = Jm, ∀m ̸= k yields in a tensor

Z = X �k Y ∈ RI1×···×(Ik+Jk)×···×IN .

The CP representation of Z is given by

Z = [W1, . . . , WN] · λZ ,

with decomposition factors

Wm = Um �2 Vm, ∀m = 1, . . . , N, m ̸= k, (2.36)
Wk = Uk ⊕ Vk, (2.37)
λZ = λX �1 λY . (2.38)

The prof of the proposition is shown in the Appendix A.3.

Example 2.25 Consider two three dimensional tensors X=[U1, U2, U3] · λX ∈RI1×I2×I3

and Y = [V1, V2, V3] · λY ∈ RJ1×J2×J3 in CP representation, where each tensor has two
rank-1 components. The first and the third dimension of the two tensors have the same
sizes I1 = J1 and I3 = J3. The concatenation in the second dimension gives a tensor

Z = X �2 Y = [W1, W2, W3] · λZ

36

2 Tensor operations

of dimension RI1×(I2+J2)×I3. The resulting tensor is constructed by using the factor matrices
of the operands. Applying (2.36) to (2.38) gives the CP factors of the resulting tensor Z

Wm = Um �2 Vm, m = 1, 3,

W2 = U2 ⊕ V2,

λZ = λX �1 λY .

This shows that the factor matrices of the result are built by concatenation and direct sum of
the factor matrices of X and Y. Figure 2.22 shows the block structure of the factor matrices
of Z to clarify how they are constructed. The factor matrices of X and Y are highlighted in
blue and red respectively. Zero matrices of suitable dimensions 0I2×2 or 0J2×2 are indicated
in white.

W1 =

U1 V1

W2 =

U2 0I2×2

0J2×2 V2

W3 =

U3 V3

λZ =

λX

λY

Figure 2.22: Structure of the factor matrices of Z = X �2 Y

These factor matrices lead to the CP representation illustrated in Figure 2.23. The figure
shows nicely, that the first two rank-1 components belong to the first tensor X. The third and
fourth rank-1 components contain the factors belonging to Y. Because of the concatenation
in the second mode, the vectors of the rank-1 terms of the second modes are partly zero
depending on their relation to X or Y.

Z = λX(1) + λX(2) + λY (1) + λY (2)

Figure 2.23: CP representation of Z

2.3 Polynomial calculus by operational tensors

The usage of tensors for representations of multilinear polynomials and state space models
of multilinear systems were described in [63] and [85]. In the following Section 2.3.1 it will

37

2 Tensor operations

be shown, how the tensor framework can be used to represent polynomials in a structured
way. The tensors used here do not contain measurement information or sampled function
evaluations as in many applications in the literature, [31]. In contrast to that, parameters
and monomials of the polynomials are stored by tensors. After introducing the tensor re-
presentation of polynomials, Sections 2.3.2 to 2.3.5 describe several polynomial operations
in this representation like multiplication or differentiation. An analytically exact result is
computed by simple numerical computations without symbolic calculations.

2.3.1 Tensor form of polynomials

The tensor notation of polynomials is based on the tensor representation of multilinear
functions that was introduced in [63] and [85] for the description of state space models of
MTI systems. To derive the representation of arbitrary polynomials a brief summary of the
description of multilinear polynomials, which are a subclass of general polynomials, is given
first. The concept for multilinear functions is extended to the general polynomial case.
Before introducing multilinear functions, the meaning of term multilinear has to be cla-
rified for this work. Hackbusch in [32] defined a mapping h : X → H with vector spa-
ces Xi, i = 1, . . . , n of each variable. The overall vector space of the variables is given by

X = X1 × · · · × Xn.

The mapping is called multilinear, if the vector space H is linear in each argument, i.e. it
fulfills the condition

h(x1, . . . , a·x̃j + b·x̂j, . . . , xn) = a·h(x1, . . . , x̃j, . . . , xn) + b·h(x1, . . . , x̂j, . . . , xn), (2.39)

for all xi ∈ Xi, x̃j, x̂j ∈ Xj, 1 ≤ j ≤ n and coefficients a, b ∈ R. Next, coordinates x ∈ X are
defined to describe multilinear functions. In other words the multilinearity condition (2.39)
means, that the mapping is linear if all but one variable is held constant. This allows
multiplications of variables but no squares or higher order exponents in a multilinear function.

Definition 2.23 (Multilinear function) A multilinear function h : Rn → R

h(x) = αT m(x) (2.40)

with variables x ∈ Rn, coefficient vector α =
(︂
α1 · · · α2n

)︂T
∈ R2n and monomial vector

m(x) =
(︄

1
xn

)︄
⊗ · · · ⊗

(︄
1
x1

)︄
∈ R2n (2.41)

is a polynomial in n variables, which is linear, when all but one variable are held constant.

Example 2.26 A multilinear function with 2 variables x1 and x2 is given by

h(x1, x2) = αT m(x1, x2) =
(︂
α1 α2 α3 α4

)︂⎛⎜⎜⎜⎝
1
x1
x2

x1x2

⎞⎟⎟⎟⎠
= α1 · 1 + α2 · x1 + α3 · x2 + α4 · x1x2.

38

2 Tensor operations

Fixing one variable, e.g. x2 = 2 leads to a linear function in x1

h(x1, 2) = (α1 + 2α3) + (α2 + 2α4) x1.

This representation leads to a separation of the parameters of the function and the variables.
The monomial vector contains all the multiplicative combinations of the variables that are
allowed in the multilinear class of functions. Instead of the vector representation of the
monomials with the Kronecker product, the multilinear monomials can be computed by an
outer product and thus arranged in a tensor framework.

Definition 2.24 (Monomial tensor for multilinear polynomials) The multilinear
monomials of a function in n variables x∈Rn are computed by the sequence of outer products

M (x) =
(︄

1
xn

)︄
◦
(︄

1
xn−1

)︄
◦ · · · ◦

(︄
1
x1

)︄
=

n

⃝
i=1

(︄
1

xn−i+1

)︄
, (2.42)

leading to a tensor of dimension R×(n)2. By construction, the monomial tensor is a rank-1
tensor

M (x) =
[︄(︄

1
xn

)︄
, . . . ,

(︄
1
x1

)︄]︄
, (2.43)

because it is computed by the outer product of vectors
(︂
1 xi

)︂T
as in (2.9).

Example 2.27 Figure 2.24 shows how the multilinear monomials of a function in three
variables x1, x2 and x3 are arranged in the monomial tensor M (x1, x2, x3) ∈ R2×2×2 as rank-1
tensor and in full representation.

x1 x1x2

x21

x1x3 x1x2x3

x2x3x3

w1 =
(︂
1 x1

)︂T

w2 =
(︂
1 x2

)︂T

w3 =
(︂
1 x3

)︂T

=

Figure 2.24: Monomial tensor M (x1, x2, x3) of a function in three variables

With the tensorization of the monomials, the parameters of a multilinear function can be
arranged in the same way in a tensor, leading to the tensor form of a multilinear function.

Definition 2.25 (Multilinear function in tensor form) Using the monomial rank-1
tensor (2.43), the tensor representation of a multilinear function with n variables x ∈ Rn

reads

h(x) = ⟨ H | M (x) ⟩ , (2.44)

with the parameter tensor H ∈ R×(n)2.

39

2 Tensor operations

Example 2.28 The tensor representation of a function

h(x) = ⟨ H | M (x1, x2, x3) ⟩ = 2 + 5x1 − 2x2 − 7x1x2 + 6x3 + 3x1x3 − 4x2x3 + x1x2x3

in 3 variables x1, x2 and x3 is depicted in Figure 2.25.

h(x1, x2, x3) = ⟨ H | M (x1, x2, x3) ⟩ =
⟨︄

H
⃓⃓⃓⃓
⃓
[︄(︄

1
x3

)︄
,

(︄
1
x2

)︄
,

(︄
1
x1

)︄]︄ ⟩︄

−2 −7

52

−4 1

36

x2 x1x2

x11

x2x3 x1x2x3

x1x3x3

=

= 2 + 5x1 − 2x2 − 7x1x2 + 6x3 + 3x1x3 − 4x2x3 + x1x2x3

Figure 2.25: Multilinear polynomial in tensor representation

The example shows the separation of constants and variables, since all parameters are sto-
red in H and all monomials are stored in M(x1, x2, x3). The evaluation of the contracted
product (2.4) gives exactly the given polynomial, which shows the correctness of the tensor
representation here.

So far, as introduced in [63] or [87], this polynomial tensor representation is limited to the
class of multilinear polynomials. In modeling, multilinear polynomials are used as right hand
sides to represent state space models of MTI systems, [63]. In the following chapters con-
troller design methods, like feedback linearization, for MTI systems are derived in the tensor
structure. Therefore, operations like the multiplication have to be defined in this framework.
With the limitation to multilinear polynomials this is not possible as the following example
illustrates.

Example 2.29 Consider the multiplication of two multilinear functions with two varia-
bles h1(x1, x2) = 1 + 2x1x2 and h2(x1, x2) = x1 − 3x1x2

h1(x1, x2) · h2(x1, x2) = (1 + 2x1x2)(x1 − 3x1x2) = x1 − 3x1x2 + 2x2
1x2 − 6x2

1x
2
2. (2.45)

The result is not multilinear anymore, because it contains also higher order terms, like 2x2
1x2

or −6x2
1x

2
2. Thus, the resulting polynomial cannot be represented in the tensor structure

proposed until this point.

For the reason illustrated by Example 2.29 the tensor framework has to be extended such
that also higher order terms are captured. This is necessary to formulate controller design
algorithms like feedback linearization in tensor structure in the following chapters.

40

2 Tensor operations

To generalize the concept from multilinear to arbitrary polynomials, the monomial tensor of
Definition 2.24 has to be extended, such that it does not contain multilinear combinations
of the variables only, but also higher order combinations.

Definition 2.26 (Monomial tensor for higher order polynomials) The monomials
of a polynomial with maximal order N of the monomials in n variables x ∈ Rn are computed,
analogous to (2.42) by a sequence of outer products

MN
p (x) =

(︄
1
xn

)︄
◦ · · · ◦

(︄
1
x1

)︄
◦ · · · · · · ◦

(︄
1
xn

)︄
◦ · · · ◦

(︄
1
x1

)︄
=

N

⃝
j=1

n

⃝
i=1

(︄
1

xn−i+1

)︄
,

leading to a tensor of dimension R×(nN)2. Since the monomial tensor for higher order poly-
nomials is constructed by the outer product of vectors, it is a rank-1 tensor

MN
p (x) =

[︄(︄
1
xn

)︄
, . . . ,

(︄
1
x1

)︄
, ,

(︄
1
xn

)︄
, . . . ,

(︄
1
x1

)︄]︄
⏞ ⏟⏟ ⏞

N times

. (2.46)

A maximal order N of the monomials means, that variables with exponents up to N , i.e. xN
i

could occur.

Thus, the monomial tensor of polynomials of higher order is computed by an N times outer
product of the multilinear monomial tensor with itself

MN
p (x) =

N

⃝
j=1

M (x) .

With N = 1 one gets the multilinear case as introduced before in (2.42).

Example 2.30 The monomial tensor of maximal order N = 2 in two variables

M2
p (x1, x2) =

(︄
1
x2

)︄
◦
(︄

1
x1

)︄
◦
(︄

1
x2

)︄
◦
(︄

1
x1

)︄
=
[︄(︄

1
x2

)︄
,

(︄
1
x1

)︄
,

(︄
1
x2

)︄
,

(︄
1
x1

)︄]︄

is a tensor of dimension R2×2×2×2 containing all the multiplicative combinations of x1 and x2
up to order 2. Figure 2.26 shows the two 3-dimensional subtensors of M2

p (x1, x2).

M2
p(:, :, :, 1) =

x2 x1x2

x11

x2
2 x1x

2
2

x1x2x2

, M2
p(:, :, :, 2) =

x1x2 x2
1x2

x2
1x1

x1x
2
2 x2

1x
2
2

x2
1x2x1x2

Figure 2.26: Subtensors of the monomial tensor M2
p (x1, x2) for a polynomial of maximal

order 2

41

2 Tensor operations

Example 2.30 shows, that obviously by construction some monomials appear multiple times
inside the monomial tensor. The choice (2.46) of the monomial tensor, which is not uni-
que, is not optimal regarding the storage effort but helps developing the algorithms. This
redundancy is still acceptable, since the monomial tensor is a rank-1 tensor. By arranging
the parameters of the polynomial in the same way, the tensor description of polynomials of
higher order is defined.

Definition 2.27 (Higher order polynomial in tensor form) A polynomial with max-
imal order N of the monomials in n variables x ∈ Rn is given by

h(x) =
⟨︂

H
⃓⃓⃓
MN

p (x)
⟩︂

, (2.47)

with parameter tensor H ∈ R×(nN)2 and monomial tensor MN
p (x) ∈ R×(nN)2, that is con-

structed as rank-1 tensor (2.46).

Example 2.31 The result of the multiplication of two multilinear functions in Exam-
ple 2.29 is a polynomial of maximal order 2

h(x1, x2) = x1 − 3x1x2 + 2x2
1x2 − 6x2

1x
2
2.

To represent the function in the tensor framework a monomial tensor M2
p (x1, x2) of order 2

is necessary. The monomial tensor was illustrated in Figure 2.26 and has the slices

M2
p(:, :, 1, 1) =

(︄
1 x1
x2 x1x2

)︄
, M2

p(:, :, 1, 2) =
(︄

x1 x2
1

x1x2 x2
1x2

)︄
,

M2
p(:, :, 2, 1) =

(︄
x2 x1x2
x2

2 x1x
2
2

)︄
, M2

p(:, :, 2, 2) =
(︄

x1x2 x2
1x2

x1x
2
2 x2

1x
2
2

)︄
.

(2.48)

The function is represented by the contracted product of the parameter tensor and the mo-
nomial tensor

h(x1, x2) =
⟨︂

H
⃓⃓⃓
M2

p (x1, x2)
⟩︂

.

The contracted product here is computed in the first step by an elementwise multiplication of
the parameter and monomial tensor. Afterwards the elements of the result are summed up.
This description of the contracted product helps to construct the parameter tensor

H(:, :, 1, 1) =
(︄

0 0
0 0

)︄
, H(:, :, 1, 2) =

(︄
1 0
0 2

)︄
,

H(:, :, 2, 1) =
(︄

0 0
0 0

)︄
, H(:, :, 2, 2) =

(︄
−3 0
0 −6

)︄
.

(2.49)

Because of that, the parameters in H are in the same positions as the corresponding mono-
mials in MN

p (x1, x2) as one can see when comparing (2.49) with (2.48).

42

2 Tensor operations

So far the tensor approach was derived for scalar polynomials h(x) ∈ R. The concept is
simply extended to vector functions h : Rn → Rm with components

h(x) =
(︂
h1(x) · · · hm(x)

)︂T
∈ Rm.

The monomials of the function are still the same, such that the monomial tensor remains
unchanged to the scalar case. The different scalar functions hi(x), i = 1, . . . , m of the vector
function h(x) are considered by an additional dimension of the parameter tensor for the
multilinear case

h(x) = ⟨ H | M (x) ⟩ ,

with parameter tensor H ∈ R×(n)2×m and monomial tensor M (x) ∈ R×(n)2 as well as for
higher order polynomials

h(x) =
⟨︂

H
⃓⃓⃓
MN

p (x)
⟩︂

,

with parameter tensor H ∈ R×(nN)2×m and monomial tensor MN
p (x) ∈ R×(nN)2. The para-

meter tensor H of the vector function h(x) is constructed by concatenating the parameter
tensors Hi ∈ R×(nN)2 of the scalar elements hi(x) =

⟨︂
Hi

⃓⃓⃓
MN

p (x)
⟩︂

, i = 1, . . . , m in the
new (nN + 1)th dimension

H = H1 �nN+1 H2 �nN+1 · · · �nN+1 Hm =
m

nN+1
i=1

Hi,

which gives H(:, . . . , :, i) = Hi, i = 1, . . . , m.

Example 2.32 The tensor description of the two multilinear functions used in Exam-
ple 2.29 in tensor representation is given by

h1(x1, x2) = 1 + 2x1x2 = ⟨ H1 | M (x) ⟩ =
⟨︄(︄

1 0
0 2

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x1
x2 x1x2

)︄ ⟩︄
, (2.50)

h2(x1, x2) = x1 − 3x1x2 = ⟨ H2 | M (x) ⟩ =
⟨︄(︄

0 1
0 −3

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x1
x2 x1x2

)︄ ⟩︄
. (2.51)

Combining these two functions to a vector function with the tensor representation

h(x) =
(︄

h1(x)
h2(x)

)︄
= ⟨ H | M (x) ⟩ , (2.52)

leads to the parameter tensor H ∈ R×(2)2×2 with slices

H(:, :, 1) =
(︄

1 0
0 2

)︄
, H(:, :, 2) =

(︄
0 1
0 −3

)︄
.

43

2 Tensor operations

This representation of polynomials shows that in this context not data, like samples of
measurements, is stored inside the tensors as shown in Example 2.1 but the values of the
parameters. The monomials are arranged in a tensor, too. With the fixed structure of
the monomials given by the monomial tensor, the function is completely characterized by
its parameter tensor, when the number of variables and maximal order of the function is
known. Using this tensor representation of multilinear and polynomial functions, where
the parameters and monomials are separately stored in different tensors, the aim in the
next sections is to compute the result of basic polynomial operations like multiplication or
differentiation based on the parameter tensors. This means that the parameter tensor of
the result of those operations is calculated by using the parameter tensors of the operands,
without evaluating the contracted product with the monomial tensor. The result is computed
by so-called operational tensors. This gives an analytically exact solution of these operations
by simple numerical computations. No symbolic calculation is necessary.

2.3.2 Multiplication

Example 2.29 showed, that the result of the multiplication of two multilinear polynomials
cannot be described in the multilinear tensor framework (2.44) since higher order terms
occur. With Definition 2.27 it is possible to represent higher order polynomials and thus
allows to derive the multiplication of polynomials based on the parameter tensors.

Theorem 2.1 (Multiplication in tensor form) The multiplication of two polynomials
in n variables of maximal orders N1 and N2 in tensor representation

h1(x) =
⟨︂

H1

⃓⃓⃓
MN1

p (x)
⟩︂

,

h2(x) =
⟨︂

H2

⃓⃓⃓
MN2

p (x)
⟩︂

,

with parameter tensors Hi ∈ R×(nNi)2 and monomial tensors MNi
p (x) ∈ R×(nNi)2, i = 1, 2,

h1(x) · h2(x) =
⟨︂

H1 ◦ H2

⃓⃓⃓
MN1+N2

p (x)
⟩︂

, (2.53)

is a polynomial of order N1 + N2.

The Appendix A.4 shows the proof of this theorem.

Example 2.33 The multiplication of the two multilinear functions of Example 2.29, that
have tensor representations (2.50) and (2.51) is given by

h(x1, x2)=h1(x1, x2)h2(x1, x2)=⟨ H1 | M (x1, x2) ⟩⟨ H2 | M (x1, x2) ⟩ =
⟨︂

H1◦H2

⃓⃓⃓
M2

p (x1, x2)
⟩︂
.

The result of the multiplication computed directly in (2.45) is a polynomial of maximal or-
der 2, which corresponds to the monomial tensor M2

p (x1, x2) of the result. The monomial

44

2 Tensor operations

tensor was illustrated in Figure 2.26 and has the slices (2.48). Computing the outer pro-
duct H = H1 ◦ H2 gives the parameter tensor of the result with slices

H(:, :, 1, 1) =
(︄

0 0
0 0

)︄
, H(:, :, 1, 2) =

(︄
1 0
0 2

)︄
,

H(:, :, 2, 1) =
(︄

0 0
0 0

)︄
, H(:, :, 2, 2) =

(︄
−3 0
0 −6

)︄
.

(2.54)

The result of the outer product (2.54) is equal to the parameter tensor of h(x1, x2) that was de-
rived in (2.49). Thus, the parameter tensor of the multiplication of h1(x1, x2) and h2(x1, x2)
is computed correctly by the outer product H1 ◦ H2 leading to

h(x1, x2) =
⟨︂

H1 ◦ H2

⃓⃓⃓
M2

p (x1, x2)
⟩︂

= x1 − 3x1x2 + 2x2
1x2 − 6x2

1x
2
2.

If the parameter tensors H1 and H2 are given as decomposed tensors, e.g. in CP format, the
parameter tensor of their product is computed efficiently since the outer product is defined
on the decomposition factors like for CP tensors by Theorem 2.1. Thus building the full
tensors of H1 and H2 is not required in this case.

2.3.3 Differentiation

In this section the computation of the partial derivative of a polynomial of order N in tensor
representation (2.47) with respect to one variable xj, j = 1, . . . , n

∂

∂xj

h(x) = ∂

∂xj

⟨︂
H
⃓⃓⃓
MN

p (x)
⟩︂

is investigated. One possibility to determine the exact derivative of a polynomial is a sym-
bolical computation. The differentiation approach introduced here should take advantage of
the tensor structure of the polynomial representation. The fact is used, that the derivative
of a polynomial with respect to one variable is still a polynomial, that can be represented by
a parameter tensor and a monomial tensor. When differentiating a polynomial, the maximal
order N of the monomials is not increased. The exponents of the variables xi with i ̸= j
remain unchanged and the order of the variables xj are reduced by one

∂

∂xj

xn
j = nxn−1

j .

Thus, the derivative ∂
∂xj

h(x) can be represented with a monomial tensor of the same maximal
order than the function h(x), i.e. the monomial tensor of the derivative is MN

p (x) too. The
question, how the parameter tensor Hxj

of the derivative

∂

∂xj

h(x) =
⟨︂

Hxj

⃓⃓⃓
MN

p (x)
⟩︂

is computed by using the parameter tensor H of the original function h(x) only, is investigated
in the following Theorem.

45

2 Tensor operations

Theorem 2.2 (Differentiation in tensor form) The partial derivative of a polynomial
in n variables of maximal monomial order N with respect to one variable xj with j = 1, . . . , n
in tensor representation is given by

∂

∂xj

h(x) = ∂

∂xj

⟨︂
H
⃓⃓⃓
MN

p (x)
⟩︂

=
⟨︂

Hxj

⃓⃓⃓
MN

p (x)
⟩︂

, (2.55)

with the parameter tensor of the differentiated function

Hxj
=

N∑︂
k=1

H ×kn−j+1 Θ ∈ R×(nN)2, (2.56)

and a matrix Θ = (0 1
0 0).

The theorem is proven in the Appendix A.5. With Theorem 2.2 a simple numerical compu-
tation of the partial derivative of polynomials based on the tensor representation is found,
that computes an analytically exact solution and not a numerical approximation of the de-
rivative. This realizes an automatic differentiation algorithm without the disadvantages of
symbolical or numerical differentiation, like high computational costs or inaccuracies, [92].
A simple tensor matrix product in one mode has to be computed only to get the parameter
tensor of the derivative. This allows a simple computation even for large polynomials with
a lot of variables or a high maximal order. Independently of the number of variables or
the maximal order, the parameter tensor has to be multiplied by a small scale, i.e. 2 × 2,
matrix Θ only. To compute the derivative with respect to different variables xj, only the
mode ×kn−j+1 of the tensor matrix product has to be changed.
Especially in the case, where the parameter tensor H is given as decomposed tensor, the com-
putation is simplified, because the tensor matrix product is defined for the decomposition
methods as proposed in Section 2.1.2. Assuming as an example that the parameter tensor H
is in CP form, the CP representation of Hxj

is constructed using the decomposition factors
of H only, without building the full tensors. This is illustrated in the following example.

Example 2.34 Consider a multilinear polynomial with two variables

h(x) = 1 + 2x1 + 3x2 + 6x1x2 = ⟨ H | M (x) ⟩ =
⟨︄(︄

1 2
3 6

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x1
x2 x1x2

)︄ ⟩︄
.

By applying (2.56) the parameter tensor of the differentiated function with respect to x1
results in

H1 = H ×2 Θ =
(︄

2 0
6 0

)︄
,

which describes the function

∂

∂x1
h(x) = ⟨ H1 | M (x) ⟩ =

⟨︄(︄
2 0
6 0

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x1
x2 x1x2

)︄ ⟩︄
= 2 + 6x2,

i.e. the correct derivative. The mode-2 multiplication with Θ maps the elements of H belon-
ging to the monomials x1 and x1x2 to the monomials 1 and x2. All others are zero, which is

46

2 Tensor operations

exactly the case when differentiating this function with respect to x1.
The parameter tensor of h(x) can be given in a CP tensor structure

H =
(︄

1 2
3 6

)︄
=
[︄(︄

1 1 0 0
0 0 1 1

)︄
,

(︄
1 0 1 0
0 1 0 1

)︄]︄
·
(︂
1 2 3 6

)︂T
.

How to construct the CP form of a parameter tensor will be described in Section 3.2.1. To
compute the tensor matrix product by using the decomposed form the second factor matrix is
multiplied from the right by Θ. Thus, the CP representation of the differentiated function is
given by

H1 =
[︄(︄

1 1 0 0
0 0 1 1

)︄
,

(︄
0 1 0 1
0 0 0 0

)︄]︄
·
(︂
1 2 3 6

)︂T
=
[︄(︄

1 0
0 1

)︄
,

(︄
1 1
0 0

)︄]︄
·
(︂
2 6

)︂T
,

where the number of rank-1 components can be reduced by removing the zero columns of the
factor matrices to get a more efficient representation of the CP tensor. To verify the result
the full tensor is reconstructed from the CP representation leading to

H1 =
[︄(︄

1 0
0 1

)︄
,

(︄
1 1
0 0

)︄]︄
·
(︂
2 6

)︂T
=
(︄

2 0
6 0

)︄
,

which shows the same result as before with the full tensor.

Remark 2.2 The CP representation of the parameter tensors given in Example 2.34 needs
a larger storage effort, than the full representation as a 2 × 2 matrix. This could be mis-
leading because it was stated before that a tensor decomposition gives a memory efficient
representation of the tensor. The reason for this contradicting case here is the low dimensi-
onality of the parameter tensor. A polynomial with two variables and maximal order N = 1
is considered only, to have a simple example for the illustration of the differentiation con-
cept. For a polynomial with a larger number of variables the benefits of the decomposition
comes into play. For example a polynomial with 20 variables has 220 = 106 elements in full
representation, i.e. approximately a million. If it is possible to construct a CP form with 4
rank-1 elements, like here in this example, 164 elements would have to be stored only, which
shows the advantage of the decomposition.

2.3.4 Lie derivative

Two basic polynomial operations were introduced in the previous two sections. To design
a feedback linearizing controller, which will be introduced for MTI systems in Section 4.2,
an additional operation is necessary. The Lie derivative of a scalar function g(x) : Rn → R
along a vector field h : Rn → Rn with components h(x) =

(︂
h1(x) · · · hn(x)

)︂T
is defined

as, [39]

Lhg(x) =
n∑︂

i=1
hi(x)∂g(x)

∂xi

∈ R. (2.57)

47

2 Tensor operations

The Lie derivative is known from differential geometry and gives the derivative of a function
along a vector field, [39]. An i-times application of the Lie derivative to a function is
denoted by Lh · · · Lhg(x) = Li

hg(x). Equation (2.57) shows that multiplications and partial
derivatives have to be computed to determine the Lie derivative. Consider now that the
functions h(x) and g(x) are given as polynomials in a tensor format

h(x) =
⟨︂

H
⃓⃓⃓
MN

p (x)
⟩︂

, (2.58)

g(x) =
⟨︂

G
⃓⃓⃓
MN

p (x)
⟩︂

, (2.59)

with parameter tensors H ∈ R×(nN)2×n and G ∈ R×(nN)2. In this case the multiplication and
differentiation methods (2.53) and (2.55) are used to compute the Lie derivative (2.57) based
on the parameter tensors.

Theorem 2.3 (Lie derivative in tensor form) The tensor representation of the Lie
derivative (2.57) of the scalar polynomial (2.59) along the polynomial vector field (2.58)
yields

Ll
hg(x) =

n∑︂
i=1

hi(x) ∂

∂xi

Ll−1
h g(x) =

⟨︂
LH,G,l

⃓⃓⃓
MN(l+1)

p (x)
⟩︂

, (2.60)

with the parameter tensor

LH,G,l =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

G , for l = 0,
n∑︁

i=1
Hi ◦

(︄
N∑︁

k=1
G ×kn−i+1 Θ

)︄
, for l = 1,

n∑︁
i=1

Hi ◦
(︄

lN∑︁
k=1

LH,G,l−1 ×kn−i+1 Θ
)︄

, else,

(2.61)

with subtensor Hi = H(:, . . . , :, i), where the last dimension of H is fixed, which means

H = H1 �n+1 H2 �n+1 · · · �n+1 Hn =
n

n+1
i=1

Hi.

The theorem is proven in the Appendix A.6.

Example 2.35 The vector function (2.52)

h(x1, x2) = ⟨ H | M (x1, x2) ⟩

from Example 2.32 has a parameter tensor

H1 = H(:, :, 1) =
(︄

1 0
0 2

)︄
, H2 = H(:, :, 2) =

(︄
0 1
0 −3

)︄
.

The first Lie derivative Lhg(x), i.e. l = 1, of the scalar function

g(x) = x2 − x1x2 = ⟨ G | M (x) ⟩ =
⟨︄(︄

0 0
1 −1

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x1
x2 x1x2

)︄ ⟩︄
,

48

2 Tensor operations

along the vector field h(x) should be computed by operational tensors. For comparison the
computation of the Lie derivative with the standard approach (2.57) gives

Lhg(x) = h1(x) ∂

∂x1
g(x) + h2(x) ∂

∂x2
g(x) = x1 − x2 − 3x1x2 − x2

1 + 3x1
1x2 − 2x1x

2
2. (2.62)

With the method introduced in Theorem 2.3 the parameter tensor of the Lie derivative

LH,G,1 = H1 ◦ (G ×2 Θ) + H2 ◦ (G ×1 Θ) ,

results in a fourth order tensor

LH,G,1(:, :, 1, 1) =
(︄

0 1
0 −3

)︄
, LH,G,1(:, :, 1, 2) =

(︄
0 −1
0 3

)︄
,

LH,G,1(:, :, 2, 1) =
(︄

−1 0
0 −2

)︄
, LH,G,1(:, :, 2, 2) =

(︄
0 0
0 0

)︄
.

From (2.60) follows that the monomial tensor M2
p (x1, x2) for the Lie derivative is of maximal

order 2, which was computed in full representation in (2.48). Evaluating the contracted
product of the parameter tensor with the monomial tensor

⟨︂
LH,G,1

⃓⃓⃓
M2

p (x1, x2)
⟩︂

shows that
the result with the operational tensor is equal to (2.62). Thus, the parameter tensor is
computed correctly.

With the definition of the Lie derivative (2.60) in tensor representation, a related operation,
the Lie brackets, can be described in a similar way, that is also important in the design of
feedback linearizing controllers. The Lie bracket of two vector functions h(x) and g(x) is
given by, [39]

[h, g] = ∂g(x)
∂x

h(x) − ∂h(x)
∂x

g(x) = Lhg(x) − Lgh(x), (2.63)

where ∂h(x)
∂x and ∂g(x)

∂x are the Jacobian matrices of h(x) and g(x) respectively.

Lemma 2.1 (Lie bracket) The Lie bracket of two vector functions h, g : Rn → Rn in n
variables

h(x) =
⟨︂

H
⃓⃓⃓
MN

p (x)
⟩︂

,

g(x) =
⟨︂

G
⃓⃓⃓
MN

p (x)
⟩︂

,

with parameter tensors H ∈ R×(nN)2×n and G ∈ R×(nN)2×n, is given by

[h, g] =
⟨︂

LH,G,1 − LG,H,1

⃓⃓⃓
M2N

p (x)
⟩︂

.

The proof of the lemma is given in the Appendix A.6. This can be extended to the multiple
application of the Lie bracket. For the repeated Lie bracket [h, [h, . . . [h, g]]] of the vector
field g(x) with the same vector field h(x) the recursive notation

adk
hg(x)=

[︂
h, adk−1

h g
]︂

(x)=
⟨︂

Lk
adhg

⃓⃓⃓
Mk+1

p (x)
⟩︂

, (2.64)

is used with k ≥ 1. The term ad0
hg(x) gives g(x).

49

2 Tensor operations

2.3.5 Jacobian and Hessian matrix

The partial differentiation of a polynomial in tensor format by operational tensors was descri-
bed in Section 2.3.3. This operation will be used in this section to compute the Jacobian and
the Hessian of a polynomial in tensor format. This allows e.g. to approximate higher order
polynomials with lower order Taylor series, to reduce the storage effort for the polynomials.

Jacobian

The Jacobian matrix of a vector function h : Rn → Rm with n variables contains all first
partial derivatives of the function, [14]. Each component of h (x)T =

(︂
h1(x) · · · hm(x)

)︂
is derived with respect to all variables xj, j = 1, . . . , n. This results in a matrix of dimen-
sion Rm×n

Jh(x) =
(︄

∂hi(x)
xj

)︄
= ∂h(x)

∂x
=

⎛⎜⎜⎜⎝
∂h1(x)

∂x1
· · · ∂h1(x)

∂xn...
∂hm(x)

∂x1
· · · ∂hm(x)

∂xn

⎞⎟⎟⎟⎠ . (2.65)

Assuming now that the vector function

h(x) =
⟨︂

H
⃓⃓⃓
MN

p (x)
⟩︂

,

is given in a tensor format. This allows to compute the partial derivatives of h(x) by
operational tensors as derived in Section 2.3.3. With (2.55) the columns of the Jacobian
matrix (2.65) are described by

jh(x)(:, j) =

⎛⎜⎜⎜⎝
∂h1(x)

∂xj...
∂hm(x)

∂xj

⎞⎟⎟⎟⎠ =
⟨︂

Hxj

⃓⃓⃓
MN

p (x)
⟩︂

, j = 1, . . . , n.

Each column of the Jacobian is represented by a parameter tensor and the monomial tensor.
The monomial tensor of all columns is the same, since the orders of the derivatives do
not change. Because of that, the parameter tensors of the derivatives can be stored in a
tensor Jh ∈ R×(nN)2×m×n to describe the whole Jacobian matrix directly

Jh(x) =
⟨︂

Jh

⃓⃓⃓
MN

p (x)
⟩︂

. (2.66)

The first (nN) dimensions ix =
(︂
i1 · · · inN

)︂T
∈ RnN of Jh belong to the variables x, the

last two dimensions inN+1 = m and inN+2 = n are the dimensions of the resulting Jacobian
matrix. The parameter tensor of the Jacobian is constructed from the parameter tensors of
the partial derivatives of h(x) by

Jh(ix, :, j) = Hxj
(ix, :), j = 1, . . . , n. (2.67)

Having all the information on the derivatives stored in the parameter tensor Jh, the Jacobian
matrix at some point x is computed by a simple evaluation of the contracted product (2.66)
with the monomial tensor. The result of the derivation of the Jacobian matrix for polyno-
mials in tensor format can be summarized in the following lemma.

50

2 Tensor operations

Lemma 2.2 (Jacobian matrix in tensor form) Consider a polynomial of maximal or-
der N in n variables in tensor format

h(x) =
⟨︂

H
⃓⃓⃓
MN

p (x)
⟩︂

.

The Jacobian matrix of h(x) : Rn → Rm can be computed by

Jh(x) =
⟨︂

Jh

⃓⃓⃓
MN

p (x)
⟩︂

, (2.68)

with the parameter tensor Jh ∈ R×(nN)2×m×n constructed by

Jh(ix, :, j) = Hxj
(ix, :), j = 1, . . . , n, (2.69)

where the parameter tensor Hxj
follows from (2.56).

Example 2.36 Consider the example function

h(x) = x1 − 3x1x2.

Since h(x) is a scalar function, the Jacobian is a vector

Jh(x1, x2) =
(︄

1 − 3x2
−3x1

)︄
= ⟨ Jh | M (x1, x2) ⟩ ,

where the parameter tensor is computed from the parameter tensor of h(x) given in (2.51)
and the differentiation approach (2.56) to

Jh(:, :, 1) =
(︄

0 1
0 −3

)︄
×2 Θ =

(︄
1 0

−3 0

)︄
,

Jh(:, :, 2) =
(︄

0 1
0 −3

)︄
×1 Θ =

(︄
0 −3
0 0

)︄
,

which gives the correct solution as shown in Figure 2.27.

Jh(x1, x2) = ⟨ Jh | M (x1, x2) ⟩ =

−3 0

01

0 0

−30

x2 x1x2

x11

=
(︄

1 − 3x2
−3x1

)︄

Figure 2.27: Tensor representation with full tensors

51

2 Tensor operations

Hessian

So far, the first partial derivatives ∂h(x)/∂xj of polynomials were investigated with the tensor
approach by computing the Jacobian matrix (2.68). This concept is extended now to second
order derivatives in the Hessian matrix. Therefore consider a scalar function h(x) : Rn → R.
The Hessian matrix stores all second order partial derivatives of h(x), [14]

Hh(x) =
(︄

∂2h(x)
∂xi∂xj

)︄
=

⎛⎜⎜⎜⎜⎜⎜⎝

∂2h(x)
∂x2

1

∂2h(x)
∂x1∂x2

· · · ∂2h(x)
∂x1∂xn

∂2h(x)
∂x2∂x1

∂2h(x)
∂x2

2
· · · ∂2h(x)

∂x2∂xn

...
∂2h(x)
∂xn∂x1

∂2h(x)
∂xn∂x2

· · · ∂2h(x)
∂x2

n

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ Rn×n.

If the polynomial is given in terms of the tensor description

h(x) =
⟨︂

H
⃓⃓⃓
MN

p (x)
⟩︂

,

the derivative with respect to one variable, e.g. xj, is written by (2.55). The result is
again a polynomial in tensor format with the same maximal order, such that the derivation
operation (2.55) can be simply applied one more time to the derivative to get the second
order derivative with respect to two variables xi and xj

∂2h(x)
∂xi∂xj

= ∂

∂xi

⟨︂
Hxj

⃓⃓⃓
MN

p (x)
⟩︂

=
⟨︂

Hxi,xj

⃓⃓⃓
MN

p (x)
⟩︂

. (2.70)

Using (2.56) twice, the parameter tensor of the second order derivative is given by

Hxi,xj
=

N∑︂
l=1

Hxj
×ln−i+1 Θ =

N∑︂
l=1

(︄
N∑︂

k=1
H ×kn−j+1 Θ

)︄
×ln−i+1 Θ

=
N∑︂

l=1

N∑︂
k=1

H ×kn−j+1 Θ ×ln−i+1 Θ. (2.71)

With (2.70) and (2.71) all second order derivatives are described in the tensor format, such
that all elements of the Hessian matrix can be computed with the same monomial tensor.
The complete Hessian is expressed in this form by

Hh(x) =
⟨︂

Γh

⃓⃓⃓
MN

p (x)
⟩︂

, (2.72)

where the parameter tensor Γh ∈ R×(nN)2×n×n contains the parameter tensors of the deriva-
tives (2.71)

Γh(ix, i, j) = Hxi,xj
(ix), ∀i, j = 1, . . . , n. (2.73)

Again the first nN dimensions of Hh belong to the indices ix ∈ RnN of the variables. The last
two dimensions inN+1 = n and inN+2 = n belong to the dimensions of the Hessian matrix.
To get the Hessian matrix at some point x the contracted product product (2.72) simply has
to be evaluated. No further computations are necessary once the parameter tensor (2.71) is
found. A brief summary of the derived results on the Hessian matrix is given in the following
lemma.

52

2 Tensor operations

Lemma 2.3 (Hessian matrix in tensor form) The Hessian matrix of a scalar polyno-
mial of maximal order N in n variables x ∈ Rn

h(x) =
⟨︂

H
⃓⃓⃓
MN

p (x)
⟩︂

,

is given in tensor format by

Hh(x) =
⟨︂

Γh

⃓⃓⃓
MN

p (x)
⟩︂

. (2.74)

The parameter tensor Γh ∈ R×(nN)2×n×n is described elementwise by

Γh(ix, i, j) = Hxi,xj
(ix), ∀i, j = 1, . . . , n, (2.75)

with the index vector ix ∈ R×(nN)2 of the variables and parameter tensors Hxi,xj
of the second

derivative (2.71).

Example 2.37 The same function as in Example 2.36 is used to compute the Hessian,
which gives

Hh(x1, x2) =
(︄

0 −3
−3 0

)︄
= ⟨ Γh | M (x1, x2) ⟩ .

With (2.73) parameter tensor Hh results in

Γh(:, :, 1, 1) =
(︄

0 1
0 −3

)︄
×2 Θ ×2 Θ =

(︄
0 0
0 0

)︄
,

Γh(:, :, 2, 2) =
(︄

0 1
0 −3

)︄
×1 Θ ×1 Θ =

(︄
0 0
0 0

)︄
,

Γh(:, :, 1, 2) =
(︄

0 1
0 −3

)︄
×1 Θ ×2 Θ =

(︄
−3 0
0 0

)︄
,

Γh(:, :, 2, 1) =
(︄

0 1
0 −3

)︄
×2 Θ ×1 Θ =

(︄
−3 0
0 0

)︄
.

The evaluation of the contracted product of the parameter tensor and the monomial ten-

sor M (x1, x2) =
(︄

1 x2
x2 x1x2

)︄
gives the correct result

(︄
0 −3

−3 0

)︄
.

Taylor series

In some applications it is beneficial, that the maximal order of a polynomial does not incre-
ase too much. In this case it may help to approximate a polynomial with a high maximal
order by a polynomial of lower order. A common approach is the Taylor series expansion,
to approximate a function by a power series, [14]. Here it is investigated how a polyno-
mial h(x) : Rn → R in tensor format can be approximated by a Taylor series of order 2. In

53

2 Tensor operations

general a function h(x) is approximated around a point x0 by its Taylor series of order 2, [14]

h(x) ≈ t(x) = h(x0) + Jh(x0) (x − x0) + 1
2 (x − x0)T Hh(x0) (x − x0) (2.76)

= h(x0) − Jh(x0)x0 + 1
2xT

0 Hh(x0)x0⏞ ⏟⏟ ⏞
Constant terms

+
(︂
Jh(x0) − xT

0 Hh

)︂
x⏞ ⏟⏟ ⏞

Linear terms

+ 1
2xT Hh(x0)x⏞ ⏟⏟ ⏞
Multilinear and
quadratic terms

.

The 2nd order Taylor series consists of constant, linear, mutlilinear and quadratic terms. If
the polynomial

h(x) =
⟨︂

H
⃓⃓⃓
MN

p (x)
⟩︂

is given in a tensor structure, the Jacobian Jh(x) ∈ R1×n and the Hessian Hh(x) ∈ Rn×n

are computed by (2.68) and (2.74). With that the Taylor series can be expressed in tensor
format too by

t(x) =
⟨︂

Th

⃓⃓⃓
M2

p (x)
⟩︂

, (2.77)

because it is a polynomial of maximal order 2. The parameters of corresponding terms have
to be arranged in the right positions of the parameter tensor Th ∈ R×(2n)2. The constant
term is stored at

th(1, . . . , 1) = h(x0) − Jh(x0)x0 + 1
2xT

0 Hh(x0)x0. (2.78)

The index vector ix,j ∈ R2n, j = 1, . . . , n of the parameters belonging to the linear monomi-
als xj are

ix,j(k) =

⎧⎨⎩2 , for k = n − j + 1,

1 , else.

The parameters of the linear terms are stored in the corresponding entries of the parameter
tensor

th(ix,j) = −hh(x0)(j, :)x0 + jh(x0)(1, j). (2.79)

The parameters of the multilinear and quadratic terms xjxl, ∀ j, l = 1, . . . , n, are stored at
positions

ix,j,l =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2 , for k = n − j + 1,

2 , for k = n − l + 1, j ̸= l,

2 , for k = 2n − l + 1, j = l,

1 , else,

of the parameter tensor Th of the Taylor series

th(ix,j,l) =

⎧⎨⎩hh(x0)(j, l) , for j ̸= l,
1
2hh(x0)(j, l) , for j = l.

(2.80)

54

2 Tensor operations

This arrangement of terms of (2.76) in the parameter tensor Th, results in the Taylor series
of second order in tensor form (2.77). To summarize the derivation, the main result is given
in the next lemma.

Lemma 2.4 (Second order taylor series in tensor form) Consider a scalar polyno-
mial in n variables and maximal order N

h(x) =
⟨︂

H
⃓⃓⃓
MN

p (x)
⟩︂

.

The second order taylor series approximation of h(x) ≈ t(x) at the point x0 is written as

t(x) =
⟨︂

Th

⃓⃓⃓
M2

p (x)
⟩︂

where the elements of the parameter tensor Th ∈ R×(2n)2 are given by (2.78) to (2.80).

Example 2.38 Consider a polynomial of maximal order 3 in 2 variables, where the tensor
notation of the function, its Jacobian and its Hessian are given by (2.47), (2.68) and (2.74)

h(x) =
⟨︂

H
⃓⃓⃓
M3

p (x1, x2)
⟩︂

= x2 + 2x1x
2
2 − 3x3

1x2,

Jh(x) =
⟨︂

Jh

⃓⃓⃓
M3

p (x1, x2)
⟩︂

=
(︂
2x2

2 − 9x2
1x2 1 + 4x1x2 − 3x3

1

)︂
,

Hh(x) =
⟨︂

Hh

⃓⃓⃓
M3

p (x1, x2)
⟩︂

=
(︄

−18x1x2 4x2 − 9x2
1

4x2 − 9x2
1 4x1

)︄
.

The Taylor approximation of h(x) should be computed around x0 =
(︂
1 0

)︂T
and is written as

t(x1, x2) =
⟨︂

Th

⃓⃓⃓
M2

p (x1, x2)
⟩︂

.

To compute the parameters of the Taylor series, i.e. the elements of Th ∈ R2×2×2×2 the
function, the Jacobian and the Hessian have to be evaluated at x0

h(x0) =
⟨︂

H
⃓⃓⃓
M3

p (1, 0)
⟩︂

= 0,

Jh(x0) =
⟨︂

Jh

⃓⃓⃓
M3

p (1, 0)
⟩︂

=
(︂
0 −2

)︂
,

Hh(x0) =
⟨︂

Hh

⃓⃓⃓
M3

p (1, 0)
⟩︂

=
(︄

0 −9
−9 4

)︄
.

Using these evaluations the elements of Th are computed and arranged by (2.78) to (2.80),
such that the parameters belong to the right monomials

1 → th(1, 1, 1, 1) = h(x0) − Jh(x0)x0 + 1
2xT

0 Hh(x0)x0 = 0,

x1 → th(2, 1, 1, 1) = −hh(x0)(1, :)x0 + jh(x0)(1, 1) = 0,

x2 → th(1, 2, 1, 1) = −hh(x0)(2, :)x0 + jh(x0)(1, 2) = 7,

x1x2 → th(2, 2, 1, 1) = hh(x0)(1, 2) = −9

x2
1 → th(2, 1, 2, 1) = 1

2hh(x0)(1, 1) = 0,

x2
2 → th(1, 2, 1, 2) = 1

2hh(x0)(2, 2) = 2.

55

2 Tensor operations

For clarification the monomials corresponding to the particular parameters are shown in the
left column. All other elements of the parameter tensor are equal to zero. With the evaluation
of the defined parameter tensor and the monomial tensor, the taylor approximation yields

t(x) =
⟨︂

Th

⃓⃓⃓
M2

p (x1, x2)
⟩︂

= 7x2 − 9x1x2 + 2x2
2.

2.4 Open and guiding questions

In this chapter basics on tensors and decomposition techniques have been introduced. It has
been shown, how tensor operations are computed efficiently by CP tensors. Furthermore
tensors have been used to describe polynomials of arbitrary order. Approaches have been
derived to compute polynomial standard operations based on this tensor format.
But the chapter leaves open, which decomposition method is suited best to represent po-
lynomials. The storage effort of the parameter tensor gets very large for polynomials with
many variables and of high order. It would be interesting to see, how the storage effort of the
parameter tensors can be reduced by decomposition methods. For modeling it is of interest
to use the tensor representation as right hand sides of differential equation systems. It has
to be investigated how low-rank approximations, that approximate the function parameters,
affect the dynamical behavior of these models. Since the chapter derives, that polynomial
operations can be expressed in the tensor format, this poses the question, how these met-
hods can be applied for system analysis or controller design. Here just some operations are
formulated in the tensor framework. It is still open how other polynomial operations like
the integration can be expressed in a similar way.
In the previous chapter one possible representation of polynomials by tensors has been intro-
duced based on the notation of multilinear functions with some nice properties for algorithm
development, which allowed to describe different polynomial operations like multiplication or
differentiation based on the tensor framework. The monomial tensor has been constructed as
rank-1 tensor extending the concept of the monomial tensor for multilinear functions. This
leads to redundancies in the monomial tensor for higher order polynomials as can be seen
in Example 2.31. This representation is not memory efficient, since the redundancies are
not necessary for the polynomial description. It results from the basic multilinear monomial
tensor and helps for the first development of the introduced operations. The number of di-
mensions of the monomial tensor also prescribes the number of dimensions of the parameter
tensor. For systems with a large number of variables and a very high order, this could lead to
problems in memory demand, even though the parameter tensor is in decomposed structure
too. It is left open here, how a monomial tensor is constructed with less or without redun-
dancies, e.g. by a variable transformation. This would lead to an even more memory efficient
polynomial representation. The polynomial operations, given in this chapter, would have
to be adapted to this structure as well. If such a representation is found, this would allow
together with the proposed decomposition strategies to represent even larger polynomials
and thus opens a wider range of applications.

56

3 Modeling for multilinear systems

Models of multilinear time-invariant (MTI) systems were introduced in [63] and [85] and
its applicability to heating systems was shown. A model representation with decomposed
tensors was proposed by using the CP decompositions of the parameter tensors. Section 3.1
gives an overview on the basic concept of the tensor representation of MTI models. As
proposed in the previous chapter from the field of mathematics different decomposition
techniques are available. Up to now in the literature the focus was on the CP decomposition
for MTI model representation. Thus, Section 3.2 investigates how it is possible to represent
and simulate MTI system in the four proposed decomposition techniques and compares
the different formats. Since no widespread theory for MTI systems is available, as e.g.
for linear systems, [4], the Sections 3.3 to 3.6 introduce different tools for MTI systems
analysis, like linearization or discretization, based on the decomposed tensor format. For
large-scale systems, that are composed of several MTI subsystems a notation is introduced
in Section 3.7 and serial, parallel and feedback connections between a special subclass of
MTI subsystems are investigated. Section 3.8 summarizes open questions in this area of
MTI system representation.

3.1 Multilinear time-invariant (MTI) systems
The basic concept of multilinear models as it is introduced in the literature by [63] or [85]
is briefly summarized in the following section. At first the model class is classified in the
model hierarchy in Subsection 3.1.1. The model classes focused here are restricted to time-
invariant, deterministic, lumped-parameter systems. After that Subsection 3.1.2 creates a
link to the previous chapter by describing the tensor representation of multilinear systems.
Guiding questions focusing on open points in the theory of multilinear systems, that will be
answered in the following chapters, are posed in Subsection 3.1.3.

3.1.1 Model classes
Models of real systems help to predict the future behavior of these dynamical processes.
This could be beneficial e.g. for tests of new system components, fault detection, controller
design and many other applications. Figure 3.1 shows a general system with its input and
output signals, [43].
A system is manipulated from the outside by inputs u ∈ Rm. Output signals y ∈ Rp are
measured. All relevant information on the system at the current time step is given by its
states x ∈ Rn. All signals are supposed to be in the real domain here, since no switching or
hybrid systems are considered, where signals in the Boolean domain could occur.

57

3 Modeling for multilinear systems

System
with states x

Outputs yInputs u

Figure 3.1: System with inputs, outputs and states

At first, it is assumed, that the dynamical behavior of the system does not change over time,
i.e. it can be described by a time-invariant model. Thus, the parameters are constant and
not time depended. The second assumption is, that the dynamical behavior of the system in
continuous-time can be described by ordinary differential equations. Systems, e.g. modeled
by partial differential equations, are not considered in this work. As a common system
representation state space models are used here, where the relationship between x, u and y
is described by a system of first order ODEs. The state vector is used to transform also
higher order ODEs in a system of first order differential equations, i.e. a state space model.
The output is computed as a function of states and inputs. State space models of different
model classes will be considered here, [43].

Nonlinear models

The most general class is the class of nonlinear models, that contains all the other model
classes, that will be introduced in the following, [43]. A nonlinear continuous-time state
space model is written as system of first order ODEs by

ẋ(t) = f(x(t), u(t)), (3.1)
y(t) = g(x(t), u(t)), (3.2)

with time t ∈ R, state equation f : Rn × Rm → Rn and output equation g : Rn × Rm → Rp.
The inital state is given by x0 = x(0). In discrete-time the system is sampled at fixed time
steps Tsample leading to the description of the state space model by difference equations

x(k + 1) = f(x(k), u(k)), (3.3)
y(k) = g(x(k), u(k)), (3.4)

where f : Rn × Rm → Rn and g : Rn × Rm → Rp are the next state and output function
respectively and k = 0, 1, 2, . . . ∈ N denotes the time index for the time steps kTsample. Take
into account, that the function f of the continous system is different to the function f of its
discrete-time version. The basic structure of the continuous- and the discrete-time models are
similar except the left hand sides of the equation. Therefore, many methods are applicable
for continuous- as well as for discrete-time models. Thus, it is beneficial to summarize their
descriptions by introducing the operator Φ (x), [63]. In the continuous case Φ (x) describes
the time derivative ẋ of x and in the discrete setting the next state x(k + 1). For ease of
notation the time t or k will not be be mentioned explicitly in each equation.
With a given initial value x0 = x(0) and input trajectory the evolution of the state and
the output can be uniquely determined by (3.1) and (3.2) in continuous-time and (3.3)
and (3.4) in discrete-time. This computation of the future behavior is called simulation of

58

3 Modeling for multilinear systems

the model and is calculated by intgeration routines for ODEs for the continuous-time case
or recursicvely for the discrete-time case, [43].

Polynomial models

The previously introduced class of nonlinear models allows arbitrary functions as right hand
sides of the differential or difference equations. For polynomial systems the right hand side
functions are limited to polynomials of arbitrary order. Exponential or sinusoidal functions
for example are not included. The right hand sides of polynomial systems can be described by
a linear combination of the polynomial monomials with a maximal order N . The monomials
contain all the multiplicative combinations of states x and inputs u up to the maximal order.
By using (2.41) the monomials are constructed by

mN
p (x, u) =

N⨂︂
j=1

[︄(︄
1

um

)︄
⊗· · ·⊗

(︄
1
u1

)︄
⊗
(︄

1
xn

)︄
⊗· · ·⊗

(︄
1
x1

)︄]︄
, (3.5)

resulting in a vector of dimension R2(n+m)N . A linear combination of the monomials with the
parameters of the system results in the right hand sides of the state space description, which
is computed by the product of a matrix containing all the parameters of the system and
the polynomial monomial vector (3.5). Thus, the polynomial state space model in matrix
representation is given by

Φ (x) = FmN
p (x, u) , (3.6)

y = GmN
p (x, u) , (3.7)

with the transition matrix F ∈ Rn×2(n+m)N and the output matrix G ∈ Rp×2(n+m)N . This
approach for polynomials of arbitrary order can be used to describe multilinear state space
models by limiting the maximal order to N = 1.

Multilinear models

State space models of multilinear systems are described by multilinear functions depending
on states and inputs as right hand sides as introduced in [64], [85] and [86]. This means
that the function is linear if all but one state or input is held constant. Thus, no quadratic
or higher order terms occur in the monomials, which is achieved by setting the maximal
order of the polynomial monomial vector (3.5) to N = 1. The multilinear multiplicative
combinations of states x and inputs u are contained in the monomial vector

m (x, u) =
(︄

1
um

)︄
⊗. . .⊗

(︄
1
u1

)︄
⊗
(︄

1
xn

)︄
⊗· · ·⊗

(︄
1
x1

)︄
∈ R2n+m

.

With that the matrix representation of a multilinear state space model is given by

Φ (x) = Fm (x, u) , (3.8)
y = Gm (x, u) , (3.9)

where F ∈ Rn×2n+m is the transition matrix and G ∈ Rm×2n+m is the output matrix.

59

3 Modeling for multilinear systems

Example 3.1 The state equation of a multilinear state space model with one input and
two states in matrix representation is

Φ
(︄(︄

x1
x2

)︄)︄
= Fm (x1, x2, u1)

=
(︄

f(1, 1) f(1, 2) f(1, 3) f(1, 4) f(1, 5) f(1, 6) f(1, 7) f(1, 8)
f(2, 1) f(2, 2) f(2, 3) f(2, 4) f(2, 5) f(2, 6) f(2, 7) f(2, 8)

)︄
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
x1
x2

x1x2
u1

x1u1
x2u1

x1x2u1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
(︄

f(1, 1) + f(1, 2)x1 + f(1, 3)x2 + f(1, 4)x1x2+
f(2, 1) + f(2, 2)x1 + f(2, 3)x2 + f(2, 4)x1x2+

· · ·

f(1, 5)u1 + f(1, 6)x1u1 + f(1, 7)x2u1 + f(1, 8)x1x2u1

f(2, 5)u1 + f(2, 6)x1u1 + f(2, 7)x2u1 + f(2, 8)x1x2u1

)︄
.

Bilinear models

A subclass of multilinear models are bilinear models. Models of this class are linear in the
states and inputs but have a nonlinear extension. In the nonlinear part products of state
and input signals are involved. This is a limitation compared to multilinear models, where
products of states and states or inputs and inputs are included as well. A bilinear state
space model is written as

Φ (x) = Ax + E (x ⊗ u) + Bu,

y = Cx + Du,

with system matrix A ∈ Rn×n, input matrix B ∈ Rn×m, output matrix C ∈ Rp×n and
feedthrough matrix D ∈ Rp×m of the linear part and the matrix E ∈ Rn×nm belonging to the
bilinear terms xiuj, i = 1, . . . , n, j = 1, . . . , m. The following example shows that bilinear
models can be formulated as multilinear models, i.e. the class of bilinear models is contained
in the multilinear class.

Example 3.2 A state space model of a bilinear system with two states and one input can
be formulated as a multilinear system by

Φ
(︄(︄

x1
x2

)︄)︄
=
(︄

0 a(1, 1) a(1, 2) 0 b(1) e(1, 1) e(1, 2) 0
0 a(2, 1) a(2, 2) 0 b(2) e(2, 1) e(2, 2) 0

)︄
m (x1, x2, u1)

=
(︄

a(1, 1)x1 + a(1, 2)x2 + b(1)u1 + e(1, 1)x1u1 + e(1, 2)x2u1
a(2, 1)x1 + a(2, 2)x2 + b(2)u1 + e(2, 1)x1u1 + e(2, 2)x2u1

)︄
.

Comparing the parameter matrix of the bilinear model with the parameter matrix of the
general multilinear model of same dimensions of Example 3.1 shows, that the parameters of
the multilinear and not bilinear monomials 1, x1x2 and x1x2u are set to zero in the bilinear
case. Thus, the multilinear class extends the bilinear.

60

3 Modeling for multilinear systems

Linear models

Linear models are very common in control engineering, because of their simple handling e.g.
for system analysis or controller synthesis. But they have the drawback, that the class is
very restrictive since only linear combinations of states and inputs are involved leading to
the state space representation

Φ (x) = Ax + Bu, (3.10)
y = Cx + Du, (3.11)

with system matrix A ∈ Rn×n, input matrix B ∈ Rn×m, output matrix C ∈ Rp×n and
feedthrough matrix D ∈ Rp×m. Compared to multilinear models, the set of monomials
for linear models is reduced. No multiplicative combinations of signals are allowed at all.
Because of these restrictions linear systems are a subclass of multilinear systems and can be
expressed in the multilinear framework, too.

Example 3.3 A linear system with two states and one input has a state equation rearran-
ged in the MTI framework of

Φ
(︄(︄

x1
x2

)︄)︄
=
(︄
0 a(1, 1) a(1, 2) 0 b(1) 0 0 0
0 a(2, 1) a(2, 2) 0 b(2) 0 0 0

)︄
m (x1, x2, u1)=

(︄
a(1, 1)x1+a(1, 2)x2+b(1)u1
a(2, 1)x1+a(2, 2)x2+b(2)u1

)︄
.

The restrictions of the linear class gets obvious, when focusing on the zeros in the parameter
matrix. All the parameters of monomials except x1, x2 and u are set to zero.

Overview

An overview of the different introduced classes is depicted in Figure 3.2.

linear

bilinear

multilinear

polynomial

nonlinear

Figure 3.2: System classes

61

3 Modeling for multilinear systems

The most general class are nonlinear models including arbitrary polynomial terms and other
nonlinear functions like exponential or sinusoidal functions. All other previously introdu-
ced classes are subclasses of the nonlinear one. This very general formulation allows high
flexibility in modeling but leads to a high complexity, when focusing on system analysis or
controller design since no structure is imposed on the model at all. Thus, tools for analysis
and design are often mathematically complex and limited to certain categories of nonlinear
systems, [43].
The most restrictive class are linear models. This class is well established and has a wi-
despread theory. The linearity property of these systems helps to develop algorithms for
modeling and design. But in cases where nonlinear effects are essential, methods for linear
models may fail, because linear models cannot capture the system dynamics in a sufficient
accuracy. That is the drawback of their simplicity.
That is why systems between the complex nonlinear and the simple linear systems are of in-
terest. Bilinear, multilinear or polynomial systems can model more complex dynamics than
linear systems, since they include more monomials on the right hand sides of their ODE
descriptions. But these three classes still impose a structure on their model equations and
are not as general as in the nonlinear case. This is an advantage, when developing algorithms
for modeling or controller synthesis. Usually specialization on a specific class with a given
system structure lowers complexity and improves robustness of the design process. One of
the main guidelines in modeling is to make the model as simple as possible but as complex
as necessary to get a good model accuracy, [68].
From an application point of view the focus in this work is on heating systems. As shown in
the very simple example in Section 1.4 already for small subsystems of heating systems the
bilinear class is not sufficient to capture the dynamics. Thus, the linear as well as the bilinear
class are too restrictive for heating systems, [85, 86]. The multilinear terms follow from the
multiplication of temperature and flow in the heat balances of the heating systems model. In
general, one can say that systems modeled by heat or mass balances like heating systems or
chemical systems often show such structures, [50, 86]. Polynomial systems can also capture
these dynamics since they build a superclass of multilinear systems. But these applications
do not show higher order behavior very often. To keep the model as simple as possible it
is assumed that the higher order terms do not have a major affect on the system dynamics.
Therefore, multilinear systems are focused on in this work for modeling and controller design.
As illustrated in Examples 3.2 and 3.3 linear and bilinear models are contained in this class,
which shows that simpler dynamics can be captured too by MTI systems. Even though the
considered systems might have no inherent multilinear structure, it was shown that their
system behavior can be approximated adequately by an MTI model, [50].

3.1.2 Tensor representation

In the previous section a state space model of an MTI system (3.8) and (3.9) was introduced
in matrix notation. The right hand sides of the state space model are given by multilinear
functions that are computed by a product of parameter matrices and monomial vectors.
Besides the matrix format (2.40), multilinear functions can be described in a tensor frame-
work (2.44). This tensor concept can be applied here to describe the right hand sides of

62

3 Modeling for multilinear systems

the MTI systems as introduced in [64] or [86]. The tensor description offers the possibility
to use methods from the tensor calculus presented in Section 2, e.g. to reduce the com-
plexity of large-scale systems by tensor decompositions. The tensor representation of MTI
systems will be investigated in the following sections. The monomial tensor (2.43) arranges
the monomials in a tensor. It depends on the states and the inputs in the state space setting

M (x, u) =
(︄

1
um

)︄
◦
(︄

1
um−1

)︄
◦ · · · ◦

(︄
1
u1

)︄
◦
(︄

1
xn

)︄
◦
(︄

1
xn−1

)︄
◦ · · · ◦

(︄
1
x1

)︄

=
[︄(︄

1
um

)︄
, . . . ,

(︄
1
u1

)︄
,

(︄
1
xn

)︄
, . . . ,

(︄
1
x1

)︄]︄
, (3.12)

and is still a rank-1 tensor of dimension R×(n+m)2. Thus, the right hand sides of a multilinear
state space model is computed by a contracted product of a parameter and a monomial
tensor leading to the MTI system in tensor format

Φ (x) = ⟨ F | M (x, u) ⟩ , (3.13)
y = ⟨ G | M (x, u) ⟩ , (3.14)

with transition tensor F ∈ R×(n+m)2×n and output tensor G ∈ R×(n+m)2×p. The parameter
tensors F and G contain the same parameters than the matrices F and G of (3.8) and (3.9),
but they are arranged now in a tensor according to the rearrangement of the monomials in
the monomial tensor M (x, u).

Example 3.4 The state equation of an MTI system with two states is given in the tensor
framework by

Φ
(︄(︄

ẋ1
ẋ2

)︄)︄
= ⟨ F | M (x1, x2) ⟩ =

⟨︄
F
⃓⃓⃓⃓
⃓
[︄(︄

1
x2

)︄
,

(︄
1
x1

)︄]︄ ⟩︄

f(2, 1, 1) f(2, 2, 1)

f(1, 2, 1)f(1, 1, 1)

f(2, 1, 2) f(2, 2, 2)

f(1, 2, 2)f(1, 1, 2)

x2 x1x2

1 x1

=

=
(︄

f(1, 1, 1) + f(1, 2, 1)x1 + f(2, 1, 1)x2 + f(2, 2, 1)x1x2
f(1, 1, 2) + f(1, 2, 2)x1 + f(2, 1, 2)x2 + f(2, 2, 2)x1x2

)︄
.

The description of the tensor notation of MTI systems follows from [63], [85] and [86]. Since
the concept of the tensor representation for multilinear functions was extended to general
polynomials in this work (2.47), the tensor description of MTI systems can be augmented too

63

3 Modeling for multilinear systems

to represent polynomial models. Analogous to (2.46) the monomial tensor of a polynomial
system of maximal monomial order N with states x and inputs u is written as tensor of
dimension R×N(n+m)2

MN
p (x, u) =

N

⃝
i=1

M (x, u) =
N

⃝
i=1

(︄
1

um

)︄
◦ · · · ◦

(︄
1
u1

)︄
◦
(︄

1
xn

)︄
◦ · · · ◦

(︄
1
x1

)︄

=
[︄(︄

1
um

)︄
, . . . ,

(︄
1
x1

)︄
, ,

(︄
1

um

)︄
, . . . ,

(︄
1
x1

)︄]︄
⏞ ⏟⏟ ⏞

N times

.

As mentioned before, this derivation of the monomials is not unique but the representation
as rank-1 tensor is beneficial for the development of the algorithms. By rearranging the
parameters of the polynomial system in matrix representation (3.6) and (3.7) in the same
way than the monomials in MN

p (x, u) one gets the tensor representation of polynomial models
of maximal order N

Φ (x) =
⟨︂

F
⃓⃓⃓
MN

p (x, u)
⟩︂

, (3.15)

y =
⟨︂

G
⃓⃓⃓
MN

p (x, u)
⟩︂

, (3.16)

that is computed by the contracted product of a transition tensor F ∈ R×N(n+m)2×n and output
tensor G ∈ R×N(n+m)2×p with the monomial tensor MN

p (x, u). The number of dimensions of
the tensors increases with the product of order and number of states and inputs.

Example 3.5 Due to the limitations of the visualization of tensors to three dimensions, a
polynomial model with one state of maximal order two of the polynomials is considered here
as an example, that has a monomial tensor

M2
p (x1) =

(︄
1
x1

)︄
◦
(︄

1
x1

)︄
=
(︄

1 x1
x1 x2

1

)︄
.

With this monomial tensor the state equation of the polynomial system in tensor represen-
tation is given as

Φ (x1) =
⟨︂

F
⃓⃓⃓
MN

p (x1)
⟩︂

=
⟨︄(︄

f(1, 1) f(1, 2)
f(2, 1) f(2, 2)

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x1
x1 x2

1

)︄ ⟩︄
= f(1, 1) + (f(1, 2) + f(2, 1)) x1 + f(2, 2)x2

1.

3.1.3 Guiding questions

The following sections deal with modeling and controller synthesis of MTI systems. In
today’s applications systems get more and more complex, like in smart grids or heating
systems. Plants in these application areas can be modeled by MTI systems with a large
number of states. With dense parameter tensors these models can capture very complex
dynamics. But a large order n leads to a very large number of system parameters in full
representation. The number of parameters of a MTI system depends on the numbers of

64

3 Modeling for multilinear systems

elements in the tensors F and G and increases exponentially with the numbers of states and
inputs, i.e. the transition tensor F contains n·2n+m elements. Systems can also be represented
in a symbolical way. But with the assumption of a system with non-sparse parameter tensors
the number of terms also in a symbolic representation increases exponentially with the
number of states and inputs. Thus, for large-scale systems a system description is impossible,
because of the curse of dimensionality and leads to problems in memory demand. Figure 3.3
shows in a logarithmic scale, how the number of parameters increases with the number of
inputs and states of the system, for a full representation.

10 20 30 40 50 60 70 80 90 1000

10

20

30

Number of states and inputs

lo
g 1

0(
N

um
be

r
of

pa
ra

m
et

er
s)

Figure 3.3: Number of parameters for MTI systems in full representation

A system with 100 states and inputs has more than 1032 terms in full representation, which
does not fit in memory anymore. The state space representation and thus the computation of
a controller of such big systems is not possible in the proposed representations by full tensors
or in a symbolical way, if the parameter tensor is dense. Tensor decomposition methods as
introduced in Section 2.1.2 offer the possibility to compute low-rank approximations of the
parameter tensors, [64]. This could break the curse of dimensionality and maybe give an
approximative representation of large-scale systems with a number of parameters, that is by
orders of magnitude lower.
Low-rank approximation techniques for parameter tensors could make it possible to represent
large systems and offer the possibility to compute controllers for such systems. This raises
the question which decomposition methods are suitable to represent MTI systems and how
to determine decomposed representations from the state equations directly in a structured
way. The next Section 3.2 investigates the application of the four decomposition methods
from Section 2.1.2 to MTI systems.
As already mentioned for linear systems many methods in modeling are available, [63].
For MTI systems this is not the case. In [63] the whole class of multilinear systems was
introduced for the first time. In [85] the representation of hybrid systems by multilinear
models and the application of MTI models to heating systems was investigated. The focus

65

3 Modeling for multilinear systems

was more on system representation in the tensor framework and controller design. Thus,
since MTI systems are a current field of research, standard tools for this class of systems like
for linear systems are not available. With (3.13) and (3.14) a structured representation for
MTI systems is available. Here general tools for MTI systems are derived like linearization,
discretization or scaling of the model. If it is possible to represent the model in decomposed
structure, such tools should work with the decomposition factors to get efficient algorithms.
The development of tools that are necessary for synthesis of controllers for MTI systems is
investigated in Sections 3.3 to 3.7.

3.2 Decomposed MTI system representation and
simulation

As shown in Figure 3.3, the number of parameters in the parameter tensors F and G of
an MTI system in full representation increases exponentially with the number of states n
and inputs m. This leads to a very high memory demand to store the parameter tensors
of large-scale systems, as they occur often in today’s applications. Section 3.1.2 introduced
that the parameters of MTI systems can be arranged in a tensor format resulting in the
state space formulation (3.13) and (3.14). From mathematics, tools are offered to reduce
the storage effort of tensors by tensor decomposition methods enormously as suggested in
Section 2.1.2. Since the parameters are given in a tensor framework, these decomposition
techniques are used here to reduce the memory demand and make the MTI system repre-
sentation computationally manageable in particular for large-scale systems. A decomposed
system representation is used for computation either. Thus, the application of the decom-
position methods leads besides an efficient model representation to efficient algorithms for
system analysis and controller design. As introduced in (3.12) the monomial tensor is alre-
ady a rank-1 tensor by construction, which is already minimal. In the following parts the
application of the four introduced decomposition techniques, i.e. CP, Tucker, TT and HT
decomposition, to the parameter tensors of an MTI system is investigated to reduce their
memory demands. Therefore, the decomposition of the parameter tensor F of the state equa-
tion is shown here. The decomposition approaches can be applied to the output function and
its parameter tensor G in the same way. Besides the system representation by decomposed
tensors, the simulation of the decomposed systems is investigated in the following parts.
Once the system is available with a decomposed parameter tensor, this tensor format can be
used for simulation. During simulation the right hand sides of the state space system (3.13)
and (3.14) have to be evaluated for the actual values of the states and inputs. In case of
a constinuous-time model they are integrated numerically over time to calculate the state
trajectories. Here, the efficient evaluation based on the decomposed structure of the right
hand side is focused on. Therefore the contracted product of a decomposed parameter tensor
and the rank-1 monomial tensor has to be computed. Standard algorithms are used for inte-
gration. The next subsections introduce the representation and simulation of MTI systems
by using the four proposed decomposition techniques, [46].

66

3 Modeling for multilinear systems

3.2.1 Canonical polyadic decomposition

The parameter tensor F of the state equation is considered here to represent the parameters
in CP format. The same approach is possible for the output tensor G. In [63] and [85]
it was introduced that the parameters can be transformed directly term by term in a CP
representation. This is illustrated by an example here.

Example 3.6 A second order MTI system with one input

Φ (x1) = a1 + a2x1 + a3u1x1, (3.17)
Φ (x2) = b1x2 + b2x2x1 + b3u1x2x1, (3.18)

has a CP transition tensor F = [Fu1 , Fx2 , Fx1 .FΦ] · λF , [47]. The construction of the factor
matrices from the state equation is illustrated by

Φ (x1) = a1 + a2x1 + a3u1x1,
Φ (x2) = b1x2 + b2x2x1 + b3u1x2x1,

Fx1 =
(︄

1 0 0 1 0 0
)︄

,0 1 1 0 1 1

Fx2 =
(︄

1 1 1 0 0 0
)︄

,0 0 0 1 1 1

Fu1 =
(︄

1 1 0 1 1 0
)︄

,0 0 1 0 0 1

FΦ =
(︄

1 1 1 0 0 0
)︄

,0 0 0 1 1 1

λF =
(︂

a1 a2 a3 b1 b2 b3
)︂
.

The example shows, that the CP parameter tensor has one factor matrix for each state Fxi

with i = 1, . . . , n and input Fuj
with j = 1, . . . , m. The factor matrices are build up

columnwise as highlighted in Example 3.6. Each coefficient ai or bi belongs to one column
of the factor matrices. The number of terms in the state equation is equal to the number of
nonzero elements in F

ΨF = card(F),

where card(·) is the cardinality function returning the number of nonzero entries in a tensor.
Therefore each of the n + m + 1 factor matrices has ΨF columns. Each term of the state
equation results in a column in each factor matrix. If the state xi or input uj is used
in the term, the corresponding column of Fxi

or Fuj
is set to

(︂
0 1

)︂T
otherwise it is set

to
(︂
1 0

)︂T
. The corresponding coefficient is inserted to the weighting vector λF . This leads

to a weighting vector λF ∈ RΨF and factor matrices Fxi
and Fuj

of dimension R2×ΨF . The
last factor matrix FΦ indicates to which state equation Φ (xi) , i = 1, . . . , n the term belongs,
i.e. Φ (x1) or Φ (x2) in this example. Since in the general case the state equation consists

67

3 Modeling for multilinear systems

of n scalar state equations the factor matrix FΦ has the dimension Rn×ΨF . Because of this
direct translation every MTI system can be written in CP structure

F = [Fum , . . . , Fu1 , Fxn , . . . , Fx1 , FΦ] · λF . (3.19)

This direct translation of the system parameters to a CP representation is a big advantage
here, [85]. In standard applications of tensor decompositions in mathematics the decomposed
version is very often an approximation of the data, that has been stored in a tensor, [20].
Here the decomposed tensor represents exactly the parameters in the full tensor. But it
is not guaranteed that the number ΨF of rank-1 components is the rank of the tensor, i.e.
the minimal number of rank-1 components. Here an exact decomposition of F is found but
it is not necessarily a minimal decomposition. With the CP representation (3.19) of the
parameter tensor and the CP storage demand (2.12) an upper bound for the storage effort
of an MTI system can be given

ξcp(F) ≤ ΨF + (n + m)2ΨF + nΨF

= ΨF (1 + 3n + 2m) , (3.20)

that results from the summation of the storage effort of the weighting vector and the factor
matrices. By using low-rank approximation techniques the complexity of the parameter
tensor may be further reduced depending on the application by finding approximations with
less rank-1 components, but sufficient accuracy.
By having a CP representation of the parameter tensor the evaluation of the right hand sides
of the state equation (3.13) can be computed very efficiently based on the decomposition
factors, since the monomial tensor is rank-1. The contracted product of the CP parameter
tensor and the monmial tensor is computed by a sequence of matrix products, [44, 63]

ẋ = FΦ

(︄
λF ~

(︄
FT

um

(︄
1

um

)︄)︄
~· · ·~

(︄
FT

u1

(︄
1
u1

)︄)︄
~

(︄
FT

xn

(︄
1
xn

)︄)︄
~· · ·~

(︄
FT

x1

(︄
1
x1

)︄)︄)︄
. (3.21)

Example 3.7 With the decomposition factors of Example 3.6 the right hand side of the
state equation is evaluated by

Φ
(︄(︄

x1
x2

)︄)︄
= ⟨ F | M (x1, x2, u1) ⟩ = FΦ

(︄
λF ~

(︄
FT

u1

(︄
1
u1

)︄)︄
~

(︄
FT

x2

(︄
1
x2

)︄)︄
~

(︄
FT

x1

(︄
1
x1

)︄)︄)︄

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 0
0 1
0 1
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
a2
a3
b1
b2
b3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
~

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
0 1
1 0
1 0
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(︄

1
u1

)︄
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
~

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 0
0 1
0 1
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(︄

1
x2

)︄
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
~

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
0 1
1 0
0 1
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(︄

1
x1

)︄
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
(︄

a1 + a2x1 + a3u1x1
b1x2 + b2x2x1 + b3u1x2x1

)︄
.

68

3 Modeling for multilinear systems

The example shows, that the result is calculated by simple standard matrix products only.
No complicated operations have to be computed. Low dimensional decomposition factors are
used only. No full tensors have to be build, resulting in a computationally less demanding
computation of the right hand sides than in the case of full tensors.

This CP form helps to create model representations with Tucker tensors, HT tensors or
TTs.

3.2.2 Tucker decomposition

The CP representation of the parameter tensor can be used to construct one possible Tucker
format. The Tucker tensor has a structure that is comparable to the CP one. The Tucker
decomposition of an N dimensional tensor K (2.16) can be represented as, [44]

K =
rt,1(K)∑︂
i1=1

· · ·
rt,N (K)∑︂
iN =1

λ(i1, . . . , iN)x1(:, i1) ◦ · · · ◦ xN(:, iN). (3.22)

By choosing a diagonal core tensor Λ ∈ R×(N)rcp(K), i.e. only the elements λ(i1, . . . , iN) on
the superdiagonal with i1 = i2 = · · · = iN are nonzero, (3.22) can be reduced by eliminating
the zero terms of the core tensor, leading to

K=
rcp(K)∑︂
i1=1

· · ·
rcp(K)∑︂
iN =1

λ(i1, . . . , iN)x1(:, i1) ◦ · · · ◦ xN(:, iN)=
rcp(K)∑︂

i=1
λ(i, . . . , i)x1(:, i) ◦ · · · ◦ xN(:, i).

Comparing the reduced equation with (2.10) shows the CP structure of the representation.
Thus, if a CP representation is available, a Tucker tensor with same factor matrices can be
constructed by taking the elements of the weighting vector as diagonal of the core tensor.
This can be applied to the parameter tensor here too. To get one possible Tucker represen-
tation of F, that directly translates the CP factors to Tucker, the entries of the weighting
vector λF of the CP decomposition have to be written as diagonal of the core tensor ΛF . Its
elements are given by

ΛF (i1, . . . , in+m+1) =

⎧⎨⎩λF (j) , ∀j = i1 = · · · = in+m+1,

0 , otherwise,
(3.23)

where j = 1, . . . , ΨF . This leads to a core size R×(n+m+1)ΨF , which depends on the number
of terms ΨF of the state equation. As shown, by the choice of this core tensor the CP factor
matrices can be used for the Tucker representation too, leading to

F = [Fum , . . . , Fu1 , Fxn , . . . , Fx1 , FΦ] · ΛF .

Example 3.8 The parameter tensor of the system introduced in Example 3.6 is given as
Tucker tensor by

F = [Fu1 , Fx2 , Fx1 , FΦ] · ΛF ,

69

3 Modeling for multilinear systems

with the same factor matrices as derived for the CP form and the core tensor ΛF ∈R6×6×6×6

with elements

ΛF (i1, . . . , i4) =

⎧⎪⎪⎨⎪⎪⎩
aj , for j = i1 = · · · = i4, ∀j = 1, 2, 3,

bj−3 , for j = i1 = · · · = i4, ∀j = 4, 5, 6,

0 , else.

With (2.18), the storage effort of the Tucker representation of the parameter tensor is given
by the sum of the number of elements in the core tensor and the factor matrices

ξt(F) ≤ Ψn+m+1
F + 2(n + m)ΨF + nΨF

= Ψn+m+1
F + ΨF (3n + 2m).

This representation of the parameter tensor is not manageable for large system since the
storage effort still depends exponentially on the number of states and inputs, because of the
construction of the core tensor. But from (3.23) follows that there are many zero entries in
the proposed core tensor. Thus, less memory consuming representations than the full tensor
representation can be used. By using a sparse format for the core tensor the memory effort
of the Tucker tensor can be reduced to

ξt(F) ≤ ΨF (n + m + 2) + 2(n + m)ΨF + nΨF . (3.24)

Another possibility to reduce the storage effort for the core tensor is to translate the core
to a CP format Λ=[UΛ,1, . . . , UΛ,n+m+1] · λΛ, with the same weighting vector than the CP
representation λΛ = λF and factor matrices

UΛ,i = IΨF
, i = 1, . . . , n + m + 1,

where IΨF
is a ΨF × ΨF identity matrix. This core representation leads to an upper limit

on the overall memory demand of the Tucker parameter tensor of

ξt(F) ≤ ΨF + (n + m + 1)Ψ2
F + 2(n + m)ΨF + nΨF (3.25)

elements. With the sparse and the CP versions of the core tensor also larger systems can be
represented with the Tucker approach, since the storage effort depends only linear and not
exponential on number of states and inputs in these cases. To reduce the memory demand
further, truncation techniques should be used to reduce the core size further.
To simulate the system in the Tucker format the right hand side can be evaluated based on
the factor matrices and the core tensor. A sequence of mode-k tensor vector products has
to be computed, [18]

Φ (x)=FΦ

(︄
ΛF×̄1

(︄
FT

um

(︄
1

um

)︄)︄
×̄2· · ·×̄m

(︄
FT

u1

(︄
1
u1

)︄)︄
×̄m+1

(︄
FT

xn

(︄
1
xn

)︄)︄
×̄m+2 · · · ×̄m+n

(︄
FT

x1

(︄
1
x1

)︄)︄)︄
.

70

3 Modeling for multilinear systems

Example 3.9 The contracted product of the state equation with the parameter tensor in
Tucker decomposition as derived in Example 3.8 and the monomial tensor is computed by

Φ
(︄(︄

x1
x2

)︄)︄
= ⟨ F | M (x1, x2, u1) ⟩ = FΦ

(︄
ΛF ×̄1

(︄
FT

u1

(︄
1
u1

)︄)︄
×̄2

(︄
FT

x2

(︄
1
x2

)︄)︄
×̄3

(︄
FT

x1

(︄
1
x1

)︄)︄)︄

= FΦ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ΛF ×̄1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
u1
1
1
u1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
×̄2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
x2
x2
x2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
×̄3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
x1
x1
1
x1
x1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
(︄

1 1 1 0 0 0
0 0 0 1 1 1

)︄
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
a2x1

a3x1u1
b1x2

b2x1x2
b3x1x2u1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
(︄

a1 + a2x1 + a3u1x1
b1x2 + b2x2x1 + b3u1x2x1

)︄
.

3.2.3 Tensor Trains

The third decomposition method considered to represent the parameter tensor of a MTI
system is the TT decomposition. If a tensor is available in CP format, the TT cores can
be derived directly from the CP factors, [83]. To illustrate this conversion, consider a four
dimensional tensor with CP representation K = [X1, X2, X3, X4] · λ given elementwise by

k(i1, i2, i3, i4) =
rcp(K)∑︂
j=1

x1(i1, j)x2(i2, j)x3(i3, j)x4(i4, j).

To simplify the notation in this first example it is assumed that the weighting vector of the CP
form is a vector full of ones. The elements of a four dimensional TT tensor K = [G1, G2, G3, G4]
are written as (2.21)

k(i1, i2, i3, i4) =
rtt,1(K)∑︂

j1=1

rtt,2(K)∑︂
j2=1

rtt,3(K)∑︂
j3=1

g1(1, i1, j1)g2(j1, i2, j2)g3(j2, i3, j3)g4(j3, i4, 1).

Let the first and the last core tensor be equal to the first and the last factor matrix of the
CP representation respectively, i.e.

G1(1, :, :) = X1, (3.26)
G4(:, :, 1) = XT

4 , (3.27)

and set all other core tensor elements to

gl(jl−1, il, jl) =

⎧⎨⎩xl(il, jl) , for jl−1 = jl, ∀jl−1, jl = 1, . . . , rcp(K),
0 , otherwise.

(3.28)

71

3 Modeling for multilinear systems

This translates the TT format to a CP one, which gets obvious when inserting the definitions
of the core tensors to the elementwise description and eliminating the zeros

k(i1, i2, i3, i4) =
rcp(K)∑︂
j1=1

rcp(K)∑︂
j2=1

rcp(K)∑︂
j3=1

g1(1, i1, j1)g2(j1, i2, j2)g3(j2, i3, j3)g4(j3, i4, 1)

=
rcp(K)∑︂
j=1

g1(1, i1, j)g2(j, i2, j)g3(j, i3, j)g4(j, i4, 1)

=
rcp(K)∑︂
j=1

x1(i1, j)x2(i2, j)x3(i3, j)x4(i4, j),

which results in the CP representation of the tensor. This shows that by arranging the CP
factors as given in (3.26) to (3.28) in the core tensors a TT tensor is found that is equal to
the CP one.
This conversion from a CP tensor to a TT can be applied to the parameter tensor of a
MTI system now. In other words, the introduced construction of the core tensors (3.28)
means that the rows of the CP factor matrices Fxi

and Fui
are written as diagonals of the

corresponding core slices Fxi
(:, jn+m−i+1, :) and Fui

(:, jm−i+1, :)

Fum(1, :, :) = Fum , (3.29)
Fuk

(:, im−k+1, :) = diag (fuk
(im−k+1, :)) , k = 1, . . . , m − 1, (3.30)

Fxk
(:, in+m−k+1, :) = diag (fxk

(in+m−k+1, :)) , k = 1, . . . , n, (3.31)
FΦ = FT

Φ ~
(︂
λF 1T

n

)︂
, (3.32)

where 1n ∈ Rn×1 denotes a vector full of ones. In contrast to the example shown before the
weighting vector of the CP format of F is not limited to a vector full of ones. The TT format
has no weighting vector. Thus, the weighting vector is integrated here by an elementwise
product to the last factor FΦ in (3.32). The sizes of the cores of the TT depend on the
number ΨF of rank-1 elements of the CP tensor resulting in

Fum ∈ R1×2×ΨF ,

Fuk
, Fxk

∈ RΨF ×2×ΨF ,

FΦ ∈ RΨF ×2×1.

The parameter tensor is given in TT format with core tensors (3.29) to (3.32) by

F = [Fum , . . . , Fu1 , Fxn , . . . , Fx1 , FΦ] .

Example 3.10 The parameter tensor of the system with two states and one input intro-
duced in Example 3.6 can be represented as TT tensor by

F = [Fu1 , Fx2 , Fx1 , FΦ] ,

72

3 Modeling for multilinear systems

where the cores are constructed by using the factor matrices of the CP representation derived
in Example 3.6. The first and the last factor matrix can be expressed by matrices

Fu1(1, :, :) =
(︄

1 1 0 1 1 0
0 0 1 0 0 1

)︄
, FΦ(:, :, 1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0
a2 0
a3 0
0 b1
0 b2
0 b3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The TT-cores Fx1 and Fx2 are given by three dimensional tensors, that are depicted in Fi-
gure 3.4. All tensor entries, that are not shown in the figure are equal to zero. The lateral
slices are diagonal matrices, where the diagonals are equal to the rows of the corresponding
factor matrices of the CP format

Fx1(:, i, :) = diag(Fx1(i, :)), i = 1, 2,

Fx2(:, i, :) = diag(Fx2(i, :)), i = 1, 2.

100100

Fx1 ∈ R6×2×6

011011
111000

Fx2 ∈ R6×2×6

000111

Figure 3.4: Core tensors Fx1 and Fx2

This direct translation from CP to TT gives an exact representation of the parameters by
the TT. The storage effort for this tensor gives an upper limit for the storage demand of the
parameter tensor when represented as TT. To determine the storage demand, the number
of elements of the core tensors have to be summed up

ξtt(F) ≤ 2ΨF + 2(n + m − 1)Ψ2
F + nΨF

= (n + 2)ΨF + 2(n + m − 1)Ψ2
F . (3.33)

The direct conversion from CP to TT is not optimal regarding the complexity of the TT.
Thus, truncation methods for TT, that are based on singular value decompositions (SVD),
should be used to approximate the tensor by a TT with lower ranks, [83].
For simulation the right hand side of the state equation is evaluated by the computation
of the contracted product of parameter tensor and the rank-1 monomial tensor, using the
core tensors of the TT format. The contracted product is calculated by a sequence of

73

3 Modeling for multilinear systems

multiplications of mode-2 tensor vector products of the core tensors and the factors of the
monomial tensor, [59]

Φ (x)=FT
Φ

(︄
Fx1×̄2

(︄
1
x1

)︄)︄T

· · ·
(︄
Fxn×̄2

(︄
1
xn

)︄)︄T(︄
Fu1×̄2

(︄
1
u1

)︄)︄T

· · ·
(︄
Fum×̄2

(︄
1

um

)︄)︄T

.

Example 3.11 To simulate the state equation with the TT parameter tensor introduced
in Example 3.10 its right hand side is evaluated by

Φ
(︄(︄

x1
x2

)︄)︄
= ⟨ F | M (x1, x2, u1) ⟩ = FT

Φ

(︄
Fx1×̄2

(︄
1
x1

)︄)︄T (︄
Fx2×̄2

(︄
1
x2

)︄)︄T (︄
Fu1×̄2

(︄
1
u1

)︄)︄T

=
(︄

a1 a2 a3 0 0 0
0 0 0 b1 b2 b3

)︄
diag

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
x1
x1
1
x1
x1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
diag

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
x2
x2
x2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
u1
1
1
u1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
(︄

a1+a2x1+a3u1x1
b1x2+b2x2x1+b3u1x2x1

)︄
.

3.2.4 Hierarchical Tucker

The last decomposition method that will be applied to the parameter tensors of MTI sy-
stems here is the HT decomposition. As for the Tucker and TT decompositions there is
a constructive method to generate a HT from a CP decomposition, which is - in general
- not minimal. This will be illustrated by a small example. Consider therefore a two di-
mensional tensor, i.e. a matrix K ∈ RI1×I2 , that can be represented as HT tensor by a
subtree as shown in Figure 2.15. It is assumed, that in CP representation the tensor is given
by K = [X1, X2] · λK and is constructed by rcp(K) rank-1 components. The values of the
original tensor are computed with the HT leaves Utl

∈ RI1×rht,tl
(K) and Utr ∈ RI2×rht,tr (K)

and node Bt ∈ Rrht,tl
(K)×rht,tr (K)×1 factors according to (2.24) by

K({1,2}) =
rht,tl

(K)∑︂
i=1

rht,tr (K)∑︂
j=1

(utr(:, j) ⊗ utl
(:, i)) bt(i, j, 1). (3.34)

To get the relation to the CP format the leaf matrices are set equal to the factor matrices of
the CP representation Utl

= X1 and Utr = X2, [45]. With this choice the ranks are given
by rht,tl

(K) = rht,tr(K) = rcp(K). A diagonal transfer matrix is chosen

Bt(i, j, 1) =

⎧⎨⎩λK(i) , for i = j, ∀i, j = 1, . . . , rcp(K),
0 , otherwise,

(3.35)

containing the entries of the weighting vector λK . Inserting these definitions for leaves and
transfer matrices to (3.34) and taking into account the zero entries of (3.35) leads to

K({1,2}) =
rcp(K)∑︂

i=1

rcp(K)∑︂
j=1

(x2(:, j) ⊗ x1(:, i)) bt(i, j, 1) =
rcp(K)∑︂
j=1

(x2(:, j) ⊗ x1(:, j)) λK(j),

74

3 Modeling for multilinear systems

which is exactly the mode-({1, 2}) matricization of the CP representation

K =
rcp(K)∑︂
j=1

λK(j)x1(:, j) ◦ x2(:, j),

showing the equivalence with the CP format with the given choice of leaves and nodes.
This approach is extended to higher order tensors, such that the HT presentation of the
parameter tensor F is derived from the CP factors. For the direct translation from CP
structure of the MTI system to HT first of all a tree representing the tensor F has to be
constructed, as shown in Figure 3.5 as an example for a system with 2 states and 1 input.
This is one way to construct the HT tree of F, that should be used here in the following.
Also other tree layouts would be possible.

Bu1x2x1Φ

Bu1x2

Fu1 Fx2

Bx1Φ

Fx1 FΦ

Figure 3.5: Tree of a parameter tensor F of a system with two states and one input

The leaf node matrices FΦ, Fxi
with i = 1, . . . , n and Fui

with i = 1, . . . , m are equal to the
factor matrices of the CP representation (3.19). The transfer matrix of the top node

Bum···u1xn···x1Φ = diag(λF)

is a diagonal matrix with the entries of the CP weighting vector λF on the diagonal. All
other transfer nodes are given in tensor form by

Bt = IΨF ,3 ∈ RΨF ×ΨF ×ΨF ,

where IΨF ,3 is a three dimensional diagonal tensor with elements

iΨF ,3(j1, j2, j3) =

⎧⎨⎩1 , for ∀j1 = j2 = j3 = 1, . . . , ΨF ,

0 , otherwise,

with ones on the superdiagonal, [45].

Example 3.12 Consider the parameter tensor of the system introduced in Example 3.6
with its parameter tensor F in CP representation. Based on that the parameter tensor can be
expressed as HT tensor with a tree as depicted in Figure 3.5. The leaf nodes are equal to the
factor matrices of the CP tensor FΦ, Fx1, Fx2 and Fu1 given in Example 3.6. The transfer
tensor of the top node contains the elements of the weighting vector, i.e. the parameters of
the system by

Bu1x2x1Φ(:, :, 1) = diag
(︂
a1 a2 a3 b1 b2 b3

)︂
.

The other transfer tensors are diagonal tensors with ones on the diagonal

Bu1x2 = Bx1Φ = I6,3 ∈ R6×6×6.

75

3 Modeling for multilinear systems

To store the parameter tensor in HT representation, the leaf and the transfer matrices have
to be considered. Each state and input belongs to a leaf node. The additional factor FΦ
leads to n+m+1 leaf nodes. With the proposed tree structure a tensor of order N has N −1
transfer matrices resulting in n + m transfer matrices here, [45]. An upper bound for the
memory demand of the HT parameter tensor is estimated by

ξht(F) ≤ Ψ2
F + (n + m − 1)Ψ3

F + 2(n + m)ΨF + nΨF

= Ψ2
F + (n + m − 1)Ψ3

F + (3n + 2m)ΨF . (3.36)

Since the direct translation from CP to HT is very inefficient regarding the memory demand,
i.e. all ranks are equal to the number of rank-1 components of the CP tensor, a truncation
should be applied that is based on the SVD of the matricizations of the original tensor to
find approximations of lower rank.
If the parameter tensor F is given in HT form, the right hand side of the state equation
can be efficiently evaluated based on the tree of the HT tensor. The contracted product of
parameter and monomial tensor is computed by a sequence of mode-k tensor vector products

Φ (x) = F×̄1

(︄
1

um

)︄
×̄2

(︄
1

um−1

)︄
×̄3 · · · ×̄n+m

(︄
1
x1

)︄
. (3.37)

Having the tensor F in HT representation the mode-k tensor vector products are defined by
simply replacing the leaf nodes Fui

and Fxi
of F by

(︂
1 ui

)︂
Fui

and
(︂
1 xi

)︂
Fxi

, respecti-
vely. The state derivative or next state Φ (x) is computed by solving the nodes of this tree
recursively using (2.23).

Example 3.13 The right hand side of the state equation for the example system (3.17)
and (3.18) is evaluated by

Φ
(︄(︄

x1
x2

)︄)︄
= F×̄1

(︄
1
u1

)︄
×̄2

(︄
1
x2

)︄
×̄3

(︄
1
x1

)︄
,

which is computed with the HT representation of F from Example 3.12 by the tree shown in
Figure 3.6.

Bu1x2x1Φ

Bu1x2

(︂
1 u1

)︂
Fu1

(︂
1 x2

)︂
Fx2

(︂
1 x1

)︂
Fx1

Bx1Φ

FΦ

Figure 3.6: Evaluation of the right hand side of the state equation with a HT tensor

Applying (2.23) recursively to the tree depicted in Figure 3.6 gives the desired evaluation of

76

3 Modeling for multilinear systems

the right hand side of the state equation by

Φ
(︄(︄

x1
x2

)︄)︄
= ⟨ F | M (x1, x2, u1) ⟩ = (Ux1Φ ⊗ Uu1x2) Bu1x2x1Φ

=
(︂(︂

FΦ ⊗
(︂
1 x1

)︂
Fx1

)︂
Bx1Φ ⊗

(︂(︂
1 x2

)︂
Fx2 ⊗

(︂
1 u1

)︂
Fu1

)︂
Bu1x2

)︂
Bu1x2x1Φ

=
(︂
FΦ ⊗

(︂
1 x1

)︂
Fx1 ⊗

(︂
1 x2

)︂
Fx2 ⊗

(︂
1 u1

)︂
Fu1

)︂
(Bx1Φ ⊗ Bu1x2) Bu1x2x1Φ

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0
1 0
0 1
0 1
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
x1
x1
1
x1
x1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
x2
x2
x2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

⊗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
u1
1
1
u1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(Bx1Φ ⊗ Bu1x2) Bu1x2x1Φ

=
(︄

a1 + a2x1 + a3u1x1
b1x2 + b2x2x1 + b3u1x2x1

)︄
.

The matrices

Ux1Φ =
(︂
FΦ ⊗

(︂
1 x1

)︂
Fx1

)︂
Bx1Φ,

Uu1x2 =
(︂(︂

1 x2
)︂

Fx2 ⊗
(︂
1 u1

)︂
Fu1

)︂
Bu1x2

belong to the right and the left subtree, respectively.

3.2.5 Comparison of the decomposed representations

The previous subsections show, that all proposed decomposition methods allow to represent
the parameter tensors of MTI systems exactly. The symbolic description of the right hand
sides of the state equations are translated directly term by term to a CP format of the
parameter tensor. The other decomposed representations are not constructed directly from
the equations but follow from the CP version. No approximations have to be done in the
first step such that the decomposed tensors describe the system parameters exactly, i.e.
the dynamical behavior of the system in the standard symbolic representation of the state
equations and with a decomposed one is exactly the same. In the tensor form the state space
model is represented in a structured way, where all specific parameters of a plant are stored
in the parameter tensor and the model structure is given by the monomial tensor. Thus,
tools for polynomials like multiplication or differentiation as introduced in Section 2.3 can
be applied to the right hand side functions of the state space models of MTI systems. This
allows to develop algorithms especially for MTI systems for system analysis and controller
synthesis. With the decomposed representations more efficient algorithms can be developed,
when the calculations are performed on the low dimensional decomposition factors.
As already said, all four decomposition formats lead to the exact parameter data. But the
direct translation from the state equations to CP or from CP to the other decomposed forms
does not give an efficient or optimal solution regarding the storage effort. When building
the CP tensor the number of rank-1 terms is not necessarily minimal by construction. It

77

3 Modeling for multilinear systems

depends on the number of terms ΨF of the state equations. The focus when constructing the
decompositions is at first on the exact representation of the full tensor and not on finding an
optimal representation, i.e. with minimal number of terms. The other formats result from a
conversion from the CP tensor as shown in Figure 3.7.

State
equations

CP representation
F = [Fu1 , Fx2 , Fx1 , FΦ] ·λF

TT representation
F = [Fu1 , Fx2 , Fx1 , FΦ]

Tucker representation
F=[Fu1 , Fx2 , Fx1 , FΦ]·ΛF

HT representation
Bu1x2x1Φ

Bu1x2

Fu1 Fx2

Bx1Φ

Fx1 FΦ

Figure 3.7: Construction of the parameter tensor with different decomposition methods

Because of that, the storage effort of all formats in the other decomposition approaches
depends on the number of rank-1 elements of the CP tensor. The Tucker, TT and HT
representations are also not optimal regarding the storage demand. There are two reasons
for that. First, these formats result from a CP representation that might not have the
minimal number of rank-1 terms. Second, the direct translation from CP to the other
decompositions is not optimal. It gives exact representations but it might be possible to get
representations with less components. But it is ensured, that not more elements are necessary
with the particular decomposition techniques. Thus, an upper bound on the storage demand
is computed for each decomposition method.
For the direct translation without any truncation an upper limit of the number of elements
that have to be stored can be computed as derived in (3.20), (3.24), (3.25) , (3.33) and (3.36).
The decomposed parameter tensors are built in a similar way in each of the four decompo-
sition methods since always each state xi and each input uj gets its own factor matrix.
Figure 3.8 shows the comparison of the storage complexities ξi of the different decompositi-
ons. In addition to that one more factor matrix FΦ is necessary that has the same memory
demand with nΨF elements for all decompositions. This is not considered in the graph since
it is the same for all methods.
Figure 3.8 compares the upper bound on the memory demand of the different decomposition
techniques in a log-scale. The CP decomposition has the lowest demand. The Tucker
decomposition shows the second lowest demand, where the sparse core representation is less
demanding than the CP core representation. But for large-scale systems the storage demand
of the Tucker representation cannot be further reduced since truncation is impossible. This
further reduction is possible when focusing on TT and HT decomposition, where the HT

78

3 Modeling for multilinear systems

Figure 3.8: Storage complexities ξi of the different decomposition techniques

decomposition has the highest upper bound on the storage effort. When comparing the
logarithmic change of the storage effort of all decomposition techniques, the main dependence
is on the number of terms of the state equation. How good truncation techniques can reduce
this effort, will be shown in Section 5.2 where the decompositions are applied to heating
systems applications.
Assuming the values are stored in a double precision format, i.e. 8 byte per value, the upper
bounds for CP, Tucker and TT stay in the megabyte storage range, which is computationally
manageable. Only HT has a higher demand but the decomposition has some very good
reduction properties, such that this maximal possible storage effort that is shown here is
not the complexity that it necessary when getting to application. The storage complexities
are very low, when comparing them with the demand of the full representation that was
shown in Figure 3.3. For small scale systems with many parameters the full representation
might be beneficial to the direct translation to a decomposed format, because each term
adds a rank-1 element there. But after truncation and especially for higher order systems
the full representation has no advantage. Since the number of elements in full representation
increases exponentially the number of terms explodes and it is not possible to store the
parameters anymore. No system analysis and controller design is possible then. Already for
systems with 28 states and inputs more than 1 gigabyte of memory is necessary to store the
parameters. This shows that the full representation is not suitable for large-scale systems
and highlights the advantage of the decomposed representations.

79

3 Modeling for multilinear systems

To reduce the storage effort, toolboxes in different programming environments like MATLAB
are available that offer different algorithms for the truncation of the decompositions to find
low-rank approximations, [5, 45, 84, 109]. But the number of elements can not be reduced
arbitrary low, since the approximation has an effect on the dynamics of the corresponding
MTI system, which is shown in the following example.

Example 3.14 Consider the MTI system
ẋ1 = −2x1 + 3x2 − 4x1x2,

ẋ2 = −0.1x1x2 + x1u1,

ẋ3 = −x3 − 0.2x2u2,

that can be represented in all four decomposed formats. Approximating the original tensor
with a CP tensor with 6 rank-1 elements or with a Tucker core of dimension R2×62×3 or with
approximation accuracy of 0.01 for TT or HT, results in an MTI system, where the system
response to a sawtooth and a pulse input signal for the first and the second input respectively
is shown in Figure 3.9.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

Time [s]

x1 x2 x3

Figure 3.9: Simulation result of the truncated system without loss of dynamics

With this parameter tensor approximation all system dynamics are still captured. If now the
decompositions are further truncated, by reducing the number of rank-1 components of the
CP tensor to 5 or reducing the size of the Tucker core to R1×62×3 or approximating the TT or
HT tensors with accuracy 0.1, this influences the dynamical behavior. The system response
of these approximations to the same input signal is depicted in Figure 3.10.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

Time [s]

x1 x2 x3

Figure 3.10: Simulation result of the truncated system with loss of dynamics

It is obvious that the dynamics of the third state are not captured any longer by this approx-
imation. This example shows that the tensor decomposition cannot be truncated arbitrary,
because truncation can lead to a loss of captured dynamics.

80

3 Modeling for multilinear systems

As mentioned in Section 2.1.2 the different decomposition methods have different decompo-
sition algorithms. To compare the methods, they can be sorted in two categories.
On the one hand there are the CP and Tucker decompositions. With these approaches low-
rank approximations are computed by setting a desired rank. A decomposition is determined,
that has the desired rank and fits the data of the full tensor as good as possible. Therefore a
nonlinear optimization problem (2.13) or (2.19) has to be solved with techniques like the ALS
algorithm. The advantage of this approach is, that by setting a desired rank the decomposed
tensor has a predictable size. But it is not possible to predict the accuracy of the result. The
optimal CP rank of a tensor cannot be determined, because it is an NP hard problem, [44].
For small scale tensors in [44] typical ranks and maximal ranks for some specific tensors are
given. But results are available for tensors of orders up to three only. Since in the field
of MTI systems in most cases higher order tensors are investigated, these results cannot
be applied here. The accuracy has to be determined after the decomposition, which leads
to an trial and error procedure, [44]. The decomposition with a selected number of rank-1
elements is computed and the accuracy is determined afterwards. If the accuracy is in the
desired range, the decomposition can be used further. If not, the number of rank-1 elements
has to be adjusted. Again a decomposition is computed and the accuracy is investigated.
This procedure is repeated until a good approximation is found. Another disadvantage of
the computation of CP and Tucker decomposition is, that the optimization problems that
have to be solved are non-convex, i.e. their solutions depend on the initial values of the
decomposition factors. Techniques for finding good initial values are available for CP by
a generalized eigenvalue decomposition as well as for Tucker by a HOSVD but in many
cases the optimization problem has to be solved several times with different initial values to
get a good solution, which again leads to a trail and error computation strategy, [44, 109].
Because of the curse of dimensionality the parameter tensors of large-scale systems cannot be
represented as full tensors. But translations to a decomposed representation can overcome
this curse of dimensionality. As already mentioned for further reduction of complexity,
low-rank approximation techniques should be applied. That makes it necessary that the
approximation algorithms work with the decomposed representations to reduce the rank.
Tucker decomposition has the big drawback, that no algorithm in the standard toolboxes is
available that allows a further reduction based on the decomposed tensor. The algorithm
always needs a full tensor as starting value. Since for large-scale systems a full representation
is not manageable, a truncation of a Tucker tensor is impossible.
The second group of decomposition techniques is formed by the TT and HT decomposition.
The advantages of these decompositions are their SVD based decomposition and truncation
algorithms. These algorithms compute SVDs of different matricizations of the tensors and
cut less significant singular values. This provides a quasi-optimal solution and it represents
the best approximation with an adjustable accuracy (2.22). It has to be pointed out that no
initial values have to be set for that in contrast to the CP or Tucker case. When applying
the decomposition to MTI systems, one can estimate the accuracy bound by the knowledge
of the sensitivity of the parameters of the system. One has to check how much additional
inaccuracy from the decomposition can be allowed without influencing the main dynamical
characteristics of the system. The user does not have to set the TT or HT ranks. The
desired accuracy is set directly and during the computation of the decomposition, the ranks

81

3 Modeling for multilinear systems

are determined such that the resulting decomposed tensor fulfills the accuracy constraint.
This has the disadvantage, that it is not clear how much reduction can be achieved. It
depends on the structure of the parameter data, how much compression is possible with a
desired accuracy. In contrast to the Tucker decomposition, algorithms are available that
can truncate already decomposed tensors to find a representation of lower rank without
building the full tensor as well for TT as for HT. This makes these decompositions suitable
for representations of parameter tensors of large-scale systems whose parameter tensors are
high dimensional.
When focusing on the simulation of the systems in the different decomposed forms, Secti-
ons 3.2.1 to 3.2.4 described that the contracted product of parameter tensor and monomial
tensor can be computed based on the decomposition factors for all four methods. For CP
and HT representation only standard matrix products are necessary that are available in
many mathematical programming tools. For Tucker and TT, tensor vector or tensor matrix
products have to be computed. This needs tensor toolboxes like [5] or [84]. The complex-
ity of these operations depends on the sizes of the factor matrices or core tensors. Again
the ranks of the decompositions play an important role here, since they determine the sizes
of the factors. This shows the importance of low-rank approximations also for an efficient
evaluation of the state and output equations.
To summarize this part the investigation has shown that MTI systems can be represented
in all four proposed decomposition methods, but there are significant differences in the
complexity. The general results are summarized in Table 3.1. In Section 5.2 the methods
are applied to heating systems examples for further comparison.

Table 3.1: Comparison of general properties of the decomposed formats of MTI systems
(Ranking starting with the best: + ◦ –; X: possible, ×: not possible)

CP Tucker TT HT
Representation of MTI systems X X X X

Predictable size of decomposition X X × ×
Truncation with guaranteed accuracy × × X X

Truncation independent of initial value × × X X
Truncation of decomposed tensors X × X X

Memory demand of the direct translation + ◦ – –
Simulation based on decomposition factors X X X X

3.3 Linearization

In control engineering many tools and methods are available for linear state space models.
The dynamics of real world plants are in general nonlinear. To use the methods from linear
control, nonlinear state space models are approximated around an operating point by a linear
model. An algorithm for linearization of MTI systems is derived here that is based on the

82

3 Modeling for multilinear systems

differentiation in the tensor framework introduced in Section 2.3. The task is to approximate
an MTI system

Φ (x) = f(x, u) = ⟨ F | M (x, u) ⟩ , (3.38)
y = g(x, u) = ⟨ G | M (x, u) ⟩ , (3.39)

by a linear system

Φ (x) = Ax + Bu, (3.40)
y = Cx + Du, (3.41)

around an operating point (x̄, ū). The system matrices of the linear approximation follow
from partial differentiation of the state and output equations of the MTI system with re-
spect to the states and the inputs, [4]. The computation of the partial derivatives with the
operational tensor approach of Theorem 2.2 is adapted here to consider the separation of the
variables in states and inputs. The partial derivatives with respect to the states and inputs
of the transition tensor is given by

Fxj
= F ×n+m−j+1 Θ, j = 1, . . . , n,

Fuj
= F ×m−j+1 Θ, j = 1, . . . , m.

The approach can be used as well for the output tensor G. Evaluation at the operating point
results in

A(:, j) = ∂f(x, u)
∂xj

⃓⃓⃓⃓
⃓x= x̄,
u= ū

=
⟨︂

Fxj
| M (x̄, ū)

⟩︂
, j = 1, . . . , n,

B(:, j) = ∂f(x, u)
∂uj

⃓⃓⃓⃓
⃓x= x̄,
u= ū

=
⟨︂

Fuj
| M (x̄, ū)

⟩︂
, j = 1, . . . , m,

C(:, j) = ∂g(x, u)
∂xj

⃓⃓⃓⃓
⃓x= x̄,
u= ū

=
⟨︂

Gxj
| M (x̄, ū)

⟩︂
, j = 1, . . . , n,

D(:, j) = ∂g(x, u)
∂uj

⃓⃓⃓⃓
⃓x= x̄,
u= ū

=
⟨︂

Guj
| M (x̄, ū)

⟩︂
, j = 1, . . . , m.

Thus, the columns of the system matrices of the linear state space model are the columns of
the Jacobians

Jf (x̄, ū) = ⟨ Jf | M (x̄, ū) ⟩ =

⎛⎜⎜⎜⎝
∂f1(x,u)

∂x1
· · · ∂f1(x,u)

∂xn

∂f1(x,u)
∂u1

· · · ∂f1(x,u)
∂um...

∂fn(x,u)
∂x1

· · · ∂fn(x,u)
∂xn

∂fn(x,u)
∂u1

· · · ∂fn(x,u)
∂um

⎞⎟⎟⎟⎠
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓x= x̄,
u= ū

,

of the state function f(x, u) and Jg(x̄, ū) = ⟨ Jg | M (x̄, ū) ⟩ of the output function g(x, u) at
the operating point. This allows to derive a tensor description of the linear system matrices

83

3 Modeling for multilinear systems

directly as for the Jacobian, such that the matrices can be computed by a simple evaluation
of a contracted product with a monomial tensor at the operating point like

A(x̄, ū) = ⟨ Alin | M (x̄, ū) ⟩ .

The same holds for the other system matrices with parameter tensors Blin, Clin and Dlin.
The Jacobians of state and output function are computed as introduced in Lemma 2.2.
To extract the parameters that belong to the different system matrices, subtensors of the
parameter tensors Jf and Jg of the Jacobians have to be selected to get the parameter tensors
of the system matrices, since e.g. the first n columns of Jf (x̄, ū) give the state matrix A
and the following m columns give the input matrix B. Therefore with (2.69) the parameter
tensors Alin ∈ R×(n+m)2×n×n and Blin ∈ R×(n+m)2×n×m of the system matrices of the linear
state equation have fibers

alin(iu, ix, :, j) = jf (iu, ix, :, j) = fxj
(iu, ix, :), j = 1, . . . , n, (3.42)

blin(iu, ix, :, j) = jf (iu, ix, :, n + j) = fuj
(iu, ix, :), j = 1, . . . , m. (3.43)

The fibers of the parameter tensors Clin ∈ R×(n+m)2×p×n and Dlin ∈ R×(n+m)2×p×m of the
output equation are given by

clin(iu, ix, :, j) = jg(iu, ix, :, j) = gxj
(iu, ix, :), j = 1, . . . , n, (3.44)

dlin(iu, ix, :, j) = jg(iu, ix, :, n + j) = guj
(iu, ix, :), j = 1, . . . , m. (3.45)

The sizes of the first n + m dimensions of the parameter tensors Alin to Dlin is equal to the
size of the same dimensions of F and G respectively, indicated by the index vectors ix ∈ Rn

an iu ∈ Rm. The last two dimensions, i.e. in+m+1 and in+m+2 are the dimensions of the linear
system matrices A, B, C and D respectively. With this derivation of the parameter tensors
the system matrices are computed as given in the following lemma.

Lemma 3.1 (Linearization of MTI systems in tensor format) Using (2.68) the sy-
stem matrices of the linearization (3.40) and (3.41) of a MTI system (3.38) and (3.39)
around the operating point (x̄, ū) are given analytically depending on the operating point by

A(x̄, ū) = ⟨ Alin | M (x̄, ū) ⟩ ∈ Rn×n, (3.46)
B(x̄, ū) = ⟨ Blin | M (x̄, ū) ⟩ ∈ Rn×m, (3.47)
C(x̄, ū) = ⟨ Clin | M (x̄, ū) ⟩ ∈ Rp×n, (3.48)
D(x̄, ū) = ⟨ Dlin | M (x̄, ū) ⟩ ∈ Rp×m, (3.49)

with parameter tensors (3.42) to (3.45).

Remark 3.1 The system matrices can be computed directly from the parameter tensors of
the MTI system by simple operations like the mode-k tensor matrix product to compute the
parameter tensors of the partial derivatives (2.56) or the contracted product to evaluate the
parameter tensors at the operating points. If the parameter tensors of the MTI system (3.40)
and (3.41) are available in a decomposed format, these operations can be applied directly to
the decomposed versions of the tensors without recomputing the full tensors, leading to an

84

3 Modeling for multilinear systems

efficient computation. The parameter tensors Alin, Blin, Clin and Dlin have to be computed
only once for an MTI system. The linearization can be very easily adapted to the desired
operating point, since the linear system matrices result from an evaluation of the contracted
product of parameter tensors of the linearization and the monomial tensor at the operating
point (3.46) to (3.49). With this structured computation of the linearization local properties
around the operating point of the MTI system can be simply determined, e.g. by investigating
the eigenvalues of the state matrix A(x̄, ū). This gives an idea on the dynamical behavior of
the system or the stability in the neighborhood of the operating point, [4]. This is an advantage
since e.g. no stability theory especially for MTI systems besides the general nonlinear theory
is available yet.

Example 3.15 Consider an MTI system with one state and one input with state equation

Φ (x1) = f(1, 1) + f(1, 2)x1 + f(2, 1)u1 + f(2, 2)x1u1

= ⟨ F | M (x1, u1) ⟩ =
⟨︄(︄

f(1, 1) f(1, 2)
f(2, 1) f(2, 2)

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x1
u1 x1u1

)︄ ⟩︄
.

The linearization of the state equation of the MTI system around the operating point (x̄1, ū1)

Φ (x1) = a(x̄1, ū1)x1 + b(x̄1, ū1)u1

is computed by the partial derivatives of the state equation with respect to x1 and u1 by (2.56).
The parameter tensors of the system matrices are thus given by

Alin(:, :, 1, 1) = Fx1 = F ×2

(︄
0 1
0 0

)︄
=
(︄

f(1, 2) 0
f(2, 2) 0

)︄
,

Blin(:, :, 1, 1) = Fu1 = F ×1

(︄
0 1
0 0

)︄
=
(︄

f(2, 1) f(2, 2)
0 0

)︄
,

with dimensions Alin, Blin ∈ R2×2×1×1. This results in the system matrices of the linear
approximation of the MTI state equation

a(x̄1, ū1)=⟨ Alin | M (x̄1, ū1) ⟩ =
⟨︄(︄

f(1, 2) 0
f(2, 2) 0

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x̄1
ū1 x̄1ū1

)︄ ⟩︄
= f(1, 2) + f(2, 2)ū1,

b(x̄1, ū1)=⟨ Blin | M (x̄1, ū1) ⟩ =
⟨︄(︄

f(2, 1) f(2, 2)
0 0

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x̄1
ū1 x̄1ū1

)︄ ⟩︄
=f(2, 1) + f(2, 2)x̄1.

With that an operating point depended description of the linearization of the MTI system is
found

Φ (x1) = a(x̄1, ū1)x1 + b(x̄1, ū1)u1 = (f(1, 2) + f(2, 2)ū1) x1 + (f(2, 1) + f(2, 2)x̄1) u1.

The approach can be applied in the same way to the output equation.

85

3 Modeling for multilinear systems

3.4 Discretization

When using continuous-time state space models, it is assumed that the signals are available
at each time t ∈ R. When focusing on e.g. implementation of controllers, algorithms are
computed on digital computers with a fixed sampling time. The signals are not available at
arbitrary times t but at fixed time steps t = kTsample, k ∈ N, where Tsample is the sampling
time. To get a system representation in discrete-time the continuous-time system is extended
by a hold and a sample element as shown in Figure 3.11.

Hold
Continuous-
time system Sample

u(k) u(t) y(t) y(k)

Figure 3.11: Discrete-time system

By the hold block the discrete input value u(k) is held constant until the next input va-
lue u(k +1) arrives, which results in a constant signal u(t). The continuous-time system has
an output y(t) that is sampled with sampling time Tsample to get the discrete-time output
signal y(k), [23]. Assume that the continuous dynamics are given by a continuous-time MTI
system with state equation

ẋ(t) = ⟨ Fc | M (x(t), u(t)) ⟩ . (3.50)

The parameter tensor has an index c here to distinguish between the parameter tensors of
the continuous- and discrete-time systems. The parameter tensor of the discrete-time model
is denoted by Fd. The discrete-time model is computed by difference equations but has the
same structure of the right hand side than in the continuous case regarding the separation
of parameters and multilinear monomials. The next state of the corresponding discrete-time
system is

x(k + 1) = ⟨ Fd | M (x(k), u(k)) ⟩ , (3.51)

where the parameters in Fd are not equal to the ones in Fc and depend on the sampling
time Tsample. A conversion from the continuos-time model to the discrete-time model is
available, e.g. for linear systems, [23]. This is investigated here now for MTI systems.
One discretization method is the Euler forward technique, where the time derivative of the
states ẋ is approximated by a first order approach

ẋ(kTsample) ≈ x(k + 1) − x(k)
Tsample

.

Rearranging and inserting the right hand side of the continuous-time state equation (3.50)
gives

x(k + 1) = x(k) + Tsampleẋ(kTsample) = x(k) + Tsample ⟨ Fc | M (x(k), u(k)) ⟩ . (3.52)

86

3 Modeling for multilinear systems

The task is to find a description of the parameter tensor Fd, such that (3.52) is fulfilled.
Therefore, the state vector x(k) can be described in the tensor framework

x(k) = ⟨ Fx | M (x(k), u(k)) ⟩ , (3.53)

by simply selecting the elements xj, j = 1, . . . , n of the monomial tensor with the parameter
tensor Fx. The parameter tensor Fx can be constructed directly as CP tensor too by

Fx = [Fx,um , . . . , Fx,u1 , Fx,xn , . . . , Fx,x1 , Fx,Φ] · λFx .

Therefore, the columns of the factor matrices Fx,uj
belonging to the inputs are set to

fx,uj
(:, k) =

(︂
1 0

)︂T
,

with j = 1, . . . , m and k = 1, . . . , n because only the states should be selected. The different
states are selected by

fx,xj
(:, k) =

⎧⎪⎨⎪⎩
(︂
0 1

)︂T
, for k = j,(︂

1 0
)︂T

, otherwise,

with j = 1, . . . , n and k = 1, . . . , n and ordered in the resulting vector by

Fx,Φ = In,

where In is an n by n identity matrix. The weighting vector λFx is a vector full of ones.
With this tensor the states are selected from the monomial tensor, such that(3.53) is fulfilled.
Using the derived description of the state vector (3.53) in (3.52) gives

x(k + 1) = x(k) + Tsample ⟨ Fc | M (x(k), u(k)) ⟩
= ⟨ Fx | M (x(k), u(k)) ⟩ + Tsample ⟨ Fc | M (x(k), u(k)) ⟩
= ⟨ Fx + TsampleFc | M (x(k), u(k)) ⟩ .

Proposition 3.1 (Discretization of MTI systems in tensor format) The parameter
tensor of the state equation Fd of the Euler discretization (3.51) with sampling time Tsample

of a continuous-time MTI system (3.50) with parameter tensor Fc is computed by

Fd = Fx + TsampleFc. (3.54)

Until now the state equation was considered only. For the output equation no transformation
is necessary. The output equation can be used as well in the continuous- as in the discrete-
time case with the same parameter tensor G.

Remark 3.2 It was shown, that the parameter tensor Fx can be constructed in a CP
format. As introduced in the Subsections 3.2.1 to 3.2.4, the CP format can be converted to
other decomposed forms. Thus, if the parameter tensor is given in a decomposed format, Fx
can be given in the same format and the parameter tensor of the discrete-time system is in
decomposed form, too, because addition and multiplication with a scalar are defined for the
decompositions. The decomposed structure is not lost by the discretization. No full tensor
has to be build, if the continuous-time system is given in decomposed form.

87

3 Modeling for multilinear systems

Example 3.16 Assume that the parameter tensor of the state equation of a continuous-
time MTI system (︄

ẋ1
ẋ2

)︄
=
(︄

−2x2 + x1x2u1
−x1u1

)︄
= ⟨ Fc | M (x1, x2, u1) ⟩ ,

is given in CP decomposition

Fc = [Fc,u1 , Fc,x2 , Fc,x1] · λFc =
[︄(︄

1 0 0
0 1 1

)︄
,

(︄
0 0 1
1 1 0

)︄
,

(︄
1 0 0
0 1 1

)︄
,

(︄
1 1 0
0 0 1

)︄]︄
·

⎛⎜⎝−2
1

−1

⎞⎟⎠ .

The system should be discretized with sampling time Tsample. The parameter tensor of the
discrete-time system is computed by (3.54) with the tensor

Fx =
[︄(︄

1 1
0 0

)︄
,

(︄
1 0
0 1

)︄
,

(︄
0 1
1 0

)︄
,

(︄
1 0
0 1

)︄]︄
·
(︄

1
1

)︄
,

and results in the CP description by simply concatenating the factor matrices and weighting
vector

Fd = Fx + TsampleFc = [Fd,u1 , Fd,x2 , Fd,x1] · λFd

=
[︄(︄

1 1 1 0 0
0 0 0 1 1

)︄
,

(︄
1 0 0 0 1
0 1 1 1 0

)︄
,

(︄
0 1 1 0 0
1 0 0 1 1

)︄
,

(︄
1 0 1 1 0
0 1 0 0 1

)︄]︄
·

⎛⎜⎜⎜⎜⎜⎜⎝
1
1

−2Tsample

Tsample

−Tsample

⎞⎟⎟⎟⎟⎟⎟⎠.

This gives the discretized state space model of the continuous-time MTI system(︄
x1(k + 1)
x2(k + 1)

)︄
= ⟨ Fd | M (x1(k), x2(k), u1(k)) ⟩

in a CP tensor framework.

3.5 Scaling

In most applications dynamical systems have a typical operating range. For a continuous-
time MTI system

ẋ = ⟨ F | M (x, u) ⟩ , (3.55)
y = ⟨ G | M (x, u) ⟩ , (3.56)

the operating area is e.g. bounded by

xi ∈ [xi,l, xi,u] , i = 1, . . . , n, (3.57)
ui ∈ [ui,l, ui,u] , i = 1, . . . , m, (3.58)
yi ∈ [yi,l, yi,u] , i = 1, . . . , p. (3.59)

88

3 Modeling for multilinear systems

When using the state space models, e.g. for an optimization algorithm as in MPC, numerical
problems may arise, if the signals are of different magnitude. Thus, it makes sense to scale
the signals, such that they are in fixed intervals of same magnitude, e.g. by scaling all signals
to the interval [0, 1]. The desired intervals for the scaled states and inputs are given by

x̃i ∈ [x̃i,l, x̃i,u] , i = 1, . . . , n, (3.60)
ũi ∈ [ũi,l, ũi,u] , i = 1, . . . , m, (3.61)
ỹi ∈ [ỹi,l, ỹi,u] , i = 1, . . . , p. (3.62)

This numerical preconditioning is computed by a linear transformation of the states and
inputs

xi = ãix̃i + b̃i, i = 1, . . . , n, (3.63)
ui = ãn+iũi + b̃n+i, i = 1, . . . , m, (3.64)
yi = c̃iỹi + ẽi, i = 1, . . . , p, (3.65)

where the scaling factors result from the operating range (3.57) to (3.59) and the chosen
intervals (3.60) to (3.62) of the states, inputs and outputs, which is shown for the sta-
tes, i = 1, . . . , n here

ãi = xi,l − xi,u

x̃i,l − x̃i,u

, (3.66)

b̃i = xi,l − aix̃i,l. (3.67)

The scaling factors of inputs and outputs are computed in a similar way. The approach of
scaling of MTI systems in matrix representation was shown in [50] and [85]. Here the linear
transformation of MTI systems in tensor representation is introduced.

Lemma 3.2 (Scaling of MTI systems in tensor format) The operating range (3.57)
to (3.59) of a continuous-time MTI system with state space representation (3.55) and (3.56)
is scaled to an operating range (3.60) to (3.62) by a linear transformation of the states,
inputs and outputs as in (3.66) and (3.67). The transformed state equation is given by

̇̃x =
⟨︂

F̃ | M (x̃, ũ)
⟩︂

,

with the parameter tensor

F̃=F×1

(︄
b̃n+m 0
ãn+m 1

)︄
×2

(︄
b̃n+m−1 0
ãn+m−1 1

)︄
×3 · · ·×n+m

(︄
b̃1 0
ã1 1

)︄
×n+m+1 diag

i=1,...,n

(︂
ã−1

i

)︂
. (3.68)

The scaled output equation

ỹ =
⟨︂

Ĝ − E | M (x̃, ũ)
⟩︂

=
⟨︂

G̃ | M (x̃, ũ)
⟩︂

,

89

3 Modeling for multilinear systems

has a parameter tensor that is composed of two tensors

Ĝ=G×1

(︄
b̃n+m 0
ãn+m 1

)︄
×2

(︄
b̃n+m−1 0
ãn+m−1 1

)︄
×3 · · ·×n+m

(︄
b̃1 0
ã1 1

)︄
×n+m+1 diag

i=1,...,n

(︂
c̃−1

i

)︂
,

E = [Eum , . . . , Eu1 , Exn , . . . , Ex1 , EΦ] · λE.

The CP factors of E are

Exi
= Euj

=
(︄

1 · · · 1
0 · · · 0

)︄
∈ R2×p, i = 1, . . . , n, j = 1, . . . , m, (3.69)

EΦ = Ip, (3.70)

λE = diag
i=1,...,n

(c̃i)−1
(︂
ẽ1 · · · ẽp

)︂T
. (3.71)

The proof of the lemma is given in the Appendix A.7.

Remark 3.3 For the transformation of the parameter tensors a sequence of mode-k tensor
matrix products has to be computed only, which is defined for all four proposed decomposi-
tion techniques. Since the tensor E is given in CP format it can be translated to the other
decomposed representations as well. Thus, this tool can be be used for all decomposed repre-
sentations of MTI systems. The resulting parameter tensors of the scaled system are also
decomposed in the same format.

Example 3.17 The MTI model introduced in Example 3.14 is used for scaling here, where
the state equation is given by

ẋ = ⟨ F | M (x1, x2, x3, u1, u2) ⟩ .

The operating range is defined according to the range of the signals in Figure 3.9 resulting in

x1 ∈ [0, 1] , x2 ∈ [0, 10] , x3 ∈ [−2, 2] , u1 ∈ [0, 2] , u2 ∈ [−1, 1] .

All scaled signals x̃i, ũi should stay in the interval [0, 1]. Using (3.66) and (3.67), this leads
e.g. for the state x2 to the scaling factors

ã2 = 0 − 10
0 − 1 = 10,

b̃2 = 0 − 10 · 0 = 0,

such that the scaling from x2 to x̃2 follows from

x̃2 = 1
ã2

(︂
x2 − b̃2

)︂
= 1

10x2.

With the other scaling factors and (3.68) the parameter tensor of the state equation of the
scaled system is given by

F̃ = F ×1

(︄
b̃5 0
ã5 1

)︄
×2

(︄
b̃4 0
ã4 1

)︄
×3

(︄
b̃3 0
ã3 1

)︄
×4

(︄
b̃2 0
ã2 1

)︄
×5

(︄
b̃1 0
ã1 1

)︄
×6

⎛⎜⎝
1
ã1

0 0
0 1

ã2
0

0 0 1
ã3

⎞⎟⎠ .

90

3 Modeling for multilinear systems

The simulation of the scaled model with state equation
̇̃x =

⟨︂
F̃ | M (x̃1, x̃2, x̃3, ũ1, ũ2)

⟩︂
,

with the same but scaled input than in Figure 3.9 results in the state trajectories depicted in
Figure 3.12. The figure shows, that the basic state dynamics are the same compared to the
original system shown in Figure 3.9. But because of the scaling of the model all states are in
the interval [0, 1] here as desired. The states of the original model are retrieved by (3.63).

0 5 10 15 20 25 30 35 40 45 500
0.2
0.4
0.6
0.8

1

Time [s]

x̃1 x̃2 x̃3

Figure 3.12: Simulation result of the scaled system with parameter tensor F̃

3.6 Multi-step transitions of discrete-time MTI models

In this subsection the description of multi-step transitions of discrete-time MTI models is
investigated, i.e. the computation of future states by the actual state and a given future
input trajectory. When simulating the response of a discrete-time model, the state trajectory
is computed by iterating the model equations. In the case of linear systems this results in

x(k + 1) = Ax(k) + Bu(k), (3.72)
x(k + 2) = Ax(k + 1) + Bu(k + 1) (3.73)

= A2x(k) + ABu(k) + Bu(k + 1), (3.74)
x(k + 3) = Ax(k + 2) + Bu(k + 2) (3.75)

= A3x(k) + A2Bu(k) + ABu(k + 1) + Bu(k + 2), (3.76)
...

x(k + N) = Ax(k + N − 1) + Bu(k + N − 1) (3.77)
= ANx(k) + AN−1Bu(k) + AN−2Bu(k + 1) + · · · + Bu(k + N − 1). (3.78)

This shows, that with linear systems, it is possible to describe the simulated future states
explicitly in closed form as a linear function depending on the initial state x(k) and the
inputs u(k + i), i = 0, . . . , N − 1. This description is called lifted system and is useful,
e.g. for the formulation of the cost function for the optimization problem of MPC, which is
described in Section 4, [73]. This poses the question, if an explicit formulation of the future
states x(k + i) is possible too, when MTI models are used. With an MTI system given as
discrete-time state space model in tensor framework

x(k + 1) = ⟨ F | M (x(k), u(k)) ⟩ ,

91

3 Modeling for multilinear systems

the goal is to describe the future states x(k + i) by the initial state x(k) and the input
trajectory u(k) to u(k + i − 1). With a linear system it was shown that the future states are
computed by linear functions too, i.e. the multi-step transitions stay in the class of linear
systems. The following example shows the situation for multilinear models.

Example 3.18 Consider the state equations of a discrete-time multilinear system with two
states and one input

x1(k + 1) = −x1(k)x2(k),
x2(k + 1) = −x2(k) + u(k).

The states of the next time step k+2 are computed by iterating the state equation resulting in

x1(k + 2) = −x1(k + 1)x2(k + 1) = −x1(k)x2(k)2 + x1(k)x2(k)u(k),
x2(k + 2) = −x2(k + 1) + u(k + 1) = x2(k) − u(k) + u(k + 1).

The example shows that already with one iteration, higher order terms like x1(k)x2(k)2 in this
example, could occur that are no longer multilinear. Therefore, the multi-step transitions
have to be described by polynomials of higher order using the tensor framework (2.47). At
first, the approach is described here for a general multilinear model with two states and one
input (︄

x1(k + 1)
x2(k + 1)

)︄
= ⟨ F | M (x1(k), x2(k), u(k)) ⟩ ,

to introduce the idea. Afterwards it is generalized to MTI models with n states and m
inputs. The state at time instant k + 2 is given by

x(k + 2) = ⟨ F | M (x1(k + 1), x2(k + 1), u(k + 1)) ⟩ . (3.79)

At first, the monomial tensor is investigated. The particular states read

xi(k + 1) = ⟨ F(:, . . . , :, i) | M (x(k), u(k)) ⟩ = ⟨ F×̄n+m+1ei,n | M (x(k), u(k)) ⟩ , (3.80)

where en,i is the ith unit vector of length n and can be inserted to the state equation (3.79)
yielding

M (x1(k + 1), x2(k + 1), u(k + 1)) =
M
(︂
⟨ F×̄n+m+1e1,n | M (x(k), u(k)) ⟩,⟨ F×̄n+m+1e2,n | M (x(k),u(k)) ⟩ , u(k + 1)

)︂
. (3.81)

To summarize the terms of the monomial tensor their descriptions have to depend on the
same variables, i.e. x1(k), x2(k), u(k) and u(k + 1). Thus, the parameter tensor is extended,
leading to

x(k + 1) = ⟨ F | M (x1(k), x2(k), u(k), u(k + 1)) ⟩ ,

with elements

xi(k + 1) = ⟨ F×̄n+2m+1ei,n | M (x1(k), x2(k), u(k), u(k + 1)) ⟩ .

92

3 Modeling for multilinear systems

This extension is easily constructed by adding zeros in the parameter tensor in each position,
that belongs to a monomial that contains the input u(k + 1). Also the input at time k + 1
can be expressed in a tensor framework

u(k + 1) = ⟨ Fu | M (x1(k), x2(k), u(k), u(k + 1)) ⟩

with the parameter tensor, e.g. in CP representation

Fu =
[︄(︄

0
1

)︄
,

(︄
1
0

)︄
,

(︄
1
0

)︄
,

(︄
1
0

)︄]︄
.

The monomial tensor is a rank one tensor, that is written as outer product of its factor
vectors by

M (x1(k + 1), x2(k + 1), u(k + 1)) =
(︄

1
u(k + 1)

)︄
◦
(︄

1
x2(k + 1)

)︄
◦
(︄

1
x1(k + 1)

)︄
.

The factor vectors belonging to the states x1(k +1) and x2(k +1) are expressed with respect
to the initial state and the inputs by inserting (3.80)(︄

1
xj(k + 1)

)︄
=
(︄

1
⟨ F×̄5ej,2 | M (x1(k), x2(k), u(k), u(k + 1)) ⟩

)︄
= ⟨ 14 �5 (F×̄5ej,2) | M (x1(k), x2(k), u(k), u(k + 1)) ⟩
=
⟨︂

F̄xj
| M (x1(k), x2(k), u(k), u(k + 1))

⟩︂
, j = 1, 2.

The 1 in the first component of the factor vector
(︂
1 xi(k + 1)

)︂T
is added by concatenation

to the parameter tensor of the state with a one tensor that is defined by

1 = ⟨ 1n+m | M (x, u) ⟩ . (3.82)

The parameter tensor is given, e.g. in CP representation, as rank-1 tensor by

1n+m =
[︄(︄

1
0

)︄
, . . . ,

(︄
1
0

)︄]︄
∈ R×(n+m)2,

such that it has the property

1n+m(i1, . . . , in+m) =

⎧⎨⎩1 , for i1 = · · · = in+m = 1,

0 , otherwise.

A one tensor is constructed for polynomials of higher order in the same way, such that

1 =
⟨︂

1N
n+m

⃓⃓⃓
MN

p (x, u)
⟩︂

holds, with the one tensor 1N
n+m ∈ R×(N(n+m))2 for polynomials of maximal order N . The

approach is applied to the factor vector of the input in the same way resulting in(︄
1

u(k + 1)

)︄
= ⟨ 14 �5 Fu | M (x1(k), x2(k), u(k), u(k + 1)) ⟩

=
⟨︂

F̄u | M (x1(k), x2(k), u(k), u(k + 1))
⟩︂

.

93

3 Modeling for multilinear systems

All factor vectors are described with respect to the initial state and the inputs. Using these
definitions, the monomial tensor (3.81) for the state at time k + 2 is written with respect to
the desired variables by

M (x1(k + 1), x2(k + 1), u(k + 1))
=
⟨︂

F̄u | M (x1(k), x2(k), u(k), u(k + 1))
⟩︂

◦
⟨︂

F̄x2 | M (x1(k), x2(k), u(k), u(k + 1))
⟩︂

◦
⟨︂

F̄x1 | M (x1(k), x2(k), u(k), u(k + 1))
⟩︂

=
⟨︂

F2
M

⃓⃓⃓
M3

p (x1(k), x2(k), u(k), u(k + 1))
⟩︂

4:15,1:12
,

where the parameter tensor F2
M ∈ R×(15)2 is constructed by

F2
M(iu, ix2 , ix1 , :, . . . , :) = F̄u(:, . . . , :, iu) ◦ F̄x2(:, . . . , :, , ix2) ◦ F̄x1(:, . . . , :, , ix1).

The contracted product is computed over the dimensions 4 to 15 of the parameter tensor F2
M

and all twelve dimensions of the monomial tensor M3
p (x1(k), x2(k), u(k), u(k + 1)), because

the first three dimensions of F2
M belong to the three indices iu, ix2 and ix1 of the resulting

multilinear monomial tensor M (x1(k + 1), x2(k + 1), u(k + 1)). With this description of the
monomial tensor, the states at time k + 2 are given by

x(k + 2) = ⟨ F | M (x1(k + 1), x2(k + 1), u(k + 1)) ⟩

=
⟨︃

F
⃓⃓⃓⃓ ⟨︂

F2
M

⃓⃓⃓
M3

p (x1(k), x2(k), u(k), u(k + 1))
⟩︂

4:15,1:12

⟩︃
. (3.83)

In this description the monomial tensor contains parameters, such that the parameters and
the monomials are not separated yet, as it should be for the tensor framework introduced in
Section 2.3.1. From the elementwise definition of the contracted product (2.4) the separation
of monomials and parameters follows by rearranging

xj(k + 2) =
2∑︂

iu=1

2∑︂
ix2 =1

2∑︂
ix1 =1

f(iu, ix2 , ix1 , j)

·
2∑︂

k1=1
· · ·

2∑︂
k12=1

f 2
M(iu, ix2 , ix1 , k1, . . . , k12)m3

p (x1(k), x2(k), u(k), u(k + 1)) (k1, . . . , k12)

=
2∑︂

k1=1
· · ·

2∑︂
k12=1

2∑︂
iu=1

2∑︂
ix1 =1

2∑︂
ix2 =1

f 2
M(iu, ix2 , ix1 , k1, . . . , k12)f(iu, ix2 , ix1 , j)

⏞ ⏟⏟ ⏞
⟨ F2

M | F ⟩1:3

· m3
p (x1(k), x2(k), u(k), u(k + 1)) (k1, . . . , k12). (3.84)

Thus, the states at time k + 2 are given as a polynomial system of order 3 by

x(k + 2) =
⟨︂ ⟨︂

F2
M | F

⟩︂
1:3

⃓⃓⃓
M3

p (x1(k), x2(k), u(k), u(k + 1))
⟩︂

=
⟨︂

F2
⃓⃓⃓
M3

p (x1(k), x2(k), u(k), u(k + 1))
⟩︂

.

94

3 Modeling for multilinear systems

This shows that an explicit description of the two step transition of an MTI system can be
found in the tensor framework resulting in a polynomial system. This result is used in the
following for the next step to compute x(k + 3). From the state equations, the states at
time k + 3 are given using the states of the previous time step by

x(k + 3) = ⟨ F | M (x1(k + 2), x2(k + 2), u(k + 2)) ⟩ .

Again the state evaluations (3.83) from the previous time step, i.e. k + 2, are inserted. At
first the parameter tensors are extended, such that their monomial tensors depend on the
same variables. Here the dependence on u(k + 2) is added

x(k + 2) =
⟨︂

F2
⃓⃓⃓
M3

p (x1(k), x2(k), u(k), u(k + 1), u(k + 2))
⟩︂

,

u(k + 2) =
⟨︂

Fu

⃓⃓⃓
M3

p (x1(k), x2(k), u(k), u(k + 1), u(k + 2))
⟩︂

.

Putting the states and inputs into the monomial vector, it is written as

M (x1(k+2), x2(k+2), u(k+2))=M
(︂⟨︂

F2×̄16e1,2

⃓⃓⃓
M3

p (x1(k), x2(k), u(k), u(k+1), u(k+2))
⟩︂

,⟨︂
F2×̄16e2,2

⃓⃓⃓
M3

p (x1(k), x2(k), u(k), u(k + 1), u(k + 2))
⟩︂

,⟨︂
Fu(k+2)

⃓⃓⃓
M3

p (x1(k), x2(k), u(k), u(k + 1), u(k + 2))
⟩︂)︂

and its rank-1 factors for the states read(︄
1

xj(k + 2)

)︄
=
(︄ 1⟨︂

F2×̄16ej,2

⃓⃓⃓
M3

p (x1(k), x2(k), u(k), u(k + 1), u(k + 2))
⟩︂)︄

=
⟨︂

13
5 �16

(︂
F2×̄16ej,2

)︂ ⃓⃓⃓
M3

p (x1(k), x2(k), u(k), u(k + 1), u(k + 2))
⟩︂

=
⟨︂

F̄2
xj

⃓⃓⃓
M3

p (x1(k), x2(k), u(k), u(k + 1), u(k + 2))
⟩︂

, j = 1, 2.

The same holds for the factor matrix of the input u(k + 2)(︄
1

u(k + 2)

)︄
=
⟨︂

F̄2
u

⃓⃓⃓
M3

p (x1(k), x2(k), u(k), u(k + 1), u(k + 2))
⟩︂

.

Using the rank-1 factors the monomial tensor given by

M (x1(k + 2), x2(k + 2), u(k + 2)) =
⟨︂

F̄2
u

⃓⃓⃓
M3

p (x1(k), x2(k), u(k), u(k + 1), u(k + 2))
⟩︂

◦
⟨︂

F̄2
x2

⃓⃓⃓
M3

p (x1(k), x2(k), u(k), u(k + 1), u(k + 2))
⟩︂

◦
⟨︂

F̄2
x1

⃓⃓⃓
M3

p (x1(k), x2(k), u(k), u(k + 1), u(k + 2))
⟩︂

=
⟨︂

F3
M

⃓⃓⃓
M9

p (x1(k), x2(k), u(k), u(k + 1), u(k + 2))
⟩︂

4:48,1:45

with the parameter tensor F3
M ∈ R×(48)2 constructed by subtensors

F3
M(iu, ix2 , ix1 , :, . . . , :) = F̄u(:, . . . , :, iu) ◦ F̄x2(:, . . . , :, , ix2) ◦ F̄x1(:, . . . , :, , ix1).

95

3 Modeling for multilinear systems

As before, this description of the monomial tensor gives the states at time k + 3

x(k + 2) =
⟨︃

F
⃓⃓⃓⃓ ⟨︂

F3
M

⃓⃓⃓
M9

p (x1(k), x2(k), u(k), u(k + 1), u(k + 2))
⟩︂

4:48,1:45

⟩︃
=
⟨︂ ⟨︂

F2
M | F

⟩︂
1:3

⃓⃓⃓
M9

p (x1(k), x2(k), u(k), u(k + 1), u(k + 2))
⟩︂

=
⟨︂

F3
⃓⃓⃓
M9

p (x1(k), x2(k), u(k), u(k + 1), u(k + 2))
⟩︂

.

To illustrate the main idea of the approach, an MTI system with two states and one input
was considered up to this point to avoid an even more complex notation. The results are
generalized in the following to MTI systems with n states and m inputs up to k + i time
steps. By using the state vector of the previous time step the states at time k+i are given by

x(k + i) = ⟨ F | M (x(k + i − 1), u(k + i − 1)) ⟩ , i = 1, . . . , N. (3.85)

The approach introduced before is generalized such that the states x(k + i) are computed
with respect to the initial states x(k) and the input trajectory u(k + j), j = 1, . . . , i − 1 by

x(k + i) =
⟨︂

Fi
⃓⃓⃓
M(n+m)i−1

p (x(k), u(k), . . . , u(k + i − 1))
⟩︂

.

The goal is to determine the parameter tensor Fi. The maximal order of the monomi-
als (n + m)i−1 follows from the multilinearity of the state equation (3.85) of the model.
This allows multiplications of states of the system. If now the states of the previous time
step of order (n + m)i−2 are inserted in the monomial tensor, monomials of maximal or-
der (n + m)i−1 can occur at time k + i. To compute the parameter tensor Fi, it is assumed
that the parameter tensor Fi−1 of the previous time step

x(k + i − 1) =
⟨︂

Fi−1
⃓⃓⃓
M(n+m)i−2

p (x(k), u(k), . . . , u(k + i − 2))
⟩︂

is known. To calculate the parameter tensor Fi, at first, the parameter tensor Fi−1 is extended
by adding zeros to get a dependence on u(k + i − 1)

x(k + i − 1) =
⟨︂

Fi−1
⃓⃓⃓
M(n+m)i−2

p (x(k), u(k), . . . , u(k + i − 2), u(k + i − 1))
⟩︂

.

The inputs at time k + i − 1 are expressed in a tensor framework with the same monomial
tensor by

u(k + i − 1) =
⟨︂

Fu

⃓⃓⃓
M(n+m)i−2

p (x(k), u(k), . . . , u(k + i − 2), u(k + i − 1))
⟩︂

.

The state and input representations are inserted to the monomial tensor of (3.85). The
monomial tensor is a rank-1 tensor, where the elements belonging to the states are(︄

1
xj(k + i − 1)

)︄
=
(︄ 1⟨︂

Fi−1×̄βej,n

⃓⃓⃓
M(n+m)i−2

p (x(k), u(k), . . . , u(k + i − 1))
⟩︂)︄

=
⟨︂

1(n+m)i−2

n+im �β

(︂
Fi−1×̄βej,n

)︂ ⃓⃓⃓
M(n+m)i−2

p (x(k), u(k), . . . , u(k + i − 1))
⟩︂

=
⟨︂

F̄i
xj

⃓⃓⃓
M(n+m)i−2

p (x(k), u(k), . . . , u(k + i − 1))
⟩︂

, j = 1, . . . , n, (3.86)

96

3 Modeling for multilinear systems

where β = (n + m)i−2(n + im) + 1 gives the last dimension of the tensor Fi−1, which is of
order (n + m)i−2 and depends on (n + im) variables. The same approach is applied to the
rank-1 factors of the inputs(︄

1
uj(k + i − 1)

)︄
=
(︄ 1⟨︂

Fu×̄βej,m

⃓⃓⃓
M(n+m)i−2

p (x(k), u(k), . . . , u(k + i − 1))
⟩︂)︄

=
⟨︂

1(n+m)i−2

n+im �β (Fu×̄βej,m)
⃓⃓⃓
M(n+m)i−2

p (x(k), u(k), . . . , u(k + i − 1))
⟩︂

=
⟨︂

F̄i
uj

⃓⃓⃓
M(n+m)i−2

p (x(k), u(k), . . . , u(k + i − 1))
⟩︂

, j = 1, . . . , m. (3.87)

The monomial tensor is computed by the outer product of the rank-1 factors (3.86) and (3.87)

M (x(k + i − 1), u(k + i − 1)) =⟨︂
F̄i

um

⃓⃓⃓
M(n+m)i−2

p (x(k), . . . , u(k + i − 1))
⟩︂

◦· · ·◦
⟨︂
F̄i

u1

⃓⃓⃓
M(n+m)i−2

p (x(k), . . . , u(k + i − 1))
⟩︂

◦
⟨︂
F̄i

xn

⃓⃓⃓
M(n+m)i−2

p (x(k), . . . , u(k + i − 1))
⟩︂

◦· · ·◦
⟨︂
F̄i

x1

⃓⃓⃓
M(n+m)i−2

p (x(k), . . . , u(k + i − 1))
⟩︂

=
⟨︂

Fi
M

⃓⃓⃓
M(n+m)i−2

p (x(k), u(k), . . . , u(k + i − 1))
⟩︂

n+m+1:β+n+m,1:β
,

which allows to describe the monomial tensor in a tensor framework with the parameter
tensor

Fi
M(ium , . . . , iu1 , ixn . . . , iux1

, :, . . . , :)
= F̄i

um
(:, . . . , :, ium)◦· · ·◦F̄i

u1(:, . . . , :, iu1)◦F̄i
xn

(:, . . . , :, ixn)◦· · ·◦F̄i
x1(:, . . . , :, ix1), (3.88)

for all iuj
, ixk

∈ [1, 2]. As shown before in (3.84) the state at time k + i is given depending on
the initial state x(k) and the inputs u(k) to u(k+i−1) as given by the following proposition.

Proposition 3.2 (Multi-step transition of MTI models) The multi-step transition of
a discrete-time MTI system

x(k + 1) = ⟨ F | M (x(k), u(k)) ⟩

is written in closed form to determine the states at time k + 1 by

x(k + i) =
⟨︃⟨︂

Fi
M | F

⟩︂
1:n+m

⃓⃓⃓
M(n+m)i−1

p (x(k), u(k), . . . , u(k + i − 1))
⟩︃

=
⟨︂

Fi
⃓⃓⃓
M(n+m)i−1

p (x(k), u(k), . . . , u(k + i − 1))
⟩︂

, (3.89)

where the parameter tensor is constructed by (3.86) to (3.88).

Example 3.19 Consider a first order system with one input

x(k+1)=−x(k)+x(k)u(k)=⟨ F | M (x(k), u(k)) ⟩ =
⟨︄(︄

0 −1
0 1

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x(k)
u(k) x(k)u(k)

)︄⟩︄
. (3.90)

97

3 Modeling for multilinear systems

At first the parameter tensor F is extended to add a dependence on u(k+1). The extension is
done by adding a second slice to the parameter tensor full of zeros, as depicted in Figure 3.13.
The first slice contains the parameters of (3.90) leading to

x(k + 1) = ⟨ F | M (x(k), u(k), u(k + 1)) ⟩ .

The input is expressed in a tensor framework by
u(k + 1) = ⟨ Fu | M (x(k), u(k), u(k + 1)) ⟩ ,

with parameter tensor shown in Figure 3.13.

0 1

−10

0 0

00

F =
0 0

00

0 0

01

Fu =

Figure 3.13: Extended tensors F and Fu

Using this description of states and inputs the monomial tensor of
x(k + 1) = ⟨ F | M (x(k + 1), u(k + 1)) ⟩

is given by

M (x(k + 1), u(k + 1)) =
(︄

1
u(k + 1)

)︄
◦
(︄

1
x(k + 1)

)︄

=
(︄

1
⟨ Fu | M (x(k), u(k), u(k + 1)) ⟩

)︄
◦
(︄

1
⟨ F | M (x(k), u(k), u(k + 1)) ⟩

)︄
= ⟨ 13 �4 Fu | M (x(k), u(k), u(k + 1)) ⟩ ◦ ⟨ 13 �4 F | M (x(k), u(k), u(k + 1)) ⟩
=
⟨︂

F̄2
u | M (x(k), u(k), u(k + 1))

⟩︂
◦
⟨︂

F̄2
x | M (x(k), u(k), u(k + 1))

⟩︂
=
⟨︂

F2
M

⃓⃓⃓
M2

p (x(k), u(k), u(k + 1))
⟩︂

3:8,1:6
,

where the parameter tensor reads
F2

M(iu, ix, :, :, :, :, :, :) = F̄2
u(:, :, :, iu) ◦ F̄2

x(:, :, :, ix).
With this description of the monomial tensor, the monomials are constructed in terms
of x(k), u(k), u(k + 1) by

M (x(k + 1), u(k + 1)) =
⟨︂

F2
M

⃓⃓⃓
M2

p (x(k), u(k), u(k + 1))
⟩︂

3:8,1:6

=
⎛⎝⟨︂F2

M (1, 1, :, · · · , :)
⃓⃓⃓
M2

p (x(k), u(k), u(k + 1))
⟩︂ ⟨︂

F2
M (1, 2, :, · · · , :)

⃓⃓⃓
M2

p (x(k), u(k), u(k + 1))
⟩︂⟨︂

F2
M (2, 1, :, · · · , :)

⃓⃓⃓
M2

p (x(k), u(k), u(k + 1))
⟩︂ ⟨︂

F2
M (2, 2, :, · · · , :)

⃓⃓⃓
M2

p (x(k), u(k), u(k + 1))
⟩︂⎞⎠

=
(︄

1 ⟨ F |M (x(k), u(k), u(k + 1))⟩
⟨ Fu |M (x(k), u(k), u(k + 1))⟩ ⟨ F |M (x(k), u(k), u(k + 1))⟩ ⟨ Fu |M (x(k), u(k), u(k + 1))⟩

)︄

=
(︄

1 x(k + 1)
u(k + 1) x(k + 1)u(k + 1)

)︄
=
(︄

1 −x(k) + x(k)u(k)
u(k + 1) (−x(k) + x(k)u(k))u(k + 1)

)︄
.

98

3 Modeling for multilinear systems

With this representation the parameters and monomials are separated by

x(k + 2) =
⟨︃

F
⃓⃓⃓⃓ ⟨︂

F2
M

⃓⃓⃓
M2

p (x(k), u(k), u(k + 1))
⟩︂

3:8,1:6

⟩︃
=
⟨︂ ⟨︂

F2
M | F

⟩︂
1:2

⃓⃓⃓
M2

p (x(k), u(k), u(k + 1))
⟩︂

=
⟨︂

F2
⃓⃓⃓
M2

p (x(k), u(k), u(k + 1))
⟩︂

= −x(k) + u(k)x(k) + (−x(k) + u(k)x(k))u(k + 1),

which results in the desired representation of x(k + 2).

This shows that the multi-step transition of a MTI system leads to a polynomial function
in tensor representation, whose parameter tensor follows from the parameter tensor F of
the MTI system. But with the given tensor representation of polynomials as introduced
in Section 2.3.1, the memory demand of the parameter tensor increases fast even though
they are represented in decomposed way, which is possible here since all operations used
are available, e.g. for CP tensors. Because of the multilinearity of the state equations,
multiplications of e.g. states could occur, which leads to a polynomial in the multi-step
transitions as illustrated by the Example 3.18. The multilinear state functions are applied
iteratively during simulation resulting in a maximal possible order of the monomials that
increases with the number of states and inputs and with the time horizon by (n + m)i−1

for x(k + i). The number of variables increases with n + im, since the initial state and an
input vector for each time step has to be provided. Thus, the monomial vector of (3.89)
has (n + im)(n + m)i−1 dimensions. Because of that, the memory demand of the rank-1
monomial tensor is already high with 2(n + im)(n + m)i−1 elements. This could lead to
problems in the representation of the multi-step transition, when large-scale systems and a
large number of time steps are investigated.
To get rid of this large storage effort, approximate solutions can be used, e.g. by applying the
Taylor approximation as introduced in Subsection 2.3.5. A quadratic Taylor approximation
in each step limits the maximal possible order of the polynomials to 2. Thus the memory
demand is reduced and it is possible to represent also larger time horizons. The drawback
is, that it does not give the exact solution as (3.89). The application of the Taylor approach
results in an approximation, where the sufficient accuracy depends on the application.

3.7 Distributed systems with MTI subsystems

In many applications plants are composed of several subsystems, like a heating system con-
tains e.g. of several boilers, consumers or storage tanks. Even though it was shown that
also very large systems can be represented in the MTI framework by using tensor decompo-
sition techniques, it is sometimes easier to divide the overall plant model into several parts
and model and identify the parameters of the smaller subsystems first. This distributes a
large modeling task to several smaller ones, which are easier to solve. After modeling and
identification, all the subsystems are connected to the overall model. Modelling a plant by
subsystems also allows a modular construction. This supports on the one hand the reusa-
bility of submodels for other plants. It is also easier to maintain the model. If a certain
subsystem of the overall plant changes, not the whole model has to be investigated but only

99

3 Modeling for multilinear systems

the affected submodel has to be changed. This can be done with less effort and prevents also
errors, because it is guaranteed that all other subsystems remain unchanged. The structure
of the plant often gives already an idea, how the plant can be divided into subsystems. Anot-
her approach, how to find a structure when focusing on control will be shown in Section 4.3.
A representation of distributed systems is introduced here, if the subsystems are modeled
as MTI systems. In [85] connections of MTI subsystems were already investigated with the
outcome that the resulting system is not necessarily multilinear. Serial, parallel and feed-
back connections were considered and conditions for the subsystems given, such that the
connection of the system still remains in the multilinear class. In the following subsections
the class of affine MTI systems is introduced that fulfills these conditions and it is shown how
the parameter tensor of the resulting system can be computed from the parameter tensors
of the subsystems, if they are connected in series, parallel or by feedback.

3.7.1 MTI subsystem representation

By construction in many applications plants can be divided into several subsystems, like
e.g. boilers or consumers in heating systems, that can be modeled independently in the first
step and connected afterwards. Here plants are focused on, where the particular subsystems
are modeled by an MTI system. The description of the subsystem and its connections is
adapted to the distributed system description of linear systems in [70]. In the distributed
representation by MTI subsystems, the plant is described by a collection of Nsub MTI models

Φ
(︂
x(i)

)︂
=
⟨︂

F(i)
⃓⃓⃓
M
(︂
x(i), u(i), s(i)

)︂ ⟩︂
, (3.91)

y(i) =
⟨︂

G(i)
⃓⃓⃓
M
(︂
x(i), u(i), s(i)

)︂ ⟩︂
, (3.92)

with i = 1, . . . , Nsub. The superscript (i) indicates, that e.g. the state x(i) belongs to
the ith subsystem. The same holds for the other signals u(i) and s(i) as well as for the
parameter tensors F(i) and G(i). The effects of other subsystems on the ith one are handled
as a disturbance coming from inside the overall plant and described by the signals s(i) ∈ Rms,i ,
where ms,i is the number of internal disturbances from other subsystems on subsystem i. The
connections between the subsystems, i.e. the description of the internal disturbances s(i),
are given by the coupling function⎛⎜⎜⎝

s(1)

...
s(Nsub)

⎞⎟⎟⎠ = h(y(1), . . . , y(Nsub), u(1), . . . , u(Nsub)), (3.93)

that depends on the inputs and outputs, of all subsystems and is of dimension
Nsub∑︁
i=1

ms,i.
These signals can influence the other subsystems. Thus, the whole plant is described by the
collection of Nsub MTI systems (3.91) and (3.92), describing the dynamics of the subsystems,
and the static coupling function (3.93).

Example 3.20 A plant is given that consists of Nsub = 3 subsystems, that are connected
as shown in Figure 3.14.

100

3 Modeling for multilinear systems

Sub-
system 2u(2)

Sub-
system 1u(1)

y(2)

y(1)

+

+ s(3)

Sub-
system 3

u(3)

y(3)

Figure 3.14: Plant decomposed into three subsystems

It is assumed that the dynamics of all three subsystems can be described by MTI models.
The first and the second subsystem both have an external input but are not influenced by
other subsystems. Thus, the number of internal disturbances is equal to zero for both sys-
tems ms,1 = ms,2 = 0 and s(1) and s(2) can be neglected in their system descriptions. This
results in the MTI systems

Φ
(︂
x(1)

)︂
=
⟨︂

F(1)
⃓⃓⃓
M
(︂
x(1), u(1)

)︂ ⟩︂
,

y(1) =
⟨︂

G(1)
⃓⃓⃓
M
(︂
x(1), u(1)

)︂ ⟩︂
,

for subsystem 1 and

Φ
(︂
x(2)

)︂
=
⟨︂

F(2)
⃓⃓⃓
M
(︂
x(2), u(2)

)︂ ⟩︂
,

y(2) =
⟨︂

G(2)
⃓⃓⃓
M
(︂
x(2), u(2)

)︂ ⟩︂
,

for subsystem 2. The first two subsystems act independently, but they both have an effect on
the third subsystem, such that the input s(3) has to be considered here for the MTI description
of the third subsystem

Φ
(︂
x(3)

)︂
=
⟨︂

F(3)
⃓⃓⃓
M
(︂
x(3), u(3), s(3)

)︂ ⟩︂
,

y(3) =
⟨︂

G(3)
⃓⃓⃓
M
(︂
x(3), u(3), s(3)

)︂ ⟩︂
.

The systems are coupled by the sum of the outputs of the first two subsystems that influences
the third subsystem. This is given by the coupling equation

s(3) = h(y(1), y(2)) = y(1) + y(2).

With that the whole system is described. If now e.g. the second subsystem changes, the
parameter tensor F(2) has to be adapted only, which makes maintenance much easier and
less sensitive to errors compared to adaption of the full system description. This has an even
larger effect for a plant with more subsystems.

3.7.2 Affine MTI systems

In the previous section plants that are composed of several MTI subsystems were introduced.
In the next sections the serial, parallel and feedback connections of two subsystems are

101

3 Modeling for multilinear systems

investigated. The focus here is on systems, that stay in the class of multilinear systems, i.e.
that fulfill the conditions stated in [85]. Because of that, a special class of MTI systems, i.e.
affine MTI systems, will be considered here. State space models of affine systems are of the
following type

Φ (x) = a(x) +
m∑︂

i=1
bi(x)ui, (3.94)

y = c(x), (3.95)

with nonlinear functions a(x), bi(x) : Rn → Rn, i = 1, . . . , m and the nonlinear output
function c(x) : Rn → Rp, [39]. From [85] follows that the series, parallel and feedback
connections remain in the multilinear class, if the subsystems, that are connected, belong to
the class of affine MTI systems.

Definition 3.1 (Affine MTI system) Affine MTI systems with n states, m inputs and p
outputs can be written in state space format within the tensor framework as

Φ (x) = a(x) +
m∑︂

i=1
bi(x)ui = ⟨ F | M(x, u) ⟩

= ⟨ A | M (x) ⟩ +
m∑︂

i=1
⟨ Bi | M (x) ⟩ ui, (3.96)

y = c(x) = ⟨ G | M (x, u) ⟩
= ⟨ C | M (x) ⟩ , (3.97)

with parameter tensors A ∈ R×(n)2×n, Bi ∈ R×(n)2×n of the state equation and the parameter
tensor C ∈ R×(n)2×p of the output equation. It is assumed, that the system has no direct
feedthrough, i.e. the current outputs do not depend on the current input variables but only
on the states.

The difference to general MTI systems is, that in the class of affine MTI systems no mul-
tiplications between inputs are allowed. Multiplicative combinations between all states and
all states and one input are still possible, such that this class is a subsystem of general MTI
systems but still extends the class of bilinear systems. The parameter tensors A, Bi and C of
the affine MTI system can be extracted as subtensors from the parameter tensors F and G of
general MTI systems. They are selected by fixing the first m indices belonging to the inputs
of the system by

F(i1, . . . , im, :, . . . , :) =

⎧⎪⎪⎨⎪⎪⎩
A , for ik = 1, k = 1, . . . , m,

Bj , for ij = 2, ik = 1, k = 1, . . . , m, k ̸= j,

0A , otherwise,
(3.98)

G(i1, . . . , im, :, . . . , :) =

⎧⎨⎩C , for ik = 1, k = 1, . . . , m,

0C , otherwise,
(3.99)

where 0A and 0C are tensors of zeros of same dimensions as A ∈ R×(n)2 and C ∈ R×(n)2,
respectively. All other parameters belonging to multiplicative combinations of inputs have
to be equal to zero.

102

3 Modeling for multilinear systems

Example 3.21 An affine MTI system with one state x and two inputs u1 and u2 is given
generally by

Φ (x)=a(x) + b1(x)u1 + b2(x)u2 =α(1) + α(2)x + (β1(1) + β1(2)x) u1 + (β2(1) + β2(2)x) u2,

y = c(x) = γ(1) + γ(2)x.

The state space model can be written as general MTI system with state equation

Φ (x) = ⟨ F | M (x, u1, u2) ⟩

β1(1) β1(2)

α(2)α(1)

0 0

β2(2)β2(1)

u1 xu1

x1

u1u2 xu1u2

xu2u2

= ,

and output equation

y = ⟨ G | M (x, u1, u2) ⟩

0 0

γ(2)γ(1)

0 0

00

u1 xu1

x1

u1u2 xu1u2

xu2u2

= .

In the example model no multiplications of the inputs u1 and u2 occur. Because of that,
the model belongs to the class of affine MTI systems. This gets also clear when looking at
the parameter tensor F of the system. The parameters belonging to the monomials u1u2
and xu1u2 are equal to zero. The parameter tensors of the affine MTI system representation
can be extracted from the parameter tensors F and G by (3.98) and (3.99) or directly from
the differential equations leading to the affine MTI system

Φ (x) = ⟨ A | M (x) ⟩ + ⟨ B1 | M (x) ⟩ u1 + ⟨ B2 | M (x) ⟩ u2

=
⟨︄(︄

α(1)
α(2)

)︄ ⃓⃓⃓⃓
⃓
(︄

1
x

)︄ ⟩︄
+
⟨︄(︄

β1(1)
β1(2)

)︄ ⃓⃓⃓⃓
⃓
(︄

1
x

)︄ ⟩︄
u1 +

⟨︄(︄
β2(1)
β2(2)

)︄ ⃓⃓⃓⃓
⃓
(︄

1
x

)︄ ⟩︄
u2,

y = ⟨ C | M (x) ⟩ =
⟨︄(︄

γ(1)
γ(2)

)︄ ⃓⃓⃓⃓
⃓
(︄

1
x

)︄ ⟩︄
.

Affine systems were defined for the general MIMO case with m inputs and p outputs. In
the next sections connections of subsystems that are modeled by affine MTI systems are
investigated. Thus, the description of the affine MTI systems have to be extended by internal

103

3 Modeling for multilinear systems

disturbance inputs s(i) as shown in Section 3.7.1 for general MTI systems. This is done in the
same way than for the other inputs, resulting in the MTI representation of the jth subsystem

Φ
(︂
x(j)

)︂
= a(j)(x(j)) +

mj∑︂
i=1

b(j)
i (x(j))u(j)

i +
ms,j∑︂
i=1

b(j)
s,i (x(j))s(j)

i (3.100)

=
⟨︂

A(j)
⃓⃓⃓
M
(︂
x(j)

)︂ ⟩︂
+

mj∑︂
i=1

⟨︂
B(j)

i

⃓⃓⃓
M
(︂
x(j)

)︂ ⟩︂
u

(j)
i +

ms,j∑︂
i=1

⟨︂
B(j)

s,i

⃓⃓⃓
M
(︂
x(j)

)︂ ⟩︂
s

(j)
i ,

y(j) =
⟨︂

C(j)
⃓⃓⃓
M
(︂
x(j)

)︂ ⟩︂
. (3.101)

3.7.3 Augmentation of affine MTI systems

In this and the following subsections serial, parallel and feedback connections of two affine
MTI systems given by (3.100) and (3.101) are investigated, where x(j), j = 1, 2 are the state
vectors of the two systems, respectively. The goal is to describe the connected system as an
affine state space model

Φ (x) = Φ
(︄(︄

x(1)

x(2)

)︄)︄
=
⟨︂

A
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
+

m∑︂
i=1

⟨︂
Bi

⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
ui, (3.102)

y =
⟨︂

C
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
, (3.103)

where the state vector consists of the states of the two subsystems. The parameter tensors
are composed of the parameter tensors of the subsystems. The resulting system has external
inputs ui, i = 1, . . . , m only. All internal connections s(j) are resolved and included in the
overall model structure. To merge the state equations according to the different types of
connections at first the submodel functions have to be extended, such that their monomial
tensors does not depend on x(1) or x(2) only but on both states, i.e. the parameter tensor
has to be extended such that⟨︂

A(j)
⃓⃓⃓
M
(︂
x(j)

)︂ ⟩︂
=
⟨︂

Ã(j)
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
, (3.104)⟨︂

B(j)
i

⃓⃓⃓
M
(︂
x(j)

)︂ ⟩︂
=
⟨︂

B̃(j)
i

⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
, i = 1, . . . , mj, (3.105)⟨︂

B(j)
s,i

⃓⃓⃓
M
(︂
x(j)

)︂ ⟩︂
=
⟨︂

B̃(j)
s,i

⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
, i = 1, . . . , ms,j (3.106)⟨︂

C(j)
⃓⃓⃓
M
(︂
x(j)

)︂ ⟩︂
=
⟨︂

C̃(j)
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
, (3.107)

with j = 1, 2. At first this extension of the parameter tensor is described for scalar functions
and afterwards generalized to vector functions like the system function used here. Therefore,
consider a scalar multilinear function, that depends on n1 variables

h(x(1)) =
⟨︂

H
⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
.

To add a dependence on variables x(2) ∈ Rn2 the function h(x(1)) is multiplied by 1, where
the 1 is expressed in the tensor framework. With the multiplication approach of polynomials
by operational tensors introduced in Section 2.3.2 the polynomial h(x(1)) is extended by

h(x(1), x(2)) = 1 ·
⟨︂

H
⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
=
⟨︂

1n2

⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂ ⟨︂
H
⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
=
⟨︂

1n2 ◦ H
⃓⃓⃓
M
(︂
x(2)

)︂
◦ M

(︂
x(1)

)︂ ⟩︂
=
⟨︂

1n2 ◦ H
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
.

104

3 Modeling for multilinear systems

The tensor 1n2 has to be multiplied from the left to the function to get a monomial tensor
that depends on both states like M

(︂
x(1), x(2)

)︂
, since for the monomial tensor holds

M
(︂
x(2)

)︂
◦ M

(︂
x(1)

)︂
=
[︄(︄

1
x(2)

n2

)︄
, . . . ,

(︄
1

x
(2)
1

)︄
,

(︄
1

x(1)
n1

)︄
, . . . ,

(︄
1

x
(1)
1

)︄]︄
= M

(︂
x(1), x(2)

)︂
.

Thus
⟨︂

H
⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
is equal to

⟨︂
H̃
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
with the parameter tensor

H̃ = 1n2 ◦ H.

If the function depends on x(2) and the parameter tensor should be expressed in terms of a
monomial tensor M

(︂
x(1), x(2)

)︂
this is done by⟨︂

H
⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
=
⟨︂

H
⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂ ⟨︂
1n1

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
=
⟨︂

H ◦ 1n1

⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
=
⟨︂

H̃
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
. (3.108)

This approach can be applied to compute the parameter tensors Ã(j), B̃(j)
i , B̃(j)

s,i and C̃(j)

in (3.104) to (3.107). The difference is, that in the case of affine systems, vector functions,
not scalar functions are used. The extension is applied to each component of the vector
function, e.g. to each component a(1)(i)(x(1)) of the vector function

a(1)(x(1)) =
(︂
a(1)(1)(x(1)) · · · a(n1)(i)(x(1))

)︂T
.

The parameter tensor of one component of the vector function is given by selecting a sub-
tensor of a(1)(x(1)) by fixing its last dimension and is computed as

a(1)(i)(x(1)) =
⟨︂

A(1)(:, . . . , :, i)
⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
=
⟨︂

A(1)×̄n1+1en1,i

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
.

where en1,i is the ith unit vector of length n1. Each component of the vector function is a
scalar function and thus it can be extended as described before by⟨︂

A(1)×̄n1+1en1,i

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
=
⟨︂

1n2 ◦
(︂
A(1)×̄n1+1en1,i

)︂ ⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
,

with i = 1, . . . , n1. The extensions of each component are concatenated in the last dimension
again, which gives a closed expression of the parameter tensor of the extended function

Ã(1) =
n1

n1+n2+1
j=1

1n2 ◦
(︂
A(1)×̄n1+1en1,j

)︂
. (3.109)

The dependence on x(2) is added to the other functions of the first system in the same way
by

B̃(1)
i =

n1

n1+n2+1
j=1

1n2 ◦
(︂
B(1)

i ×̄n1+1en1,j

)︂
, i = 1, . . . , m1, (3.110)

B̃(1)
s,i =

n1

n1+n2+1
j=1

1n2 ◦
(︂
B(1)

s,i ×̄n1+1en1,j

)︂
i = 1, . . . , ms,1, (3.111)

C̃(1) =
n1

n1+n2+1
j=1

1n2 ◦
(︂
C(1)×̄n1+1en1,j

)︂
. (3.112)

105

3 Modeling for multilinear systems

The approach is also applied for the second system. Here the tensor (3.82) has to be multi-
plied from the right to the original parameter tensor as in (3.108) leading to

Ã(2) =
n2

n1+n2+1
j=1

(︂
A(2)×̄n2+1en2,j

)︂
◦ 1n1 , (3.113)

B̃(2)
i =

n2

n1+n2+1
j=1

(︂
B(2)

i ×̄n2+1en2,j

)︂
◦ 1n1 , i = 1, . . . , m2, (3.114)

B̃(2)
s,i =

n2

n1+n2+1
j=1

(︂
B(2)

s,i ×̄n2+1en2,j

)︂
◦ 1n1 , i = 1, . . . , ms,2, (3.115)

C̃(2) =
n2

n1+n2+1
j=1

(︂
C(2)×̄n2+1en2,j

)︂
◦ 1n1 . (3.116)

With these extensions the serial, parallel and feedback connection of affine MTI systems can
be described.

3.7.4 Serial connection

Two affine MTI subsystems are connected in series as depicted in Figure 3.15.

System 1
x(1), A(1),
B(1)

i , C(1)

System 2
x(2), A(2),
B(2)

s,i, C(2)

u(1) y(1) = s(2) y(2)

Figure 3.15: Serial connection

The first system has m1 external inputs u(1), that are also the inputs of the overall system

u = u(1),

and is not influenced by other subsystems ms,1 = 0. Because of the serial connection

s(2) = y(1),

the second system has no external inputs (m2 = 0), but the number p1 of outputs of the first
system has to be equal to the number ms,2 of internal disturbances of the second system.
The overall output is equal to the output of system 2

y = y(2).

For the derivation of the connected subsystem it is easier to consider an affine SISO MTI
systems first. For the two subsystems, the state space model (3.100) and (3.101) simplifies
to the state equations

Φ
(︂
x(1)

)︂
=
⟨︂

A(1)
⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
+
⟨︂

B(1)
1

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
u

(1)
1 , (3.117)

Φ
(︂
x(2)

)︂
=
⟨︂

A(2)
⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
+
⟨︂

B(2)
s,1

⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
s

(1)
2 , (3.118)

106

3 Modeling for multilinear systems

and the output equations

y(j) =
⟨︂

C(j)
⃓⃓⃓
M
(︂
x(j)

)︂ ⟩︂
, j = 1, 2, (3.119)

of the two subsystems, where the output functions are scalar with parameter tensors C(j) of
dimension R×(n)2×1. Inserting the coupling function in the state equations of the two systems
gives

Φ
(︂
x(1)

)︂
=
⟨︂

A(1)
⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
+
⟨︂

B(1)
1

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
u

(1)
1 , (3.120)

Φ
(︂
x(2)

)︂
=
⟨︂

A(2)
⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
+
⟨︂

B(2)
s,1

⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂ ⟨︂
C(1)

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
, (3.121)

y(2) =
⟨︂

C(2)
⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
. (3.122)

To get an overall description of the system (3.102) and (3.103) with states x =
(︂
x(1) x(2)

)︂T

the extended versions (3.109), (3.113) and (3.110) of parameter tensors A(j) and B(1)
1 have to

be used. For the calculation of the state equation of the second subsystem the multiplica-
tion of a scalar function

⟨︂
C(1)

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
∈ R1 and a vector function

⟨︂
B(2)

s,1

⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
of

dimension Rn2 is computed by⟨︂
B(2)

s,1

⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂ ⟨︂
C(1)

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
=
⟨︂

D
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
. (3.123)

The components

b
(2)
s,1(i)(x(2)) =

⟨︂
B(2)

s,1×̄n2+1ei

⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
,

with i = 1, . . . , n2 of

b(2)
s,1(x(2)) =

(︂
b

(2)
s,1(1)(x(2)) · · · b

(2)
s,1(n2)(x(2))

)︂T
=
⟨︂

B(2)
s,1

⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
are multiplied by

⟨︂
C(1)

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
leading to

⟨︂
B(2)

s,1×̄n2+1ei

⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂⟨︂
C(1)

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
=
⟨︂ (︂

B(2)
s,1×̄n2+1ei

)︂
◦ C(1)

⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
.

To get the parameter tensor of (3.123) the results of the elementwise multiplications are
concatenated in the last dimension

D =
n2

n1+n2+1
j=1

(︂
B(2)

s,1×̄n2+1ej

)︂
◦ C(1). (3.124)

With that, the second state equation (3.121) is written as

Φ
(︂
x(2)

)︂
=
⟨︂

Ã(2)
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
+
⟨︂

D
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
=
⟨︂

Ã(2) + D
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
.

107

3 Modeling for multilinear systems

The parameter tensor A of the resulting system (3.102) and (3.103) is computed by conca-
tenating the extended tensors Ã(1) and Ã(2) + D in the last dimension

A = Ã(1) �n1+n2+1
(︂
Ã(2) + D

)︂
.

With the definition of the concatenation operation this gives the desired result

A(:, . . . , :, 1 : n1) = Ã(1),

A(:, . . . , :, n1 + 1 : n1 + n2) = Ã(2) + D.

The state equations (3.120) and (3.121) show, that the states of the first system are influenced
by the input of the overall system only. The second subsystem is not influenced from the
outside. Because of that zeros have be added to the extended parameter tensor of the first
system

B1 = B̃(1)
1 �n1+n2+1 0B̃(2)

s,1
∈ R×(n1+n2)2×n1+n2 ,

with a tensor full of zeros 0B̃(2)
s,1

, that has the same dimension R×(n1+n2)2×n2 than B̃(2)
s,1, to get

the parameter tensor of the overall system. The output of the connected system is equal to
the output of the second subsystem, such that the parameter tensor of the output equation
is given by

C = C̃(2).

This defines the parameter tensors of the connected overall affine MTI system for the SISO
case. The concept is adapted to systems with multiple inputs and outputs as described in
the following.
The serial connection of two affine MIMO MTI systems results in the state space model

Φ
(︂
x(1)

)︂
=
⟨︂

A(1)
⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
+

m1∑︂
i=1

⟨︂
B(1)

i

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
u

(1)
i , (3.125)

Φ
(︂
x(2)

)︂
=
⟨︂

A(2)
⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
+

ms,2∑︂
i=1

⟨︂
B(2)

s,i

⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂⟨︂
C(1)×̄p1+1ep1,i

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
, (3.126)

y(2) =
⟨︂

C(2)
⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
, (3.127)

where C(1)×̄p1+1ep1,i describes the parameter tensor of the ith component

y
(1)
i =

⟨︂
C(1)(:, . . . , :, i)

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
, i = 1, . . . , p1,

of the output equation of system 1. The multiplication⟨︂
B(2)

s,i

⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂ ⟨︂
C(1)×̄p1+1ep1,i

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
=
⟨︂

Di

⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
is computed analogous to (3.124) with parameter tensor

Di =
n2

n1+n2+1
j=1

(︂(︂
B(2)

i ×̄n2+1en2,j

)︂
◦
(︂
C(1)×̄p1+1ep1,i

)︂)︂
,

108

3 Modeling for multilinear systems

for i = 1, . . . , ms,2, such that the second state equation is written as

Φ
(︂
x(2)

)︂
=
⟨︂

Ã(2)
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
+

ms,2∑︂
i=1

⟨︂
Di

⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
=
⟨︄

Ã(2) +
m2∑︂
i=1

Di

⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︄
.

As in the SISO case the parameter tensor A of the overall system follows from the concate-
nation

A = Ã(1) �n1+n2+1

(︄
Ã(2) +

ms,2∑︂
i=1

Di

)︄
, (3.128)

in the last dimension. The tensors B(1)
i are extended, such that they depend on both state

variables and zeros are added, because the inputs do not influence the second state

Bi = B̃(1)
i �n1+n2+1 0B̃(2)

s,i
, i = 1, . . . , m1. (3.129)

The output of the overall system is the output of the second system and thus the parameter
tensor of the output equation is

C = C̃(2). (3.130)

By (3.128) to (3.130) all parameter tensors are derived to describe the state space mo-
del (3.102) and (3.103) of the serial connection of two affine MTI subsystems, that are
summarized in the following Proposition.

Proposition 3.3 (Serial connection of two affine MTI systems) The serial connec-
tion of two affine MTI systems given in a tensor structure (3.100) and (3.101) results in an
affine MTI system (3.102) and (3.103), where the parameter tensors of the connected system
follow from the parameter tensors of the subsystems by

A =Ã(1) �n1+n2+1

⎛⎝Ã(2) +
ms,2∑︂
i=1

n2

n1+n2+1
j=1

(︂(︂
B(2)

i ×̄n2+1en2,j

)︂
◦
(︂
C(1)×̄p1+1ep1,i

)︂)︂⎞⎠
Bi =B̃(1)

i �n1+n2+1 0B̃(2)
s,i

, i = 1, . . . , m1,

C =C̃(2).

Example 3.22 The approach of connecting two MTI systems in series should be illustrated

109

3 Modeling for multilinear systems

by an example of two affine SISO MTI systems of first order with state equations

Φ
(︂
x(1)

)︂
=
⟨︂

A(1)
⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
+
⟨︂

B(1)
1

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
u

(1)
1 ,

=
⟨︄(︄

a(1)(1)
a(1)(2)

)︄ ⃓⃓⃓⃓
⃓
(︄

1
x(1)

)︄ ⟩︄
+
⟨︄(︄

b(1)(1)
b(1)(2)

)︄ ⃓⃓⃓⃓
⃓
(︄

1
x(1)

)︄ ⟩︄
u

(1)
1

= a(1)(1) + a(1)(2)x(1) + b(1)(1)u(1)
1 + b(1)(2)x(1)u

(1)
1 , (3.131)

Φ
(︂
x(2)

)︂
=
⟨︂

A(2)
⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
+
⟨︂

B(2)
s,1

⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
s

(1)
2 ,

=
⟨︄(︄

a(2)(1)
a(2)(2)

)︄ ⃓⃓⃓⃓
⃓
(︄

1
x(2)

)︄ ⟩︄
+
⟨︄(︄

b(2)
s (1)

b(2)
s (2)

)︄ ⃓⃓⃓⃓
⃓
(︄

1
x(2)

)︄ ⟩︄
s

(1)
2

= a(2)(1) + a(2)(2)x(2) + b(2)
s (1)s(1)

2 + b(2)
s (2)x(2)s

(1)
2 , (3.132)

and output equations

y(j) =
⟨︂

C(j)
⃓⃓⃓
M
(︂
x(j)

)︂ ⟩︂
=
⟨︄(︄

c(j)(1)
c(j)(2)

)︄ ⃓⃓⃓⃓
⃓
(︄

1
x(j)

)︄ ⟩︄
= c(j)(1) + c(j)(2)x(j), j = 1, 2. (3.133)

As first step the parameter tensors A(1), B(1)
1 are extended to add the dependence on x(2)

by (3.109) and (3.110)

Φ
(︂
x(1)

)︂
=
⟨︂

Ã(1)
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
+
⟨︂

B̃(1)
1

⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
u

(1)
1 ,

=
⟨︄(︄

a(1)(1) a(1)(2)
0 0

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x(1)

x(2) x(1)x(2)

)︄ ⟩︄
+
⟨︄(︄

b(1)(1) b(1)(2)
0 0

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x(1)

x(2) x(1)x(2)

)︄ ⟩︄
u

(1)
1 .

Due to the serial connection the output of the first system is used as input to the second
system. With the extension of A(2) by (3.113) and the multiplication (3.124) by operational
tensors, the second state equation reads

Φ
(︂
x(2)

)︂
=
⟨︂

Ã(2)
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
+
⟨︂

B(2)
s,1

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂ ⟨︂
C(1)

⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
=
⟨︄(︄

a(2)(1) 0
a(2)(2) 0

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x(1)

x(2) x(1)x(2)

)︄ ⟩︄
+
⟨︄(︄

b(2)
s (1)

b(2)
s (2)

)︄ ⃓⃓⃓⃓
⃓
(︄

1
x(2)

)︄ ⟩︄ ⟨︄(︄
c(1)(1)
c(1)(2)

)︄ ⃓⃓⃓⃓
⃓
(︄

1
x(1)

)︄ ⟩︄

=
⟨︄(︄

a(2)(1) 0
a(2)(2) 0

)︄
+
(︄

b(2)
s (1)c(1)(1) b(2)

s (1)c(1)(2)
b(2)

s (2)c(1)(1) b(2)
s (2)c(1)(2)

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x(1)

x(2) x(1)x(2)

)︄ ⟩︄
. (3.134)

The state equations are merged by concatenating the parameter tensors (3.128) and (3.129).
This gives the overall state equation of the affine MTI systems of the serial connection by

110

3 Modeling for multilinear systems

0 0

a(1)(2)a(1)(1)

a(2)(2)+
b

(2)
s (2)c(1)(1) b

(2)
s (2)c(1)(2)

b
(2)
s (1)c(1)(2)

a(2)(1)+
b

(2)
s (1)c(1)(1)

x(2) x(1)x(2)

x(1)1

Φ
(︄(︄

x(1)

x(2)

)︄)︄
=

0 0

b(1)(2)b(1)(1)

0 0

00

x(2) x(1)x(2)

x(1)1

u.+

The example shows nicely that the first frontal slice of A is equal to Ã(1) and the second frontal
slice is equal to the parameter tensor of the second state equation Ã(2) + D. Considering the
tensor B1 the first frontal slice is B(1)

1 , the second slice is full of zeros resulting from (3.129).
The output of the connected system is the output of the second system resulting in the output
equation with parameter tensor (3.130)

y =
⟨︄(︄

c(2)(1) 0
c(2)(2) 0

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x(1)

x(2) x(1)x(2)

)︄ ⟩︄
.

3.7.5 Parallel connection

When connecting the two subsystems (3.100) and (3.101) in parallel, both systems are fed
with the same external input. The output is the sum of the outputs of the subsystems

u =u(1) = u(2), (3.135)
y =y(1) + y(2), (3.136)

as shown in Figure 3.16. There are no internal connections between the systems, such
that ms,1 = ms,2 = 0.
Here MIMO systems are considered directly. The SISO case is included and can be derived
by setting the number of inputs and outputs of the systems to 1. In the general MIMO
case investigated here, it has to be ensured for the parallel connection, that the number
of inputs and the number of outputs are equal, i.e. m1 = m2 and p1 = p2. Inserting the

111

3 Modeling for multilinear systems

+
+

System 1
x(1), A(1), B(1)

i , C(1)

System 2
x(2), A(2), B(2)

i , C(2)

u = u(1) = u(2) y = y(1) + y(2)

Figure 3.16: Parallel connection

constraints (3.135) and (3.136) in the state space models of both systems (3.100) and (3.101)
yields

Φ
(︂
x(1)

)︂
=
⟨︂

A(1)
⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
+

m1∑︂
i=1

⟨︂
B(1)

i

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
u

(1)
i , (3.137)

Φ
(︂
x(2)

)︂
=
⟨︂

A(2)
⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
+

m2∑︂
i=1

⟨︂
B(2)

i

⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
u

(2)
i , (3.138)

y =
⟨︂

C(1)
⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
+
⟨︂

C(2)
⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
. (3.139)

To determine the parameter tensors of the overall state space model (3.102) and (3.103) the
extended parameter tensors (3.104) to (3.107) depending on both state vectors are used. The
state equations (3.137) and (3.138) are simply connected by concatenating their parameter
tensors

A =Ã(1) �n1+n2+1 Ã(2), (3.140)
Bi =B̃(1)

i �n1+n2+1 B̃(2)
i , i = 1, . . . , m1. (3.141)

The output equation can be simplified, when inserting the parameter tensors depending
on x(1) and x(2) leading to

y =
⟨︂

C̃(1)
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
+
⟨︂

C̃(2)
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
=
⟨︂

C̃(1) + C̃(2)
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
,

which gives the parameter tensor of the output equation of the connected system as

C = C̃(1) + C̃(2). (3.142)

Thus, the resulting parameter tensors can be summarized in the following proposition.

Proposition 3.4 (Parallel connection of affine MTI systems)The parallel connection
of two affine MTI systems given in a tensor structure (3.100) and (3.101) is still an affine

112

3 Modeling for multilinear systems

MTI system (3.102) and (3.103), where the parameter tensors are given by

A =Ã(1) �n1+n2+1 Ã(2),

Bi =B̃(1)
i �n1+n2+1 B̃(2)

i , i = 1, . . . , m1,

C =C̃(1) + C̃(2).

Example 3.23 Two first order affine MTI systems (3.131) and (3.132) introduced in Ex-
ample 3.22 are connected in parallel in this example. To derive the state space model of
the connected system the tensors A(j), B(j)

1 and C(j) have to be extended according to (3.109)
to (3.116), which is shown here exemplarily for the tensors A(j)

Ã(1) =
(︄

a(1)(1) a(1)(2)
0 0

)︄
, Ã(2) =

(︄
a(2)(1) 0
a(2)(2) 0

)︄
.

The tensors B(j)
1 and C(j) are extended in the same way. To get the parallel connection the ex-

tended tensors of the state equations of the two systems are concatenated (3.140) and (3.141)
leading to the overall state equation

0 0

a(1)(2)a(1)(1)

a(2)(2) 0

0a(2)(1)

x(2) x(1)x(2)

x(1)1

Φ
(︄(︄

x(1)

x(2)

)︄)︄
=

0 0

b(1)(2)b(1)(1)

b(2)(2) 0

0b(2)(1)

x(2) x(1)x(2)

x(1)1

u.+

The outputs of the two subsystems are added (3.142), which results in the output equation

y =
⟨︂

C̃(1)
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
+
⟨︂

C̃(2)
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
=
⟨︄(︄

c(1)(1) c(1)(2)
0 0

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x(1)

x(2) x(1)x(2)

)︄ ⟩︄
+
⟨︄(︄

c(2)(1) 0
c(2)(2) 0

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x(1)

x(2) x(1)x(2)

)︄ ⟩︄

=
⟨︄(︄

c(1)(1) + c(2)(1) c(1)(2)
c(2)(2) 0

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x(1)

x(2) x(1)x(2)

)︄ ⟩︄
.

113

3 Modeling for multilinear systems

3.7.6 Feedback connection

The third connection investigated is a feedback between two affine MTI systems. The feed-
back structure is depicted in Figure 3.17, such that the subsystems have no external inputs,
which gives m1 = m2 = 0. The inputs of the subsystems follow from the outputs of the
other subsystem respectively, leading to the coupling equations

s(1) = y(2), (3.143)
s(2) = y(1). (3.144)

Thus, the number of inputs of the first system must be equal to the number of outputs of
the second system (ms,1 = p2) and the number of outputs of the first system must be equal
to number of inputs of the second system (p1 = ms,2). The output of the first system should
be the output of the overall system

y = y(1). (3.145)

System 1
x(1), A(1), B(1)

s,i, C(1)

System 2
x(2), A(2), B(2)

s,i, C(2)

y

Figure 3.17: Feedback connection

With the feedback connection (3.143) to (3.145) the model is given by

Φ
(︂
x(1)

)︂
=
⟨︂

A(1)
⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
+

ms,1∑︂
i=1

⟨︂
B(1)

s,i

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂⟨︂
C(2)×̄p2+1ep2,i

⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
,

Φ
(︂
x(2)

)︂
=
⟨︂

A(2)
⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
+

ms,2∑︂
i=1

⟨︂
B(2)

s,i

⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂⟨︂
C(1)×̄p1+1ep1,i

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
,

y =
⟨︂

C(1)
⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
.

As in Subsection 3.7.4 with (3.123) the multiplications of the vector functions⟨︂
B(1)

s,i

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂ ⟨︂
C(2)×̄p2+1ep2,i

⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
=
⟨︂

D(1)
i

⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
, (3.146)⟨︂

B(2)
s,i

⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂ ⟨︂
C(1)×̄p1+1ep1,i

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂
=
⟨︂

D(2)
i

⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
, (3.147)

114

3 Modeling for multilinear systems

with i = 1, . . . , ms,j, j = 1, 2 respectively are computed elementwise by operational tensors
leading to

D(1)
i =

n1

n1+n2+1
j=1

(︂(︂
C(2)×̄p2+1ep2,i

)︂
◦
(︂
B(1)

s,i ×̄n1+1en1,j

)︂)︂
, (3.148)

D(2)
i =

n2

n1+n2+1
j=1

(︂(︂
B(2)

s,i ×̄n2+1en2,j

)︂
◦
(︂
C(1)×̄p1+1ep1,i

)︂)︂
. (3.149)

Using that as well as the extended parameter tensors (3.104) and (3.105), the state equations
are simplified to

Φ
(︂
x(1)

)︂
=
⟨︄

Ã(1) +
ms,1∑︂
i=1

D(1)
i

⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︄
, (3.150)

Φ
(︂
x(2)

)︂
=
⟨︄

Ã(2) +
ms,2∑︂
i=1

D(2)
i

⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︄
. (3.151)

To merge the state equations to get the description with respect to the common state vec-
tor x =

(︂
x(1) x(2)

)︂T
, the tensor A is constructed by the concatenation

A =
(︄

Ã(1) +
m1∑︂
i=1

D(1)
i

)︄
�n1+n2+1

(︄
Ã(2) +

m2∑︂
i=1

D(2)
i

)︄
. (3.152)

The overall system has no external inputs, i.e. m = 0. Because of that no parameter tensor Bi

has to be constructed for the system description. The output of the overall system is equal
to the output of the first system, resulting in the parameter tensor of the output equation

C = C̃(1). (3.153)

The following proposition summarizes the results presented before.

Proposition 3.5 (Feedback connection of two affine MTI system) The feedback
connection of two affine MTI systems in a tensor structure (3.100) and (3.101) results in
an affine MTI system with no external inputs

Φ
(︄(︄

x(1)

x(2)

)︄)︄
=
⟨︂

A
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
,

y =
⟨︂

C
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
.

The parameter tensors of the connected system are computed from the subsystems by

A =
(︄

Ã(1) +
m1∑︂
i=1

D(1)
i

)︄
�n1+n2+1

(︄
Ã(2) +

m2∑︂
i=1

D(2)
i

)︄
,

C = C̃(1)

with tensors D(1)
i and D(2)

i given by (3.148) and (3.149).

115

3 Modeling for multilinear systems

Example 3.24 Example 3.22 introduced two first order affine MTI systems. Inserting
the constraints of the feedback connection, give the state equations that can be summarized
by (3.146) to (3.152). The equation of the first state results in

Φ
(︂
x(1)

)︂
=
⟨︂

Ã(1)
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
+
⟨︂

B(1)
s,1

⃓⃓⃓
M
(︂
x(1)

)︂ ⟩︂ ⟨︂
C(1)

⃓⃓⃓
M
(︂
x(2)

)︂ ⟩︂
=
⟨︄(︄

a(1)(1) a(1)(2)
0 0

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x(1)

x(2) x(1)x(2)

)︄ ⟩︄
+
⟨︄(︄

b(1)
s (1)

b(1)
s (2)

)︄ ⃓⃓⃓⃓
⃓
(︄

1
x(1)

)︄ ⟩︄ ⟨︄(︄
c(2)(1)
c(2)(2)

)︄ ⃓⃓⃓⃓
⃓
(︄

1
x(2)

)︄ ⟩︄

=
⟨︄(︄

a(1)(1) a(1)(2)
0 0

)︄
+
(︄

c(2)(1)b(1)
s (1) c(2)(1)b(1)

s (2)
c(2)(2)b(1)

s (1) c(2)(2)b(1)
s (2)

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x(1)

x(2) x(1)x(2)

)︄ ⟩︄
.

The description of the second state is the same than in the serial case (3.134), because the
subsystem has no external inputs and the output of the first system is the input of the second
system here, too. To get the parameter tensors of the overall feedback system the parameter
tensors of the two state equations are concatenated by (3.152) resulting in

c(2)(2)b(1)
s (1) c(2)(2)b(1)

s (2)

a(1)(2)+
c(2)(1)b(1)

s (2)
a(1)(1)+

c(2)(1)b(1)
s (1)

a(2)(2)+
b

(2)
s (2)c(1)(1) b

(2)
s (2)c(1)(2)

b
(2)
s (1)c(1)(2)

a(2)(1)+
b

(2)
s (1)c(1)(1)

x(2) x(1)x(2)

x(1)1

Φ
(︄(︄

x(1)

x(2)

)︄)︄
= .

The output of the feedback system is equal to the output of the first subsystem, such that the
output equation is written with (3.153) as

y =
⟨︂

C̃(1)
⃓⃓⃓
M
(︂
x(1), x(2)

)︂ ⟩︂
=
⟨︄(︄

c(1)(1) c(1)(2)
0 0

)︄ ⃓⃓⃓⃓
⃓
(︄

1 x(1)

x(2) x(1)x(2)

)︄ ⟩︄
.

3.8 Open questions

The chapter showed, how the four proposed decomposition methods are applied to represent
MTI models. The advantages and drawbacks of the particular methods are highlighted.
Different tools for the work with MTI models have been introduced, that use the decomposed
MTI model structure. But with the developed methods also some new research questions
arise, that are left open.
On the one hand the future developments in the mathematical field of tensor calculus have
to be observed. The tensor methods are currently an active field of research, where it is
expected, that new methods and operations are published in the future. The applicability of
these methods to MTI systems has to be checked to get even more efficient model representa-
tions. Especially of interest are decomposition methods that preserve the sparsity structure

116

3 Modeling for multilinear systems

of the original tensor. The positions with zero entries in the original tensor of the MTI mo-
del should also contain zeros after a low-rank approximation. This setting guarantees that
by low-rank approximation no monomials can influence the model dynamics that are not
contained in the original model. This could lead to errors in the model dynamics. Structural
constraints on tensors are possible by structured data fusion introduced by [104]. But this
does not allow the desired operations yet. Furthermore since the translation from CP to the
other decomposition techniques is not optimal regarding the storage effort, conversion from
the state equations to the other decomposition techniques are interesting without using the
CP decomposition as intermediate step.
Another open point, that follows from this chapter is the simulation of MTI models. It
has been shown in Section 3.2, that the right hand sides of an MTI state space model are
evaluated efficiently based in the decomposition factors, if the parameter tensors are given
in one of the four decomposition formats. But during simulation of continuous-time models
standard integration routines are used. Here the question arises, if it possible to use the
decomposed model structure also inside the integration routines to get a fast and robust
simulation. Therefore algorithms like the symbolic Runge-Kutta should be investigated and
reformulated by using the tensor approach, [103]. Tools like the multi-step transition of
Section 3.6 may help for that, since state evaluations at different time instants are necessary
for the integration routines.
As pointed out before, a more efficient polynomial representation would have a positive
effect here e.g. on the multi-step transitions. For large-scale systems and many time steps
the number of dimensions for the parameter tensor gets very large, which could lead to
problems in memory demand even though the tensors are given in a decomposed form.
Another tensor representation of polynomials would lead to improvements in this area.
A property of MTI systems is, that they are not closed regarding different connections or the
multi-step transitions. This is a huge difference to linear models, where connections or multi-
step transitions are still given by linear functions. As shown in this chapter for MTI models
this holds e.g. for feedback connections only for subclasses like the affine MTI systems or
results in higher order polynomials like in the multi-step transition. An open question is, if
other MTI model representations e.g. by similarity transformations are possible, such that
e.g. also the feedback connection of general MTI systems stays in the multilinear class. This
would be beneficial, since no other concepts like polynomials would have to be considered
resulting in simpler computations with MTI systems.
In this thesis MTI models are derived by a grey-box modeling approach, [68]. The dynamical
behavior of the plants are described by first physical principles as e.g. in Section 5.1 and
rearranged in the MTI model structure with decomposed tensors afterwards. The model
parameters are identified by a parameter estimation with measurement data, i.e. the para-
meters in the fixed model structure given by the physical equations are estimated, such that
the simulated model outputs fit well to the output measurements of the plant, if they are fed
with the same inputs. Here standard optimization routines for nonlinear systems are used
for that. It is open to adapt these optimization routines to the multilinear model structure
and the representation by decomposed tenors to improve the algorithms e.g. regarding speed
and convergence.

117

3 Modeling for multilinear systems

Another open point concerning system identification is the black-box identification for MTI
models. In black-box identification input-output measurements are used to estimate a state
space model. The system is taken as black-box without any knowledge on the underlying
physical relationships. For linear models very efficient algorithms are available, [108]. For
MTI models no black-box identification algorithm is available. First results were presented
in [7, 8, 24], such that it is still an open point. It would be very beneficial, because before
applying a model-based controller method, a model of the plant has to be identified, which
can be complicated without a black-box approach. If an MTI model could be identified just
by using measurement data, this would simplify the whole modeling process and thus widen
the application area of the MTI models and the presented tools and design methods.
Additionally further analysis of the class of MTI models is open. Properties like stability,
controllability or observability are not investigated yet. Furthermore the design of observers
of MTI systems is interesting. All these concepts are defined for linear and nonlinear systems.
But with a special focus on MTI systems they are still open and would help for system
analysis or controller design if the MTI subclass assumption brings more efficient algorithms
or better analysis methods compared to the general nonlinear ones. With the linearization
approach of Section 3.3 only local assumptions are possible by applying the concepts of linear
system theory.
All decomposition methods investigated here are applied to continuous- or discrete-time
models. No e.g. hybrid models are considered as in [85]. The introduced concepts should
be applicable to these class of models too, but the validity has to be checked. Furthermore,
also other application areas are possible like in diagnosis with qualitative models, where the
simulation of stochastic automata has a similar structure than the MTI models, such that
it might be expressed in the tensor framework, [65, 77, 79]. The reusability of state space
models in different application areas like control and diagnosis was shown for the linear case
in [52]. For multilinear state space models this is a current field of research.

118

4 Controller design for MTI systems

The previous sections described mathematical operations with multilinear functions in the
tensor framework and their application to model dynamical systems by MTI state space
models. This chapter focuses on model-based controller design techniques for MTI systems,
i.e., the model of the system is used in the design phase of the controller or inside the
controller during operation. Many model-based design methods are available that work
with linear models, that approximate the nonlinear system behavior, [4, 23]. On the other
hand general nonlinear design techniques exist for nonlinear systems or special subclasses
of nonlinear systems, [26, 43]. But for MTI systems no general design method has been
introduced so far. Chapter 3 showed the good modeling properties of MTI systems, especially
for large-scale, complex systems. Because of that, MTI systems are in the focus here to take
advantage from their modeling properties also in controller synthesis and operation.
The chapter is structured as follows. Section 4.1 introduces the general concept of the con-
sidered controller design techniques, i.e. state feedback control, feedback linearization and
MPC, as they are known in the literature. The following sections describe the applications
and adaption of these model-based design methods to state space models of MTI systems.
Section 4.2 shows the feedback linearization of MTI systems in tensor framework. A de-
central system structure for a state feedback controller is determined in Section 4.3. The
three following sections deal with MPC, where in Section 4.4 the properties of the MPC
optimization problem are investigated using MTI systems directly. Section 4.5 shows how a
linear MPC can be used in combination with a multilinear state space model. Ways to divide
the resulting MPC optimization problem to several nodes are investigated in Section 4.6.
The chapter closes with a summary of the resulting open questions in the field of controller
design for MTI systems in Section 4.7.

4.1 Controller design basics

This section introduces the basic concepts of the three model-based controller design methods
considered in this thesis. Therefore, Subsection 4.1.2 describes, how a general affine nonlinear
system is feedback linearized by a state feedback. The two other methods, state feedback
design in Subsection 4.1.1 and MPC in Subsection 4.1.3 are introduced for the use with
linear state space models basically. Additionally, it is highlighted, how these two methods
are used in a decentralized context. The basic concepts introduced here are used with MTI
models in the next sections, according to the guiding questions given in Subsection 4.1.4.

119

4 Controller design for MTI systems

4.1.1 State feedback control

LQR design is a well known state feedback control design method, [61]. In standard design
this leads to a centralized controller that needs the full system information, i.e. information
on all system states to compute the control inputs for the plant. Therefore, consider a state
feedback control loop with feedback gain K as depicted in Figure 4.1.

−K

Plantu
x
z
y

d

Figure 4.1: State feedback control with central controller

In standard LQR design the plant is described by a continuous-time linear state space model
as (3.10) and (3.11)

ẋ = Ax + Buu + Bdd, (4.1)
y = Cx, (4.2)
z = Czx + Dzu. (4.3)

The inputs are divided into control inputs u ∈ Rm and disturbance inputs d ∈ Rmd with
the corresponding control and disturbance input matrices Bu ∈ Rn×m and Bd ∈ Rn×md

respectively. The loop in Figure 4.1 is closed by feeding back the states of the system with
a static gain matrix K ∈ Rm×n leading to the control input of the plant

u = −Kx, (4.4)

where in general all states x ∈ Rn are used to compute the input signal u ∈ Rm of the plant.
In addition to the measured output y a performance output z ∈ R is introduced, with ma-
trices Cz =

(︂
Q1/2 0

)︂T
and Dz =

(︂
0 R1/2

)︂T
. The matrices Q = QT ≥ 0 and R = RT > 0

are weights for state and input performance. It is assumed, that (A, Bu) is stabilizable
and (A, Q1/2) is detectable. In [67] for the centralized design the design problem is formula-
ted as an H2 optimization problem. A feedback gain K has to be found, such that the H2
norm of the transfer function from d to z of the closed loop system is minimized

min
K

J(K), (4.5)

where the objective function J(K) is the H2 norm of the transfer function from d to z of
the system (4.1) to (4.3). To solve the optimization problem (4.5) the objective function is
written as

J(K) =

⎧⎨⎩trace
(︂
BT

d P(K)Bd

)︂
, for K stabilizing,

∞ , else,
(4.6)

120

4 Controller design for MTI systems

where P(K) is the resulting closed loop observability Gramian

P(K) =
∞∫︂

0

e(A−BuK)T t
(︂
Q + KT RK

)︂
e(A−BuK)tdt,

which is the solution of the Lyapunov equation

(A − BuK)T P + P (A − BuK) = −
(︂
Q + KT RK

)︂
.

With the solution of the Lyapunov equation the optimal feedback gain is given by

K = −R−1BT
u P,

which results in a centralized controller gain, i.e. all communication links between the states
and the inputs are necessary, since the system structure has no influence during controller
synthesis, [66]. In general k(i, j) ̸= 0 holds for all elements of the gain matrix, which means
that all communication links have to be established. The performance of the controller is
the only optimization criterion.
Since nowadays the plants get more and more complex, in [66] a method to impose a certain
structure constraint on the feedback gain is proposed, in contrast to the centralized design.
This results in zero entries of the feedback matrix K and reduces the communication effort,
because not all signal connections between the states x and inputs u have to be established.
Only those connections between xj and ui are necessary, where the relation k(i, j) ̸= 0 is
fulfilled. The algorithm developed in [66] computes a sparsity structure of K, such that there
is a trade-off between sparsity and overall control performance. It is investigated, which
communication links can be cut with a slight decrease in the overall control performance
only, which leads to benefits in the communication effort. An overview of the algorithm for
linear systems is given here as described in [28, 67]. In decentralized design the feedback
gain should have a given sparsity structure leading to the optimization problem

min
K

J(K), (4.7)

subject to K ∈ S,

where S is the structure of K, [66]. To determine the sparsity structure S the objective
function in (4.5) is extended to

min
K

J(K) + γg(K), (4.8)

where the function g(K) measures the sparsity of K, [67]. The factor γ is a tuning parameter
to find a trade-off between control performance and sparsity. Setting γ =0 leads to the
centralized problem (4.5). A larger value for γ >0 means that sparsity is more promoted. In
Section 4.3 a way to choose γ for a good trade-off is described. If g(K) is chosen to be the
cardinality function

g(K) = card(K),

121

4 Controller design for MTI systems

that measures the number of nonzero entries of K, the optimization problem (4.8) is non-
convex. Solving this optimization becomes a combinatorial problem, which is very complex.
For a convex relaxation the l1-norm of K

∥K∥1 =
m∑︂

i=1

n∑︂
j=1

|k(i, j)|

is often used to approximate the cardinality function, [12]. But there is a difference between
the cardinality function and the l1-norm, since with the cardinality function all nonzero
entries are weighted the same. With the l1-norm more weight is put on elements with larger
magnitude. To bridge this gap between cardinality function and l1-norm, a weighted l1-
norm is chosen here

g(K) =
m∑︂

i=1

n∑︂
j=1

w(i, j) |k(i, j)| ,

to measure the sparsity of K, [15]. The weights should balance the varying influences of
elements of different magnitude in the result. E.g. by choosing the weights to

w(i, j) =

⎧⎨⎩
1

|k(i,j)| , for k(i, j) ̸= 0,

∞ , otherwise,

the weighted l1-norm is equal to the cardinality function. But this choice of the weights
is not possible for implementation, since the weights depend on the resulting elements of
the solution k(i, j). Therefore, the weights are determined by an iterative process, where
the weights of the next iteration are computed by using the result of the previous iteration,
as proposed in [15]. The optimization problem (4.8) is solved by an ADMM algorithm to
determine the sparsity structure, [67]. Finally, if a sparsity structure is found, a polishing step
is done to compute an optimal feedback gain for the determined structure by solving (4.7).
As shown in [66] this problem is solved by using Newton’s method in conjunction with
a conjugate gradient scheme. This results in a decentralized feedback controller with less
communication effort compared to the central case and little loss in the control performance
only. The control loop with the sparse controller is depicted in Figure 4.2. The sparsity
pattern of the gain matrix is illustrated inside the controller block.

−K

Plantu
x
z
y

d

Figure 4.2: State feedback control with sparse controller

122

4 Controller design for MTI systems

4.1.2 Feedback linearization

This subsection highlights the most important features of the feedback linearization as des-
cribed in [39] or [43], which is a controller design method for scalar nonlinear systems. The
main idea of this method is to design an affine nonlinear state feedback controller such that
the reference behavior in closed loop from reference input r to output y is linear. The main
setup of feedback linearization is shown in Figure 4.3.

Controller Plant
r y

x
u

Figure 4.3: Closed loop state feedback

Consider a continuous-time, nonlinear, affine, single-input single-output (SISO) system

ẋ = a(x) + b(x)u, (4.9)
y = c(x), (4.10)

with nonlinear functions a, b :Rn → Rn of the state and output c :Rn → R that is a speci-
alization of the general MIMO case (4.9) and (4.10). It is assumed that the functions are
sufficiently smooth, which means that all later appearing partial derivatives of the functions
are defined and continuous, [43]. The task is to find a nonlinear state feedback controller of
the form

u = k(x) + v(x)r, (4.11)

with the closed loop reference r, controller function k(x) and prefilter v(x), such that the
closed loop shows a linear behavior from r to y prescribed by the linear differential equation

µρsys

∂ρsys

∂tρsys
y + µρsys−1

∂ρsys−1

∂tρsys−1 y + · · · + µ1ẏ + µ0y = µ0r, (4.12)

where ρsys is the relative degree or index of the plant that is defined in the following. Without
loss of generality the factor µρsys is set to one. The factors are determined, e.g. by a pole
placement using an LQR design for a linearization of the model, [23]. It is easy to find
such controller if the system is in nonlinear controller canonical form, [39]. Since nonlinear
systems like (4.9) and (4.10) do not show the structure of this normal form in general, a state
space transformation has to be found. Therefore, the definition (2.57) of Lie derivatives is
useful, [39]. With help of Lie derivatives a state space transformation of (4.9) and (4.10) to
controller canonical form can be found. Using (2.57), the time derivatives of the output of
the system are given by

∂i

∂ti
y = Li

ac(x) + LbLi−1
a c(x) · u , i = 1, . . . , ρsys. (4.13)

123

4 Controller design for MTI systems

The relative degree ρsys describes the lowest derivative of the output y that is directly
influenced by the input u, which means that there is a direct feedthrough of the input to
the ρth

sys derivative of the output. Thus, the relative degree is defined by

LbLi
ac(x) = 0 ∀ x, 0 ≤ i ≤ ρsys − 2, (4.14)

LbLρsys−1
a c(x) ̸= 0 ∀ x. (4.15)

It is assumed that the system (4.9) and (4.10) has a well defined relative degree ρsys ≤ n, [34].
In this case a state transformation

x̃ = t(x) =
(︂
c(x) Lac(x) · · · Lρ−1

a c(x) tρ+1(x) · · · tn(x)
)︂T

can be found, that leads to the controller canonical form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

̇̃x1
...

̇̃xρsys−1
̇̃xρsys

̇̃xρsys+1
...

̇̃xρsys

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̃2
...

x̃ρsys

L
ρsys
a c(x) + LbL

ρsys−1
a c(x)u

qρsys+1(x̃)
...

qn(x̃)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

y = x̃1,

where qi(x̃), i = ρsys + 1, . . . , n describe the right hand sides of the zero dynamics. If
the relative degree is smaller than the number of states ρsys < n, the stability of the zero
dynamics has to be checked additionally, [39]. Since the system is transformed to controller
canonical form, the controller (4.11) is easily derived by setting

u=k(x)+v(x)r=
−

ρsys∑︁
i=0

µiL
i
ac(x) + µ0 r

LbL
ρsys−1
a c(x)

. (4.16)

Application of the controller in closed loop

ẋ = a(x) + b(x)k(x) + b(x)v(x)r,
y = c(x),

results in a state space model in the transformed variables⎛⎜⎜⎜⎜⎜⎜⎜⎝

̇̃x1
̇̃x2
...

̇̃xρsys−1
̇̃xρsys

⎞⎟⎟⎟⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...
0 0 0 · · · 1

−µ0 −µ1 −µ2 · · · −µρsys−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x̃1
x̃2
...

x̃ρsys−1
x̃ρsys

⎞⎟⎟⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
µ0

⎞⎟⎟⎟⎟⎟⎟⎟⎠r,

⎛⎜⎜⎝
̇̃xρsys+1

...
̇̃xn

⎞⎟⎟⎠=

⎛⎜⎜⎝
qρsys+1(x̃)

...
qn(x̃)

⎞⎟⎟⎠ ,

y = x̃1,

124

4 Controller design for MTI systems

which gives the desired linear input-output behavior (4.12), since the output is not influenced
by the zero dynamics, [43].

4.1.3 Model predictive control

This subsection introduces the main aspects of MPC following the notation of [73]. MPC is
a model-based controller design technique. Inside the controller, a model of the plant is used
to predict the future plant behavior to upcoming inputs. Using the model the controller
computes the optimal future control input sequence at each sampling instant with respect
to a cost or objective function describing the control goal, i.e. the desired behavior of the
plant, e.g. reference tracking. The controller loop is depicted in Figure 4.4.

Model
Cost function

Optimizer
MPC

SystemControl
inputs u

Disturbances d

Reference r
Measurements y

Disturbance
prediction dpred

Figure 4.4: Closed loop structure of MPC

As shown in the figure, the plant is influenced by control inputs u and disturbance inputs d.
In contrast to the control inputs from the controller, the disturbances represent the ambient
conditions of the plant, that cannot be influenced by the controller. The plant is equipped
with sensors, such that measurement information is available by signals y. The controller
receives the measurement information of the plant to initialize the model. In this thesis, it is
assumed that all states of the system are measured, i.e. the output vector is equal to the state
vector. Thus, no observer to estimate the state information from the output measurements
is necessary. An optimal control sequence is computed with a length of Hu time steps. This
is called the control horizon. The optimal control sequence is determined by minimizing
the cost function J(k) by an optimizer. The future plant behavior resulting from a certain
input sequence is predicted by a forward simulation of the plant model over the so called
prediction horizon of Hp time steps. The prediction horizon is always larger than or equal
to the control horizon Hp ≥ Hu. The simulation of the model with different control inputs
considers predictions of the disturbances dpred(k + i), i = 1, . . . , Hp for the whole prediction
horizon. If the plant should follow a reference, the signal r(k + i), i = 1, . . . , Hp should be
available too for the whole prediction horizon to benefit from the predictive behavior of the
controller. The result of the optimization problem

min
u(k + i),

i = 0, . . . , Hu−1

J(k)

125

4 Controller design for MTI systems

is the control sequence û(k + i), i = 0, . . . , Hu − 1, that is optimal with respect to the cost
function J(k). Only the control input û(k) of the first time step of this sequence is given to
the plant. At the next time instant the model is initialized again with current measurement
data and the optimization is solved again. This is called receding horizon principle, [73].
Different control goals are possible in MPC. A very common desired closed loop behavior is
reference tracking, where the cost function penalizes the quadratic difference of the outputs
to their reference values. Since not an arbitrary large control effort should be used to follow
the reference, the control effort, which is measured by the change of the control signal from
one time step to the next one, is considered in the cost function too.
To show an alternative cost function in contrast to that, in economic model predictive control
(EMPC) no reference for the outputs is used. In EMPC the cost function contains higher
level factors like the overall economic operation costs or the overall energy consumption. An
example for a cost function of an EMPC is given by

J(k) = c1Q̇therm(k) + c2Pel(k),

where Q̇therm(k) and Pel(k) are the thermal and electrical powers, respectively. The coeffi-
cients c1 and c2 in ¤/W represent the economical costs, [27]. As for reference tracking the
operating range of the system has to be defined by constraints on states, inputs and out-
puts. But no reference trajectory is given here. During optimization the costs defined in
the objective function are minimized, such that the system stays in the prescribed operating
range. These are only two examples of cost functions. Depending on the application, other
cost functions are possible.
As described before, a model is used to predict the future plant behavior. The complexity
of the MPC optimization problem depends on the choice of the model class. Very common
in MPC control is the use of a linear model, [73]. With a linear model the optimization
problem has nice properties, especially if a quadratic cost function is used. Depending on
the quadratic term the optimization problem is convex, i.e. a unique, globally optimal
solution can be found and standard solvers are available, [12]. The drawback of a linear
model is, that the model describes the plant behavior, that is in general nonlinear, only in
a neighborhood of the operating point with a sufficient accuracy, especially when nonlinear
effects are essential. This modeling error leads to a control error of the MPC. To avoid this
modeling error from linear modeling, nonlinear models are used in nonlinear model predictive
control (NMPC). This gives the advantage, that the plant dynamics can be captured better
by the model that is used inside the controller. But in general this leads to a more complex
optimization problem. The convexity of the optimization problem cannot be guaranteed
in this nonlinear case, such that during optimization e.g. local minima are found only. In
Sections 4.4 to 4.6 different model classes are investigated for use with MPC.
In the following, the standard formulation of MPC in the literature should be described, that
uses a linear model and a quadratic cost function to realize a reference tracking, [73]. This
approach is taken as basis for the application of the MPC control structure to MTI systems
in Sections 4.4 to 4.6. Linear model predictive control is based on a linear discrete-time

126

4 Controller design for MTI systems

model of the plant

x(k + 1) = Ax(k) + Buu(k) + Bdd(k), (4.17)
y(k) = Cx(k). (4.18)

At time k the state x(k) of the plant is determined to initialize the model. Starting from this
initial value the controller predicts the response of the system for several input sequences.
The controller optimizes the control sequence, such that the cost function

J(k) =
Hp∑︂
i=1

∥x̂(k + i) − r(k + i)∥2
Q +

Hu−1∑︂
i=0

∥∆u(k + i)∥2
R (4.19)

is minimized with input changes ∆u(k + i) = u(k + i) − u(k + i − 1) and a output refe-
rence r(k + i) ∈ Rp×1. The outputs ŷ(k + i), i = 1, . . . , Hp are predicted with the plant
model. The states should follow a reference trajectory r with a certain control effort ∆u.
The used norm, e.g. for the first term, is given by

∥x̂(k + i) − r(k + i)∥Q = (x̂(k + i) − r(k + i))T Q (x̂(k + i) − r(k + i)) .

The weighting matrices Q ∈ Rp×p and R ∈ Rm×m with Q ≥ 0 and R > 0 are used to weight
the difference of the outputs from the reference and the input changes, respectively. An
increase in Q puts more weight on the output reference tracking, which in general results in
a larger control effort. Increasing R leads to less change in the control signal, which yields in
general in a slower system. Thus, tuning the weights of the controller is a tradeoff between
control effort and tracking performance. The principle of MPC is illustrated in Figure 4.5.

rŷ(t)

u(t)

Past Future

y(t) t
T

t
T

k k + 1

∆u(k)

Control horizon

Prediction horizon

Figure 4.5: Principle of MPC

127

4 Controller design for MTI systems

In each sampling step the cost function (4.19) is minimized. The optimization problem

min
u(k + i),

i = 0, . . . , Hu−1

J(k) (4.20)

subject to x̂(k + i + 1) = Ax̂(k + i) + Buu(k + i) + Bddpred(k + i), i = 0, . . . , Hp − 1,
ŷ(k + i) = Cx̂(k + i), i = 1, . . . , Hp − 1,

umin ≤ u(k + i) ≤ umax, i = 0, . . . , Hu − 1,
xmin ≤ x̂(k + i) ≤ xmax, i = 1, . . . , Hp.

is solved with respect to several equality and inequality constraints. The initial value of
the state x̂(k) at time k is supposed to be known from measurements directly or via an
observer estimated. With the equality constraints the states and ouputs are forced to admit
the dynamics of the linear model of the plant. The disturbances are estimated by the
disturbance predictions dpred. The operating contraints on inputs and states are described
by the inequalities. Here box constraints for inputs and states are assumed. This use of a
linear model and quadratic cost function leads to an quadratic programming optimization
problem, that can be solved efficiently by standard optimization solvers, [73]. The predictive
action of the controller is illustrated in Example 4.1.

Example 4.1 As example control task a temperature of a room should follow a reference
here by controlling a radiator. The plant can be approximated by a first order system with
time delay. When controlling this plant with a standard controller like a PI controller the
time delay can be clearly identified in the resulting closed loop output and has a negative effect
on the control error as shown in Figure 4.6a. The output reacts delayed on the change in
the reference signal. Controlling the plant by an MPC controller leads to an improved closed
loop behavior. The controller has information on the time constant and the time delay of the
plant by the plant model. Thus the controller acts predictively and increases the temperature
even before the reference step, as illustrated in Figure 4.6b. This leads to an optimal closed
loop behavior with respect to the cost function (4.19) and the time delay has less effects on
the control result.

Time

Te
m

pe
ra

tu
re

PI
Reference

(a) PI controller

Time

Te
m

pe
ra

tu
re

MPC
Reference

(b) MPC controller

Figure 4.6: Exemplary comparison between PI and MPC controller

Here the online computation of the optimization problem is considered only. Other concepts
like explicit MPC, where the optimization is computed offline before operation are described

128

4 Controller design for MTI systems

in the literature, [2, 53]. In this thesis online MPC is considered since MPC problems are
investigated for the application area of heating systems which have slow dynamics such that
sampling rates in the order of minutes are sufficient. Enough computation time for online
optimization is available. Also complex systems are considered here - which would lead to
large data sets to be stored for explicit MPC.

4.1.4 Guiding questions

The previous chapter showed the good modelling properties of MTI systems. These models
are used in this chapter for model-based controller design with the controller methods that
were introduced in the previous sections for applications with linear or nonlinear models
but not multilinear ones. Two different approaches are chosen here. On the one hand it is
of interest how nonlinear design methods like feedback linearization can be adapted to the
special structure of MTI systems, resulting in a controller design method especially for MTI
systems. The second question focuses on preservation of the nice properties of controller
algorithms for linear models when multilinear systems are used. The design methods consi-
dered here are feedback design as a standard design method and MPC as an advanced design
method, that is a current field of research in the application to heating systems, [35]. In
the design phase or during operation of these controllers, optimization problems have to be
solved, that are convex when linear systems are used. The question is, if the linear methods
can be adapted by using multilinear models, such that the model accuracy is improved to
make the models applicable to a wider range of operation than in the purely linear case.
Good properties of the optimization problems in the linear case should be preserved as much
as possible also for application to multilinear models. All methods should work with the
decomposed tensor structure to get efficient algorithms based on the operations introduced
in Chapter 2.
As shown in Chapter 3, MTI systems are well suited to model complex large-scale systems
in a systematic way with decomposed tensors. When focusing on control of such large-scale
systems a complexity problem could arise. A centralized controller leads to a high commu-
nication effort in practice, since all relevant sensors and actuators have to be connected to
the controller. Furthermore, the control problem itself gets complex for large-scale systems
leading to a high computational complexity. Because of that the application of decentrali-
zed or distributed controller concepts to MTI systems is of interest too. Two questions are
posed. At first, what is the best decentralized controller structure? This is investigated in
combination with a state feedback controller. The second question here is, how the control
problem can be split into different system components for a given system structure. There-
fore, the control problem of an MPC controller is divided into several MPC nodes leading
to a distributed MPC controller.

4.2 Feedback linearization

The controller design by feedback linearization introduced in Section 4.1.2 is investigated in
this section for MTI systems with CP decomposed parameter tensors, see [49]. According

129

4 Controller design for MTI systems

to (4.9) and (4.10) an affine SISO MTI system in continuous-time is given by

ẋ = a(x) + b(x)u = ⟨ A | M(x) ⟩ + ⟨ B | M(x) ⟩ u, (4.21)
y = c(x) = ⟨ C | M(x) ⟩ . (4.22)

It is assumed that the system is controllable, observable and feedback linearizable with
well-defined relative degree ρsys. Theorem 2.3 is used to compute the Lie derivatives of the
multilinear model functions in tensor form. This leads to the following Lemma.

Lemma 4.1 (MTI system Lie derivatives) The Lie derivative (2.60) of the multili-
near output function given by tensor C along the multilinear vector field a(x) given by ten-
sor A yields

Ll
ac(x) =

n∑︂
i=1

ai(x) ∂

∂xi

Ll−1
a c(x) =

⟨︂
LA,C,l

⃓⃓⃓
Ml+1

p (x)
⟩︂

, (4.23)

with parameter tensor

LA,C,l =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C for l = 0,
n∑︁

i=1
Ai ◦ (C ×n−i+1 Θ) for l = 1,

n∑︁
i=1

Ai ◦
(︄

l∑︁
k=1

LA,C,l−1 ×kn−i+1 Θ
)︄

else,

(4.24)

with l = 0, . . . , ρsys and subtensor Ai = A(:, . . . , :, i), i = 1, . . . , n of A, such that

A = A1 �n+1 A2 �n+1 · · · �n+1 An.

and Θ = (0 1
0 0) as in (2.61). Using the parameter tensor

LB,A,C,l =
n∑︂

i=1
Bi ◦

(︄
l+1∑︂
k=1

LA,C,l×kn−i+1Θ
)︄

, (4.25)

with subtensors Bi = B(:, . . . , :, i), i = 1, . . . , n of B, the Lie derivatives along b(x) are given
by

LbLl
ac(x) =

n∑︂
i=1

bi(x) ∂

∂xi

Ll
ac(x) =

⟨︂
LB,A,C,l

⃓⃓⃓
Ml+2

p (x)
⟩︂

. (4.26)

Since all operations, i.e. summation, outer product and mode-k tensor matrix product, used
to get the parameter tensors of the Lie derivatives are introduced for decomposed tensors,
no full tensor has to be build during computation of the Lie derivatives. This is important
especially for large-scale systems. With the tensor description of the Lie derivatives given
in Lemma 4.1, the controller law for feedback linearization is constructed as shown in the
following lemma.

130

4 Controller design for MTI systems

Lemma 4.2 (MTI feedback linearization) The feedback linearizing controller for an
affine SISO MTI system given by (4.21) and (4.22) reads

u =
−
⟨︃ ρsys∑︁

i=0
µiLA,C,i

⃓⃓⃓
Mρsys+1

p (x)
⟩︃

+ µ0 r⟨︂
LB,A,C,ρsys−1

⃓⃓⃓
Mρsys+1

p (x)
⟩︂ , (4.27)

when the Lie derivatives are defined by parameter tensors as in Lemma 4.1.

Thus, the feedback linearizing controller has a fixed structure. The factors µi and ten-
sors LA,C,i and LB,A,C,ρ−1 have to be provided, to adapt the controller for a given plant.
Setting these parameters is like setting a static state feedback gain matrix for pole place-
ment in the linear case. The structure of the controller for MTI systems is fixed and does
not depend on the plant. This structural invariance is an advantage for application of the
controller. Compared to the general nonlinear case it is not necessary to provide an arbitrary
set of mathematical operations, that depends on the plant model. Here it is limited to the
given structure and the operations can be defined efficiently on the coefficient spaces of the
decomposed factors.
The parameter tensors A, B and C of the system can be used to check if the system is feedback
linearizable with relative degree ρsys = n. The conditions for feedback linearizability of [39]
are adapted to the MTI case here.

Lemma 4.3 (Feedback linearizability of MTI systems) An affine MTI system is feed-
back linearizable with relative degree n at the point x0, if the following conditions hold

i. Rank condition

rank
(︂⟨︂

T
⃓⃓⃓
Mn

p (x0)
⟩︂)︂

= n

with tensor T(:, . . . , :, k) = Lk−1
adab and k = 1, . . . , n containing the parameters of the Lie

brackets (2.64) with respect to the monomial tensor Mn
p (x0),

ii. Involution condition for the distribution span {b, adab, . . . , adn−2
a b}

rank
(︂⟨︂

T2(:, . . . , :, i, j)
⃓⃓⃓
M2(n−1)

p (x0)
⟩︂)︂

= rank
(︂⟨︂

T1

⃓⃓⃓
Mn−1

p (x0)
⟩︂)︂

,

for all i and j = 0, . . . , n − 2 with tensors

T1(:, . . . , :, k) = Lk−1
adab, k = 1, . . . , n − 1,

T2(:, . . . , :, k, i, j) =

⎧⎨⎩Lk−1
adab, k = 1, . . . , n − 1,

Li,j, k = n,

with
⟨︂

Li,j

⃓⃓⃓
M2(n−1)

p (x0)
⟩︂

denoting the Lie bracket [adi
ab, adj

ab] (x0).
If these conditions are met, there exists an output function, such that the system has relative
degree n.

131

4 Controller design for MTI systems

The proofs of the Lemmas 4.1 to 4.3 are given in the Appendix A.8.

Example 4.2 The proposed method for feedback linearization is applied here to a SISO,
MTI system with 2 states to show all steps of the design procedure explicitly. Consider the
system (︄

ẋ1
ẋ2

)︄
=
(︄

2x2
−x1 + 0.2x1x2

)︄
+
(︄

0
1

)︄
u,

y = 1 + 2x1.

The system belongs to the class of affine MTI systems (4.21) and (4.22), where the factor
matrices are represented as CP tensors by

A =
[︄(︄

0 1 0
1 0 1

)︄
,

(︄
1 0 0
0 1 1

)︄
,

(︄
1 0 0
0 1 1

)︄]︄
·

⎛⎜⎝ 2
−1
0.2

⎞⎟⎠ ,

B =
[︄(︄

1
0

)︄
,

(︄
1
0

)︄
,

(︄
0
1

)︄]︄
· 1,

C =
[︄(︄

1 1
0 0

)︄
,

(︄
0 1
1 0

)︄]︄
·
(︄

2
1

)︄
.

To design the controller, the Lie derivatives of the system must be computed. Using (4.24)
the parameter tensors of the Lie derivatives along a(x) in CP representation are given by

LA,C,1 =
[︄(︄

0
1

)︄
,

(︄
1
0

)︄
,

(︄
1
0

)︄
,

(︄
1
0

)︄]︄
· 4,

LA,C,2 =
[︄(︄

1 0
0 1

)︄
,

(︄
0 0
1 1

)︄
,

(︄
1 1
0 0

)︄
,

(︄
1 1
0 0

)︄
,

(︄
1 1
0 0

)︄
,

(︄
1 1
0 0

)︄]︄
·
(︄

−4
0.8

)︄
,

resulting in the derivatives

Lac(x) =
⟨︂

LA,C,1

⃓⃓⃓
M2

p (x1, x2)
⟩︂

= 4x2,

L2
ac(x) =

⟨︂
LA,C,2

⃓⃓⃓
M3

p (x1, x2)
⟩︂

= −4x1 + 0.8x1x2.

The Lie derivatives along b(x) leads to Lbc(x) = 0 and LbLac(x) = 4 by the parameter
tensors (4.25)

LB,A,C,0 =
[︄(︄

0
0

)︄
,

(︄
0
0

)︄
,

(︄
0
0

)︄
,

(︄
0
0

)︄]︄
· 0,

LB,A,C,1 =
[︄(︄

1
0

)︄
,

(︄
1
0

)︄
,

(︄
1
0

)︄
,

(︄
1
0

)︄
,

(︄
1
0

)︄
,

(︄
1
0

)︄]︄
· 4.

Because of LbLac(x) = 4 ̸= 0 ∀x the relative degree ρsys of the system is two, which is equal
to the number of states. Thus, the system has full degree and the zero dynamics do not need

132

4 Controller design for MTI systems

to be checked. Additionally the system is controllable and observable. In closed loop, the
linear behavior

µ2ÿ + µ1ẏ + µ0y = µ0r

is desired. As an example µ1 = µ0 = 10 and µ2 = 1 are chosen. Using the parameter tensors
of the Lie derivatives, the feedback linearizing controller (4.27) is given by

u =
−
⟨︂

µ0C + µ1LA,C,1 + µ2LA,C,2

⃓⃓⃓
M3

p(x)
⟩︂

+ µ0 r⟨︂
LB,A,C,1

⃓⃓⃓
M3

p(x)
⟩︂ = −10 − 16x1 − 40x2 − 0.8x1x2 + 10r

4 .

Figure 4.7 shows the closed loop simulation result with an initial value x0 =
(︂
−0.5 0

)︂T

for a step change in reference signal r. The system behaves as the specified 2nd order linear
system.

0 2 4 6 8 10 12 140

1

2

3

Time [s]

r
y

Figure 4.7: Closed loop simulation

Using low-rank approximation techniques for parameter tensors, makes it possible to re-
present large systems as shown in Section 3.2 and to compute controllers as shown in this
section. The proposed feedback linearization approach works with the decomposed repre-
sentations of the system and all operations are defined for decomposed tensors such that no
full tensor representation has to be constructed during the whole controller design process
leading to a controller in a decomposed structure. The storage demand is still computatio-
nally manageable also for large systems as shown in Figure 4.8, where an upper bound for
the number of elements to be stored for the parameter tensors of the controller are depicted,
that are represented in CP decomposition. The figure considers different orders and different
ranks of the system tensors A, B and C for a system with relative degree of one. Often the
results can be represented by tensors of lower rank, which reduces the storage effort further.
During application the controller law is evaluated based on the decomposed factor matri-
ces. This makes it possible to use this feedback linearizing scheme also for large-scale MTI
systems, where the full representations cannot be processed but low-rank approximations
exist. This possible handling of the dimensionality problem for large-scale systems is the big
advantage of the introduced feedback linearization design approach by decomposed tensors.

133

4 Controller design for MTI systems

10 20 30 40 50 60 70 80 90 100
5

10
0

5

·106

Order
Rank

N
um

be
r

of
pa

ra
m

et
er

s

Figure 4.8: Upper bound for number of parameters for a feedback linearizing controller of
decomposed MTI systems

4.3 Decentralized state feedback design

The decentralized state feedback design method for linear models introduced by [66] and
described in Section 4.1.1 is applied to an MTI system here, see [48].

Control problem

A decentralized feedback gain should be found for an MTI system with a disturbance in-
put d ∈ Rmd

ẋ = ⟨ F | M (x, u, d) ⟩ , (4.28)
y = Cx, (4.29)
z = Czx + Dzu. (4.30)

The state equation (4.28) is in MTI tensor form. The measured output and the performance
output z are the same as in (4.2) and in (4.3) with weighting matrices Q and R. It is assumed,
that all states are measured for the feedback loop. The outputs y should be driven to a given,
feasible reference r ∈ Rp by the controller. The matrix C ∈ Rp×n chooses the states (4.29),
that should track a reference value. The controller is computed for a linearization of (4.28)
around an operating point (x̄, ū, d̄). If the reference or the disturbance changes, this results
in a change in the operating point. Thus, a new linearization has to be computed and the
control law should be updated according to the current operating conditions.
For the application of the sparse LQR method, the MTI system has to be linearized around
an operating point. The operating point is determined by the reference values r and the
actual disturbance d. The operating point (x̄, ū, d̄) is computed by setting the right hand
side of (4.28) to zero ⟨︂

F
⃓⃓⃓
M
(︂
x̄, ū, d̄

)︂ ⟩︂
= 0. (4.31)

134

4 Controller design for MTI systems

To consider the reference value, the disturbance and input constraints, the equation (4.31)
has to be solved with constraints on (x̄, ū, d̄). The operating point of states is computed,
such that the corresponding output is equal to the current reference

Cx̄ = r. (4.32)

To take into account the current value d(t) of the disturbance, the operating point of the
disturbance is set to

d̄ = d(t). (4.33)

In many applications the inputs are saturated, such that the operating point should satisfy

umin ≤ ū ≤ umax. (4.34)

Thus, the system of multilinear equations (4.31) has to be solved for the variables x, u and d
with equality and inequality constraints (4.32) to (4.34). Using this operating point (x̄, ū, d̄),
the linearization of the multilinear system (4.28) can be computed based on the parameter
tensors as introduced in Section 3.3. This results in the operating point depended description
of the system matrix

A(x̄, ū, d̄) =
⟨︂

Alin

⃓⃓⃓
M
(︂
x̄, ū, d̄

)︂ ⟩︂
. (4.35)

The inputs are divided into control and disturbance inputs, such that the parameter ten-
sor Alin ∈ R×(n+m+md)2×n×n is build up by fibers

alin(id, iu, ix, :, j) = jf (id, iu, ix, :, j) = fxj
(id, iu, ix, :), j = 1, . . . , n,

with index vectors ix, iu, id for state, control and disturbance inputs and the Jacobian
matrix Jf (x̄, ū, d̄) =

⟨︂
Jf

⃓⃓⃓
M
(︂
x̄, ū, d̄

)︂ ⟩︂
with parameter tensor Jf ∈ R×(n+m+md)2×n×(n+m+md)

of (4.28). The overall input matrix results from

B(x̄, ū, d̄) =
⟨︂

Blin

⃓⃓⃓
M
(︂
x̄, ū, d̄

)︂ ⟩︂
. (4.36)

The parameter tensor Blin ∈ R×(n+m+md)2×n×(m+md) follows from (3.43) under consideration
of the separation of the inputs to control and disturbance signals by

blin(id, iu, ix, :, j) = jf (id, iu, ix, :, n + j) = fuj
(id, iu, ix, :), j = 1, . . . , m,

blin(id, iu, ix, :, m + j) = jf (id, iu, ix, :, n + m + j) = fdj
(id, iu, ix, :), j = 1, . . . , md,

where Fuj
and Fdj

are parameter tensors of the derivatives of the right hand side of the
state equation (4.28) with respect to uj and dj, respectively. The parameter tensors Alin

and Blin are computed by the partial derivatives of the state equation of the MTI system
with respect to xj, uj and dj by operational tensors from simple matrix tensor products of
the parameter tensor F as introduced in Section 2.3.3. The input matrix is split to get the
input and disturbance related parts

Bu(:, i) = B(:, i), i = 1, . . . , m, (4.37)
Bd(:, i) = B(:, m + i), i = 1, . . . , md. (4.38)

135

4 Controller design for MTI systems

To design the controller the matrices Q and R have to be tuned. The weighting Q of the
states is chosen initially as

Q = CT C,

such that the outputs y, which should reach its reference value are weighted. The control
effort has to be penalized by R such that the signals do not exceed the input constraints.
With the system matrices A, Bu, Bd and the weighting matrices Q and R the decentralized
controller is computed by solving (4.8) for a given value of γ.

Preprocessing

The structure of the feedback controller should be fixed during the operation, i.e. the
communication structure should not change permanently. Thus, before the operation a
structure analysis is needed. This is done in the preprocessing step. A sparsity structure
of K should be found such that the performance loss compared to the central controller (4.5)
is low. The performance degradation is measured by

∆J = |Jd − Jc|
Jc

· 100%, (4.39)

which compares the performance of the decentralized controller Jd with the performance of
the central one Jc. The central performance Jc is the value of the objective function (4.6)
for the solution of the central feedback design (4.5). The performance factor Jd of the
decentralized design is the evaluation of the same cost function (4.6) evaluated with the result
of the optimization problem (4.7) with sparsity structure constraint, where the structure was
determined by solving (4.8). In general the performance loss increases when the controller
structure gets more sparse, as shown by an example in Figure 4.9. When γ is increased
the performance loss increases too, because the focus is more and more on sparsity and not
controller performance in the optimization problem (4.8).

γ

∆J

δ

Figure 4.9: Performance loss depending on tuning factor γ

A structure with minimal communication effort should be found here, such that the perfor-
mance loss is still acceptable ∆J < δ, i.e. below a threshold δ, as depicted in Figure 4.9. The
value of γ belonging to this performance degradation has to be determined as described in
the following. Since not a linear but a multilinear system is considered here, the performance

136

4 Controller design for MTI systems

constraint of the structure of minimal complexity must hold for every operating point in the
operation area given by the application.
To determine the structure, the optimization problem (4.8) has to be solved. The struc-
ture cannot be set directly but is influenced by changing the sparsity promoting weighting
factor γ. The choice of γ results in a certain structure, where the controller complexity de-
creases for an increasing γ. Thus, to find a structure, that fulfills the performance constraint
for all operating points, a heuristic approach is chosen to iterate over the factor γ for a num-
ber of feasible operating points. The sparsity structure of K with minimal communication
effort and a performance loss smaller than δ for all investigated operating points is chosen
as controller structure S. This heuristic approach does not find the global optimum of the
multicriteria optimization, but it approximates the solution by a lower bound on the perfor-
mance loss. For applications where the structure strongly depends on the operating point,
the structure changes with different operating points for a constant value of γ. In this case
the communication effort cannot be reduced that much since an overall controller structure
has to be chosen that satisfies all operating points. But application shows that, e.g. for a
heating system example in Section 5.3.2, the tuning factor γ is the main influencing factor
on the structure. The preprocessing step can be summarized in the flow chart depicted in
Figure 4.10.

Operation

During the operation of the state feedback controller the determined structure S should not
be changed anymore. The controller gain K(x̄, ū, d̄) depends on the operating point and is
valid in a neighborhood around the operating point only. If the state reference r changes,
the operating point changes too. A new operating point with the actual reference has to
be computed by (4.31). Also a change in the disturbance signal leads to an update of the
operating point. A new operating point with new value for d̄ is computed, if the disturbance
signal changes more than ∆d ∈ Rmd which is a tuning parameter

d̄i =

⎧⎨⎩di(t) , if
⃓⃓⃓
di(t) − d̄i

⃓⃓⃓
> ∆di,

d̄i , else,

with i = 1, . . . , md. With the value ∆d the rate of the computation of new linearizations can
be influenced. A small value of ∆d leads to a frequent change in the operating point, i.e.
the operating point is adapted very often to the current ambient conditions. But it results
in a larger computation effort. A large value of ∆d decreases the rate of adaptions to the
operating point. The choice of the factor depends on the application and the nonlinearities
of the plant with respect to the disturbances. With a high sensitivity the operating point,
i.e. the linear approximation and thus the controller gain should be updated with a smaller
value of ∆d. If the sensitivity is not that large, ∆d can be chosen larger, leading to a less
computational demanding controller since the feedback gain will not be updated that often.
With a new operating point the linearization of the MTI system is determined by (4.35)
and (4.36). The linearization can be computed very efficiently by evaluating one contracted
product only, which is very simple, if the tensors are available in a decomposed structure
as it is the case here. This leads to a gain update by solving (4.7) with the structure S

137

4 Controller design for MTI systems

Set up the control problem
with MTI model and weighting

matrices Q and R and a set
of OPs in the operating area

Set initial value for γ
Set value for δ

Linearize the MTI system

Solve the decentral design
problem (4.8)→ Structure S

Solve the structured design
problem (4.7)→ Performance Jd

Solve the central de-
sign problem (4.5)→
Performance loss ∆J

All OPs
checked?

∆J < δ
∀ OPs?

Determine dominant stru-
cutre over all OPs →
Controller structure S

Change OP
(x̄, ū, d̄)

Decrease γ

yes

no

no

yes

Figure 4.10: Flow chart of the preprocessing step

138

4 Controller design for MTI systems

determined in the preprocessing step. Having computed the feedback gain K(x̄, ū, d̄) as a
function of the operating point, the input

u = −K(x̄, ū, d̄)(x − x̄) + ū, (4.40)

is given to the plant. At each sampling instant,the controller computes the steps summarized
in the flow chart depicted in Figure 4.11.

Preprocessing → Fixed
controller structure S

Ambient
conditions
changed?

Compute OP next to cur-
rent system state (4.31)

Linearization of the MTI
system (4.35) and (4.36)

Update the gain K by sol-
ving (4.7) with structure S

Apply the control in-
put (4.40) to the plant

yes

no

Figure 4.11: Flow chart of the decentralized feedback controller during operation

The closed loop with sparse controller and the MTI system is depicted in Figure 4.12.

−

K(x̄, ū, d̄)

MTI systemu
x
z
y

d

x̄

ū

Figure 4.12: Decentralized state feedback with sparse gain K

139

4 Controller design for MTI systems

Example 4.3 As an example an MTI system with six states, three controlled inputs and
one disturbance input with state equations

ẋ1 = x1 + u1,

ẋ2 = x1 − x2d,

ẋ3 = x2 + u2,

ẋ4 = x3 − x4d,

ẋ5 = x4 + u3,

ẋ6 = x5 − x6d,

is considered, that can be represented by (4.28). It is assumed that all states are measured.
Figure 4.13 shows how the system can be represented as a serial connection of 3 subsystems.
This representation will help to verify the decentralized controller design.

ẋ1 = x1 + u1,

ẋ2 = x1 − x2du1

u2

ẋ3 = x2 + u2,

ẋ4 = x3 − x4d

u3

ẋ5 = x4 + u3,

ẋ6 = x5 − x6d

x1

x2 x3

x4 x5

x6

d

Figure 4.13: System representation as serial connection

The controller should drive the states x1, x3 and x5 to desired references r1, r3 and r5,
respectively, which leads to output matrix

C =

⎛⎜⎝1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎞⎟⎠ ,

of (4.29). According to this, the weighting matrix for the state performance is chosen as

Q = CT C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The input performance should be weighted the same here by

R =

⎛⎜⎝1 0 0
0 1 0
0 0 1

⎞⎟⎠ .

140

4 Controller design for MTI systems

The overall system is now used in the preprocessing step to find a suitable sparsity structure
for the introduced controller configuration. To analyze the system structure, operating points
are determined for combinations of reference ri and disturbance d values in the operating
areas

ri ∈ {1, 2, 3, 4} , i = 1, 3, 5,

d ∈ {1, 2, 3} .

With these specifications of references and disturbances the corresponding operating points
are computed by (4.31) to (4.34). No constraints on the inputs are assumed here. For
each operating point the MTI system is linearized and the decentralized state feedback gain
is computed for this linearizations with different values of γ in the interval [10−5, 10−1]
by solving the sparsity promoting optimization problem (4.8). For this operating interval
and the interval of γ, three sparsity structures are determined with different sparsity degree.
The performance losses are determined by (4.39). The three structures are summarized in
Table 4.1, where the nonzero values are highlighted in the sparsity plot. The values of γ,
the percentage of zeros and the maximal performance loss over all operating points are also
shown.

Table 4.1: Controller structures with different degree of sparsity

Structure γ Max. ∆J Sparsity

x1 x2 x3 x4 x5 x6

u1

u2

u3

3 · 10−5 2 · 10−3% 33%

x1 x2 x3 x4 x5 x6

u1

u2

u3

1 · 10−3 0.17% 50%

x1 x2 x3 x4 x5 x6

u1

u2

u3

1 · 10−2 0.85% 72%

The table shows, that with increasing value of γ the structure gets more and more sparse.
For all three structures the performance loss is acceptably low even for the third controller
of high sparsity, where the lowest number of communication links is necessary. To verify
the results of the decentralized controller design process, the structure of the system and the

141

4 Controller design for MTI systems

control problem is investigated. The states x1, x3 and x5 should follow its references and are
influenced by the inputs u1 to u3 directly. Because of that, the inputs need the information
on the respective states, e.g. u1 needs the information on x1, as can be seen in the first
row of the gain matrices. In addition to that, the states x3 and x5 are influenced by the
state x2 and x4 of the neighboring subsystems, such that communication links between these
states and u2 and u3 have to be established too. This gives the minimal set of communication
channels in the last row of Table 4.1.
A closer look on the example system shows, that e.g. the state x3 can be influenced by
input u1 via the state x2. Because of that, the performance of the controller can be improved
by closing the communication link between u1 and x3 and between u2 and the states of the
first system. The same dependencies hold for the connections between the second on the
third system, which explains the controller structure of medium sparsity. With the controller
of low sparsity even more information is exchanged, but still some communication links are
cut. For example, the first subsystem does not need the full system information of the third
system and vice versa in this configuration. The sixth state is not influenced by any reference
tracking variable, such that this state is not considered in all controller structures.
Since the performance loss of the sparsest controller is still acceptable, this structure should
be used for a simulation of the system. The system with the controller structure that results
from this sparsity pattern is illustrated in Figure 4.14, which shows that with a decentralized
controller only local information on the states is used and not the whole system information.

ẋ1 = x1 + u1,

ẋ2 = x1 − x2dK1 K2

ẋ3 = x2 + u2,

ẋ4 = x3 − x4d K3

ẋ5 = x4 + u3,

ẋ6 = x5 − x6dx1

x2

x3

x4

x5

x6

d

Figure 4.14: Example system with decentralized controller structure

To simulate the closed loop the reaction on step changes in each reference is investigated. In
addition to that, the simulation scenario contains a step change in the disturbance signal.
The reference and disturbance signal are depicted in Figure 4.15, together with the closed loop
simulation results of the states x1, x3 and x5 with a central and the decentralized controller.
During simulation the structure of the controller determined in the preprocessing phase is
fixed. During operation each change in the reference and disturbance leads to a change in
the operating point by computing (4.31) and thus an update of the controller gain with the
linearizations (4.35) and (4.36) around the new operating point by solving the structured
optimization problem (4.7). The simulation shows that the decentralized controller has a
good tracking and disturbance rejection behavior that is comparable to the central design but
with 5 established communication links only instead of 18 in the general central case. Thus,
the communication effort can be reduced without significant loss in controller performance.

142

4 Controller design for MTI systems

0 2 4 6 8 10 12 14 16 18 20 22 240.5
1

1.5
2

2.5
x 1

Reference Decentral Central

0 2 4 6 8 10 12 14 16 18 20 22 24
1
2
3

x 3

0 2 4 6 8 10 12 14 16 18 20 22 24
1
2
3
4

x 5

0 2 4 6 8 10 12 14 16 18 20 22 24
1

2

3

Time

d

Figure 4.15: Closed loop simulation results of the example system with central and decen-
tralized controller

4.4 Model predictive control

In the standard formulation in the literature, e.g. in [73], MPC is well established for linear
systems with a quadratic cost function as described in Section 4.1.3. Inserting the lifted
system (3.72) to (3.78) into the cost function (4.19) leads to a closed description of the
cost function and gives a quadratic programming optimization problem in the linear case.
The following subsections investigate the MPC optimization problem with a quadratic cost
function, when MTI models are used. At first a closed description of the cost function is de-
rived in Subsection 4.4.1 by applying the multi-step transition of MTI systems of Section 3.6.
For linear systems the MPC optimization problem is a quadratic problem and thus convex,
if the constraints are convex too, [12]. This is an important property because with a convex
problem a unique global optimum is found and standard algorithms like the interior point
method are available, [12]. The convexity of the optimization problem for MTI systems is
analyzed in Subsection 4.4.2. It is investigated, if the convexity holds for the whole class of

143

4 Controller design for MTI systems

MTI systems or if conditions can be derived for a subclass of MTI systems that lead to a
convex optimization problem.

4.4.1 Optimization problem for MTI systems

In this section the optimization problem of NMPC is investigated, when the system dynamics
are described by a discrete-time MTI state space model

x(k + 1) = ⟨ F | M (x(k), u(k)) ⟩ ,

that is derived directly or follows from discretization from a continuous-time MTI model,
e.g. by the approach introduced in Subsection 3.4. For the design of an MPC controller with
an MTI model a quadratic cost function is used

J(k) =
Hp∑︂
i=1

∥x̂(k + i) − r(k + i)∥2
Q +

Hu−1∑︂
i=0

∥∆u(k + i)∥2
R. (4.41)

For ease of notation it is assumed, that all states are measured y = x and that the control
horizon is equal to the prediction horizon Hp = Hu. To evaluate the cost function, the
states x̂(k + i), i = 1, . . . , Hp have to be computed for the prediction horizon. When
using an MTI model the state trajectory is available from the multi-step transition (3.89)
derived in Section 3.6. To get a closed expression for the cost function the parameter tensors
of all time instants k + i, i = 1, . . . , Hp are extended by zeros, such that the monomial
vector describes a dependence on the inputs u(k + i), i = 0, . . . , Hp − 1 and reference
values r(k + i), i = 1, . . . , Hp for the whole prediction horizon

x̂(k+i)=
⟨︂
Fi
⃓⃓⃓
M(n+m)i−1

p (x(k), u(k−1), . . . , u(k+Hp−1), r(k+1), . . . , r(k+Hp))
⟩︂

, (4.42)

with Fi ∈ R×(n+m)i−1((Hp+3)n+Hpm)2. The reference trajectory for the prediction horizon is
known and can be expressed with respect to the same monomial tensor by constructing a
parameter tensor Fi

r such that

r(k+i)=
⟨︂
Fi

r

⃓⃓⃓
M(n+m)i−1

p (x(k), u(k−1), . . . , u(k+Hp−1), r(k+1), . . . , r(k+Hp))
⟩︂

, (4.43)

for all i ∈ {1, . . . , Hp}. All entries in the tensor Fi
r belonging to the states and inputs are

set to zeros. Only the linear terms of the references are selected. The first term of the

cost function (4.41)
Hp∑︁
i=1

∥x̂(k + i) − r(k + i)∥2
Q penalizes the deviation of the states from

their reference values. The difference between states and their references is computed in the
tensor framework with above definitions (4.42) and (4.43) by

x̂(k + i) − r(k + i)
=
⟨︂

Fi − Fi
r

⃓⃓⃓
M(n+m)i−1

p (x(k), u(k − 1), . . . , u(k + Hp − 1), r(k + 1), . . . , r(k + Hp))
⟩︂

.

144

4 Controller design for MTI systems

The deviation of states and references is computed by a weighted 2-norm

∥x̂(k + i) − r(k + i)∥2
Q

=
⟨︂
Fi−Fi

r

⃓⃓⃓
M(n+m)i−1

p (x(k), . . . , r(k+Hp))
⟩︂T

Q
⟨︂
Fi−Fi

r

⃓⃓⃓
M(n+m)i−1

p (x(k), . . . , r(k+Hp))
⟩︂

.

In many applications a diagonal weighting matrix

Q =

⎛⎜⎜⎜⎜⎝
q(1) 0 · · · 0

0 q(2) · · · 0
...
0 · · · 0 q(n)

⎞⎟⎟⎟⎟⎠ ∈ Rn×n,

is used, which is assumed here, too. The norm of the state difference of the reference is given
by the particular states

∥x̂(k + i) − r(k + i)∥2
Q =

n∑︂
j=1

q(j) (x̂j(k + i) − rj(k + i))2

=
n∑︂

j=1
q(j)

⟨︂ (︂
Fi − Fi

r

)︂
×̄βej,n

⃓⃓⃓
M(n+m)i−1

p (x(k), u(k − 1), . . . , r(k + Hp))
⟩︂2

=
n∑︂

j=1
q(j)

⟨︂ (︂(︂
Fi − Fi

r

)︂
×̄βej,n

)︂
◦
(︂(︂

Fi − Fi
r

)︂
×̄βej,n

)︂ ⃓⃓⃓
M2(n+m)i−1

p (x(k), . . . , r(k + Hp))
⟩︂

=
⟨︄

n∑︂
j=1

q(j)
(︂(︂

Fi − Fi
r

)︂
×̄βej,n

)︂
◦
(︂(︂

Fi − Fi
r

)︂
×̄βej,n

)︂ ⃓⃓⃓
M2(n+m)i−1

p (x(k), . . . , r(k + Hp))
⟩︄

=
⟨︂

Fi
cost,x

⃓⃓⃓
M2(n+m)i−1

p (x(k), u(k − 1), . . . , r(k + Hp))
⟩︂

, (4.44)

where β = (n+m)i−1(Hp+1)(n+m)+1 is the index of the last dimension of Fi or Fi
r. The ten-

sor vector product with the unit vector is used to select the particular states. This describes
the first sum of the quadratic cost function (4.41) in a tensor framework. It results in a poly-
nomial of maximal order 2(n+m)i−1. The second part of the cost function

Hu−1∑︁
i=0

∥∆u(k+i)∥2
R

is expressed in a tensor framework too. With ∆u(k + i) the change of the input signals from
one time step to the next one is computed. A parameter tensor is simply constructed that
selects the corresponding input from the monomial tensor and computes the difference

∆u(k + i) = u(k + i) − u(k + i − 1) =
⟨︂

Fi
∆u

⃓⃓⃓
M(n+m)i−1

p (x(k), u(k − 1), . . . , r(k + Hp))
⟩︂

.

Example 4.4 Assume the input difference ∆u(k+1) = u(k+1)−u(k) should be computed
from a monomial tensor M (u(k), u(k + 1)). The parameter tensor is constructed, such that

∆u(k + 1) =
⟨︄(︄

0 −1
1 0

)︄ ⃓⃓⃓⃓
⃓
(︄

1 u(k)
u(k + 1) u(k)u(k + 1)

)︄ ⟩︄
= u(k + 1) − u(k).

145

4 Controller design for MTI systems

The example shows, that the parameter tensor Fi
∆u is simply constructed. This is done in

a similar way for higher order monomial tensors. Again it is assumed here as it is the case
often in the applications, that the weighting matrix R of the inputs is a diagonal matrix

R =

⎛⎜⎜⎜⎜⎝
r(1) 0 · · · 0

0 r(2) · · · 0
...
0 · · · 0 r(m)

⎞⎟⎟⎟⎟⎠ ∈ Rm×m.

Using the tensor representation of the input difference, the second part of the quadratic
MPC cost function is derived analogous to the first part by

∥∆u(k + i)∥2
R =

m∑︂
j=1

r(j)∆uj(k + i)2

=
m∑︂

j=1
r(j)

⟨︂
Fi

∆u×̄βej,n

⃓⃓⃓
M(n+m)i−1

p (x(k), u(k − 1), . . . , r(k + Hp))
⟩︂2

=
m∑︂

j=1
r(j)

⟨︂ (︂
Fi

∆u×̄βej,n

)︂
◦
(︂
Fi

∆u×̄βej,n

)︂ ⃓⃓⃓
M2(n+m)i−1

p (x(k), u(k − 1), . . . , r(k + Hp))
⟩︂

=
⟨︄

m∑︂
j=1

r(j)
(︂
Fi

∆u×̄βej,n

)︂
◦
(︂
Fi

∆u×̄βej,n

)︂ ⃓⃓⃓
M2(n+m)i−1

p (x(k), u(k − 1), . . . , r(k + Hp))
⟩︄

=
⟨︂

Fi
cost,u

⃓⃓⃓
M2(n+m)i−1

p (x(k), u(k − 1), . . . , r(k + Hp))
⟩︂

Since both parts of the cost function (4.41) are described in a tensor framework now, the
cost function itself can be represented in closed form too for MTI systems. Expressing all
parameter tensors Fi

cost,x and Fi
cost,u with respect to the monomial tensor

M(n+m)Hp−1

p (x(k), u(k − 1), . . . , u(k + Hp − 1), r(k), . . . , r(k + Hp)) ,

that contains the reference and input values for the whole prediction horizon gives

J(k) =
⟨︄ Hp∑︂

i=1
Fi

cost,x +
Hu−1∑︂

i=0
Fi

cost,u

⃓⃓⃓
M2(n+m)Hp−1

p (x(k), u(k − 1), . . . , r(k + Hp))
⟩︄

=
⟨︂

FJ

⃓⃓⃓
M2(n+m)Hp−1

p (x(k), u(k − 1), . . . , r(k + Hp))
⟩︂

(4.45)

with the parameter tensor FJ , that describes a polynomial of maximal order 2(n + m)Hp−1

with (Hp + 1)(n + m) variables leading to a dimensionality of R×((2(n+m)Hp−1)(Hp+1)(n+m))2.
If approximate solutions are sufficient the order might be reduced by applying a Taylor
approach as described in Section 2.3.5 to limit the order to 2. With this explicit description
of the cost function at time k for the whole prediction horizon, no forward simulation by
iterative application of the system model has to be executed as it is necessary in standard
nonlinear MPC. The cost function that is minimized, when solving the problem

min
u(k + i),

i = 0, . . . , Hu−1

J(k), (4.46)

146

4 Controller design for MTI systems

is computed directly by inserting the actual state, the reference trajectory for the prediction
horizon and the input trajectory for the prediction horizon in the monomial tensor. Another
advantage of this closed description of the cost function is, that it is possible with (2.68)
and (2.74) to calculate e.g. the gradient of the cost function analytically in the tensor
framework. This leads to a faster and more accurate solution of the optimization, e.g.
when using an interior point algorithm, [12]. Without an analytic solution, the gradient
is determined approximately by the algorithm by a finite differences approach, leading to
longer computation times and possible inaccuracies.

Example 4.5 The plant is given as discrete-time MTI state space model with two states
and one input(︄

x1(k + 1)
x2(k + 1)

)︄
=
(︄

−0.02x2 − 0.1x1x2 + 0.1x1u,
−0.2 + 0.3x1 + 0.3x1x2 − 0.1x2u

)︄
= ⟨ F | M (x1(k), x2(k), u(k)) ⟩ ,

and a sampling time of Tsample = 1s to illustrate the approach and the dimensionality of the
parameter tensors. The MPC controller in this example should drive the second state to a
reference value. The first state should not follow a reference. Because of that, the weighting
matrix of the states is written as

Q =
(︄

q(1) 0
0 q(2)

)︄
=
(︄

0 0
0 100

)︄
,

such that the difference of the first state is weighted by q(1) = 0. The system has one input
only and input changes are penalized with a weighting factor r = 0.1. A reference r(k + i)
with i = 1, . . . , Hp is given as depicted in the simulation results in Figure 4.16 for the whole
simulation interval. The prediction and the input horizon are both chosen to three time steps.
At first the multiple state transition representations are computed as shown in Subsection 3.6
leading to

x(k + 1) =
⟨︂

F1 | M (x(k), u(k))
⟩︂

,

x(k + 2) =
⟨︂

F2
⃓⃓⃓
M3

p (x(k), u(k), u(k + 1))
⟩︂

,

x(k + 3) =
⟨︂

F3
⃓⃓⃓
M9

p (x(k), u(k), u(k + 1), u(k + 2))
⟩︂

,

with parameter tensors of dimension F1 ∈ R×(4)2, F2 ∈ R×(13)2 and F3 ∈ R×(46)2. The state
deviations from the references are computed for the prediction horizon by

∥x̂(k+1)−r(k+1)∥2
Q

=
⟨︂
F1

cost,x

⃓⃓⃓
M2

p (x(k), u(k−1), u(k), u(k+1), u(k+2), r(k+1), r(k+2), r(k+3))
⟩︂

∥x̂(k+2)−r(k+2)∥2
Q

=
⟨︂

F2
cost,x

⃓⃓⃓
M6

p (x(k), u(k−1), u(k), u(k+1), u(k+2), r(k+1), r(k+2), r(k+3))
⟩︂

∥x̂(k+3)−r(k+3)∥2
Q

=
⟨︂

F3
cost,x

⃓⃓⃓
M18

p (x(k), u(k−1), u(k), u(k+1), u(k+2), r(k+1), r(k+2), r(k+3))
⟩︂

147

4 Controller design for MTI systems

and represented with respect to the actual state, the input variables and the reference for
the whole prediction horizon, which is necessary to summarize all the terms to compute
the overall cost function. This results in the parameter tensors of the first F1

cost,x ∈ R×(24)2,
second F2

cost,x ∈ R×(72)2 and third F3
cost,x ∈ R×(216)2 time step. The input changes are given by

∥∆u(k)∥2
R =

⟨︂
F1

cost,u

⃓⃓⃓
M2

p (x(k), u(k−1), u(k), u(k+1), u(k+2), r(k+1), r(k+2), r(k+3))
⟩︂

∥∆u(k+1)∥2
R =

⟨︂
F2

cost,u

⃓⃓⃓
M6

p (x(k), u(k−1), u(k), u(k+1), u(k+2), r(k+1), r(k+2), r(k+3))
⟩︂

∥∆u(k+2)∥2
R =

⟨︂
F3

cost,u

⃓⃓⃓
M18

p (x(k), u(k−1), u(k), u(k+1), u(k+2), r(k+1), r(k+2), r(k+3))
⟩︂
,

with tensors of same dimensionality as for the states. The cost function of the MPC opti-
mization problem (4.41) results in a tensor notation

J(k)=
⟨︄ 3∑︂

i=1
Fi

cost,x+
2∑︂

i=0
Fi

cost,u

⃓⃓⃓
M18

p (x(k), u(k−1), . . . , u(k+2), r(k+1), . . . , r(k+3))
⟩︄

=
⟨︂

FJ

⃓⃓⃓
M18

p (x(k), u(k−1), u(k), u(k+1), u(k+2), r(k+1), r(k+2), r(k+3))
⟩︂
, (4.47)

with parameter tensor FJ ∈ R×(198)2 of the cost function. This representation of the cost
function is used now to solve the MPC optimization problem. Therefore, the gradient of J(k)
by operational tensors as described in Subsection 2.3.5 is computed and given as additional
parameters to the solver in Matlab, that uses an interior point algorithm, to improve the
optimization performance, [12].
This example shows, that the parameter tensors of the cost function gets large even though
a small system with a short prediction horizon is investigated. The size of FJ is R×(198)2

and depends on the number of states and the prediction horizon. The number of dimensions
increases exponentially with the prediction horizon. As mentioned in Subsection 3.6, this can
be avoided by approximating the multi-step transitions by a Taylor approximation of order 2,
as derived in Section 2.3.5. In this case the parameter tensor FJ has 44 dimensions which
is better manageable. Figure 4.16 compares the closed loop simulation results of the second
state for an MPC which uses the exact cost function (4.47) and for an MPC, that uses an
approximated version of the parameter tensor.

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

Time [s]

x
2 Reference

Exact
Taylor

Figure 4.16: Closed loop simulation result result for state x2

The results show that the approximated version has a slightly worse tracking performance but
still shows good results. By approximating the parameters of the multi-step transitions the

148

4 Controller design for MTI systems

complexity of the parameter tensor FJ of the cost function is reduced. This leads to less com-
putation effort during optimization, which is shown in Table 4.2 by the average computation
times for solving the optimization problem (4.46) in one time step. The table shows also the
benefits of the use of an analytically computed gradient by (2.68). The computation time is
reduced significantly, when a gradient is provided for the optimization algorithm. But the
computation times show also that with the exact representation the computation of the opti-
mization is too complex, since the computation takes longer than the sampling time, which
is not acceptable, when the controller should be applied in real-time. With the approximation
the computation time is below the sampling time of one second and still gives good results.

Table 4.2: Average computation times for solving the MPC optimization problem

Analytic gradient Approximated gradient
Exact 3.04s 20.32s

Taylor approximation 0.11s 0.76s

4.4.2 Convexity analysis

The previous subsection derived a closed description of the cost function of the MPC op-
timization problem in tensor notation. The MPC control strategy is applied very often by
using linear models inside the controller, leading to a convex optimization problem in the
proposed configuration, [75]. It was shown in Chapter 3, that MTI state space models have
nice modeling properties and thus may give better results than a linear model when used in-
side an MPC. Therefore, in this subsection the convexity property of the MPC optimization
problem is investigated when MTI models are used by summarizing the results given in [56].
An optimization problem is convex, if and only if, the cost function and the constraints are
convex, [12]. Here it is assumed, that the constraints are convex, which is the case, e.g. if
linear constraints or box constraints are used, which is the case often in application. Thus
the focus on convex constraints is not a strong restriction in general. To check the convexity
of the cost function J(k) the second order derivatives of J(k) have to be investigated. The
Hessian matrix of J(k) with respect to the optimization variables u(k + i), i = 0, . . . , Hu −1
has to be positive semi-definite

HJ =
(︄

∂2J(k)
∂ui(k + l)∂uj(k + q)

)︄
≥ 0, ∀i, j = 1, . . . , m, ∀l, q = 0, . . . , Hu − 1.

The Hessian HJ ∈ RmHu×mHu is positive semi-definite, if its eigenvalues are greater than
or equal to zero. Because of the fact, that a sum of convex functions is a convex function,
the convexity of the first and the second sum of the cost function (4.41) can be investigated
independently. The second part

Hu−1∑︁
i=0

∥∆u(k + i)∥2
R is obviously convex, since it is a sum of

149

4 Controller design for MTI systems

squared input differences. This reduces the convexity analysis of J(k) to the first term

Jx(k) =
Hp∑︂
i=1

∥x̂(k + i) − r(k + i)∥2
Q.

In [56] the convexity of the optimization problem for different classes of MTI systems and
different prediction horizons were investigated. For a one step prediction horizon Hp = 1
the optimization problem (4.41) of MTI systems is convex. When extending the prediction
horizon to two time steps Hp = 2, it turned out, that the convexity is not given for all MTI
systems, which can be shown by the following example.

Example 4.6 Consider the state equation of a second order discrete-time MTI system(︄
x1(k + 1)
x2(k + 1)

)︄
=
(︄

x1x2 + u
u

)︄

and weighing matrices chosen as identity. The Hessian matrix of Jx for Hp = 2 gives

HJ =
(︄

12u(k)2 + 4u(k + 1) 4u(k)
4u(k) 4

)︄
,

when the states and the reference vectors were chosen as x1 = 0, x2 = 0, r(k + 1) =
[︂
1 −1

]︂T
and r(k + 2) =

[︂
1 −1

]︂T
. At the point u(k) = 0 and u(k + 1) = −1 the eigenvalues of H

are λ1,2 = ±4. It follows that H is indefinite. Thus, the cost function is not a convex function
in u ∈ R2.

The example shows that MTI systems in general do not result in a convex optimization
problem (4.46). Because of that, in [56] a subclass of MTI models is defined for which the
optimization problem is convex with Hp = 2. This subclass is based on input linear MTI
systems with one input, that are defined in matrix notation by

x(k + 1) = Fm (x(k)) + Bu

with parameter matrices F ∈ R2n×n and B ∈ Rn×1. It was shown that certain constraints
on the parameter matrix have to be imposed, such that the optimization problem is convex.
With this structural constraint a subclass of MTI systems can be defined for which the MPC
optimization problem is convex for a prediction horizon of 2.
Now this concept is extended to answer the question, how to check the convexity property
for general MTI systems with arbitrary prediction horizons. This would give an idea of the
complexity of the optimization problem, which is an interesting information. It is important
for e.g. the choice of the solver, the sampling time or the hardware for the controller. To
check the convexity of the cost function J(k) it is sufficient to show the convexity of the first
part Jx(k) of the cost function. The function is convex if and only if its Hessian with respect
to the optimization variables

HJx(u(k), . . . , u(k+Hu−1))=
(︄

∂2Jx(u(k), . . . , u(k+Hu−1))
∂ui(k+l)∂uj(k+q)

)︄
∈RmHu×mHu (4.48)

150

4 Controller design for MTI systems

is positive semi-definite HJx(u(k), . . . , u(k + Hu − 1)) ≥ 0. In Subsection 4.4.1 the first part
of the cost function was derived in tensor notation (4.44). At a given time step k the values
of the current state x(k) and the reference values r(k+i), i = 1, . . . , Hp are known and fixed.
The optimization variables are the inputs u(k + i), i = 0, . . . , Hu −1. To get a description of
the cost function with respect to the optimization variables the contracted product of (4.44)
has to be evaluated along the dimensions belonging to the state and references. With the
evaluation of the contracted product the factors of the states and references are included to
the parameter tensor

F̄cost,x(x(k), r(k), . . . , r(k + Hp))
=
⟨︂

Fcost,x

⃓⃓⃓
M2(n+m)Hp−1

p (x(k), r(k), . . . , r(k + Hp))
⟩︂

ix(k),r(k+i),1:2(n+m)(Hp−1)n(Hp+1)

with the vector

ix(k),r(k+i) =
2(n+m)Hp−1

i=1

(︂
(i−1)n+(i−1)mHu+(i−1)nHp+1 · · ·

(i−1)n+(i−1)mHu+inHp (i−1)n+imHu+inHp+1 · · · in+imHu+inHp

)︂
,

containing the indices belonging to the state and references in Fcost,x. Using this parameter
tensor the cost function Jx(k) is described by

Jx(k)=
⟨︂
F̄cost,x(x(k), r(k), . . . , r(k+Hp))

⃓⃓⃓
M2(n+m)Hp−1

p (u(k), . . . , u(k+Hu−1))
⟩︂

,

such that the monomials depend on the input values only. With the representation of the cost
function in the tensor framework the Hessian (4.48) is computed by (2.74) with operational
tensors resulting in

HJx(u(k), . . . , u(k+Hu−1))=
⟨︂

HJx

⃓⃓⃓
M2(n+m)Hp−1

p (u(k), . . . , u(k+Hu−1))
⟩︂

, (4.49)

where the parameter tensor HJx is computed by (2.75). This shows that the Hessian matrix
of the part Jx of the cost function that is significant for the convexity is computed from
the cost function parameter tensor representation (4.45). This goes beyond the scope of [56]
because it allows to compute the Hessian also for general MTI systems with larger prediction
horizons. In the last step the semi-definiteness of the Hessian (4.49) has to be checked. If the
matrix is positive semi-definite for all states, references and inputs, the MPC optimization
problem is convex. The semi-definiteness of the Hessian is quite hard to check in general. It
depends on the monomials that are used in the cost function. But it is simple to check the
property for several typical points in the operating range by evaluting (4.49) for these points
and computing the eigenvalues. If the Hessian has a negative eigenvalue for one of these
points, the cost function is non-convex. But one has to take care, if all checked points result
in positive eigenvalues only, this does not guarantee convexity. By checking some points
only non-convexity can be shown. To show convexity the semi-definiteness of (4.49) has to
be shown in general, which can be complex, [12, 14].

Example 4.7 To illustrate the approach with the Hessian computed by operational tensors
the system of Example 4.6 is considered. At first the convexity for a prediction horizon

151

4 Controller design for MTI systems

of Hp = 1 is investigated. With that the cost function Jx is given by

Jx(k) =
⟨︂

Fcost,x

⃓⃓⃓
M2

p (x(k), u(k), r(k + 1))
⟩︂

.

The cost function is described by the optimization variable u(k) by

Jx(u(k)) =
⟨︂

F̄cost,x(x(k), r(k + 1))
⃓⃓⃓
M2

p (u(k))
⟩︂

with the parameter tensor

F̄cost,x(x(k), r(k + 1)) =
⟨︂

Fcost,x

⃓⃓⃓
M2

p (x(k), r(k + 1))
⟩︂

ix(k),r(k+i),1:8
,

where the index vector is written as ix(k),r(k+i) =
(︂
1 2 4 5 6 7 9 10

)︂T
. Computing

the Hessian of Jx(u(k)) results in the tensor notation

HJx(u(k)) =
⟨︂

HJx(x(k), r(k + 1))
⃓⃓⃓
M2

p (u(k))
⟩︂

= 4.

Thus, the Hessian is positive for all values of x(k), u(k) and r(k + 1) and therefore the
optimization problem is convex, as it is the case for all MTI system with Hp = 1.
For a prediction horizon of two Hp = 2 the same steps are executed to compute the Hessian
of

Jx(k) =
⟨︂

Fcost,x

⃓⃓⃓
M6

p (x(k), u(k), u(k + 1), r(k + 1), r(k + 2))
⟩︂

.

Here an additional optimization variable is necessary leading to

Jx(u(k), u(k + 1)) =
⟨︂

F̄cost,x(x(k), r(k + 1), r(k + 2))
⃓⃓⃓
M6

p (u(k), u(k + 1))
⟩︂

,

where the parameter tensor is computed with index vector ix(k),r(k+i) ∈ R36 as

F̄cost,x(x(k), r(k + 1), r(k + 2)) =
⟨︂

Fcost,x

⃓⃓⃓
M6

p (x(k), r(k + 1), r(k + 2))
⟩︂

ix(k),r(k+i),1:36
.

With the tensor approach (4.49) the Hessian yields

HJx(u(k), u(k + 1)) =
⟨︂

HJx(x(k), r(k + 1), r(k + 2))
⃓⃓⃓
M6

p (u(k), u(k + 1))
⟩︂

.

Now it has to be checked if the Hessian is positive semi-definite. Here different combinations
of states, reference and inputs can be checked. Evaluating the Hessian at the point given in
Example 4.6, gives the Hessian matrix

HJx(0, −1) =
⟨︄

HJx

(︄(︄
0
0

)︄
,

(︄
1

−1

)︄
,

(︄
1

−1

)︄)︄ ⃓⃓⃓
M2

p (0, −1)
⟩︄

=
(︄

−4 0
0 4

)︄
,

that has eigenvalues ±4. This shows that the Hessian is not positive semi-definite for the
whole operating range and thus the optimization problem is non-convex. This goes together
with the results of Example 4.6, where the Hessian was computed symbolically directly. To
check a larger horizon does not make sense, since this cannot restore convexity. But this
example shows that with the proposed approach the Hessian could have been computed also
for larger horizons and is not limited to a certain subclass.

152

4 Controller design for MTI systems

If convexity can be shown for small prediction horizons only, this can have positive effects
also on MPC optimization problems with larger prediction horizon. If the optimization
problem (4.41) is not convex the optimization result depends on the choice of the initial
values. To improve the choice of initial values, the solution of the optimization problem
with smaller prediction horizon that leads to a convex cost function and a global optimum
may help. This solution can be used for the initialization for the nonconvex optimization
problem of larger prediction horizon. In [56] an example was shown where a solution next
to the global optimum is found with fast convergence with this initialization.

4.5 Adaptive model predictive control with successive
linearization

Because of its ability to optimally control multiple-input multiple-output systems with con-
sideration of constraints and disturbances, MPC is a popular control method especially for
systems with time delays or large time constants. Inside the controller a model is used to
predict the future plant behavior. In many applications linear models are used for that, [73].
This has the advantage, that the MPC optimization problem is convex and can thus be
solved very efficiently by standard solvers like the interior point method, which makes it well
suitable for real-time implementation, [12]. But using linear models leads to the drawback
that, depending on the application, linear models describe the behavior of a nonlinear system
in a sufficient accuracy in the neighborhood of the operating point only. When nonlinear
effects are essential, the prediction of the system behavior by a linear model might not be
sufficient. In this case nonlinear models can be used. Since MTI systems showed some good
modeling properties as shown in Chapter 3, in this section multilinear state space model
should be used to describe the behavior of the plant. But the previous Section 4.4 showed,
that the good properties of the optimization problems get lost in general when MTI systems
are used. Only for some subclasses the MPC optimization problem is convex, when MTI
models are applied. In general the optimization problem is non-convex in this case. This
could lead to long computation times when solving the optimization problem and it is not
guaranteed that a global optimal solution is found. This large complexity could also lead to
problems within implementation, since in this case it has to be guaranteed that the result
of the optimization is computed during one time step.
To combine the advantages of both MPC approaches, i.e. the good modeling properties and
the convex optimization problem, in [57] or [76] different concepts are given that adapt the
linear system to the current operating conditions of the plant, e.g. by online linearization
of a nonlinear model or an LPV model. By adapting the linear model to the current plant
conditions this leads to improved modeling properties compared to the application of one
single linearized model. Since the model used during optimization is linear in this approach,
the convexity of the optimization problem is guaranteed. Here the idea is to successively
linearize the MTI system in each sampling step around actual operating conditions, as it is
done for general nonlinear systems, e.g. in [58]. This MPC approach is called adaptive MPC,
since the model used during optimization is adapted to the plant. To avoid conflicts with
other approaches, where the linear model is e.g. adapted to the plant by an online black-box

153

4 Controller design for MTI systems

identification with measurement data, the concept used here is called adaptive model pre-
dictive control with successive linearization (AMPC-SL). Therefore, a continuous-time MTI
model

ẋ = ⟨ F | M (x, u, d) ⟩ ,

y = ⟨ G | M (x, u) ⟩ ,

of the plant has to be identified, where the inputs are divided into control and disturbance
inputs. In each time step, the MTI model is linearized around an operating point. Thus
in the first step an operating point next to the actual operating conditions is computed
by (4.31) with constraints (4.32) to (4.34). The values of the operating point are set to
the actually measured disturbances and the outputs are set to the reference values. The
constraints on the inputs are given by the formulation of the MPC problem (4.20). This
leads to the operating point (︂

x̄ ū d̄ ȳ
)︂

. (4.50)

Since the plant is described by an MTI model, the online linearization is computed very
efficiently without any symbolical computations by the linearization approach introduced
in Section 3.3. An analytically correct linearization can be computed here without much
computational effort and by standard numerical operations such that it is also suitable
for real-time implementations. The linear approximation of the state equation is compu-
ted as a function of the operating point by (4.35) to (4.38) resulting in the linear system
matrices A(x̄, ū, d̄), Bu(x̄, ū, d̄) and Bd(x̄, ū, d̄). It is assumed that the output is not dis-
turbed, such that the parameter matrices of the output equation C(x̄, ū) and D(x̄, ū) follow
from (3.48) and (3.49). This linear model is discretized by standard discretization techniques
for linear systems, [12]. The discrete-time linear model approximates the system behavior
around the operating point by

x(k+1)−x̄=A(x̄, ū, d̄) (x(k)−x̄) + B(x̄, ū, d̄) (u(k)−ū)+Bd(x̄, ū, d̄)
(︂
d(k)−d̄

)︂
,

y(k)−ȳ=C(x̄, ū) (x(k)−x̄)+D(x̄, ū) (u(k)−ū) ,

This linearization of the MTI system is used to solve the optimization problem

min
u(k + i),

i = 0, . . . , Hu−1

J(k) (4.51)

subject to x̂(k + i + 1) − x̄ = A(x̄, ū, d̄) (x̂(k + i) − x̄) + Bu(x̄, ū, d̄) (u(k + i) − ū) · · ·
+Bd(x̄, ū, d̄)

(︂
dpred(k + i) − d̄

)︂
, i = 0, . . . , Hp − 1,

ŷ(k + i) + ȳ = C (x̂(k + i) − x̄) , i = 1, . . . , Hp − 1,
umin ≤ u(k + i) ≤ umax, i = 0, . . . , Hu − 1,
ymin ≤ ŷ(k + i) ≤ ymax, i = 1, . . . , Hp.

With a quadratic cost function as (4.41) the optimization problem is convex. The solution of
the optimization problem is the input sequence û(k + i) with i = 0, . . . , Hu − 1 for the input
horizon. The inputs û(k) of the first time step are applied to the plant. At the next time
instant again an operating point of the MTI system is calculated, the system is linearized

154

4 Controller design for MTI systems

around this operating point and the MPC optimization problem is solved with this linear
model.
Up to this point the main idea of the proposed algorithm for AMPC-SL for MTI systems
is described. The performance can be further improved with tools introduced in Section 3.
From a numerical point of view problems may arise for the computation of the operating
point (4.50) and the MPC optimization problem (4.51), when the signals or variables are of
different magnitude, which is e.g. the case in the application area of heating systems with
flows in ∼ 10−3m3/s and temperatures around 300K. A numerical preconditioning is done by
scaling of all signals x, u, d and y. The block diagram of the resulting closed loop system
with the scaling is depicted in Figure 4.17.

Model
Cost function

Optimizer
Adap. MPC

Linearization

Operating point
computation

MTI model

Plant

Control inputs

Disturbance

Disturbance
estimation

Reference
MeasurementsScaling

Scaling
Scaling

Scaling

Figure 4.17: Closed loop of the AMPC-SL controller with scaled signals and the plant

The operating region

x ∈ [xmin, xmax] , u ∈ [umin, umax] , d ∈ [dmin, dmax] , y ∈ [ymin, ymax] . (4.52)

of each signal that has to be specified by the user is scaled to the intervals x̃, ũ, d̃ and ỹ∈ [0, 1].
This has the advantage that all signals have the same magnitude and that multiplications
of the signals as they occur in multilinear models, stay in this interval and do not get larger
as it is the case for the multiplication of numbers larger than 1. Thus, the MTI system
is scaled as described in Lemma 3.2. The model is scaled before controller design, such
that the algorithm works with the scaled model of the plant, resulting in a scaled operating
point, a scaled linear system and a scaled result of the optimization problem. Therefore,
the measured signals and disturbance predictions have to be scaled before the AMPC-SL

155

4 Controller design for MTI systems

algorithm according to (3.63) to (3.65) by

x̃i = 1
ãi

(︂
xi − b̃i

)︂
, i = 1, . . . , n,

d̃i = 1
ãn+m+i

(︂
di − b̃n+m+i

)︂
, i = 1, . . . , md,

ỹi = 1
c̃i

(yi − ẽi) , i = 1, . . . , n.

The control input determined by the MPC has to be transformed back to the original ope-
rating area by

ui = ãn+iũi + b̃n+i, i = 1, . . . , m,

before being applied to the plant. This avoids numerical problems caused by the different
magnitudes of the signals.
When focusing on real-time implementation, the use of linear systems avoids the online
solution of nonlinear optimization problems. A quadratic problem has to be solved only.
The linearization is efficient since it is computed based on decomposed parameter tensors of
the MTI model. But for the computation of the operating point still a nonlinear optimization
or root finding problem (4.31) has to be solved. Solving this optimization problem online
could lead to timing problems. That is why an offline computation approach is proposed
here. The MTI model and the operating region (4.52) have to be known in advance to apply
the controller. The operating points of the system can be computed for different points in
the operating region. A grid for the operating region is constructed by dividing the intervals
for each signal in Nx,i, Nu,i and Nd,i parts, respectively. As an example the grid vector for
the state xi is given by

Xj =
(︂
xj,min xj,min + κx,j · · · xj,min + (Nx,j − 1) κx,j xj,max

)︂
∈ RNx,j+1, j = 1, . . . , n,

with the step size κx,j = xj,max−xj,min

Nx,j
. The grid vectors Uj and Dj of the other sig-

nals are constructed analogously. For each combination of the elements of the grid vec-
tors Xj(ix,j), Uj(iu,j) and Dj(id,j) the optimization problem (4.31) is solved to compute
an operating point of the plant for these operating conditions. The resulting operating
point

(︂
x̄ ū d̄ ȳ

)︂
is stored in a multidimensional array, i.e. a tensor ΘOP with elements

ΘOP (ix,1, . . . , ix,n, iu,1, . . . , iu,m, id,1, . . . , id,md
, :) =

(︂
x̄ ū d̄ ȳ

)︂
,

of dimension RNx,1+1×···×Nx,n+1×Nu,1+1×···×Nu,m+1×Nd,1+1×···×Nd,md
+1×n+m+md+p. Each output,

state, control and disturbance input belongs to one dimension of the tensor ΘOP . In the
last dimension the result of the corresponding operating point computation is stored. To
reduce the storing effort, the tensor ΘOP can be decomposed by standard decomposition
routines as described in Subsection 2.1.2. The TT or HT are well suited here for application
since a fixed desired accuracy can be set by the user for the decomposition. This gives a
storage efficient representation of the field of operating points. During operation the closest
grid point to the actual measurements is chosen. This means e.g. for the actual value of

156

4 Controller design for MTI systems

disturbance dj, that the grid point Dj(id,j) with index id,j is selected, such that the absolute
difference |dj − Dj(id,j)| compared with all other grid points Dj(k), k = 1, . . . , Nd,j, k ̸= id,j

is minimal. The indices for the other signals are determined in the same way. With the
computed indices ix,j, iu,j and id,j the operating point can be restored from the field of
operating points by

ΘOP (ix,1, . . . , ix,n, iu,1, . . . , iu,m, id,1, . . . , ix,md
, 1 : n) = x̄,

ΘOP (ix,1, . . . , ix,n, iu,1, . . . , iu,m, id,1, . . . , ix,md
, n + 1 : n + m) = ū,

ΘOP (ix,1, . . . , ix,n, iu,1, . . . , iu,m, id,1, . . . , ix,md
, n + m + 1 : n + m + md) = d̄,

ΘOP (ix,1, . . . , ix,n, iu,1, . . . , iu,m, id,1, . . . , ix,md
, n + m + md + 1 : n + m + md + p) = ȳ.

Thus, during operation the operating point is determined by simply selecting the elements
from the field ΘOP belonging to the operating conditions nearest to the actual ones. No
optimization problem has to be solved during controller operation for the calculation of the
operating point. Because of the discretization of the operating area, this leads to reduced
accuracy, but it is acceptable, if the number of grid points is chosen sufficiently large for
the given application. The reduced complexity for the operating point computation leads to
less computational effort, which is important especially for real-time implementation. The
algorithm for the AMPC-SL is summarized in Figure 4.18.

Example 4.8 In this example an AMPC-SL controller is designed for a plant with one
state, one input and no disturbance

ẋ1 = x1 − x1u1,

y1 = x1,

where the state is measured and given as an output. To formulate the MPC optimization pro-
blem the standard quadratic cost function (4.41) for reference tracking is used. The operating
region of the system is defined by

−5 ≤ x1 ≤ 5, −5 ≤ y1 ≤ 5, −5 ≤ u1 ≤ 5.

The system has no disturbance input. With this operating region and a reference trajectory
for the state, that is shown in the plot of the closed loop simulation results in Figure 4.19,
the operating points of the system can be computed on the one hand online and on the other
hand by precomputing a field of operating points. To precompute the field of operating points
at first grid vectors for the signals of the system have to be specified. E.g. for the state a
deviation to Nx,1 = 100 parts is done, leading to

X1 =
(︂
x1,min x1min + κx,1 · · · x1,min + (Nx,1 − 1) κx,1 x1,max

)︂
=
(︂
−5 −4.9 · · · 4.9 5

)︂
∈ R101×1,

because the step size is given by κx,1 = x1,max−x1,min

Nx,1
= 0.1. The same discritization is applied

to the input signal resulting in the grid vector U1 ∈ R101×1. The resulting tensor with their
operating points is of dimension ΘOP ∈ R101×101×2, since the output is equal to the state

157

4 Controller design for MTI systems

Measurements of the actual plant conditions

Scaling of all signals to the interval [0, 1]

Determination of an operating point close to the
actual operating conditions by solving (4.31) on-
line or by selection from precomputed field ΘOP

Linearization of the MTI model
around the determined operating point

Solving of the MPC optimization pro-
blem (4.51) with the linear model

Scaling of the control signal back to the
original operating interval of the plant

Communication of the optimal control sig-
nal for the next time step to the plant

Figure 4.18: Flow chart of the AMPC-SL algorithm for each sampling step

here. In full representation this tensor has a storage effort of 20402 elements. With a TT
approximation of the data with an accuracy of 10−15, i.e. nearly no loss in accuracy, the
number of elements to be stored can be reduced to 1822 elements. Allowing a less accurate
representation would lead to even less storage effort. By the constraint (4.32) the operating
point of state x1 should be equal to its reference value. Thus for a reference of 2 and a
current input signal of 0.5 the corresponding operating point is selected from the tensor ΘOP

with indices ix,1 = 71 and iu,1 = 56 by

ΘOP (71, 56, 1) = x̄1 = ȳ1 = 2,

ΘOP (71, 56, 2) = ū1 = 1.

Since all signals have a comparable magnitude, no scaling is used here in this Example. The

158

4 Controller design for MTI systems

parameter tensors of the linarizations are precomputed, e.g. Alin by (4.35) for the state ma-
trix A(x̄1, ū1, ȳ1), such that the parameter matrices of the linear model are simply computed
by evaluating the contracted products (4.35) to (4.38) as well as (3.48) and (3.49) at the
operating point in each sampling instant. Using this linearization the optimal control input
is computed by solving the optimization problem (4.51). The controller performance of the
AMPC-SL is compared to a standard MPC with a linear model that was computed for a fixed
operating point. Both controllers are equipped with the same controller parameters, i.e. the
same weights of Q = 1 and R = 1 as well as the same prediction Hp = 10 and input Hu = 5
horizons. The sampling time for both controllers is Ts = 0.1. The closed loop simulation
results to a step in the reference for the state x1 and the trajectories of the operating points
is shown in Figure 4.19.

0 1 2 3 4 5 6 7 8

1
1.5

2
2.5

x
1 AMPC-SL

Standard MPC
Reference

0 1 2 3 4 5 6 7 80.5
1

1.5
2

2.5

x̄
1

0 1 2 3 4 5 6 7 80.5
1

1.5
2

2.5

Time t

ū
1

Figure 4.19: Closed loop simulation results of the example for AMPC-SL

For the standard MPC the MTI example system is linearized around the operating point x̄1 =1
and ū1 = 1. For the standard MPC the resulting linear model is used for the whole simulation
time. With the AMPC-SL the same operating point is used until a step change in the reference
occurs. With the change in the reference also the operating point changes, such that it stays
on the reference leading to the operating point x̄1 = 2 and ū1 = 1. This change of the linear
model used inside the controller has an effect on the controller performance. In the resulting
trajectory for state x1 the behavior until the reference changes is the same for both controllers.
But the update of the linear model inside the AMPC-SL shows a significant advantage in the
performance after the reference change. Because of the better description of the system

159

4 Controller design for MTI systems

dynamics with the linear model of the updated operating point after t = 3 the overshoot can
be reduced enormously and thus the reference is reached much faster. This shows how the
adaption of the model has a positive effect on the overall controller performance.

4.6 Distributed model predictive control

In today’s applications the size of the plants increases more and more. This leads in general
also to an increased complexity of the control problem. The application of a centralized
controller for the whole plant can lead to very large computational effort, e.g. when predictive
controllers are used. This leads to problems, e.g. for large heating systems, [35]. If the
problem is too complex, i.e. its solution takes too much time, the centralized approach is
not applicable. Because of that, an approach is derived here to split the predictive control
task to several controller nodes. Each controller node has to solve smaller optimization
problems resulting in a reduced complexity of the particular computations. But the global
optimization goal should still be considered. Several structures for the design of predictive
controllers are possible, [95].
So far in the previous chapters, centralized designs for MPC were focused on. The centrali-
zed predictive controller has access to all measurements and control signals, as depicted in
Figure 4.20 for a plant that is composed of two subsystems.

System

Subsystem 2

Subsystem 1

x(2) x(1)

y(2)

y(1)

u(2)

u(1)

MPC

Figure 4.20: Centralized MPC, [16]

In centralized MPC the models of the plants can get very complex, which in general also
leads to an increase in the complexity of the optimization problem of the controller. Se-
veral problems may arise in this case, if a central design is used. In predictive control an
optimization has to be solved at each time instant. The decision variables are the inputs
of the plant, that have to be computed for each input for the whole control horizon. Thus,
the size of the search space of the optimization problem depends on the number of control
inputs and the control horizon. If a central controller is used for a large-scale system with
many control signals, this leads to a complex optimization problem, because besides other

160

4 Controller design for MTI systems

influencing factors the search space for the optimization variables gets very large. This is
a limiting factor for application, since for real-time implementation it has to be guaranteed
that the result of the optimization problem is available at the end of each sampling time
step. An arbitrary large increase of the sampling time is not possible, because the sampling
time has to fit to the dynamics, i.e. the time constants, of the plant. Another solution could
be the use of hardware with large computational power. But this is often not possible or
leads to high economical costs, which is also not acceptable. Furthermore, a large amount of
data has to be transmitted to a central location. This large communication effort could lead
to delays and makes the structure sensitive to faults. If a change in the plant occurs, the
whole controller has to be adapted to that in the central case. The model of the plant has to
be reconstructed and the whole controller must be tuned again, e.g. its weighting factors for
reference tracking and control effort Q and R. With a decentralized or distributed design
only the model and the controller of the changed subsystem has to be adapted, which results
in less effort, [80]. This distribution of the controller task into several nodes solves some of
the described problems for the central design and will be considered in the following.
The highest degree of distribution is achieved with a decentralized structure. Each subsystem
has an own local controller. The controller nodes have access to the sensors and actors of the
particular subsystems, but no information of other subsystems is available for them. The
controllers of the different subsystems also do not exchange any information, e.g. on future
control inputs. The controllers only take into account the influencing dynamics of the neigh-
bouring systems by the measurement information on the own subsystems. This structure
of independent controllers is reasonable for weakly interconnnected systems only. Because
of the lack of information on the other subsystems, the decentralized design often leads to
an significantly degraded performance or robustness compared to the central case, [70]. A
decentralized structure for a plant with two subsystems is shown in Figure 4.21.

System

Subsystem 2

Subsystem 1

x(2) x(1)

y(2)

y(1)

u(2)

u(1)

MPC 2

MPC 1

Figure 4.21: Decentralized MPC, [16]

If connections between subsystems are stronger, a fully decentralized design does not lead
to a desired control performance. To combine the advantages of the previously introduced
approaches, the distributed controller structure is described in the following. Like in the
decentralized approach the control task is distributed to several controller nodes, but com-

161

4 Controller design for MTI systems

munication between the nodes is allowed to improve the closed loop performance, [70]. This
is called distributed MPC and abbreviated by DMPC in the literature, [16]. The controller
gets information on the measurements and computes the control inputs of its own subsystem.
Furthermore the controllers e.g. exchange information with other nodes on planned future
control inputs and future output trajectories. This leads to a higher communication effort
compared to the decentral design but improves the control performance especially for inter-
connected systems. In most cases it is not necessary that each controller gets information
of all other subsystems. If a subsystem is connected to a few other subsystems only, the
controller simply needs information on those neighboured subsystems and solves its small
optimization problem considering these information. Thus, the communication effort is not
increased enormously. But it depends on the structure of the system. In many cases the
control structure follows from the underlying plant structure, [70]. A distributed controller
setup is depicted in Figure 4.22.

System

Subsystem 2

Subsystem 1

x(2) x(1)

y(2)

y(1)

u(2)

u(1)

MPC 2

MPC 1

Figure 4.22: Distributed MPC, [16]

The focus in this thesis is on the application field of heating systems. Typical subsystems
follow from the system structure with components like boilers, consumers or storage tanks.
Especially for very large plants the design of a central predictive controller gets too com-
plex, such that a decentralized or distributed design should be investigated here. Since the
components of heating systems are interconnected, e.g. by a water flow through pipes, a
distributed design is used here. The structure of the proposed DMPC approach with MTI
submodels is described in the following.
It is assumed, that the plant model is divided into Nsub subsystems. As introduced in
Section 3.7.1, the dynamics of each subsystem is described by an MTI model

ẋ(i) =
⟨︂

F(i)
⃓⃓⃓
M
(︂
x(i), u(i), s(i), d(i)

)︂ ⟩︂
, (4.53)

y(i) =
⟨︂

G(i)
⃓⃓⃓
M
(︂
x(i), u(i), s(i), d(i)

)︂ ⟩︂
, (4.54)

with i = 1, . . . , Nsub. The inputs of the ith subsystem are dived into control inputs u(i),
external disturbances d(i) and influences from other subsystems s(i) that are handled as

162

4 Controller design for MTI systems

internal disturbances for the subsystem i. The internal disturbances follow from the coupling
equation (3.93) ⎛⎜⎜⎝

s(1)

...
s(Nsub)

⎞⎟⎟⎠ = h(y(1), . . . , y(Nsub), u(1), . . . , u(Nsub)). (4.55)

Each subsystem has its own local predictive controller node, that implements the AMPC-
SL approach derived in Section 4.5. The controller node of subsystem i is constructed as
follows. Inside the local controller the model of its own subsystem is available to them. The
controller gets measurement information from the own subsystem and controls the actors of
this subsystem. A quadratic cost function

Ji(k) =
Hp∑︂
j=1

∥x̂(i)(k + j) − r(i)(k + j)∥2
Q(i) +

Hu−1∑︂
j=0

∥∆u(i)(k + j)∥2
R(i) ,

with weighting matrices Q(i) and R(i) of subsystem i is implemented, that depends on the
input and state signals of subsystem i only. During operation of the MPC of subsystem i
the optimization problem

min
u(i)(k + j),

j = 0, . . . , Hu −1

Ji(k) (4.56)

is solved with constraints. Inequality constraints are available to limit the input and state
signals

u(i)
min ≤ u(i)(k + j) ≤ u(i)

max, j = 0, . . . , Hu − 1,

x̂(i)
min ≤ x̂(i)(k + j) ≤ x̂(i)

max, j = 1, . . . , Hp.

As introduced in Section 4.5 for the AMPC-SL approach a linear approximation

x̂(i)(k + j + 1) = A(i)x̂(i)(k + j) + B(i)
u u(i)(k + j) + B(i)

s s(i)(k + j) + B(i)
d d(i)(k + j)

ŷ(i)(k + j) = C(i)x̂(i)(k + j),

of the MTI model (4.53) and (4.54) is used during optimization to predict the future be-
havior of the subsystem. The linear approximation is computed by the linearization al-
gorithm for MTI systems derived in Section 3.3, resulting in the linear parameter matri-
ces A(i), B(i)

u , B(i)
s , B(i)

d and C(i) of subsystem i. Predictions on the internal disturban-
ces Ŝ(i)(k)=

(︂
s(i)(k) · · · s(i)(k+Hp)

)︂T
and external D̂(i)(k)=

(︂
d(i)(k) · · · d(i)(k+Hp)

)︂
disturbances are provided for the controller node for the whole prediction horizon, such
that they can be considered during optimization. Additionally a reference trajectory

R̂(i)(k) =
(︂
r(i)(k + 1) r(i)(k + 2) · · · r(i)(k + Hp)

)︂
for the state trajectory is given. The solution of the optimization problem (4.56) is the
optimal input trajectory at time step k

Û(i) =
(︂
û(i)(k) û(i)(k + 1) · · · û(i)(k + Hu − 1)

)︂
.

163

4 Controller design for MTI systems

As it is typical for MPC only the first input û(i)(k) is given to the plant, since in the next
time step the optimization is computed again with updated plant conditions. But the other
part of the input sequence is used here, too. The future subsystem behavior is predicted
by a forward simulation of the MTI model of the subsystem with the input trajectory for
the whole prediction horizon. After the end of the control horizon the input signal is held
constant till the end of the prediction horizon

û(i)(k + j) = û(i)(k + Hu − 1), j = Hu, . . . , Hp.

This results in the predicted output trajectory at time k

Ŷ(i)(k) =
(︂
ŷ(i)(k + 1) ŷ(i)(k + 2) · · · ŷ(i)(k + Hp)

)︂
.

To use this control strategy, the trajectories have to be initialized once with reasonable values.
The input as well as the output trajectory are outputs of the controller node of subsystem i,
such that information on the subsystem can be transmitted to other subsystems. The local
control loop with controller node and subsystem is depicted in Figure 4.23.

Controller
node i

Sub-
system

i

R̂(i)

D̂(i) Ŝ(i)

Û(i), Ŷ(i)

û(i)

d(i) s(i)

y(i)

Figure 4.23: Local control loop of subsystem i

Each subsystem optimizes its own cost function Ji. Because of that, only the inputs of the ith

subsystem have to be determined, such that the search space and thus the complexity of the
optimization problem is reduced significantly compared to the central problem. Furthermore
it may be possible to solve some of the problems in parallel. The global control goal of the
overall system is given by the overall cost function J that results from the sum of the cost
functions of the subsystems

J(k) =
Nsub∑︂
i=1

Ji(k).

Thus, each controller node optimizes one part of the cost function Ji, i = 1, . . . , Nsub,
such that the global control goal is considered too. So far the connections between the
subsystems are not considered. A network based communication is used here, since network
protocols like BACnet are often used in buildings. The transmission of the future input
and output trajectories has to be established only between subsystems that are connected.
The necessary signals are send to the network. The data transmission is organized by a
coordinator. The coordinator receives the necessary prediction of the inputs and outputs

164

4 Controller design for MTI systems

from the subsystems. The coordinator knows the coupling equation (4.55) and computes the
predictions of the internal disturbances⎛⎜⎜⎝

s(1)(k + j)
...

s(Nsub)(k + j)

⎞⎟⎟⎠ = h(ŷ(1)(k + j), . . . , ŷ(Nsub)(k + j), u(1)(k + j), . . . , u(Nsub)(k + j)),

with i = 1, . . . , Nsub and j = 1, . . . , Hp, that are sent afterwards to the particular subsystems
via the network. Additionally the coordinator also provides the reference trajectories R̂(i)

for the subsystems. The interface of the coordinator is shown in Figure 4.24.

Coordinator
Û(i)

Ŷ(i)

Ŝ(i)

R̂(i)

Figure 4.24: Coordinator for the DMPC

The overall structure of the control system is composed of the local controllers of the subsys-
tems and the coordinator. Figure 4.25 shows the system setup containing all proposed
components.

Network

System

Sub-
system

1

Sub-
system

2

Sub-
system
Nsub

MPC
1

MPC
2

MPC
Nsub

û(1) y(1)

u(1), y(1)
s(1)

Coupling

Ŝ(1), D̂(1),
R̂(1)

Û(1),
Ŷ(1)

Coordinator

Ŝ(i), R̂(i) Û(i), Ŷ(i)

· · ·

· · ·

Figure 4.25: Overall controller setup for the DMPC

165

4 Controller design for MTI systems

4.7 Open questions

This section showed, how model-based controller design methods are applied to multilinear
systems in decomposed tensor representation. It has been derived, that nonlinear design
methods, like the feedback linearization can be specialized to the multilinear structure.
Furthermore, it has been described how the applicability of linear methods is extended by
adapting the linear models using the MTI system descriptions. For large-scale systems
distributed approaches have been investigated to find a sparse controller structure and to
split the controller task to several nodes.
The feedback linearization method has been derived for SISO plants assuming no distur-
bances or model mismatches. If these assumptions are not fullfilled, as it is the case in ap-
plications this would lead to an additional control error. Therefore the controller approach
would have to be extended e.g. for disturbance rejection as proposed in [90]. Additionally,
in practice it is difficult to tune the controller, i.e. the desired linear behavior, such that all
plant constraints are fulfilled, e.g. because of input saturations. Furthermore when thinking
of real world heating systems, plants often have multiple inputs and multiple outputs, that
have to be controlled. This has to be considered in the design method, too. Up to this point
the feedback linearization method has been introduced for SISO MTI systems here. For
general nonlinear systems this approach was extended to MIMO systems, [94]. The tensor
feedback linearizaton technique for MTI systems has to be adapted to that, which is future
work.
Two more design methods, the decentralized feedback design and MPC have been investi-
gated here. For both methods optimization problems have to be solved; on the one hand
for controller design and on the other hand during operation. These optimization problems
are solved very efficiently, if linear models are used. Because of that, in this work the MTI
models are linearized around current operating conditions and the optimization problems are
solved with the adapted linear model to preserve these good properties. But by linearizing
the multilinear models, an approximation of the model is used. Thus, it would be bene-
ficial, if the MTI model is used directly without a linearization, since the plant dynamics
are captured better by the MTI model. Therefore, optimization algorithms for multilinear
equations have to be derived, that use the special multilinear structure of the right hand
sides of the state space models and the memory efficient decomposed tensor representations.
Another open point is the solution of systems of multilinear equations as for the computa-
tion of operating point by (4.31), where the right hand side of the state equation is set to
zero. Here standard nonlinear solvers have been used. For linear systems of equations well
established algorithms exist, [14]. One possibility to solve a system of multilinear equations
could be the alternating least squares (ALS) method, where iteratively all but one varia-
ble is fixed and the resulting linear problem is solved, [44]. This approach uses the special
multilinear structure of the equations but further research is necessary.
If a sparse feedback controller structure is found with the approach of Section 4.3 this opens
the question, how this structure can be used for other distributed design methods like DMPC.
With the sparse feedback method, a control structure is determined automatically by solving
an optimization problem. It has to be investigated, if the resulting structure is optimal for

166

4 Controller design for MTI systems

static feedback only or if it can be transferred to other distributed controller methods. For the
proposed DMPC approach the control structure is not determined automatically. It follows
heuristically from the basic structure of the plant. But this choice may be not optimal. Thus
it has to be investigated, if the results of the sparse feedback control may help here, too.
For the DMPC approach the central control task is split to several controller nodes accor-
ding to the plant structure. The particular controllers solve their local control problems and
communicate their results to adjacent nodes. This showed good results for a heating systems
example which will be presented in Section 5.3.4.
A more sophisticated algorithm might improve the distributed solution of the optimization
problem. A possible approach, that is used in many distributed predictive control applicati-
ons is the ADMM algorithm, that allows to solve a decomposed optimizaton problem, [13].
The basic structure of the underlying control problem for the predictive control approach
used here fits to the problem description of ADMM. The overall cost function is a sum
of convex cost functions of the particular subsystems and the constraints are also a sum
of linear constraints of the subsystems. This indicates, that the ADMM algorithm can be
used to solve the proposed DMPC problem in a distributed way. The realization is further
research.

167

5 Application of decomposed MTI
systems in heating systems

The previous chapters presented several tools and controller design techniques for MTI state
space models. To use these models also for large-scale systems the model representation
with decomposed tensors was focused on. In this chapter the controller design methods
introduced in Chapter 4 are applied to examples in the field of heating systems of non-
residential buildings by using tools of Chapters 2 and 3. Therefore Section 5.1 derives
models of two example systems in the area of buildings, i.e. a large non-residential heating
system and an HVAC system. The model representations of both examples with the four
decomposition techniques is investigated in Section 5.2. Section 5.3 applies the different
controller design methods to control the room temperature of buildings. The methods are
applied to single heating circuits by using the feedback linearization and the AMPC-SL
design as well as to large-scale buildings with the decentralized feedback and the DMPC
approach. Finally, the AMPC-SL controller is implemented on real-time hardware and
applied to a real world office building.

5.1 Application systems

In the following two typical building technology examples are presented, that are inherently
multilinear. The examples are used to apply the decomposed MTI model representation of
Chapter 3 and the controller design methods of Chapter 4. The first example in Section 5.1.1
is a model of a large-scale heating system with typical structure, where the complexity can
be adjusted by setting the number of heat generation units and consumers, i.e. boilers and
heating circuits. Another typical example in the area of buildings is a model of a complex
HVAC system given in Section 5.1.2. The implementation of the methods for modeling and
controller design with MTI systems in the MTI toolbox are described in Section 5.1.3.

5.1.1 Large non-residential heating system

A structure that can be found in many heating systems for non-residential buildings is
investigated here to derive a model that should be used to apply the methods for MTI system
representation and controller design introduced in the Chapters 3 and 4. The structure of
the model is developed according to a large office building, where measurement data is
available. The heat is generated by two boilers, that supply the consumer, i.e. the building.
The building is divided into several heating circuits, one for each floor. The considered

168

5 Application of decomposed MTI systems in heating systems

building consists of 7 circuits. Inside each circuit the supply temperature Ts is adapted to
the individual needs of the particular heating circuit. It is assumed that the constructions of
the circuits are similar. The cold return water with temperature Tr is fed into a collector and
the mixed water gets back to the boilers. In the investigated building the heating system
consists of 2 boilers and 7 heating circuits. In the following a more general model structure
is developed, such that the number of boilers and consumers can be set by parameters NB

and NHC . This more flexible structure helps to define models of different complexity for the
following controller design tasks. Therefore, the single components are modeled individually
first and are connected to the overall system afterwards. The structure of the overall heating
system is shown in Figure 5.1.

u(HC,1)

Ts,total
Tr,1

HC
1

u(HC,2)

Ts,total
Tr,2

HC
2

u(HC,NHC)

Ts,total
Tr,NHC

HC
NHC

u(B,NB)

Ts,NB

BNB

Tr,total

u(B,1)

Ts,1
B1

Figure 5.1: Scheme of the heating circuit with NB boilers (B) and NHC heating circuits (HC)

Consumer

Each heating circuit is modeled as individual consumer. The thermal behavior is modeled
by heat balances as in [85]. All rooms in a heating circuit are summarized to one large zone,
where it is assumed, that the air inside the zone is completely mixed with homogeneous
room or building temperature Tb,i. This results in a one zone model for the consumer in
each heating circuit. The heat demands of the consumers are covered by radiators. The heat
transfer from the radiators to the zone air is assumed to be proportional to the difference
between the room and the return temperatures Tr,i of the radiators with the heat transfer
coefficients krb,i. The thermal losses to the environment with the ambient temperature To

are given proportional to the difference of the room and the ambient temperatures with
heat transfer coefficients kbo,i. The heat gain due to solar radiation Q̇solar is considered with
factor ks,i. This leads to the heat balances

Ṫb,i = krb,i

Cb,i

(Tr,i − Tb,i) − kbo,i

Cb,i

(Tb,i − To) + ks,i

Cb,i

Q̇solar, (5.1)

where Cb,i are the heat capacities of the heating circuits i = 1, . . . , NHC . The heat transfer
between the zones are neglected here, since it is assumed that effects on the room tem-

169

5 Application of decomposed MTI systems in heating systems

peratures of adjacent zones are small. The consumer is supplied with warm water with
temperature Ts,HCi and flow V̇HCi. Heat is transferred to the building, such that cooled
water leaves the radiators at return temperatures Tr,i with rates

Ṫr,i = 1
Vc,i

V̇HCi (Ts,HCi − Tr,i) − krb,i

cρVc,i

(Tr,i − Tb,i) , (5.2)

where Vc,i are the volumes of the water in the consumer with density ρ and specific heat
capacity c. The consumer and the heat transfers are illustrated in Figure 5.2.

Tr,i
Tb,i, Cb,i

Consumer i

Ts,HCi, V̇HCi

Tr,i

Q̇solar

To

Figure 5.2: Consumer with heat transfers

Mixing circuit

To adapt the supply temperature Ts,total of the total supply coming from the boilers to the
particular heating circuit, each heating circuit has a three way valve and a pump. The valve
allows a return flow addition to reduce the supply temperature for the individual heating
circuit, which is shown in Figure 5.3.

Consumer i

Ts,total

Tr,i

Ts,HCi

ζi
ϕi

Figure 5.3: Mixing circuit of the consumer

The three way valves are controlled by a signal ζi ∈ [0, 1] such that the radiators are supplied
by the mixing temperatures

Ts,HCi = ζiTr,i + (1 − ζi)Ts,total. (5.3)

The flows in the consumer circuit are determined by pumps

V̇HCi = ϕiV̇max,i, (5.4)

depending on the input signals ϕi ∈ [0, 1] with maximal flows V̇max,i. The flow (1−ζi)V̇HCi

leaves the heating circuit with return temperature Tr,i.

170

5 Application of decomposed MTI systems in heating systems

Boiler

The boilers supply the consumers with heat. The mixed return flows of the consumers reach
the boiler with temperature Tr,total. Each boiler has an input, the modulation signal αi ∈ [0, 1]
with i = 1 . . . , NB, that controls their thermal powers Pin,i = αiPmax,i, where Pmax,i are the
maximal powers. Building the heat balances of the boilers with volumes Vb,i, their supply
temperatures Ts,i are given by the ODE

Ṫs,i = 1
Vb,i

V̇b,i (Tr,total − Ts,i) − kb,i

cρVb,i

(Ts,i − Tamb) + αi
Pmax,i

cρVb,i

, (5.5)

with the assumption, that the water inside the boiler is perfectly mixed at temperature Ts,i.
The flow through the boiler is denoted by V̇b,i. No flow losses should occur. The heat losses
of the boiler to its ambient with temperature Tamb is assumed to be proportional to the
temperature difference with factor kb,i. The boiler with its inputs and outputs is depicted
in Figure 5.4.

Ts,i, V̇b,i

Tr,total, V̇b,iBurner

Boiler
αi

Ts,i

Vb,i

Tamb

Figure 5.4: Boiler structure

Flow distribution

The flows on the generation side of the three way valves coming from the consumers are
connected to a return collector resulting in

V̇total =
NHC∑︂
j=1

(1 − ζj)V̇HCj, (5.6)

reaching the boilers with the mixing temperature

Tr,total =

NHC∑︁
j=1

Tr,j(1 − ζj)V̇HCj

NHC∑︁
j=1

(1 − ζj)V̇HCj

= 1
V̇total

NHC∑︂
j=1

Tr,j(1 − ζj)V̇HCj. (5.7)

It is assumed, that the volume flows through the boilers exactly fits to the flow demand by
the consumer pumps and that the boilers are hydraulically balanced, such that they all have
the same flow

V̇b,i = 1
NB

V̇total, (5.8)

171

5 Application of decomposed MTI systems in heating systems

with the total flow V̇total coming from the consumers. The consumers are supplied by a
volume flow with warm water coming from the boilers. Since all boilers have the same
flow, the total supply temperature of the consumers is the mixing temperature of all boiler
temperatures Ts,i, i = 1, . . . , NB

Ts,total =

NB∑︁
i=1

V̇b,iTs,i

NB∑︁
i=1

V̇b,i

= 1
NB

NB∑︂
i=1

Ts,i.

Overall heating system

In the previous parts of this section the particular components of a typical heating system
of a non-residential building were introduced. Here the components should be connected
now to build an overall heating system as depicted in Figure 5.1. The heat generation units
are connected via the flow distributions with the consumer circuits, that consist of a mixing
circuit for return flow addition and a one zone building model of the particular section of the
building. This results in a generic model, where the number NHC of heat generation units
and the number NB of heating circuits can be adjusted by parameters. Thus this model can
be adapted to different buildings with this typical heating system structure.
The flow through the boilers follows from the pump and the valve position by inserting (5.4)
and (5.6) into (5.8)

V̇b,i = 1
NB

NHC∑︂
j=1

(1 − ζj) V̇max,jϕj.

With that and the definition of the overall return temperature (5.7) the supply temperature
dynamics of the boiler are given by

Ṫs,i = 1
Vb,iNB

NHC∑︂
j=1

(︂
Tr,j (1 − ζj) V̇max,jϕj − (1 − ζj)V̇max,jϕjTs,j

)︂
− kb,i

cρVb,i

(Ts,i − Tamb) + αi
Pmax,i

cρVb,i

. (5.9)

The differential equation of the building temperature (5.1) is not effected directly by the
connection of the subsystems. The supply temperature of the consumer is set by the three
way valve in the mixing circuit, that is supplied by the total supply temperature coming
from the boilers. Thus, the supply temperature (5.3) is written as

Ts,HCi = ζiTr,i + (1 − ζi)
1

NHC

NB∑︂
i=1

Ts,i

and inserted together with (5.4) into (5.2), leading to the differential equation of the return
temperature of the consumer

Ṫr,i = V̇max,i

Vc,i

ϕi

⎛⎝ζiTr,i + (1 − ζi)
1

NHC

NB∑︂
i=1

Ts,i − Tr,i

⎞⎠− krb,i

cρVc,i

(Tr,i − Tb,i) . (5.10)

172

5 Application of decomposed MTI systems in heating systems

Thus the dynamics of the heating system are described by a system of NB +2NHC first order
differential equations for the boilers (5.9) and the consumers (5.10) and (5.1).

5.1.2 Heating, ventilation and air-conditioning (HVAC) system

A component that is found in many heating systems is a HVAC unit. Here a model of
an HVAC system is described, that was introduced in [106]. Mathematical descriptions of
different parts of HVAC systems are derived and an example model is developed with the
purpose to test and analyze new control strategies for energy efficient operation of the HVAC
system, [106]. Here the model should be used to check the applicability of MTI models in
decomposed tensor structure in the area of heating systems. Because of that, a system that
can be found in many buildings is chosen here. The model consists of an AHU with a fan, a
heater, a humidifier and ductwork. As load or consumer a room is connected to the AHU.
The goal is to condition the room air, i.e. to control its temperature and humidity ratio,
such that they stay in their comfort ranges. Thus, the temperature as well as the humidity
of the HVAC system are modeled here. This is done by mass and energy balances. A HVAC
unit can be used for heating or cooling purposes. As an example to show the applicability
of MTI systems here, the winter operation of the HVAC system is focused on, which means
heating and humidification. The setup of the system is depicted in Figure 5.5.

Heating coil

Fan

Humidifier

Outside
air

Room

Figure 5.5: Setup of the HVAC system example,[106]

The figure shows the connection of the AHU and the room. The AHU supplies the room
with warm air. A part of the room air is removed by the AHU and goes through a mixing
box, where some fresh outside air is added. Inside the AHU a fan generates an air flow. The
air is heated by a heating coil and moisture is added by a humidifier. After that the air gets
back into the room. To simulate a load for the AHU, a one zone model of a room is used.
The room with its heat transfers is shown in Figure 5.6.
It is assumed, that the air in the room is fully mixed at the same temperature Tb and
same humidity ratio Wb in the whole room. The heat capacity of the room is composed
of the room interior, the 4 walls and the roof. For the walls the assumption is made that

173

5 Application of decomposed MTI systems in heating systems

Tw,2
Uw,2
Aw,2

Tw,1, Uw,1, Aw,1

Tw,2
Uw,2
Aw,2

Tw,1, Uw,1, Aw,1

AHUTb

V̇a

Ts

V̇a

Tb, Cb

To

Figure 5.6: Top view of the room with its modeled heat transfers (Heat transfer through the
roof is not depicted here)

the northern and southern walls have the same influence on the room temperature. The
heat transfer by conduction or convection between the room and the wall with area Aw,1 is
modeled proportionally to the difference of room and wall temperature Tw,1 with heat transfer
coefficient Uw,1. The same holds for the eastern and western walls with temperatures Tw,2,
areas Aw,2 and heat transfer coefficients Uw,2 as well as for the roof with temperature TR,
area AR and heat transfer coefficient UR. The ground has no effect on the room temperature.
Coming from the AHU, warm air with temperature Ts,a enters the room with flow V̇a. No
flow losses should occur, such that air with same flow at room temperature Tb is removed by
the AHU. The room interior with e.g. air or furniture has the heat capacity Cb. With these
influencing factors the building or room temperature Tb is computed by the heat balance

Ṫb =ρaca

Cb

V̇a(Ts,a − Tb) + 2Uw,1Aw,1

Cb

(Tw,1 − Tb) + URAR

Cb

(TR − Tb)

+ 2Uw,2Aw,2

Cb

(Tw,2 − Tb) + 1
Cb

Q̇occupant, (5.11)

where the density and the heat capacity of the air are denoted by ρa and ca, respectively.
Heat gains resulting from e.g. occupants and lights are summarized in the disturbance
input Q̇occupant. Due to the temperature difference between the room and the outside with
temperature To, heat is removed through the walls and roof. The heat transfer to the outside
is again assumed to be proportional to the temperature difference between walls or roof and
the outside. The walls and the roof have a heat capacities Cw,1, Cw,2 and CR, leading to the

174

5 Application of decomposed MTI systems in heating systems

heat balance for the wall and roof temperatures

Ṫw,1 = Uw,1Aw,1

Cw,1
(Tb − Tw,1) + Uw,1Aw,1

Cw,1
(To − Tw,1), (5.12)

Ṫw,2 = Uw,2Aw,2

Cw,2
(Tb − Tw,2) + Uw,2Aw,2

Cw,2
(To − Tw,2), (5.13)

ṪR = URAR

CR

(Tb − TR) + URAR

CR

(To − TR). (5.14)

This describes the thermal behavior of the room. The humidity ratio Wb of the room air is
computed by a mass balance

Ẇb = 1
Vb

V̇a(Ws − Wb) + 1
ρaVb

Poccupant. (5.15)

The airflow with humidity ratio Ws enters the room which has the volume Vb. The same flow
with humidity Wb is removed from the room by the AHU. Occupants add moisture, which
is captured by the disturbance input Poccupant.
Air is removed from the room by the AHU, that consist of ducts, a mixing box, a fan, a
heating coil and a humidifier. The components and their connection are shown in Figure 5.7
and described in the following.

Duct 1 Mixing
Box

Fan +
Heating

Coil
Duct 2 Humi-

difier
Tb

Wb

Td,1

Wb

Tm

Wm

Tc,out

Wc,out

Td,2

Wc,out

Ts

Ws

To, Wo, µmix
Tw,i,

V̇w Tw,o

hvapor

Figure 5.7: Air handling unit

At first, the room is connected with the AHU by a duct. The thermal behavior of the duct
is modeled as first order system, such that the temperature Td,1 of the flow leaving the duct
is given by

Ṫd,1 = (hi + ho)ρaca

hiMdCd

V̇a(Tb − Td,1), (5.16)

with the heat transfer coefficients inside the duct hi and to the ambient ho, the duct mass Md

and the specific heat of its material Cd. In the mixing box fresh outside air is added to the
air flow and part of the used air is removed with the same flow than fresh air is added. The
ratio µmix ∈ [0, 1] describes how much of the air coming from the room is reused, i.e. µmix = 1
means that no fresh air is added and µmix = 0 means only fresh air with temperature To and
humidity ratio Wo is used. Heat and mass balances lead to the temperature and humidity
ratio

Tm = µmixTd,1 + (1 − µmix)To, (5.17)
Wm = µmixWb + (1 − µmix)Wo, (5.18)

175

5 Application of decomposed MTI systems in heating systems

Td,1, Wb, V̇a

Tm, Wm, V̇a To, Wo

Figure 5.8: Mixing box

of the flow leaving the mixing box as shown in Figure 5.8.
A fan generates the air flow V̇a. To heat up the air, a heating coil is installed with a water
to air heat exchanger, that is supplied on the water side with a flow V̇w of warm water at
temperature Tw,i. The water leaves the heating coil at temperature Tw,o. On the air side
heat is added to the air flow, such that the temperature Tc,out of the air leaving the heating
coil is given by

Ṫc,out = cρ

Ch

V̇w(Tw,i − Tw,o) + UcAc

Ch

(To − Tc,out) + ρaca

Ch

V̇a(Tm − Tc,out), (5.19)

with coil heating capacity Ch, heat transfer coefficient Uc and area Ac to the outside. The
dynamics of the water boiler and the heat exchanger are not modeled in detail here. It is
assumed that the water temperatures can be set as desired by a controller, such that they are
used as inputs for the model here. Since the heating coil has some volume Vc the humidity
ratio Wc,out of the air leaving the component is computed by the mass balance

Ẇc,out = V̇a

Vc

(Wm − Wc,out). (5.20)

A schematic of the heating coil is shown in Figure 5.9.

Tw,i, V̇wTw,o

Tm, V̇aTc,out

Figure 5.9: Heating coil

Next, the air passes a second duct, that is modeled as the one before as first order system

176

5 Application of decomposed MTI systems in heating systems

resulting in the heat balance

Ṫd,2 = (hi + ho)ρaca

hiMdCd

V̇a(Tc,out − Td,2), (5.21)

for the air temperature Td,2 at the end of the duct. After the regulation of the temperature
by the heating coil, the humidity ration of the air is increased by the humidifier. Inside this
component a mass transfer of water vapor to the air occurs. Air with humidity ratio Wc,out

enters the humidifier and leaves the AHU with humidity Ws, that is described by the mass
balance

Ẇs = 1
Vh

V̇a(Wc,out − Ws) + 1
ρaVh

hvapor, (5.22)

where Vh is the volume of the humidifier and hvapor the rate of moisture air produced by
the humidifier which is used as input. Inside the humidifier some temperature losses to the
environment occur by the surface area Ah with heat transfer coefficient Uh, such that the
temperature of the air entering the room is given by

Ṫs = caρa

Ch

V̇a(Td,2 − Ts) + UhAh

Ch

(To − Ts), (5.23)

with the heat capacity Ch of the humidifier. It is assumed that the actors of the system
do not react instantaneously to changes in the inputs. The user or controller set a desired
reference value. It is assumed that the actors reach these setpoint values perfectly but with
some dynamics that are modeled by first order systems. Therefore, the actor dynamics for
the control signals V̇a, µmix, V̇w, Tw,i, Tw,o and hvapor are given by

V̈a = V̇a,set

τV̇ ,a
− V̇a

τV̇ ,a
, µ̇mix = µset

τµ
− µmix

τµ
,

V̈w = V̇w,set

τV̇ w
− V̇w

τV̇ w
, Ṫw,i = Tw,i,set

τT wi
− Tw,i

τT wi
,

Ṫw,o = Tw,o,set

τT wo
− Tw,o

τT wo
, ḣvapor = hvapor,set

τhvapor
− hvapor

τhvapor

(5.24)

with time constants τV̇ ,a, τµ, τV̇ w, τT wi, τT wo and τhvapor. Combining the equations (5.11)
to (5.24) leads to a system of first order differential equations with multilinear right hand
sides.

5.1.3 MTI Toolbox

The previous sections introduced many methods for modeling and controller synthesis for
decomposed MTI systems. To apply these methods in a user-friendly way, the MTI toolbox
for MATLAB and Simulink was developed in the scope of this thesis. The developed toolbox
offers the possibility to have a simple access to the application of the derived algorithms. The
tensor decomposition methods can be applied to MTI systems easily with this toolbox, since
the algorithms use the tensor methods of the popular tensor toolboxes from the mathematical
community, [5, 45, 84, 109]. Thus this toolbox connects the tensors toolboxes developed in

177

5 Application of decomposed MTI systems in heating systems

mathematics with the methods for modeling and controller design introduced in this thesis.
This significantly simplifies their application. The toolbox is implemented in an object
oriented way. Different tasks in the work with MTI systems are structured in different
classes with their attributes and methods. The main parts of the toolbox are:

• Tensor operations: Tensor operations like transformations between decomposed repre-
sentations, i.e. from CP to Tucker or TT or special tensor operations for CP tensors
like contracted product or outer product.

• Polynomial operations: Methods for representation of polynomials of order N and
operations like multiplication and partial derivatives based on operational tensors.

• Modeling: Representation of decomposed MTI systems in continuous- and discrete-
time.

• Simulation: Simulation methods for MTI systems using the decomposed structure of
parameter tensors.

• Controller design: Design methods for MTI systems like feedback linearization or
decentralized design.

• Simulink: Simulink library for simulation of MTI systems and their controllers in
Simulink environment.

• Code generation: Some selected functions with adapted implementation, such that
they are supported for code generation to use them in real-time applications.

Thus, the MTI Toolbox offers a lot of tools to work with MTI systems in model-based design
from system representation over simulation to controller development, [46]. The main parts
of the toolbox are summarized in Figure 5.10.

Tensor operations Polynomial operations

Simulation

Modeling

Controller
design

Simulink

Code
generation

Figure 5.10: MTI toolbox overview

178

5 Application of decomposed MTI systems in heating systems

5.2 Representation as decomposed MTI systems

Section 3.2 showed that MTI systems can be represented in all four proposed decomposi-
tion techniques and simulation as well as linearization are possible, too. In the following
the application of the representations to the two heating system examples of Section 5.1
are compared according to several criteria. Therefore as reference system the exact CP
representation of the system

ẋ = ⟨ F | M(x, u) ⟩

is chosen, build as shown in Example 3.6 resulting in the parameter tensor representa-
tion (3.19). The other representations

ẋdecomp = ⟨ Fdecomp | M(xdecomp, u) ⟩ ,

will be compared to the exact one, i.e. the other decomposed parameter tensors and their
low-rank approximations. The tensors are rated on the one hand by the Frobenius norm
approximation measure

∥F − Fdecomp∥2
F

∥F∥2
F

of the parameter tensor. On the other hand the dynamical behavior of the systems are
compared by investigating the simulation results of a typical system scenario by the measure

Tend∫︂
0

n∑︂
i=1

(xi(t) − xdecomp,i(t))2

xi(t)2 dt

and by comparing the eigenvalues λ(A) of the linearization around a typical operating
point (x̄, ū) computed by (3.46). The memory demand is the last performance measure of
the proposed techniques. In the following two subsections, the decomposition techniques
are applied to the heating and the HVAC system and finally the general comparison of
Section 3.2.5 is enlarged with the results from the application examples.

5.2.1 Heating system

The generic model of a standard heating system derived in Section 5.1.1 with NB boilers
and NHC consumers will be represented here as multilinear state space model and decom-
position techniques will be applied to get an efficient format for the model description.
From (5.1), (5.9) and (5.10) follows, that each boiler has one state, the supply temperature,
and each consumer has two states by the room and return temperatures. The states are
arranged in the state vector as follows

x =
(︂
Ts,1 · · · Ts,NB

Tr,1 · · · Tr,NHC
Tb,1 · · · Tb,NHC

)︂T
∈ RNB+2NHC . (5.25)

179

5 Application of decomposed MTI systems in heating systems

The inputs of the boilers, i.e. their modulation signals, and the consumers, i.e. their pump
and valve signals, are summarized in the input vector

u =
(︂
α1 · · · αNB

ζ1 · · · ζNHC
ϕ1 · · · ϕNHC

)︂T
∈ RNB+2NHC . (5.26)

The plant is influenced externally by the weather conditions that are considered here with
the outside temperature and the solar radiation. These two signals form the disturbance
vector

d =
(︂
To Q̇solar

)︂T
∈ R2. (5.27)

Inserting this choice of the state, input and disturbance variables into (5.1), (5.9) and (5.10)
leads to the the state space model described in the Appendix B.1. When investigating the
state equations it gets obvious, that the model is not linear, since multiplications of states
and inputs occur. Since no other polynomial or nonlinear terms are included in the state
equations the model is multilinear. This means, it is described as MTI system in tensor
representation

ẋ = ⟨ F | M (x, u, d) ⟩ ,

y = ⟨ G | M (x, u, d) ⟩ .

Since the model equations have got 2NB + 4NHC + 2 variables by the states, inputs and
disturbance variables this would lead to, e.g. (NB + 2NHC) 22NB+4NHC+3 elements to be
stored for the full representation of F. As example a heating system with one boiler and
seven consumers is used. This would mean to store 17 · 237 ≈ 2.3 · 1012 elements, because
of its 15 states, 15 inputs and 2 disturbances. Because of this large storing effort, it is not
possible to use the full representation here. Thus, the state equations are translated to the
CP representation presented in Section 3.2.1, which results the CP format of the parameter
tensor

F =
[︂
FQ̇solar

, FTo , FϕNHC
, . . . , Fϕ1 , FζNHC

, . . . , Fζ1 , FαNB
, . . . , Fα1 , . . .

FTb,NHC
, . . . , FTb,1 , FTr,NHC

, . . . , FTr,1 , , FTs,NB
, . . . , FTs,1 , FΦ

]︂
· λF .

The same approach is applied to the parameter tensor G of the output equation. Since the
state space model consists of 115 terms, i.e. parameters, the factor matrices of all but the
last factor matrix FΦ have the dimension R2×115. The sizes of last factor matrix FΦ and the
weighting vector are given by R17×115 and R115. This direct translation of the state equation
to the CP representation is used as reference system for the other approaches. At first the
CP representation is translated to Tucker format as shown in 3.2.2 resulting in

F =
[︂
FQ̇solar

, FTo , FϕNHC
, · · · , Fα1 , FΦ

]︂
· ΛF ,

with the same factor matrices than the CP format. When translating the CP representation
to TT like in Section 3.2.3 the first and the last cores are of dimensions R1×2×115 and R115×2×1

respectively. The dimension of all other cores is given by R115×2×115, which gives the TT
representation

F =
[︂
FQ̇solar

, FTo , FϕNHC
, · · · , Fα1 , FΦ

]︂
.

180

5 Application of decomposed MTI systems in heating systems

The fourth format used here is the HT representation of Section 3.2.4, where for the direct
translation the same factor matrices than for the CP tensor are used as leaf nodes. Furt-
hermore the transfer tensors of the top node BQ̇solar···Φ ∈ R115×115 and all other transfer
tensors Bt ∈ R115×115×115 have to be stored. This shows, that the MTI model of the heating
system can be represented in all four decomposition techniques. They store the parameters
exactly, i.e. the tensor error to the reference system is equal to zero. Because of that, the
models also show the same dynamical behavior regarding the simulation of a typical scenario
or the eigenvalues of a linearization around an operating point. The main difference between
the different representations is their storage demand, as shown for the exact representation
in Table 5.1. The table shows that especially for the TT and HT representations truncation
techniques have to be applied to reduce the size of the factor matrices or cores and thus
the memory demand. The goal is to approximate the exact tensor with less elements. But
the main dynamics of the system should still be captured by the approximated parameter
tensor. A problem in the truncation of the tensor is that the entries equal to zeros in the
original tensor are not necessarily zero in the approximation. This could lead to problems
when working with unscaled systems, which is illustrated by an example here. E.g. the mo-
nomial Ts,1Tr,2Tb,1 does not occur in the state equations. Thus, the corresponding parameter
should be equal to zero. If after truncation the entry in the parameter tensor has a value
slightly different to zero, this has not a great effect on the tensor error. But since tempera-
tures are given in Kelvin the monomial Ts,1Tr,2Tb,1 can take very large values, such that the
multiplication of the small parameter with this monomial can have a significant effect on
the system dynamics, which is not desired. To avoid such numerical effects the decomposed
system is scaled as introduced in Section 3.5 before truncation such that all signals are in
the range [0, 1]. With this scaled model truncated representations are searched with the
standard approaches [44, 83, 45] by setting a specific rank for CP or a desired accuracy for
TT and HT. A reduction of the storage effort for the Tucker form is not possible since, as
mentioned before, a full representation is necessary for the considered algorithms, which is
not possible here. The storage effort of the representations should be reduced by using the
truncation techniques. Table 5.1 shows the effect of the truncation procedure.

Table 5.1: Memory demand of F of the heating system

Full CP Tucker TT HT
Exact 2.3 · 1012 10 235 14 605 927 935 53 254 085

Minimal 2.3 · 1012 2 581 14 605 17 411 12 499

These techniques focus on the tensor error, i.e. they try to find an approximation of the
parameter tensor that fits best to the original one. Here it is not the main goal, that the
MTI system with the resulting parameter tensor has a good tensor fit only. Also the desired
dynamical behavior, which is tested by the eigenvalues of a linearization and the simulation
results of a test scenario, should be maintained after truncation. With these guidelines the
number of rank-1 elements could be reduced from 115 to 29 for the CP tensor. The TT and
HT representation are approximated with an accuracy of 10−3. The storage effort of the CP,

181

5 Application of decomposed MTI systems in heating systems

TT and HT could be reduced enormously and without significant losses in the dynamical
behavior of the MTI system.

5.2.2 HVAC system

In Section 5.1.2 the behavior of the HVAC system was described by a system of 17 first order
differential equations. As shown in [46] they form a state space model. The state vector of
the system is defined as

x =
(︂

Tb Tw,1 Tw,2 TR Wb Td,1 Tc,out Wc,out Td,2 Ts Ws V̇a µmix · · ·

V̇w Tw,i Tw,o hvapor

)︂T
∈ R17. (5.28)

The control and disturbance inputs are arranged in the vectors

u =
(︂
V̇a,set µset V̇w,set Tw,i,set Tw,o,set hvapor,set

)︂T
, (5.29)

d =
(︂
Q̇occupant Poccupant To Wo

)︂T
. (5.30)

Multiplications between different states or states and inputs occur, e.g. because of the
multiplication of temperatures and flows like Tw,iV̇w on the water side or TbV̇a on the air
side of the system. This gets obvious, when inserting the definition of states, inputs and
disturbances (5.28) to (5.30) to the state equations (5.11) to (5.24) leading to the state space
model shown in Appendix B.2. The room temperature and humidity ration are chosen as
outputs

y =
(︂
Tb Wb

)︂T
=
(︂
x1 x5

)︂T
.

The right hand sides of the state space model in B.2 are inherently multilinear. No terms
outside the multilinear class occur. Thus, the system is represented as MTI model in tensor
format

ẋ = ⟨ F | M (x, u, d) ⟩ ,

y = ⟨ G | M (x, u, d) ⟩ ,

where F contains all model parameters and the states, control and disturbance inputs are
given by (5.28) to (5.30). The model has 17 states and 10 inputs and 54 parameters. In
full tensor representation this would lead to 17 · 227 = 2.3 · 109 elements in the parameter
tensor F. Thus, decomposition techniques have to be applied to represent this system. With
the approach introduced in Section 3.2.1 the HVAC system model is translated to an MTI
system in CP representation leading to parameter tensor

F =
[︂
FWo , FTo , FPoccupant , FQ̇occupant , Fh, FTw,o,set , FTw,i,set

, FV̇w,set
, Fµset , FV̇a,set

, FTw,o , FTw,i
, · · ·

FV̇w
, Fµmix

, FV̇a
, FWs , FTs , FTd,2 , FWc,out , FTc,out , FTd,1 , FWb

, FTR
, FTw,2 , FTw,1 , FTb

, FΦ
]︂

· λF ,

with 27 factor matrices of dimension R2×54, factor matrix FΦ ∈ R17×54 and a weighting
vector λF ∈ R54.

182

5 Application of decomposed MTI systems in heating systems

The system equations are written in CP format (3.19), i.e. the reference system. This
reference system is compared to the Tucker, TT and HT conversions. The Tucker format is
constructed with the same factor matrices

F =
[︂
FWo , FTo , · · · , FTw,1 , FTb

, FΦ
]︂

· ΛF .

The TT is written as

F =
[︂
FWo , FTo , · · · , FTw,1 , FTb

, FΦ
]︂

,

where the first and the last cores are of dimensions R1×2×54 and R54×2×1 respectively. All
other cores have the size R54×2×54. The translation of the CP representation to HT leads
to leave nodes FWo , FTo , . . . , FTw,1 , FTb

, FΦ, that are equal to the CP factor matrices and 27
transfer tensors Bt ∈ R54×54×54 and the top node BWo···Φ ∈ R54×54. The direct translation
is not optimal regarding the storage effort. All decomposition techniques show good results
according to system representation. The eigenvalue differences and simulation as well as the
tensor error are zero for all systems in exact representation. A significant difference between
the representations are their memory demands, i.e. the number of elements to be stored, as
shown in Table 5.2.

Table 5.2: Memory demand of F for the HVAC system

Full CP Tucker TT HT
Exact 2.3 · 109 3 834 85 482 152 658 4 100 814

Minimal 2.3 · 109 3 124 85 482 9 120 7 177

The memory demands of the exact versions show the necessity of truncating Tucker, TT
and HT representations of the HVAC model. Truncations of the tensors are computed by
standard techniques, [44, 45, 83]. For the CP representation, the number of rank-1 compo-
nents is reduced from 54 to 44, such that the model still fulfills the tensor and dynamical
accuracy. As mentioned in Section 3.2.5 a truncation of already decomposed tensors in Tuc-
ker representation is not possible, such that no truncation can be applied here, since the full
representation of the parameter tensor is not manageable regarding the storage effort. The
TT and HT format can be truncated by setting a desired approximation threshold, which
is a great advantage for this application. Both representations could be truncated without
any significant loss in the dynamical system behavior, i.e. regarding their eigenvalues or the
simulation error. The resulting memory demands of the parameter tensor F after truncation
are summarized in Table 5.2.

5.2.3 Comparison of the decomposition methods

The representation of models of a heating system and a HVAC system as MTI model with
the four proposed decomposition techniques showed the applicability of the decomposition
methods in the area of heating systems. A general comparison of the different decomposed

183

5 Application of decomposed MTI systems in heating systems

MTI systems was drawn in Section 3.2.5. Here, this comparison is extended by the experien-
ces gained during application. The models are constructed as described in Section 3.2. At
first the state equations are translated term by term to CP representation and converted to
the other formats afterwards. For both examples considered here a direct translation is ne-
cessary, since no full representations of the parameter tensors are possible due to the system
sizes. The full representations need too much memory. But the exact representations of the
model are possible in all four decomposed formats, i.e. the tensor error is zero. Because of
that, the model representations show the same good dynamical properties as well. The main
difference between the methods is their storage effort. Due to the direct translation from
CP, as expected, the memory demand of the other formats is very high, especially for TT
and HT. With the help of truncation techniques low-rank approximations of the parameter
tensors should be found to reduce the storage demand.
For the CP decomposition the ALS algorithm was used to find an approximation of the
parameter tensor with less rank-1 elements than the exact representation. Therefore, a
desired rank is set and the result is investigated concerning the tensor error and the dynamical
properties of the resulting parameter tensor. With that, the number of rank-1 terms are
reduced for both examples. But an interesting fact is, that the number of rank-1 components
can be reduced for the heating system example from 115 to 29 by a factor of 3.97. For the
HVAC system a reduction factor 1.23 from 54 to 44 could be realized only. This shows that
the data reduction potential depends on the systems structure. The reason for the different
reduction factors achieved, could be that the heating system consists of different subsystem
that have the same structure, i.e. several consumers. Furthermore it is assumed, that the
consumers show a comparable behavior and because of that their parameters are similar.
The truncation results for the CP decomposition show that this allows a representation with
much less rank-1 components and leads to good decomposition properties. In the HVAC
example the overall model is constructed of subsystems with different structures. Only the
duct occurs two times in the model. No more repeating components are included. This
complicates the truncation and leads to less compression. But one can say that the CP
format has nevertheless a low memory demand for both systems and shows good dynamical
properties.
As described in Section 3.2.5 with the truncation algorithms in [5] for Tucker tensors, it is
possible to compute Tucker decompositions of full tensors only. A truncation of an already
Tucker decomposed tensor directly is not possible. Since the parameter tensors of the two
examples are too large for full representation, a further reduction of the memory demand of
the Tucker representation by truncation could not be achieved.
The TT and HT representations are constructed by direct translation from the exact CP
tensor. Since the direct translation is not optimal regarding the storage effort, this results in a
very large storage effort in the first step, which is also the case here for the two examples. But
by setting a desired accuracy, truncations are computed. Thus no trial and error approach
has to be applied as for the CP case. Setting a desired accuracy directly allows a better
handling for finding good low-rank representations. Since the algorithms for truncation of
TT and HT are based on SVD and do not work iteratively like for CP, the truncation result
is computed much faster. With that, the very large memory demand is reduced significantly
even though the memory demand is higher than in the CP case. Before truncation the

184

5 Application of decomposed MTI systems in heating systems

memory demand of HT is higher than for TT for both examples, because of the large transfer
tensors of dimension RΨF ×ΨF ×ΨF . The cores of the TT representation of dimension RΨF ×2×ΨF

are smaller. But the reduction for HT is enormous such that after truncation the HT
representation shows a lower number of elements to be stored compared to the TT format.
But their storage demands are both in the same order of magnitude. It was shown for the
CP decomposition, that the reduction factor for the number of rank-1 elements, i.e. for
the memory demand either, from the exact to the low-rank approximation is larger for the
heating systems example than for the HVAC system. The same effect can be observed for
TT and HT formats, which is illustrated in Table 5.3. The system structure has a similar
effect on the reduction factor of the TT and HT decomposition than for the CP.

Table 5.3: Comparison of the memory demand of the heating and HVAC system examples

CP Tucker TT HT
Heating HVAC Heating HVAC Heating HVAC Heating HVAC

Exact 10 235 3 834 14 605 85 482 927 935 152 658 53 254 085 4 100 814
Minimal 2 581 3 124 14 605 85 482 17 411 9 120 12 499 7 177
Factor 3.97 1.23 1 1 53.3 16.74 4 260 571.4

But especially the heating systems example shows a problem that could occur when con-
structing these formats in the proposed way. Even though the parameter tensor is in decom-
posed structure their memory demand is very high for the exact representation as indicated
in Table 5.1. In the considered example the exact representation is possible but if one thinks
about systems of larger scale, i.e. with more states and inputs, the example shows that the
direct translation from exact CP especially to HT could lead to problems to store the de-
composition factors. The size of the direct translation to TT and HT depends significantly
on the number of rank-1 terms of the CP representation as derived in (3.33) and (3.36).
It was shown that low-rank approximations of the CP representation can be found. Thus,
to overcome this storage problem the TT and HT representations can be constructed from
the low-rank CP representation and not by using the exact one. This causes a loss in the
accuracy, that can be controlled by the CP tensor rank and the accuracy of TT and HT
truncation. But the big advantage is that the direct translation from CP to the other for-
mats has a lower memory demand, which allows to apply these decomposed formats also for
systems of larger scale.
The two application examples confirm the general conclusions drawn in the comparison in
Section 3.2.5. The representation of the MTI system examples is possible with all four
methods. The reduction of the memory demand by truncation techniques is a big advantage
of the tensor format, which is important especially for large-scale systems. The methods can
be applied to the CP, TT and HT decompositions with good reduction results by maintaining
the dynamical behavior of the models. The examples showed the big potential of these
decomposition methods for large-scale systems that are constructed by subsystems, that have
a similar structure, as it is the case e.g. for large heating systems or smart grid applications.
For the Tucker approach the truncation is not possible, which lowers its applicability for large-

185

5 Application of decomposed MTI systems in heating systems

scale systems. The results of the comparison considering the example systems is summarized
in Table 5.4, that extends the Table 3.1 with general results.

Table 5.4: Result of the comparison of the decomposition application (Ranking starting with
the best: + ◦ –; X: possible, ×: not possible)

CP Tucker TT HT
Representation of example systems X X X X

Memory demand of the direct translation + ◦ – –
Memory demand of the truncation + – ◦ ◦

Truncation possible + – + +
Tensor error + + + +

Simulation error + + + +
Eigenvalues + + + +

The CP representation showed the best results for the memory demand. But also TT
and HT had a good memory effort properties. Their additional advantage is the SVD
based truncation that is numerically more stable and has a more comfortable application
than the truncation algorithm for CP, such that CP, TT and HT are suited best for MTI
system representation. In the followings application examples for controller design the CP
representation is used, because of its low number of elements that have to be stored and its
nice properties for algorithm development.

5.3 Controller design for heating systems

Several controller design techniques for MTI systems in decomposed tensor representation
were described in Chapter 4. These methods are applied in this section to the heating system
example, whose model was derived in Section 5.1.1. In Section 5.2.1 decomposed represen-
tations of the heating system model were found with a low memory demand. It turned
out, that CP, TT and HT tensors are suited best for the model representation. Since the
CP model showed the lowest storage effort, this decomposed format of the heating system
model is used in the following. To apply the feedback linearization method of Section 4.2, a
single heating circuit is used in Subsection 5.3.1, where the plant is linearized by controlling
the pump of the circuit via nonlinear state feedback given in a tensor structure. In Sub-
section 5.3.2 a heating system of larger scale is taken with several boilers and consumers.
To determine a controller structure with reduced communication effort and little loss in the
control performance only, a decentralized feedback controller is designed for this plant as des-
cribed in Section 4.3. This leads to the application of MPC controllers for MTI systems. At
first the AMPC-SL method for MTI systems derived in Section 4.5 is applied to a single he-
ating circuit and tested in closed loop simulations in Section 5.3.3. Afterwards Section 5.3.4
extends the application to a distributed predictive controller design for an overall heating
system with a boiler and several consumers, where each component gets its own AMPC-SL
controller node as described in the DMPC method in Section 4.6. Finally, the AMPC-SL

186

5 Application of decomposed MTI systems in heating systems

method is implemented on a real-time hardware device to operate one controller node at a
heating circuit of a real world office building. The results are presented in Section 5.3.5.

5.3.1 Feedback linearization

The method of feedback linearization for decomposed MTI system introduced in Section 4.2
is applied in this section to an example from heating systems. In the literature the general
feedback linearization approach for nonlinear systems was used for heating or HVAC systems
in several applications, [40, 91, 98, 107]. Here one component, a consumer, is linearized by
the tensor based approach for MTI systems. This subsystem can then be used e.g. in
a larger system context as linear one. The consumer model derived in Section 5.1.1 is
a MIMO model. The feedback linearization approach was developed for SISO systems.
Therefore several assumptions have to be made to apply this control method. It is assumed,
that the consumer is supplied with a constant supply temperature of Ts = 80 ◦C. The
disturbances are also set to constants with an outside temperature of To = 5 ◦C and no solar
radiation by Q̇solar = 0 W/m2. The thermal dynamics of the consumer are described by the
differential equations (5.1) and (5.2). The flow V̇HC through the consumer is generated by
a controllable pump. The input signal ϕ ∈ [0, 1] of the pump sets the flow from 0 m3/s to
the maximal flow V̇max. Since the pump does not react instantaneously on a change in the
control signal ϕ, it is modeled as first order system here

V̈HC = − 1
τV̇

V̇HC + V̇max

τV̇

ϕ, (5.31)

with time constant τV̇ . Thus, the states of the consumer model are given by

x =
(︂
Tr V̇HC Tb

)︂T
.

The input is the pump signal u = ϕ. The room temperature is the output y = Tb of the mo-
del. With these state variables the state space model of the consumer follows from (5.1), (5.2)
and (5.31)

ẋ1 = Ts

Vc

x2 − 1
Vc

x1x2 − krb

cρVc

x1 + krb

cρVc

x3,

ẋ2 = − 1
τV̇

x2 + V̇max

τV̇

u,

ẋ3 = krb

Cb

x1 + −krb − kbo

Cb

x3 + kbo

Cb

To,

y = x3,

where the supply and outside temperatures Ts and To are assumed as constants here. Inside
the state equations the flow is multiplied by the return temperature, which results in a
multiplication of two states V̇ · Tr = x2 · x1. Because of that, the model is multilinear. All
other terms are linear. Since the system has one input, one output and no multiplications

187

5 Application of decomposed MTI systems in heating systems

between inputs occur, the model belongs to the class of affine MTI models, that has a tensor
representation

ẋ =
⟨︂

A
⃓⃓⃓
M
(︂
Tr, V̇HC , Tb

)︂ ⟩︂
+
⟨︂

B
⃓⃓⃓
M
(︂
Tr, V̇HC , Tb

)︂ ⟩︂
u,

y =
⟨︂

C
⃓⃓⃓
M
(︂
Tr, V̇HC , Tb

)︂ ⟩︂
,

with parameter tensors A ∈ R2×2×2×3, B ∈ R2×2×2×3 and C ∈ R2×2×2. For the output, i.e.
the building temperature, a reference temperature Tb,ref is given. A feedback linearizing
controller is designed, such that the closed loop from Tb,ref to Tb is linear. The closed loop
is depicted in Figure 5.11.

Feedback
Linearization Consumer

Tb,ref Tb

Tr, V̇ , Tb

ϕ

Figure 5.11: Closed loop of the consumer and feedback linearization controller

To design the controller at first the Lie derivatives along a(x) have to be determined with
the tensor approach (4.23) by

L0
ac(x) =

⟨︂
C
⃓⃓⃓
M
(︂
Tr, V̇HC , Tb

)︂ ⟩︂
, (5.32)

L1
ac(x) =

⟨︂
A1 ◦ (C ×3 Θ) + A2 ◦ (C ×2 Θ) + A3 ◦ (C ×1 Θ)

⃓⃓⃓
M2

p

(︂
Tr, V̇HC , Tb

)︂ ⟩︂
=
⟨︂

LA,C,1

⃓⃓⃓
M2

p

(︂
Tr, V̇HC , Tb

)︂ ⟩︂
, (5.33)

L2
ac(x) =

⟨︂
LA,C,2

⃓⃓⃓
M3

p

(︂
Tr, V̇HC , Tb

)︂ ⟩︂
, (5.34)

L3
ac(x) =

⟨︂
LA,C,3

⃓⃓⃓
M4

p

(︂
Tr, V̇HC , Tb

)︂ ⟩︂
, (5.35)

where the parameter tensors follow from (4.24). The detailed results for the Lie derivatives
are given in the Appendix B.3. With these results, the Lie derivatives along b(x) are
computed by operational tensors by (4.26) with parameter tensors (4.25) leading to

LbL0
ac(x) =

⟨︂
LB,A,C,0

⃓⃓⃓
M2

p

(︂
Tr, V̇HC , Tb

)︂ ⟩︂
= 0,

LbL1
ac(x) =

⟨︂
LB,A,C,1

⃓⃓⃓
M3

p

(︂
Tr, V̇HC , Tb

)︂ ⟩︂
= 0,

LbL2
ac(x) =

⟨︂
LB,A,C,2

⃓⃓⃓
M4

p

(︂
Tr, V̇HC , Tb

)︂ ⟩︂
= V̇maxkrb

CbVcτV̇

(Ts − x1) . (5.36)

As stated in (4.14) and (4.15) it is required for this controller approach, that LbL2
ac(x) is

nonzero for this plant with three states. This is the case, if Ts ̸= x1, which means that the
return temperature should not be equal to the supply temperature. That is fulfilled here, if
the consumer is operated under nominal conditions, when water flows through the consumer

188

5 Application of decomposed MTI systems in heating systems

pipes and e.g. no bypasses occur. The consumer has a certain heat demand and thus takes
heat from the supply flow, such that the return temperature is reduced compared to the
supply temperature. When LbL2

ac(x) ̸= 0 holds, the relative degree of the plant follows
from (4.14) and (4.15) and is equal to ρsys = 3. The relative degree is equal to the number
of states, such that no zero dynamics have to be checked. The desired linear closed loop
behavior is given by

...
T b + µ2T̈b + µ1Ṫb + µ0Tb = µ0Tb,ref . (5.37)

To determine the pole locations of the linear transfer function following from (5.37), the MTI
consumer model is linearized around an operating point by (3.46) and (3.47). In Section 4.1.1
it is described, how pole locations for pole placement are determined by a LQR design for
linear systems, [23]. The same is done here for the linear approximation of the plant model.
The pole locations determined by the LQR design are used then to compute the coefficients
of the desired linear behavior (5.37).
With the linear behavior (5.37) and the parameter tensors of the Lie derivatives (5.32)
to (5.36) all parameters of the feedback linearization controller are defined and can be ex-
pressed with respect to the monomial tensor M3

p

(︂
Tr, V̇ , Tb

)︂
leading to the controller law

u = ϕ =
−
⟨︂

µ0C + µ1LA,C,1 + µ2LA,C,2 + LA,C,3

⃓⃓⃓
M3

p

(︂
Tr, V̇ , Tb

)︂ ⟩︂
+ µ0 Tb,ref⟨︂

LB,A,C,2

⃓⃓⃓
M4

p

(︂
Tr, V̇ , Tb

)︂ ⟩︂ (5.38)

The closed loop system is simulated for a step change in the room temperature reference.
The simulation result is shown in Figure 5.12 with the input signal of the pump computed
by the controller and the resulting room temperature.
The simulation shows, that the controller works as desired, such that the room temperature
follows its reference with the desired closed loop dynamics as given by (5.37). This shows
that the tensor based feedback linearization method derived in Section 4.2 is applicable for
plants in the field of heating systems. The approach works fine in the simulation scenario
here, where no disturbances occur and some assumptions, e.g. regarding the inputs, were
made. A model mismatch or disturbances as they exist for real buildings or consumers would
lead to inaccuracies in the controller result. Furthermore the tensor based design method
has to be extended to MIMO systems. Because of these reasons this controller approach
will not be used for implementation at a real building here. Other methods fit better to this
application since they allow to consider MIMO systems, disturbances and plant constraints
directly in the controller design like in MPC, focused on in Sections 5.3.3 to 5.3.5. But
the derivation of the feedback linearization method for MTI systems based on decomposed
tensors showed that it is possible to adapt general nonlinear control design methods to the
special structure of MTI systems resulting in a fixed controller structure. The decomposed
structure allows to apply the methods also to large-scale systems. The application to a
heating system example showed the validity of the approach also for real world systems in
simulation.

189

5 Application of decomposed MTI systems in heating systems

0 1 2 3 4 5 6 7 8 9 10 11 1220

20.5
Te

m
pe

ra
tu

re
[◦ C

]

Tb
Tb,ref

0 1 2 3 4 5 6 7 8 9 10 11 120

0.05

0.1

0.15

Time [h]

Pu
m

p
sig

na
l ϕ

Figure 5.12: Closed loop simulation result of the consumer and feedback linerization control-
ler

5.3.2 Decentralized feedback design

The LQR design was used for heating systems e.g. in [72]. For large-scale heating systems
as introduced in Section 5.1.1 a central state feedback design, as it is the case in LQR
controller synthesis, leads to a large communication effort since each state is necessary for
the computation of each control signal signal of the plant. The communication gets even
more complex as the consumers and the boilers are located at different positions, such that
some distance has to be passed. This motivates the use of decentralized LQR design. Since
the model of the plant is multilinear, as shown in Section 5.2.1, the decentralized feedback
design for MTI systems should be applied here, see [48]. The considered plant is a heating
system with NB = 2 boilers and NHC = 7 consumers, which results in a MTI state space
model as derived in the Appendix B.1, that is represented as CP decomposed MTI system

ẋ = ⟨ F | M (x, u, d) ⟩ ,

with state, (5.25) and input (5.26) vectors

x =
(︂
Ts,1 Ts,2 Tr,1 · · · Tr,7 Tb,1 · · · Tb,7

)︂T
∈ R16,

u =
(︂
α1 α2 ζ1 · · · ζ7 ϕ1 · · · ϕ7

)︂T
∈ R16.

The disturbance of the plant is the outside temperature d = To. The solar radiation is not
considered here and set to zero Q̇solar = 0 W/m2.
The aim of the controller is that the supply temperatures of the boilers should track a
reference temperature. In standard applications this reference temperature depends linearly

190

5 Application of decomposed MTI systems in heating systems

on the outside temperature by a heating curve

Ts,i,ref = η1,iTo + η0,i, i = 1, 2, (5.39)

such that the supply temperature is high for cold outside temperatures and low for high
outside temperatures as depicted in Figure 5.13.

−10 −8 −6 −4 −2 0 2 4 6 8 10 12 14 16 18 20
55

60

65

70

75

To [◦C]

T
s,

i,
r
ef

[◦ C
]

Figure 5.13: Heating curve

The valves and pumps are controlled to adapt the supply temperature to each heating
circuit, such that the room temperatures are at a reference value Tb,i,ref . Thus, the reference
vector reads

r =
(︂
Ts,1,ref Ts,2,ref Tb,1,ref · · · Tb,7,ref

)︂T
.

Here the reference is chosen for all rooms constant at Tb,i,ref = 21 ◦C. The heating cur-
ves (5.39) are the same for both boilers. The inputs of the plant, i.e. the modulation signals
on the generator side

αi ∈ [0, 1], i = 1, 2,

and the control signals of the pumps and the valves on the consumer side

ϕi ∈ [0, 1], ζi ∈ [0, 1], i = 1, . . . , 7,

are constrained. As first step in controller synthesis the structure of the feedback gain and
thus the necessary communication structure has to be investigated. Therefore, the sparsity
promoting design problem (4.8) is solved for different operating points in the preprocessing
step, see Figure 4.10. The operating points considered here depend on the outside tempera-
ture only. For a fixed outside temperature the supply temperature reference is determined
by (5.39). The outside temperature is the disturbance. The references for the building
temperatures are fixed. All other states and inputs at the operating point are computed
by (4.31). Thus, for computing the possible operating points the outside temperature is
iterated over an interval To ∈ [−10 ◦C, 10 ◦C]. The decentralized controller is computed
by (4.8) for linearizations (4.35) and (4.36) at different operating points and values of γ.
The performance degradation ∆J for different values of γ and To is shown in Figure 5.14.

191

5 Application of decomposed MTI systems in heating systems

−10
−5

0 5 10

−7
−6

−5
−4

0

0.2

0.4

To

log10(γ)

∆
J

Figure 5.14: Performance loss ∆J of the decentralized controller

The figure shows that the performance degradation increases for decreasing γ, because the
focus of controller design is put on sparsity more and more. Up to a value for γ of 1 · 10−5

the performance degradation is low and is rapidly increasing for larger γ, such that this
value is chosen here. It can be seen that the performance does not depend significantly on
the operating point, such that the same γ can be used for every operating point. The next
question is, which structure results from the chosen γ. In this example the same sparsity
structure is determined in every investigated operating point, which is depicted in Figure 5.15
and used for the controller operation.

Ts,1 Ts,2 Tr,1 Tr,2 Tr,3 Tr,4 Tr,5 Tr,6 Tr,7 Tb,1 Tb,2 Tb,3 Tb,4 Tb,5 Tb,6 Tb,7

α1
α2

ζ1
ζ2
ζ3
ζ4
ζ5
ζ6
ζ7
ϕ1
ϕ2
ϕ3
ϕ4
ϕ5
ϕ6
ϕ7 xi

ui

Figure 5.15: Sparsity structure of K

192

5 Application of decomposed MTI systems in heating systems

In contrast to the central design with 16 · 16 = 256, only 30 non-zeros entries are necessary
in the gain matrix to get a controller with small loss in control performance compared to
the central case. This is an enormous reduction of communication effort. The structure,
determined automatically, shows that only the controllers of the boilers need information
of the overall system, i.e. the supply temperatures and the building temperatures Tb,i of
the consumers. The controllers of the pumps and the three way valves only need local
information of the particular consumer, i.e. their building temperature Tb,i. The local
controllers for the consumers do not need the information of the whole system, e.g. the
building and return temperatures of the other consumers, which results in a much simpler
communication infrastructure compared to the central case. In case of the central design the
controller would have to access all measurement and control signals. This is not necessary
in the proposed decentralized design, as the resulting structure with the distribution of the
control task to several controller nodes shows, which is depicted in Figure 5.16.

KHC1

Ts,total

Tr,1
HC1

KHC7

Ts,total

Tr,7
HC7

KB2
Ts,2

B2
Tr,total

KB1
Ts,1

B1

Figure 5.16: Decentralized controller structure for the heating system

Simulating the closed loop system depicted in Figure 4.12 for one day results in the supply
temperature shown in Figure 5.17.
Even though many entries in the feedback gain matrix are set to zero, the simulation shows,
that the system temperatures follow the references as shown for the supply temperatures
of the first boiler in Figure 5.17. The temperature of the other boiler is controlled in the
same way and shows the desired behavior as well. The room temperatures Tb,i of the heating
circuits reach the reference value with a small maximum deviation of ±0.2 K, which is much
better than the acceptable limits. Thus, the control performance is good. Every change in
the references and the disturbances of more that 0.5 K leads to an adaption of the controller
gain such that the controller shows good results even though the plant is not linear but
multilinear.

193

5 Application of decomposed MTI systems in heating systems

0 2 4 6 8 10 12 14 16 18 20 22 24

65

70

75

Time [h]

Te
m

pe
ra

tu
re

[◦ C
]

Ts,1,decentral Ts,1,central Ts,1,ref

Figure 5.17: Comparison of the closed loop simulation results for central and decentral design

5.3.3 Adaptive model predictive control with successive linearization

The adaptive MPC approach with successive linearization introduced in Section 4.5 is applied
here to a real heating system. The controller should work with one heating circuit of a real
world office building. The setup of the plant with consumer and mixing circuit is described in
Section 5.1.1 and shown in Figure 5.3. All heating circuits inside this building are supplied
with a total supply temperature Ts,total. To adapt the overall supply temperature to the
needs of the specific consumer, a mixing circuit is installed, that allows to lower the supply
temperature Ts,HC reaching the consumer compared to the total one by return flow addition.
A pump is installed in each heating circuit to generate a flow through the consumer. In the
building focused on here the pump is controlled manually only, such that the controller has no
access to its control signal. The only input of the heating circuit plant is the three way valve.
In the former used conventional control strategy the reference for the supply temperature
of a heating circuit is determined by a heating curve. A heating curve gives the supply
temperature reference by a saturated linear dependence on the outside temperature, such
that the supply temperature is high for low outside temperatures and low for high outside
temperatures. To realize a night reduction of the temperature in this plant the heating curve
is reduced by 10 K for night operation. The heating curve for the considered heating circuit
is shown later in this section in Figure 5.28.
In a conventional design the three way valve is controlled by a PI controller. The PI controller
gets a reference for the supply temperature from the heating curve and sets the control signal
of the valve, such that the reference temperature for the supply of the consumer is reached.
This conventional closed loop setup is depicted in Figure 5.18.
In most cases the heating curve is designed conservatively, such that the consumer is supplied
with enough heat in any case. Due to this fact situations occur, where the heating circuit is
operated with supply temperatures that are too high from an energy efficiency perspective.
Especially the night operation with a reduction of the temperatures offers a high energy
saving potential. The idea here is to replace the heating curve by a AMPC-SL controller to

194

5 Application of decomposed MTI systems in heating systems

Consumer

Ts,total

Tr

Ts,HC

ζ

Heating
curvePI

Ts,ref

−
To

Figure 5.18: Setup of the consumer circuit with conventional controller design

compute a supply temperature reference, that is adapted better to the real ambient conditi-
ons. This should prevent the operation with too high supply temperatures. The controller
computes a supply temperature, such that the room temperature follows a reference leading
to a building operation in the comfort range. Therefore, the controller needs measurement
data from the plant of the current room, return and outside temperatures as well as the
volume flow. To act predictively the weather forecast on future outside temperatures and
solar radiation is included. Using a model of the plant, the reference for the supply tempera-
ture of the consumer is determined, that is set by an underlying PI control loop afterwards.
Figure 5.19 shows the controller setup with the plant and the predictive controller.

Consumer

Ts,total

Tr

Ts,HC

ζ

AMPC-SLPI
Ts,ref

−

Reference Tb,ref

Measurements Tb, Tr, V̇HC , To

Predictions To, Q̇solar

Figure 5.19: Setup of the consumer circuit with the AMPC-SL controller design

To determine the optimal supply temperatures, a model of the consumer is necessary to
predict, which building temperatures would result in the future from particular supply tem-
peratures, flows, outside temperatures and solar radiations. The model of the consumer was
introduced in Section 5.1.1. Its thermal dynamics are described by heat balances and are
given by (5.1) and (5.2). The consumer model with its inputs and outputs are shown in
Figure 5.20.
The states

x =
(︂
Tr Tb

)︂T
,

of the model used inside the predictive controller are the return and the room temperatures.
As input of the model it is assumed, that the consumer is supplied with a certain supply
temperature, which is the control signal here. The disturbances of the consumer are on the
one hand the weather conditions with the outside temperature and the solar radiation. One

195

5 Application of decomposed MTI systems in heating systems

Ts,HC

V̇HC To Q̇solar

Tr

Tb
Consumer

Figure 5.20: Inputs and outputs of the consumer model for the AMPC-SL

the other hand since the pump of the consumer circuit is not controllable, the volume flow is
treated as additional disturbance here leading to the control and disturbance input vectors

u = Ts,HC ,

d =
(︂
V̇HC To Q̇solar

)︂T
.

The outputs y = x of the plant are equal to the states. Because of the multiplication of
the disturbance variable V̇HC with the control variable Ts,HC as well as the state variable Tr

in (5.2) the model belongs to the class of MTI systems, that can be written in tensor format
by

ẋ = ⟨ F | M(x, u, d) ⟩ ,

y = ⟨ G | M(x, u, d) ⟩ ,

with parameter tensors F ∈ R×(6)2×2 and G ∈ R×(6)2×2, that are assumed to be given in CP
structure. In Section 4.5 it was proposed, that using a scaled version of the model avoids
some numerical issues, when signals are of different magnitude, which is the case here with
e.g. temperatures and volume flows. For scaling, operating ranges for all model signals

15 ◦C ≤ Tr ≤ 80 ◦C, 0 m3

s ≤ V̇HC ≤ 1.4 · 10−3 m3

s ,

18 ◦C ≤ Tb ≤ 23.5 ◦C, −5 ◦C ≤ To ≤ 10 ◦C,

30 ◦C ≤ Ts,HC ≤ 80 ◦C, 0 W
m2 ≤ V̇HC ≤ 500 W

m2 ,

(5.40)

are set according to the typical operation of the plant, that were determined from measure-
ment data. The decomposed MTI model is scaled by the approach introduced in Section 3.5,
such that all signals are in the interval [0, 1]. The scaled model

̇̃x =
⟨︂

F̃
⃓⃓⃓
M(x̃, ũ, d̃)

⟩︂
,

ỹ =
⟨︂

G̃
⃓⃓⃓
M(x̃, ũ, d̃)

⟩︂
,

is used inside the controller and is linearized in each sampling time step around an actual
operating point by the linearization approach for MTI system from Section 3.3. Before
operation of the controller, a field ΘOP of operating points is computed for the scaled model.
For a memory efficient representation of the field of operating points the TT decomposition
is used with a high accuracy to avoid problems with a possible approximation error resulting
from the decomposition.

196

5 Application of decomposed MTI systems in heating systems

Inside the MPC optimization problem the linear approximation of the scaled model is used
to predict the future plant behavior. The cost function is given by

J =
Hp∑︂
i=1

⃦⃦⃦
̂̃x(k + i) − x̃ref (k + i)

⃦⃦⃦2

Q
+

Hu−1∑︂
i=0

∥ũ(k + i) − ũ(k + i − 1)∥2
R

+
Hu−1∑︂

i=0
∥ũ(k + i) − ũtarget(k + i)∥2

S + ρϵϵk,

where ũtarget(k + i) is a target value for the control input signal. By choosing this target
value as minimal value T̃s,min of the supply temperature reference Ts,ref , this term supports
the usage of low supply temperatures. The variable ϵk is a slack variable to soften the
hard constraints (5.40) of the signals with weighting factor ρϵ, which supports the feasibility
of the optimization problem, [12]. In the given application the controller should realize a
reference tracking of the room temperature, i.e. the second state. The first state, the return
temperature, is not considered for reference tracking. Thus, the weighting matrix of the
reference tracking has the following structure

Q =
(︄

0 0
0 q

)︄
,

such that a weight is put on the tracking of the second state only. The weighting factor of
the first state is set to zero. With that the cost function is given here by

J =
Hp∑︂
j=1

q
(︂
T̃b(k + j) − T̃b,ref (k + j)

)︂2
+

Hu−1∑︂
j=0

r
(︂
T̃s,ref (k + j) − T̃s,ref (k + j − 1)

)︂2

+
Hu−1∑︂
j=0

s
(︂
T̃s,ref (k + j) − T̃s,min(k + j)

)︂2
+ ρϵϵk. (5.41)

The first term evaluates the reference tracking of the room temperature with weighting
factor q. The second term penalizes the rate of change of the supply temperature reference
with factor r. This reduces the dynamics of the control signal and avoids fast changes in the
supply temperature reference signal. The third terms puts costs on the difference between
the supply temperature reference and its minimal value, such that low supply temperatures
are used. For the focused office building an occupation time from 6:00 to 20:00 o’clock could
be identified. To fulfill the comfort requirements of the users, the building temperature
should be next to the reference during the day. The minimal and maximal constraints of
the room temperature are close to the reference value at occupation time. During the night
the room temperature can be lowered. Also the constraints on the room temperature are
wider. The controller has to take care, that the building does not cool down too much at
night, i.e. the room temperature should not fall below a minimal value. Furthermore the
controller has to determine the time for heating up the building in the morning, such that
the comfort range of the room temperature is reached at the beginning of the occupation
time at 6:00 o’clock. As minimal value for the building temperature 18 ◦C are reasonable.
During occupation time the users request a building temperature of 23 ◦C to fulfill their
comfort demands. The simplest reference trajectory would be a switch between these two
values resulting in a rectangular signal as shown in Figure 5.21.

197

5 Application of decomposed MTI systems in heating systems

Tb,ref [◦C]

Time [h]

18

23

0 246 20

No occupation No occupationOccupation time

Figure 5.21: Rectangular reference signal for the room temperature

But this choice of the reference leads to some application specific problems, that will be
discussed in the following. The first issue is the start of the occupation time with the
simple reference in Figure 5.21: At 6:00 o’clock there is a step change in room temperature
from 18 ◦C to 23 ◦C. Because of the slow building dynamics it is not possible with acceptable
control effort, that the room temperature follows this fast increase in temperature. Since the
reference is already known in advance for the whole prediction horizon, an optimal behavior
in the sense of a quadratic cost function (5.41) would lead to a behavior that was illustrated
in Figure 4.6b. The room temperature is already increased before the jump in the reference
temperature as it is desired here since the controller should set the starting time for heat up.
But it is also obvious that the reference value is just reached after the jump in the reference.
This is the optimal behavior with respect to the quadratic cost function. But this is not
the desired behavior from an application point of view. Since the occupation starts at 6:00
o’clock the room temperature should already reach its reference value at this time and not
later. This is a requirement from practice. Thus, a rectangular reference trajectory does not
make sense for this application with quadratic cost function. Another form of the reference
has to be chosen that fits to the dynamics of the plant. To keep the reference signal simple
a ramp is used, that has a slope that fits to the temperature dynamics of the building, such
that it is possible, that the room temperature follows the reference signal.

Example 5.1 Returning to the first order system of Example 4.1 here now a ramp is used
as reference when the plant is controlled by a MPC controller. The ramp slope is chosen,
such that it fits to the plant dynamics, i.e. the plant output can follow the reference. The
closed loop output with a MPC controller and a ramp reference is depicted in Figure 5.22.
When comparing Figure 5.22 to Figure 4.6b this exemplary shows that the control error is
reduced enormously, when a ramp with a reasonable slope is used as reference instead of a
step.

For the heating system the ramp should reach the desired reference temperature of 23 ◦C at
the beginning of the occupation time. Since the reference is adapted to the room dynamics,
this allows that the room temperature is at the desired value at the beginning of the occu-
pation. But it is only possible that the room temperature follows the reference, if the slope
is chosen in the right way. The controller is designed for a floor of an office building, where

198

5 Application of decomposed MTI systems in heating systems

Time

Te
m

pe
ra

tu
re

MPC
Reference

Figure 5.22: Exemplary closed loop simulation of a first order system with a MPC and ramp
reference

measurement data is available. The building temperature is determined by a room tempe-
rature sensor in a reference room. Therefore different heat up processes are investigated to
determine the temperature dynamics, that are illustrated in Figure 5.23.

0 1 2 3 4 5 6 7 818

20

22

24

Time [h]

Bu
ild

in
g

te
m

pe
ra

tu
re

[◦ C
]

Figure 5.23: Estimation of the slope of the reference ramp (Solid: measurements, Dashed:
Straight line with estimated slope)

The figure shows the different heat up processes of the room temperature as solid lines. The
slope of the reference ramp is illustrated by a dashed straight line, that is chosen in a way,
that the room temperatures are not slower than the chosen slope. The measurements show
that the building dynamics are very slow, because the heat up process takes several hours.
This can be caused by large masses or high losses due to large window surface areas of the
building. This investigation results in a slope of 0.5 K/h. The difference between the minimal
value of 18 ◦C and the maximal value of 23 ◦C of the building temperature reference are 5 K.
This means that the room needs 10 h to overcome this temperature difference. Because of
that, the reference ramp starts at 20:00 o’clock at the day before to reach the 23 ◦C at 6:00
o’clock in the morning. During the weekend no occupation is assumed such that the reference
temperature is set to its minimal value then. The constraints of the room temperature are
determined according to the reference trajectory. The lower constraint is set parallel with
a shift of 0.5 K below the reference. The upper constraint is held constant for the whole

199

5 Application of decomposed MTI systems in heating systems

time 0.5 K above the maximal value of the room temperature reference at occupation time.
The reference and the constraints for the room temperature is depicted in Figure 5.24 for a
whole week.

Mo Tu We Th Fr Sa Su
18

23

Time [h]

B
ui

ld
in

g
te

m
pe

ra
tu

re
[◦ C

]

Reference
Constraints

Figure 5.24: Reference trajectory and constraints of the room temperature for one week

The problem at the beginning of the occupation time is solved by the ramp reference. After
the end of occupation time the focus is on a low supply temperature to save energy. The
room temperature can be reduced. Because of that, the reference is set to its minimal value.
But the same behavior as depicted in Figure 4.6b can be investigated also at the end of the
occupation time in standard MPC configuration. The room temperature would be reduced
already before the step change in the reference to minimize the cost function (5.41) since the
controller knows the future reference values for the prediction horizon. This behavior can be
explained by the MPC algorithm but is not desired here from an application point of view.
In practice the room temperature should stay in the comfort range for the whole occupation
time, i.e. until 20:00 o’clock. Because of that the prediction of the reference is changed
and held constant during occupation time to a value of 23 ◦C. Figure 5.25 illustrates the
prediction of the references for two different time instances on the one hand during the night
and on the other hand at the end of occupation time, to illustrate the previously described
procedure.

0 6 20 24
18

23

Hp

Hp

Time [h]

Bu
ild

in
g

te
m

p.
[◦ C

]

Reference
Prediction

Figure 5.25: Reference of the room temperature and prediction for two time instants

200

5 Application of decomposed MTI systems in heating systems

Since the controller gets the information that the room temperature should be held at 23 ◦C
the temperature is not reduced before 20:00 o’clock. After the end of occupation time the
correct reference prediction according to the reference ramp is used inside the controller.
Due to the system dynamics, the prediction and control horizon are set to 3 and 2 hours,
respectively. The sampling time is one minute. The parameters q, r and s of the cost function
are tuned by closed loop simulation with the MTI model of the plant. The simulation for
one day of the tuned AMPC-SL controller for the heating circuit is depicted in Figure 5.26.

0 2 4 6 8 10 12 14 16 18 20 22 24
18

20

22

24

Te
m

pe
ra

tu
re

[◦ C
]

Tb Tb Min./Max. Tb,ref

0 2 4 6 8 10 12 14 16 18 20 22 2420

40

60

80

100

Time [h]

Te
m

pe
ra

tu
re

[◦ C
] Ts,ref

Figure 5.26: Closed loop simulation result with a consumer and AMPC-SL controller for one
day

The simulation results show, how the controller reduces the supply temperature during the
night. It is set to its minimal value. This shows one advantage of the controller. Due to that,
the room cools down and is heated up again at the beginning of the day, which is done by
an increase in the supply temperature. During the occupation time the room temperature
is held constant at the comfort value. In the conventional control a fixed point in time is
given, where the heat up should start. This time instant is chosen conservatively in many
cases, such that the building is in the comfort zone even though it is very cold outside. If it
is e.g. warmer outside the point in time is not adapted, i.e. it is not set later. Therefore the
comfort range is reached earlier even before occupation time. This leads to a loss of energy
since it is not necessary that the building is already in the comfort range when nobody is
present. Here the second advantage of the controller comes into play. With the AMPC-SL
the time instant of heating up is not fixed any longer. The necessary supply temperature

201

5 Application of decomposed MTI systems in heating systems

is computed with the help of the model in dependence of the current and future ambient
conditions like outside temperature or solar radiation. With that the time where the heating
starts is flexible and it is avoided that the building is heated up too early. This results in a
more flexible operation, which allows also a reasonable cooling of the room at the weekend.
The behavior for weekends is shown in Figure 5.27.

Fr Sa Su Mo
16

18

20

22

24

Te
m

pe
ra

tu
re

[◦ C
]

Tb Tb Min./Max. Tb,ref

Fr Sa Su Mo
20

40

60

80

100

Time [h]

Te
m

pe
ra

tu
re

[◦ C
] Ts,ref

Figure 5.27: Closed loop simulation result with a consumer and AMPC-SL controller for a
weekend and adjacent days

During the weekend the heating circuit is operated with minimum supply temperature, which
saves energy. Because of that, the room cools down, but the room temperature does not fall
below the minimal value of 18 ◦C. The controller starts heating with low supply temperatures
to hold this minimal room temperature. With the model the controller determines the right
time instant in the night between Sunday and Monday to increase the supply temperature
again, such that the rooms are in the comfort range when the occupation time starts.
With the conventional control structure the supply temperature reference is determined by
a heating curve. The heating curve used in this floor of the office building is estimated by
plotting measurement data of the supply temperature over the outside temperature for all
four seasons as depicted in Figure 5.28. The estimated heating curve can be fitted to the
data by a saturated straight line. If the building is not occupied the heating curve is reduced
by 10 K.
With the heating curve and the measurement data of the outside temperature used for the

202

5 Application of decomposed MTI systems in heating systems

-5 0 5 10 15 20 25 30
20

30

40

50

60

70

80
Measurements

Heating curve

Figure 5.28: Estimation of the heating curve of the standard controller

closed loop simulation depicted in Figure 5.27 the supply temperature reference that would
have been used with the conventional heating curve based control can be computed. When
comparing this supply temperature reference with the one of the AMPC-SL approach, it is
easy to see that the supply temperature during the night is much lower with the AMPC-SL,
which is shown in Figure 5.29.

Fr Sa Su Mo
20

40

60

80

100

Time [h]

T
s,

r
ef

[◦ C
]

AMPC-SL
Heating curve

Figure 5.29: Comparison of supply temperature references of the heating curve and the
AMPC-SL controller

Also during daytime lower supply temperatures are used to keep the heating circuit in the
comfort range. Thus it is sufficient, if the boiler would provide lower supply temperatures

203

5 Application of decomposed MTI systems in heating systems

than the heating curve proposes, which shows the energy saving potential here. Only in the
heat up interval before occupation time higher supply temperatures are necessary for the
AMPC-SL, because the room temperature is decreased more during the night. The proposed
AMPC-SL controller structure leads to a more flexible operation regarding the choice of lower
supply temperatures and a flexible beginning of the heat up before occupation time, that
still fulfills the comfort demands of the users.

5.3.4 Distributed model predictive control

The increasing complexity of systems can be also investigated in the field heating systems,
e.g. by large-scale buildings. Since MPC has proven to be a control strategy that leads
to good results in the temperature regulation of buildings like in [35] or in the previous
Section 5.3.3 one has to investigate, how to apply such control concepts to large-scale buil-
dings. To solve this problem the distribution of the predictive control task to several con-
troller nodes to reduce the computational complexity was investigated for different building
applications [54, 71, 88, 112]. In contrast to the approaches in the literature the focus here
is on buildings, where subsystems are modeled by decomposed MTI systems and thus the
AMPC-SL method introduced in Section 4.5 is applied to these subsystems.
Here the heating system introduced in Section 5.1.1 with one boiler and NHC consumers is
used as an application example. The decentralized feedback design in Section 5.3.2 for a
similar plant already showed that the different subsystems, i.e. the boiler and the consumer,
do not need the full system information. The subsystems can have its own local control-
lers with limited system information. The particular consumers do not need knowledge of
the other consumers current situation. Only some information exchange has to take place
between boiler and consumers. This controller structure that follows also from the system
structure will be used here for a distributed MPC design. The models of the subsystems
were derived in Section 5.1.1. It has been shown in Section 5.2.1 that the model of the overall
plant belongs to the class of MTI systems. Thus the overall model is also described by an
MTI state space model with decomposed parameter tensors

ẋ = ⟨ F | M (x, u, d) ⟩ ,

y = ⟨ G | M (x, u, d) ⟩ .

Each consumer has two states and two control signals. The boiler has one state and one
control signal only. The outside temperature and the solar radiation are the disturbances to
the plant. This results in 2NHC + 1 states, 2NHC + 1 control signals and 2 disturbances of
the overall heating system. In case of a central MPC design, this model is used inside the
controller. The central control loop is shown in Figure 5.30.
The central MPC controller sets the modulation signal of the boiler and the control signals
of the pumps and valves of the consumers, such that the room temperatures in the particular
heating circuits are on their reference values, i.e. they are in the comfort range. Therefore,

204

5 Application of decomposed MTI systems in heating systems

HC
NHC

HC
1

...

...BCentral
AMPC-SL

ϕ1, ζ̂1

ϕNHC
, ζ̂NHC

α

Room temp.
reference

Supply temp.
reference

Outside temp.
prediction

Figure 5.30: Central MPC for the heating system example

the cost function is defined as

J =
NHC∑︂
i=1

⎛⎝Hp∑︂
j=1

∥Tb,i(k + j) − Tb,i,ref (k + j)∥qHC,i
+

Hu−1∑︂
j=0

⃦⃦⃦
∆u(HC,i)(k + j)

⃦⃦⃦
RHC,i

⎞⎠
+

Hp∑︂
j=1

∥Ts(k + j) − Ts,ref (k + j)∥qB
+

Hu−1∑︂
j=0

⃦⃦⃦
∆u(B)(k + j)

⃦⃦⃦
rB

,

with the weighting factors qB and rB for the boiler as well as qHC,i and RHC,i for the
consumers i = 1, . . . , NHC . Predictions of the outside temperature and the solar radiation
are used as weather forecast. In each sampling step the optimal input trajectory Û(i) is
computed for each input signal for the whole control horizon Hu by solving the optimization
problem (4.51). The number of optimization variables follows from the product (2NHC+1)Hu

of the number of control signals and the control horizon. The complexity of the optimization
problem increases with the size of the search space. Therefore, methods should be found
to reduce the complexity. The length of the control horizon depends on the dynamics of
the plant. Thus, it should be chosen as short as possible to get still a good control result,
but do not loose the benefits of the predictive controller actions. But it cannot be reduced
arbitrary. The idea here is to split the overall optimization problem into several smaller
subproblems with smaller search spaces. The global optimization goal for the whole plant
should still be in focus. The boiler and each consumer gets its own controller node, that
acts only locally. The global optimization problem is distributed to these controllers of the
subsystems. Therefore, the number of control signals, that has to be computed by each
controller is significantly smaller than in the central case such that also the computational
effort is reduced enormously. The controller nodes of the consumer have to determine 2
control signals. This is a significant reduction compared to the central case. Furthermore
the complexities of the particular optimizations do not scale with the size of the plant, i.e.
the number of consumers. The single subproblems still have the same number of control

205

5 Application of decomposed MTI systems in heating systems

signals. For the central problem the number of control signals increases linearly with the
number NHC of consumers. To get a good optimization result for the overall plant, even
though the problem is split to several subproblems, a communication between the controller
nodes is necessary. The nodes of the heating circuits communicate the predictions of their
future heat demands to the controller of the boiler. With this information the controller
determines the reference of the supply temperature, such that the boiler can provide hot
water with temperature in a reasonable range as requested from the consumers. The specific
local controller nodes are presented in the following in detail.

Consumer with mixing circuit

The consumers are modeled as derived in Section 5.1.1 where the models have two states (5.1)
and (5.2)

x(HC,i) =
(︂
Tr,i Tb,i

)︂T
, i = 1, . . . , NHC ,

with the return and room temperature. The actuators are the pumps and the valve, such
that the control signals are given by

u(HC,i) =
(︂
ϕi ζi

)︂T
.

The particular heating circuit is influenced by the supply temperature coming from the
boiler and the weather conditions. Both cannot be influenced by the local controller of
the consumer, such that they are treated as internal and external disturbances for this
subproblem

s(HC,i) = Ts,total,

d(HC,i) =
(︂
To Q̇solar

)︂T
.

Each consumer gets its own controller node that works with the MTI model of the specific
consumer to determine, which supply temperature and which volume flow is necessary to
realize a reference tracking of the room temperature to fulfill the comfort demands of the
users. The reference is given e.g. by an occupation profile of the specific heating circuit.
The reference tracking of the room temperature is described by the cost function

JHC,i =
Hp∑︂
j=1

∥Tb,i(k + j) − Tb,i,ref (k + j)∥qHC,i
+

Hu−1∑︂
j=0

⃦⃦⃦
∆u(HC,i)(k + j)

⃦⃦⃦
RHC,i

.

The predictive controller computes the desired supply temperature Ts,HCi of the heating
circuit and the control signal of the pump. The three way valve is not considered inside the
model for the controller. It is assumed that the valve position can be set afterwards such that
the desired supply temperature is achieved as mixing product. Thus the model consists of the
temperature dynamics (5.1) and (5.2) of the consumer and the pump equation (5.4) with
states

(︂
Tr,i Tb,i

)︂T
, inputs

(︂
ϕi Ts,HCi

)︂T
and disturbances

(︂
To Q̇solar

)︂T
. The controller

computes the desired supply temperature of the consumer, that is set by the three way valve

206

5 Application of decomposed MTI systems in heating systems

using a PI controller. It is assumed that this underlying control loop works perfectly and
that this process is faster than the sampling time of one minute, such that the control signal
of the valve is described by a static model here

ζi = Ts,HCi − Ts,total

Tr,i − Ts,total

∈ [0, 1] .

The local control loop of the consumer is depicted in Figure 5.31.

AMPC-SL
HC i

Consumer i

ζiTs,HCi
Valve

ϕi

Ts,total, Tr,i

Tb,i, Tr,i
Tb,i,ref (k + j)

To Ts,total

T̂o(k+j) T̂s,total(k+j)

[T̂s,HCi(k+j), T̂r,i(k+j), . . .
ϕ̂i(k+j), ζ̂i(k+j)]

Figure 5.31: Local control loop of a consumer with predictions j = 1, . . . , Hp for the whole
prediction horizon

The consumer receives information on the predicted future overall supply temperature from
the boiler. By using this data together with the computed trajectories of the own cont-
rol signals, the controller of the consumer computes predictions of its return temperature,
its volume flow and its supply temperature demand by a forward simulation of the mo-
del (5.1), (5.2) and (5.4) for the prediction horizon.

Boiler

Inside the controller node of the boiler, the model (5.5) is used for the AMPC-SL algorithm.
The model has one state, the supply temperature x(B) = Ts,total and one input, the modula-
tion signal u(B) = α. The overall return temperature and the flow are internal disturbances

s(B) =
(︂
Tr,total V̇total

)︂T
.

Based on the predictions of the heat demand of the consumers the controller receives a refe-
rence Ts,total,ref for the supply temperature. The boiler should follow this reference resulting
in the cost function

JB =
Hp∑︂
j=1

∥Ts,total(k + j) − Ts,total,ref (k + j)∥qK
+

Hu−1∑︂
j=0

∥∆α(k + j)∥rB
.

The disturbances of the boiler coming from the consumers are the overall return temperature
and the overall flow, that are available as predictions from the consumer controller nodes.

207

5 Application of decomposed MTI systems in heating systems

Figure 5.32 shows the local control loop of the boiler. Predictions T̂s,total(k + j) of the
future generated supply temperatures are determined by a forward simulation of (5.5) for
the prediction horizon.

AMPC-SL
B Boilerα Ts,totalT̂s,ref (k+j)

Tr,total V̇totalT̂r,total(k+j) ̂̇Vtotal(k+j)

T̂s,total(k+j)

Figure 5.32: Local control loop of the boiler with predictions j = 1, . . . , Hp for the whole
prediction horizon

Coordinator

As previously said, the controller of the boiler needs information on the future supply tem-
perature reference, overall return temperature and the overall flow. The controllers of the
consumers provide predictions for their own heating circuit respectively. These information
is collected by the coordinator as shown in Figure 5.33.

Coordinator

T̂s,HCi(k+j) ...
T̂r,i(k+j) ...

ζ̂i(k+j), ϕ̂i(k+j) ...

T̂s,ref (k+j)

T̂r,total(k+j)

̂̇Vtotal(k+j)

Figure 5.33: Coordinator of the boiler with predictions j = 1, . . . , Hp for the whole prediction
horizon

The coordinator gets predictions on the future return temperatures and flows of the parti-
cular consumers. In the overall heating system, the flows coming from the consumers are
merged by a return flow collector. The resulting mixing product has the flow (5.6) and tem-
perature (5.7). Furthermore the coordinator determines a reference for the overall supply
temperature from the supply temperature requests of the consumers. The maximal sup-
ply temperature demand from the consumer is selected for each time step of the prediction
horizon

Ts,total,ref (k + j) = max
i=1,...,NHC

(Ts,HCi(k + j)) ∀j = 1, . . . , Hp.

Furthermore, the coordinator transmits predictions on the future supply temperatures gene-
rated from the boiler to the controller nodes of the consumer. The setup of the distributed
controller with the nodes as described before is shown in Figure 5.34.

208

5 Application of decomposed MTI systems in heating systems

MPC
HC

NHC

HC
NHC

MPC
HC 1

HC 1

...B
MPC

B

Coord.

Network

Figure 5.34: Distributed predictive controller for the overall system

As a simulation example a heating system with NHC = 3 heating circuits is investigated.
The structure is given as before, but here the controller was designed for a building with
less masses, i.e. the room temperature reacts faster on changing supply. A central and
a distributed MPC are designed for that plant. The controllers work with a sample time
of 60 s and different prediction horizons were investigated. The reference for the building
temperatures for the different heating circuits is implemented, such that a night reduction of
the temperatures is realized. Since the time constants of the plant are smaller, a rectangular
reference is used in contrast to the very slow building investigated in Section 5.3.3. The
different controller nodes work with the AMPC-SL algorithm. The MTI models and cost
functions of the subsystems are used as described before. Figure 5.35 shows the simulation
results for the closed loop simulation with the DMPC for the 3 building temperatures and a
prediction horizon of 60 min.

0 2 4 6 8 10 12 14 16 18 20 22 24

18

19

20

21

Time [h]

Te
m

pe
ra

tu
re

[◦ C
]

Tb,ref Tb,1 Tb,2 Tb,3

Figure 5.35: Simulation result of the building temperatures for one day

209

5 Application of decomposed MTI systems in heating systems

The simulation results show, that the room temperatures follow their references very well,
even though the optimization task is distributed to the different controller nodes for each of
the three consumers and the boiler. The different rooms start at different room temperatures.
The controllers drive all rooms to the desired reference temperatures. Small undershoots
and overshoots occur at the edges of the reference signal but they are in acceptable limits.
The controllers for the different components compute their control signals independently
by exchanging some information on their future behavior at the end of each time step. It
was also investigated, whether the control result can be improved if the controllers exchange
information several times during one time instant and performing the optimization iteratively
with updates from the other nodes before going on to the next time step. This leads to more
computational effort and did not show significant benefit in the control result. Even though
a building with less masses, i.e. it reacts faster, was used here, the system dynamics are slow
enough compared to the sampling time, that it is sufficient to compute the optimization only
once during one time step.
This shows, that the closed loop with distributed predictive controllers leads to a desired
system behavior. The big advantage compared to the central design gets clear when focusing
on the computational complexity of the controllers. The complexity is measured here by
the time that is necessary to solve the particular optimization problems. Therefore, tMP C

denotes the time to solve the optimization problem of the central MPC. The optimization
problem of the DMPC is solved in time tDMP C , that is composed of the times necessary to
solve the optimization problems of the particular controller nodes of the boiler tB and the
consumers tHC,i, i = 1, 2, 3. Since there are no interconnections between the optimization
problems of the heating circuits, they are computed in parallel. The MPC of the boiler is
computed afterwards using the heat demand predictions of the consumers. Because of that,
the computational time for the distributed MPC is given by the sum of the time for the
solution of the optimization problem of the boiler and the maximum time for the solution
of the consumer problems, since they are computed in parallel, leading to

tDMP C = tB + max
i=1,...,NHC

tHC,i.

The simulation was executed on a computer with Intel Core i7-3540M processor with 3.0 GHz
and 16 GB working memory. The mean times for solving the optimization problems are
summarized in Table 5.5.

Table 5.5: Comparison of the mean times for solving the optimization problems

Hp tMPC tB tHC,1 tHC,2 tHC,3 tDMPC
60 min 3.39 s 0.045 s 0.115 s 0.121 s 0.118 s 0.166 s

The prediction horizon was fixed to one hour and chosen equally to the control horizon,
which leads to horizons of 60 time steps with the sampling time of Tsample = 60 s. Therefore,
the central MPC computes the control signal trajectory for 7 control signals, since each
consumer has 2 actors and the boiler has 1 actor. This leads to a search space of 7 ·60 = 420
optimization variables. The controller nodes of the DMPC work with the actors of the

210

5 Application of decomposed MTI systems in heating systems

particular subsystems only. This results in 1 · 60 = 60 optimization variables for the boiler
with 1 control signal and 2 ·60 = 120 optimization variables for each consumer with 2 control
signals. The effect of the different complexities is displayed for this example in Table 5.5.
By distributing the controller task to several nodes a significantly reduced computation
time tMP C > tDMP C can be achieved, because the particular subproblems of the controller
nodes are computed much faster than the optimization problem of the central MPC. There
is a strong dependence between the size of the search space and the computation time here.
Already for the subsystems of the DMPC one can see that the subproblem of the boiler
with one control signal is solved faster than the problems of the consumers with 2 control
signals. Compared with the central problem this advantage in computational complexity is
even more significant.
If the prediction and control horizons are increased, this leads also to an increase of the com-
plexity of the optimization problem since the size of the search space gets bigger. Figure 5.36
shows, how the time for the solution of the optimization problem evolves for different pre-
diction horizons for the central and the distributed MPC. The control horizon is chosen
equally to the prediction horizon.

60 120 180
0

10

20

30

40

50

60

70

Prediction horizon [min]

T
im

e
fo

r
op

tim
iz

at
io

n
[s

]

Distributed MPC
Central MPC
Sampling time

Figure 5.36: Time for the solution of the optimization problem for different prediction hori-
zons (Hp = Hu)

211

5 Application of decomposed MTI systems in heating systems

It again gets obvious that the time for solving the optimization problem increases much
faster, when using a central MPC. With an prediction horizon of 3 h, the optimization
time in the central case is larger than the sampling time of 60 s, which is not acceptable
for a real-time implementation, since in this case the solution of the optimization problem
has to be available at the end of each sampling time step. The optimization time of the
DMPC shows a significantly slower increase, such that in this case much longer prediction
horizons would be possible until the optimization time gets next to the sampling time. To
summarize one can say, that the application example showed, that the complexity of the
MPC optimization problem can be reduced enormously, when the control task is distributed
to several controller nodes. The subproblems are smaller and can be computed partly in
parallel. Since the complexity increases much slower than in the central case, the DMPC
allows also larger prediction and control horizons. Additionally one can assume, that also a
larger number of consumers leads to an significant increase in complexity in the central case
since the number of optimization variables increases. For the DMPC the increasing number
of consumers has a smaller effect on the computational complexity since the search spaces of
the particular subproblems do not change. Only the number of small subproblems increases
but a parallel computation is possible. This results in great benefits for the application of a
distributed approach especially for large-scale plants. The application also shows the validity
of the combination of a DMPC approach with controller nodes working with the AMPC-SL
algorithm introduced in Section 4.5.

5.3.5 Real-time implementation

In Section 4.5 an MPC method was adapted to the special model structure of MTI systems
resulting in the AMPC-SL method. The method was successfully applied in simulation to
a building example, i.e. a heating circuit, in Section 5.3.3. This section describes the real-
time implementation of the approach and the application of the resulting controller at a
real world office building with a heating circuit structure as considered before. To apply
the controller, the algorithm has to be implemented on a real-time hardware. To test the
real-time implementation a HIL platform is developed. After successful tests the controller
is operated at the real building. The results will be presented in the following. At first the
used hardware and software is described shortly.

Hardware and software

The hardware for controller implementation should have sufficient computational power,
communication interfaces and is ideally of low cost. That is why the single-board computer
Raspberry Pi was chosen, that is very popular in prototypical applications. This is a compu-
ter of small size of 93 mm × 63.5 mm × 20 mm, where all components like the processor, the
working memory or the interfaces are installed on one board. No hard drive is provided. As
storage device a SD card is used, that is bootable and contains the operating system, which
is the Linux distribution ”Raspbian” here, that is optimized for operation on Raspberry Pi.

212

5 Application of decomposed MTI systems in heating systems

Different versions of the Raspberry Pi are available. Here the version Raspberry Pi 3 Version
B is used with a quad core processor with a clock rate of 1.2 GHz and 1 GB RAM working
memory. Different interfaces are available, like USB or Ethernet ports or GPIO pins that
are freely configurable. Due to this high flexibility and computational power the Raspberry
Pi is chosen as implementation hardware.
Modeling and controller design is done with the MATLAB and Simulink software package.
Besides the standard toolboxes additional toolboxes for work with Raspberry Pi and pre-
dictive controllers are used. To connect MATLAB with the Raspberry Pi environment,
support packages are available. This allows e.g. to manipulate and read the communica-
tion interfaces of the Raspberry Pi like the GPIO or the Ethernet interface by UDP with
MATLAB and Simulink software. Additionally an automatic C code generation is provided
to deploy algorithms developed in Simulink to the Raspberry Pi and execute them on the
hardware independently, without using a host PC, which is desired here. For that, it is ne-
cessary that functions and data types are used only, that are supported for code generation.
For the design of the predictive controller the ”MPC Toolbox” of MATLAB is used, because
it offers efficient QP solvers, that are supported for code generation, to solve the standard
MPC optimization problem, [9]. This functionality is extended with own code to implement
the AMPC-SL method for decomposed MTI systems.

Real-time simulator for MTI systems

A plant simulator helps to test controllers before operation at the real plant. Therefore a
simulator for MTI models is developed here, such that the model runs on a Raspberry Pi.
The hardware component runs with a fixed sample time, such that a discrete time model

x(k + 1) = ⟨ F | M (x(k), u(k)) ⟩ ,

y(k) = ⟨ G | M (x(k), u(k)) ⟩ .

is considered. To parameterize the MTI model on Raspberry Pi, the parameter tensors F
and G have to be provided in decomposed form. In Section 5.2.3 the CP decomposition
turned out to be well suited for MTI model representation of heating systems. But the
standard toolboxes [5] and [109] for CP tensor representation work with the MATLAB data
types struct and cell. Since these data types are not supported for code generation,
alternative storage formats for CP parameter tensors of MTI systems have to be derived for
that. The parameter tensor of the state equation of an MTI system with n states and m
inputs is given by

F = [Fum , . . . , Fu1 , Fxn , . . . , Fx1 , FΦ] · λF ,

with rcp(F) rank-1 components, factor matrices Fui
, Fxi

∈ R2×rcp(F), FΦ ∈ Rn×rcp(F) and
weighting vector λF ∈ Rrcp(F). The parameter tensor of the output equation with p outputs
reads

G = [Gum , . . . , Gu1 , Gxn , . . . , Gx1 , GΦ] · λG

213

5 Application of decomposed MTI systems in heating systems

with rcp(G) rank-1 components, factor matrices Gui
, Gxi

∈ R2×rcp(G), GΦ ∈ Rp×rcp(G) and
weighting vector λG ∈ Rrcp(G). Data formats supported for code generation are arrays of
data type double. Here it is exploited, that the factor matrices Fui

and Fxi
as well as Gui

and Gxi
are all of same sizes R2×rcp(F) or R2×rcp(G), respectively. Because of that, the factor

matrices can be concatenated in a third dimension

Fxu = Fum �3 · · · �3 Fu1 �3 Fxn �3 · · · �3 Fx1 ,

Gxu = Gum �3 · · · �3 Gu1 �3 Gxn �3 · · · �3 Gx1 ,

resulting in tensors of dimensions R2×rcp(F)×n+m and R2×rcp(G)×n+m. The particular factor
matrices are selected by the last dimension, e.g. for Fxu

Fxu(:, :, 1) = Fum ,

Fxu(:, :, n + m) = Fx1 .

Furthermore the factor matrices FΦ and GΦ and the weighting vectors λF and λG have
to be stored separately. With this storage format all arrays are of data type double and
supported for code generation.
To simulate the discrete-time model, the model equations are evaluated iteratively. This
means, that the contracted products of parameter tensors and monomial tensor have to be
solved to determine x(k + 1) and y(k). The contracted product is computed based on the
factor matrices of the CP decomposition by (3.21). To consider the proposed storage format
the algorithm has to be adapted resulting in

x(k + 1) =FΦ

(︄
λF ~

(︄
Fxu(:, :, 1)T

(︄
1

um

)︄)︄
~ · · · ~

(︄
Fxu(:, :, m)T

(︄
1
u1

)︄)︄
· · ·

~

(︄
Fxu(:, :, m + 1)T

(︄
1
xn

)︄)︄
~ · · · ~

(︄
Fxu(:, :, n + m)T

(︄
1
x1

)︄)︄)︄
,

y(k) =GΦ

(︄
λG ~

(︄
Gxu(:, :, 1)T

(︄
1

um

)︄)︄
~ · · · ~

(︄
Gxu(:, :, m)T

(︄
1
u1

)︄)︄
· · ·

~

(︄
Gxu(:, :, m + 1)T

(︄
1
xn

)︄)︄
~ · · · ~

(︄
Gxu(:, :, n + m)T

(︄
1
x1

)︄)︄)︄
.

Since in this approach standard operations like summation or multiplication are used and
all components are stored as arrays of data type double, it is now possible to generate code
and to implement the MTI plant simulator on hardware components like Raspberry Pi. The
inputs u can be received e.g. from the GPIO pins or the UDP interface. The outputs can be
communicated by the same ports. This allows e.g. the connection to a controller prototype.

Real-time implementation AMPC-SL

The AMPC-SL controller design for the heating circuit of Section 5.3.3 should be implemen-
ted for real-time operation on the Rapsberry Pi. The controller is implemented in Simulink
on the host computer. Afterwards an automatic C code generation is executed, to deploy

214

5 Application of decomposed MTI systems in heating systems

the controller on the Raspberry Pi. The Simulink implementation is composed of two main
parts. That is on the one hand the linearization as described in Section 3.3. For the standard
MPC routine the ”MPC Toolbox” of MATLAB is used with the extension, that the linear
model is updated in each sampling time step, [9]. It is also possible to use time depended
constraints or weights as necessary here for day and night operation. For the solution of
the quadratic MPC optimization problem the KWIK algorithm, i.e. a multi-step Newton
method, is used, [96]. The basic implementation of the AMPC-SL controller is illustrated in
Figure 5.37.

Measurements,
References,

Disturbances

⎧⎪⎪⎨⎪⎪⎩
Input and

output
constraints

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Weighting

matrices

⎧⎪⎨⎪⎩

Control signals

Figure 5.37: Basic Simulink implementation of the AMPC-SL for MTI systems

HIL test environment

It was described in the previous parts, how to implement an MTI model and the AMPC-
SL controller on a Raspberry Pi for real-time operation. In a typical controller synthesis
process, the controller is designed on the host PC and at first tested with a model of the
plant in closed loop simulations. If the controller fulfills all requirements the hardware
implementation follows. Before applying this implementation to the real plant it has to
be tested, if the hardware implementation works as designed on the host computer before.
To check the controller in closed loop it is operated with a plant simulator. This HIL
environment is build up by two Raspberry Pis. On the first Raspberry the controller that
should be tested is implemented. The second Raspberry implements the MTI plant model.
Measurements and prediction values as well as the control signals are communicated between
the components via the network protocol UDP. The setup is depicted in Figure 5.38.

215

5 Application of decomposed MTI systems in heating systems

[commons.wikimedia.org]

AMPC-SL

[commons.wikimedia.org]

Consumer

PI −

Controller Plant

Measurements and predictions,
Control signals

UDP

Figure 5.38: Hardware-in-the-loop environment

This leads to a test environment for the controller implementation in closed loop. It is
important to test here, if the algorithm works in real-time on the proposed hardware with
the desired sampling time. For predictive controllers it is important, that the result of
the optimization is computed during one sampling time step, such that the control signal
is available at the end of the sampling interval. It is not allowed that the computation
takes longer than the sampling time for a proper operation. The closed loop HIL test of
the AMPC-SL algorithm for the heating circuit proposed in Section 5.3.3 were successful.
The controller works with a sampling time of one minute. During the tests with a prediction
horizon of 3 hours and a control horizon of 2 hours no sampling time violations were observed.
The controller results were as expected, i.e. like on the host computer as depicted e.g. in
Figure 5.26. After passing these tests the controller is operated at the real building. The
results are shown in the next part.

Controller operation with real building

After the successful test the AMPC-SL controller is operated at a heating circuit of a real
office building, [81]. The setup is described in Section 5.3.3. The model parameters are iden-
tified with measurement data from this plant. The controller is implemented on a Raspberry
Pi. Now the measurement signals are not computed by a plant model as it is the case during
closed loop simulations or the HIL tests. They are received from the sensors of the real plant
instead. In the heating circuit heat meters are installed measuring the supply and return
temperature as well as the flow. The measurement information on the room temperature
is generated by a temperature sensor inside a reference room on the floor belonging to the
considered heating circuit. The predictions on the future outside temperature and the solar
radiation are given by a weather station. The controller manipulates the real actor now,
i.e. the supply temperature reference for the PI controller of the three way valve is set.
The interface between the Raspberry Pi and the plant is the direct digital control (DDC)
component. On the DDC the standard controllers for the whole building are implemented.
Because of that, the DDC has access to all relevant sensors and actors of plant. Thus, it is
straightforward to use the DDC as interface. The AMPC-SL controller reads measurement
data from the DDC. The determined control signals are send to the DDC. On the DDC a
plausibility check of the control signal is done. If the signals are fine, they are passed to
the plant. If an implausible signal is detected, the DDC switches back to the conventional

216

5 Application of decomposed MTI systems in heating systems

control strategy with the heating curve. The communication infrastructure inside the plant
between sensors, actuators and DDC is realized with the BACnet network protocol, a com-
mon communication protocol in building automation applications, [22, 41]. The controller
is implemented in Simulink and has to be connected to this communication infrastructure.
The controller implementation supports a network communication with the UDP protocol
but not with the BACnet protocol directly. Because of that, a UDP to BACnet interface is
necessary, [81]. The controller implementation sends and receives the data to and from its
own component, i.e. the local host, by UDP. An interface is used on the Raspberry Pi, that
converts the UDP packages to BACnet and the other way round. Control signals computed
by the controller are send by UDP to the interface, that sends the signals to the DDC with
the BACnet protocol. Measurement data is requested by the interface from the DDC via
BACnet and converted, such that the data is provided by UDP for the controller. With that
the communication outside the Raspberry Pi is performed with the BACnet protocol and
no basic changes in the building communication infrastructure have to be made to apply the
controller prototype. A schematic of the communication is illustrated in Figure 5.39.

Model
Cost function

Optimizer
AMPC-SL

Linearization

Operating point
computation

Inter-
face

UDP
↔

BACnet

UDP DDCBACnet

Heating
circuit

(Sensors,
actors)

BACnet

[commons.wikimedia.org]

Figure 5.39: Communication setup

In this setup the communication interface and the controller algorithm are implemented on
one hardware component. This avoids synchronization problems between different compo-
nents. The controller is the master here that prescribes the sampling interval.
The controller was operated at the heating circuit of the considered office building for several
weeks in the winter period. The hardware works very reliable over the whole period. The
AMPC-SL algorithm runs very stable and the sampling time of one minute is held constantly.
The controller shows a robust behavior against short-term network failures or errors in the
measurement data acquisition. To detect such simple faults inside the controller plausibility
intervals are defined for each signal to characterize nominal values. If e.g. an implausible
measurement value arrives, i.e. it is outside the specified interval, this is detected and the
control signal computed by the AMPC-SL is rejected. Instead a default value of 55 ◦C for
the supply temperature reference is given to the plant. This is an empirical value. It is
known from experience that the building does not cool down completely with this default
supply temperature also for low outside temperatures. The result of the AMPC-SL would
not be meaningful in this case, since e.g. with faulty measurement data the current state of
the plant cannot be determined properly. If the controller receives plausible values again, an

217

5 Application of decomposed MTI systems in heating systems

automatic switch to the AMPC-SL algorithm follows and the control signals are send to the
plant again. In the closed loop simulation in Section 5.3.3 a prediction horizon of three hours
and a control horizon of two hours turned out as proper choices. Due to plant limitations
the constraints on the supply temperature are set to

30 ◦C ≤ Ts,ref ≤ 80 ◦C.

The room temperature reference and constraints are used as described in Section 5.3.3. To
optimize the controller, the parameters like the weighting factors were updated several times
during the test period. The resulting closed loop behavior is illustrated by measurement
data of one specific day at the end of the test period shown in Figure 5.40.

12:00 18:00 00:00 06:00
18

20

22

24

Te
m

pe
ra

tu
re

[◦ C
]

Tb

Tb Min./Max.
Tb,ref

12:00 18:00 00:00 06:00
20

40

60

80

100

Date

Te
m

pe
ra

tu
re

[◦ C
] Tr,meas Ts,meas Ts,ref

Figure 5.40: Measurements of the AMPC-SL tests from 13.12.2017, 10:00 o’clock to
14.12.2017, 10:00 o’clock

The measurement data shows, that during occupation hours the room temperature is inside
its constraints. Only small deviations to the reference occur. This could follow from a
model mismatch between the real plant and its MTI model. But the error is just small, such
that it still fulfills the comfort requirements. The room temperature is held in the comfort
range until the end of the occupation time at 20 : 00 o’clock. After that the room cools
down. Energy is saved because the controller sets the supply temperature to its minimal
value. In the heat up period at the beginning of the day the supply temperature is increased
and the room temperature follows the reference during heat up. Here the measured room
temperature is above the reference, which might be caused by differences between the time

218

5 Application of decomposed MTI systems in heating systems

constants for the heat up process between model and plant. The control signal, i.e. the supply
temperature reference shows the expected trend. At night, a very low supply temperatures is
necessary only. In the morning, high supply temperatures heat the building and again lower
supply temperatures hold the room in the desired comfort range during the occupation
time. The supply temperature reference shows some oscillations during the occupation
phases when the room temperature is held constant. This might be reduced by model
improvements or parameter adaptions, such that the controller reacts less aggressive, i.e. by
increasing the factor r that penalizes the control effort. Experiences of the testes showed
that a more conservative controller tuning compared to the closed loop simulations on the
host computer is beneficial. Otherwise model mismatches or other disturbances like people
inside the building or other internal loads would lead e.g. to oscillations, if the controller is
too aggressive.
The test of the real-time implementation of the AMPC-SL controller at the heating circuit
showed that the predictive control concept works well with a simple model at a real plant.
The behavior of the heating circuit changed significantly compared to the conventional cont-
rol strategy with a heating curve. One difference is the reduction of the temperature during
the non occupation period. The heating curve is reduced by 10 K outside the time interval
from 4:30 to 20:00 o’clock. The configuration of the heating curve and its reduction are
based on experiences and a worst case estimation, such that the building fulfills the comfort
requirements of the users surely at occupation time. But since the beginning of the heat up
is fixed at 4:30 o’clock independently from the outside conditions, it may happen that too
high supply temperatures are requested and the building is in the comfort range too early.
The AMPC-SL is more flexible. Here the room temperature is controlled directly and the
controller acts predictively. Because of that, more down cooling of the room temperature is
allowed during the night or weekends leading to an operation with lower supply temperatu-
res. The room temperature is measured the whole time and the controller would react if the
room temperature falls below its minimal value. Furthermore, the starting time of heating up
the building in the morning is not fixed any longer. It is determined with help of the model
taking into consideration the environmental conditions like the outside temperature. Since
the room temperature is reduced more, the supply temperatures in the morning are higher
than in the case, where a heating curve is used. But the heating circuit is operated with
significantly lower temperatures in the night or weekend. How much cool down is allowed
and how the heat up process is characterized can be adapted by the AMPC-SL parameters.
One possibility is shown here as proof of concept for the real-time implementation.
This leads to further research ideas that are beyond the scope of this thesis. With the
AMPC-SL controller the temperature reduction in the heating circuit is realized taking into
consideration many different factors of the plant. It is interesting to investigate the optimal
setting for that. An open question is the optimal temperature reduction with respect to
economical and energy efficiency criteria. If the room temperature is reduced very much
this has the advantage that the heating circuit can be supplied with low temperatures in
the night, but high temperatures are necessary in the morning. This can be adjusted by the
parameters of the AMPC-SL. Economical and energy efficiency criteria have to be derived
to optimize the parameters and thus the closed loop behavior. Up to now the controller was
implemented on a prototypical hardware like the Raspberry Pi. The next step would be an

219

5 Application of decomposed MTI systems in heating systems

implementation on the building automation devices like the DDC or the BMS. To summarize
this part, the real-time implementation showed that the AMPC-SL approach showed good
closed loop results also at a real world plant. From this proof of concept different potentials
are identified for further improvement of the closed loop behavior.

220

6 Conclusion

This chapter summarizes the main results of this thesis in Section 6.1 and draws conclusions.
Section 6.2 highlights possible further directions of research.

6.1 Summary

The main result of the thesis are summarzed according to the research questions posed in
Section 1.2.

• Which tensor decomposition methods are suitable for the complexity reduction of MTI
models and their controller design methods?
In mathematics developments like tensor decomposition methods offer very powerful
tools. This thesis combines the methods of tensor calculus from the mathematics and
informatics community with modeling and controller design methods from engineering.
Tensor decomposition methods allow to represent state space models of MTI systems in
a memory efficient way. Four decomposition methods were investigated and compared
with the result, that CP, TT and HT are suited best, especially regarding the storage
demand and the search for low-rank approximations.

• How can tensor methods and the multilinear model structure improve the controller
design process of known methods like feedback linearization or predictive control?
Many methods in modeling and control of MTI systems are based on polynomial opera-
tions. Therefore at first some mathematical tools are derived, that form a theoretical
base for the upcoming methods in modeling and control. No full tensors should be
used, such that all required tensor operations have to be defined for decomposed ten-
sors. For computations with multilinear functions in tensor format a generalized tensor
description for polynomials and different polynomial operations like multiplication or
differentiation were derived, that work with the parameter tensors only. Using this
memory efficient representation, tools like the linearization or discretization were de-
veloped, that can be used for model-based controller design with MTI models.
With these methods controller design algorithms were derived especially for MTI mo-
dels to get a less complex synthesis than in the general nonlinear case. The nonlinear
control method of feedback linearization was specialized to multilinear models, such
that it works with the decomposed parameter tensors of the model resulting in a con-
troller of fixed tensor structure, that is computed by simple operations without any
symbolical operations. This shows, that it is possible to infer design methods especi-
ally for MTI systems from general nonlinear methods with several benefits like a fixed
structure and predictable complexity.

221

6 Conclusion

MPC is a promising advanced design method for control e.g. of heating systems. Often
linear models are used with the advantage of a convex optimization problem, that has
to be solved during operation to realize a reference tracking. But multilinear models
capture the dynamics of many plants better than linear ones. Therefore the optimi-
zation problem of MPC with MTI models was of interest in this thesis. It was shown
that in this case the convexity of the optimization problem is not guaranteed, but a
test for convexity is provided. To combine the good modeling properties of the MTI
models with the convex optimization with linear models, the AMPC-SL algorithm was
developed, where the MTI model is linearized successively around an operating point
next to the current operating conditions by using tensor methods. During optimization
the adapted linear model is used to preserve the convexity. This approach based on
the multilinear model shows advantages compared with the standard linear approach.

• How to derive efficient distributed controller design methods for a multilinear model in
tensor representation?
At first a notation was defined for large-scale systems, where the particular subsys-
tems can be modeled by MTI systems, to describe the multilinear subsystems and their
couplings. All three basis connections of two subsystems were investigated further to
determine the parameters of the overall model from their single parts. To control large-
scale plants two main approaches are presented. It was investigated how a controller
structure of an MTI system is determined using a decentralized state feedback method.
Based on a linear algorithm an approach was proposed, that finds a controller structure
for an MTI system in a preprocessing step by solving an optimization problem. During
operation the controller gain of fixed structure is adapted to the multilinear dynamics
of the plant. This gives a state feedback controller with little less performance compa-
red to the centralized design but significantly reduced communication effort.
In the second approach the focus was on the distribution of the control task to several
controller nodes in a given structure to reduce computational complexity of the parti-
cular controllers. It was shown, that the application of predictive control strategies to
large-scale systems results in complex optimization problems. To avoid the increase in
complexity the predictive control task is distributed to different controller nodes here.
Each node works with the AMPC-SL technique controlling the own subsystem only.
This leads to optimization problems of reduced complexity compared the the central
case. Couplings with other subsystems are considered as predictable disturbances.
This makes it possible to use advanced methods like AMPC-SL also for large-scale
plants.

• What are the benefits for the application of decomposed models and design methods to
heating systems?
The developed methods were applied to two example systems, i.e. an HVAC system
and a heating system of a large non-residential building. Multilinear models of the
systems were derived and represented in decomposed format. Tensor decomposition
methods were applied to reduce the storage complexity of the models leading to a
memory efficient representation. The decomposed MTI models were used for controller
design for the heating systems applications. This results in a feedback linearization
controller and a AMPC-SL for a particular heating circuit and decentralized controllers

222

6 Conclusion

for the whole non-residential building. Closed loop simulations showed good results
to maintain the comfort demand of the occupants and to realize an energy efficient
operation, e.g. by an operation with lower supply temperatures compared to the
conventional control with a heating curve.

• Is it possible to implement a multilinear model-based controller on real-time hardware?
Because of the possibilities to control MIMO systems as well as to consider disturbance
predictions by the weather forecast and the dynamics of the plant by an MTI model, the
AMPC-SL algorithm turned out to be suited best for a real-time implementation. The
controller was implemented on a Raspberry Pi single-board computer. After passing
tests in a HIL environment, the controller was successfully applied to a heating circuit
of an office building, which brought further insight into the plant operation with a
predictive controller.

Thus, the thesis shows, that MTI models are represented very efficiently by different tensor
decomposition methods, that can be used well for model analysis and controller design. This
offers the possibility to optimize the operation of large-scale heating systems, whose thermal
dynamics are very well captured by MTI models. An implementation example shows the
applicability of the methods also for real plants.

6.2 Outlook

The outlook shows the most promising future research directions by summarizing and rating
the open questions of Sections 2.4, 3.8 and 4.7 according to impact and effort.
As it is the mathematical base for many of the introduced methods an improvement of the
tensor representation of polynomials would have a great effect on the presented methods. By
reducing the redundancies in the monomial tensor for higher order functions, the description
offers a memory saving potential. For this and all other tensor approaches in the thesis new
developments in the tensor community have to be studied and their applicability to MTI
systems has to be checked.
From a scientific point of view the investigation of the closedness of the class of MTI models
is very interesting, e.g. regarding the feedback connection. Since no approaches for e.g. a
variable transformation of MTI systems is available for this application yet more research
effort has to be spent here.
Different steps of the model-based design process for MTI systems were investigated in this
thesis from model representation and analysis to controller synthesis. But to adapt the model
to a specific plant, values of the parameters are required. No parameter estimation method
specifically for MTI models is available yet. Especially black-box identification techniques
would simplify the model creation step enormously. Since an MTI model is required to
apply the presented design methods, a simplification of the modeling process, that is often
regarded as complex, would have a great impact on the model-based design application for
MTI models. The first approaches in [24] showed, that the development of algorithms for
that is complex and further research is necessary. First results are given in [7, 8]. The same
holds for simulation algorithms specialized for MTI models.

223

6 Conclusion

In the field of controller design the development of specific optimization algorithms, when
multilinear models are used, would have an impact on many optimal control methods like
MPC or the decentralized feedback design in this thesis. MPC is a very powerful design
method for building applications. Heating systems are modeled very well in a multilinear
way, such that this is an important research topic. For plants of larger scale a DMPC method
was introduced for an example here. It is interesting, if controller structures for a distributed
MPC can be derived from the proposed optimal decentralized state feedback scheme. Other
properties of the DMPC like stability and convergence have to be investigated further too.
In contrast to these complex further research directions other improvements of the control
methods e.g. the extension of the feedback linearization to MIMO systems are straight
forward.
For practical applications predictive methods are of high interest. Future work should extend
the prototypical implementation of the AMPC-SL approach for one heating circuit to the
distributed design for the whole plant. The next steps would be the implementation of
the algorithms on on-site hardware like the DDC or BMS level to integrate the approach
completely in the building automation to realize an energy efficient operation.

224

Bibliography

[1] Afram, Abdul and Janabi-Sharifi, Farrokh: “Theory and applications of HVAC
control systems–A review of model predictive control (MPC)”. In: Building and
Environment 72 (2014), pp. 343–355.

[2] Alessio, Alessandro and Bemporad, Alberto: “A Survey on Explicit Model Pre-
dictive Control”. In: Nonlinear Model Predictive Control: Towards New Challen-
ging Applications. Ed. by Magni, Lalo; Raimondo, Davide Martino, and Al-
lgöwer, Frank. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 345–
369.

[3] Aste, Niccolò; Manfren, Massimiliano, and Marenzi, Giorgia: “Building Au-
tomation and Control Systems and Performance Optimization: A Framework for
Analysis”. In: Renewable and Sustainable Energy Reviews 75 (2017), pp. 313 –330.

[4] Astrom, Karl Johan and Murray, Richard M.: Feedback Systems: An Intro-
duction for Scientists and Engineers. Princeton, NJ, USA: Princeton University
Press, 2008.

[5] Bader, Brett W.; Kolda, Tamara G., et al.: MATLAB Tensor Toolbox Ver-
sion 2.6. Available online. 2015. url: http : / / www . sandia . gov / ~tgkolda /
TensorToolbox/.

[6] Bakule, Lubomir: “Decentralized control: An overview”. In: Annual Reviews in
Control 32.1 (2008), pp. 87 –98.

[7] Batselier, Kim; Ko, Ching - Yun, and Wong, Ngai: “Tensor Network Sub-
space Identification of Polynomial State Space Models”. In: Automatica 95 (2018),
pp. 187 –196.

[8] Batselier, Kim; Ko, Ching-Yun; Phan, Anh-Huy; Cichocki, Andrzej, and
Wong, Ngai: “Multilinear State Space System Identification with Matrix Pro-
duct Operators”. In: IFAC-PapersOnLine 51.15 (2018). 18th IFAC Symposium on
System Identification SYSID 2018, pp. 640 –645.

[9] Bemporad, Alberto; Morari, Manfred, and Ricker, N. Lawrence: Model Pre-
dictive Control Toolbox User’s Guide. The Mathworks Inc., 2016.

[10] Bigalke, Uwe; Armbruster, Aline; Lukas, Franziska; Krieger, Oliver; Schu-
ch, Cornelia, and Kunde, Jan: Der dena-Gebäudereport 2016: Statistiken und
Analysen zur Energieeffizienz im Gebäudebestand. Deutsche Energie - Agentur
GmbH (dena), 2016.

225

http://www.sandia.gov/~tgkolda/TensorToolbox/
http://www.sandia.gov/~tgkolda/TensorToolbox/

Bibliography

[11] Bloemen, H. H. J.; Boom, T. J. van den, and Verbruggen, H. B.: “Opti-
mization Algorithms for Bilinear Model-Based Predictive Control Problems”. In:
AIChE Journal 50.7 (2004), pp. 1453–1461.

[12] Boyd, Stephen and Vandenberghe, Lieven: Convex Optimization. New York,
NY, USA: Cambridge University Press, 2009.

[13] Boyd, Stephen; Parikh, Neal; Chu, Eric; Peleato, Borja, and Eckstein, Jo-
nathan: “Distributed Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers”. In: Foundations and Trends in Machine Lear-
ning 3.1 (Jan. 2011), pp. 1–122.

[14] Bronshtein, Ilja N.; Semendjajew, Konstantin A.; Musiol, Gerhard, and
Mühlig, Heiner: Handbook of Mathematics. Springer-Verlag Berlin Heidelberg,
2007.

[15] Candès, Emmanuel J.; Wakin, Michael B., and Boyd, Stephen P.: “Enhancing
Sparsity by Reweighted l1 Minimization”. In: Journal of Fourier Analysis and
Applications 14.5 (2008), pp. 877–905.

[16] Christofides, Panagiotis D.; Scattolini, Riccardo; Pena, David Munoz de la,
and Liu, Jinfeng: “Distributed Model Predictive Control: A Tutorial Review and
Future Research Directions”. In: Computers and Chemical Engineering 51 (2013),
pp. 21 –41.

[17] Cichocki, Andrzej: “Era of Big Data Processing: A New Approach via Tensor
Networks and Tensor Decompositions”. In: CoRR abs/1403.2048 (2014). arXiv:
1403.2048.

[18] Cichocki, Andrzej; Zdunek, Rafal; Phan, Anh Huy, and Amari, Shun-Ichi:
Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-
Way Data Analysis and Blind Source Separation. Wiley, Chichester, 2009.

[19] Cichocki, Andrzej; Mandic, Danilo P.; Phan, Anh Huy; Caiafa, Cesar F.;
Zhou, G.; Zhao, Qibin, and Lathauwer, Lieven De: “Tensor Decompositions for
Signal Processing Applications From Two-way to Multiway Component Analysis”.
In: CoRR abs/1403.4462 (2014).

[20] Cichocki, Andrzej; Lee, Namgil; Oseledets, Ivan; Phan, Anh-Huy; Zhao, Qi-
bin, and Mandic, Danilo P.: “Tensor Networks for Dimensionality Reduction and
Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions”. In: Founda-
tions and Trends in Machine Learning 9.4-5 (2016), pp. 249–429.

[21] Cichocki, Andrzej; Phan, Anh Huy; Zhao, Qibin; Lee, Namgil; Oseledets,
Ivan V.; Sugiyama, Masashi, and Mandic, Danilo P.: “Tensor Networks for Di-
mensionality Reduction and Large-scale Optimization: Part 2 Applications and
Future Perspectives”. In: Foundations and Trends in Machine Learning 9 (2017),
pp. 431–673.

[22] Domingues, Pedro; Carreira, Paulo; Vieira, Renato, and Kastner, Wolf-
gang: “Building Automation Systems: Concepts and Technology Review”. In:
Computer Standards & Interfaces 45 (2016), pp. 1 –12.

226

https://arxiv.org/abs/1403.2048

Bibliography

[23] Dorf, Richard C. and Bishop, Robert H.: Modern Control Systems. 12th ed.
Pearson Prentice Hall, 2011.

[24] Dück, Natalia: “Multilineare Zustandsraummodelle und Ansätze zur Parameteri-
dentifikation durch Tensordekomposition”. Diploma Thesis. Hamburg University
of Technology, 2011.

[25] Eichler, Annika; Darivianakis, Georgios, and Lygeros, John: “Humans in
the Loop: A Stochastic Predictive Approach to Building Energy Management in
the Presence of Unpredictable Users”. In: IFAC-PapersOnLine 50.1 (2017). 20th
IFAC World Congress, pp. 14471 –14476.

[26] Ekman, Mats: “Modeling and Control of Bilinear Systems: Application to the
Activated Sludge Process”. PhD thesis. Uppsala University, 2005.

[27] Ellis, Matthew; Durand, Helen, and Christofides, Panagiotis D.: “A Tutorial
Review of Economic Model Predictive Control Methods”. In: Journal of Process
Control 24.8 (2014), pp. 1156 –1178.

[28] Fardad, Makan; Lin, Fu, and Jovanovic, Mihailo R.: “Sparsity-Promoting Op-
timal Control for a Class of Distributed Systems”. In: American Control Confe-
rence. 2011, pp. 2050–2055.

[29] Fernandez, N.; Katipamula, S.; Wang, W.; Xie, Y.; Zhao, M., and Corbin,
C.: Impacts of Commercial Building Controls on Energy Savings and Peak Load
Reduction. Pacific Northwest National Laboratory, 2017.

[30] Forbes, Michael G.; Patwardhan, Rohit S.; Hamadah, Hamza, and Gopa-
luni, R. Bhushan: “Model Predictive Control in Industry: Challenges and Oppor-
tunities”. In: IFAC-PapersOnLine 48.8 (2015). 9th IFAC Symposium on Advanced
Control of Chemical Processes ADCHEM 2015, pp. 531 –538.

[31] Grasedyck, Lars; Kressner, Daniel, and Tobler, Christine: “A Literature
Survey of Low-Rank Tensor Approximation Techniques”. In: GAMM-Mitteilungen
36 (2013), pp. 53–78.

[32] Hackbusch, Wolfgang: Tensor Spaces and Numerical Tensor Calculus. Vol. 42.
Springer Series in Computational Mathematics. Springer-Verlag Berlin Heidelberg,
2012.

[33] Harish, V.S.K.V. and Kumar, Arun: “A Review on Modeling and Simulation
of Building Energy Systems”. In: Renewable and Sustainable Energy Reviews 56
(2016), pp. 1272 –1292.

[34] Henson, Michael A. and Seborg, Dale E.: Nonlinear Process Control. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1997.

[35] Henze, Gregor P.: “Model Predictive Control for Buildings: A Quantum Leap?”
In: Journal of Building Performance Simulation 6.3 (2013), pp. 157–158.

[36] Hitchcock, Frank L.: “The Expression of a Tensor or a Polyadic as a Sum of
Products”. In: Journal of Mathematics and Physics 6.1-4 (1927), pp. 164–189.

227

Bibliography

[37] Huyck, Bart; Logist, Filip; Brabanter, Jos De; Impe, Jan Van, and Moor,
Bart De: “Constrained Model Predictive Control on a Programmable Automation
System Exploiting Code Generation: Practical Considerations”. In: IFAC Procee-
dings Volumes 44.1 (2011), pp. 12207 –12212.

[38] Ioli, Daniele; Deori, Luca; Falsone, Alessandro, and Prandini, Maria: “A
Two-Layer Decentralized Approach to the Optimal Energy Management of a
Building District with a Shared Thermal Storage”. In: IFAC-PapersOnLine 50.1
(2017). 20th IFAC World Congress, pp. 8844 –8849.

[39] Isidori, Alberto: Nonlinear Control Systems. 3rd. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 1995.

[40] Kang, Chang-Soon; Park, Jong-Il; Park, Mignon, and Baek, Jaeho: “Novel
Modeling and Control Strategies for a HVAC System Including Carbon Dioxide
Control”. In: Energies 7 (June 2014), pp. 3599–3617.

[41] Kastner, Wolfgang; Neugschwandtner, Georg; Soucek, Stefan, and New-
man, H. Michael: “Communication Systems for Building Automation and Cont-
rol”. In: Proceedings of the IEEE 93.6 (2005), pp. 1178–1203.

[42] Kelman, Anthony and Borrelli, Francesco: “Bilinear Model Predictive Control
of a HVAC System Using Sequential Quadratic Programming”. In: 18th IFAC
World Congress. 2011, pp. 9869–9874.

[43] Khalil, K. H.: Nonlinear Systems. 2nd ed. Prentice-Hall, Inc., 1996.
[44] Kolda, Tamara G. and Bader, Brett W.: “Tensor Decompositions and Applica-

tions”. In: SIAM Review 51.3 (2009), pp. 455–500.
[45] Kressner, Daniel and Tobler, Christine: “Algorithm 941: Htucker-A Matlab

Toolbox for Tensors in Hierarchical Tucker Format”. In: ACM Trans. Math. Softw.
40.3 (2014), 22:1–22:22.

[46] Kruppa, Kai: “Comparison of Tensor Decomposition Methods for Simulation of
Multilinear Time-Invariant Systems with the MTI Toolbox”. In: IFAC-PapersOn-
Line 50.1 (2017). 20th IFAC World Congress, pp. 5610 –5615.

[47] Kruppa, Kai and Lichtenberg, Gerwald: “Comparison of CP Tensors, Tucker
Tensors and Tensor Trains for Representation of Right Hand Sides of Ordinary
Differential Equations”. In: Workshop on Tensor Decomposition and Applications,
Leuven. 2016.

[48] Kruppa, Kai and Lichtenberg, Gerwald: “Decentralized State Feedback De-
sign for Multilinear Time-Invariant Systems”. In: IFAC-PapersOnLine 50.1 (2017).
20th IFAC World Congress, pp. 5616 –5621.

[49] Kruppa, Kai and Lichtenberg, Gerwald: “Feedback Linearization of Multili-
near Time-Invariant Systems Using Tensor Decomposition Methods”. In: 8th In-
ternational Conference on Simulation and Modeling Methodologies, Technologies
and Applications (SIMULTECH) (2018). Accepted.

228

Bibliography

[50] Kruppa, Kai; Pangalos, Georg, and Lichtenberg, Gerwald: “Multilinear Ap-
proximation of Nonlinear State Space Models”. In: 19th IFAC World Congress,
Cape Town. IFAC. Cape Town, South Africa, 2014, pp. 9474–9479.

[51] Kruppa, Kai; Pfeiffer, Sven; Lichtenberg, Gerwald; Brinker, Frank; Dec-
king, Winfried; Flöttmann, Klaus; Krebs, Olaf; Schlarb, Holger, and Schr-
eiber, Siegfried: “High Precision Temperature Control for Injector Components of
a Free-Electron Laser”. In: Simulation and Modeling Methodologies, Technologies
and Applications. Ed. by al., M. Obaidat et. Vol. 442. Advances in Intelligent
Systems and Computing. Springer, 2016, pp. 115–135.

[52] Kruppa, Kai; Müller, Thorsten; Lautenschlager, Björn; Lichtenberg,
Gerwald, and Rehault, Nicolas: “State Space Models as a Common Tool for
Control Design, Optimization and Fault Detection in Building Systems”. In: Cen-
tral European Symposium on Building Physics (Bausim), Dresden (2017).

[53] Kvasnica, Michal: “Implicit vs. explicit MPC - Similarities, differences, and a
path owards a unified method”. In: 2016 European Control Conference (ECC).
2016, pp. 603–603.

[54] Lamoudi, Mohamed Yacine; Alamir, Mazen, and Béguery, Patrick: “Model
Predictive Control for Energy Management in Buildings Part 2: Distributed Mo-
del Predictive Control”. In: IFAC Proceedings Volumes 45.17 (2012). 4th IFAC
Conference on Nonlinear Model Predictive Control, pp. 226 –231.

[55] Lathauwer, Lieven De; Moor, Bart De, and Vandewalle, Joos: “A Multili-
near Singular Value Decomposition”. In: SIAM Journal on Matrix Analysis and
Applications 21.4 (2000), pp. 1253–1278.

[56] Lautenschlager, Björn; Kruppa, Kai, and Lichtenberg, Gerwald: “Convex-
ity Properties of the Model Predictive Control Problem for Subclasses of Multi-
linear Time-Invariant Systems”. In: IFAC-PapersOnLine 48.23 (2015). 5th IFAC
Conference on Nonlinear Model Predictive Control NMPC 2015, pp. 148 –153.

[57] Lawrynczuk, Maciej: “Model Predictive Control with On-Line Optimal Linea-
risation”. In: IEEE International Symposium on Intelligent Control, ISIC (Nov.
2014), pp. 2177–2182.

[58] Lawrynczuk, Maciej: “Nonlinear Predictive Control of a Boiler-Turbine Unit: A
State-Space Approach with Successive On-Line Model Linearisation and Quadra-
tic Optimisation”. In: ISA Transactions 67 (2017), pp. 476 –495.

[59] Lee, Namgil and Cichocki, Andrzej: “Fundamental Tensor Operations for Large-
Scale Data Analysis in Tensor Train Formats”. In: CoRR abs/1405.7786 (2016).

[60] Lee, Namgil and Cichocki, Andrzej: “Fundamental Tensor Operations for Large-
Scale Data Analysis using Tensor Network Formats”. In: Multidimensional Sys-
tems and Signal Processing 29.3 (2018), pp. 921–960.

[61] Lewis, Frank L.; Vrabie, Draguna L., and Syrmos, Vassilis L.: Optimal Control:
Third Edition. John Wiley and Sons, 2012.

229

Bibliography

[62] Li, Xiwang and Wen, Jin: “Review of building energy modeling for control and
operation”. In: Renewable and Sustainable Energy Reviews 37 (2014), pp. 517 –
537.

[63] Lichtenberg, Gerwald: “Hybrid Tensor Systems”. Habilitation. Hamburg Uni-
versity of Technology, 2011.

[64] Lichtenberg, Gerwald: “Tensor Representation of Boolean Functions and Zhe-
galkin Polynomials”. In: International Workshop on Tensor Decompositions, Bari.
Bari, Italy, 2010.

[65] Lichtenberg, Gerwald: Theorie und Anwendung der Qualitativen Modellierung
Zeitdiskreter Dynamischer Systeme durch Nichtdeterministische Automaten. Vol. 8.
Fortschrittberichte VDI. VDI Verlag, Düsseldorf, 1998.

[66] Lin, Fu; Fardad, Makan, and Jovanovic, Mihailo R.: “Design of Optimal Sparse
Feedback Gains via the Alternating Direction Method of Multipliers”. In: IEEE
Transactions on Automatic Control 58.9 (2013), pp. 2426–2431.

[67] Lin, Fu; Fardad, Makan, and Jovanovic, Mihailo R.: “Sparse Feedback Synt-
hesis via the Alternating Direction Method of Multipliers”. In: American Control
Conference (ACC) (2012), pp. 4765–4770.

[68] Ljung, Lennart: System Identification: Theory for the User. Prentice-Hall Inc.,
1987.

[69] Löhr, Yannik and Mönnigmann, Martin: “Domestic Heat Generation and Dis-
tribution with Tme-Variant Receding Horizon Control”. In: IFAC-PapersOnLine
50.1 (2017). 20th IFAC World Congress, pp. 4191 –4196.

[70] Lunze, Jan: Control Theory of Digitally Networked Dynamic Systems. Springer
International Publishing, 2014.

[71] Ma, Yudong; Anderson, Garrett, and Borrelli, Francesco: “A Distributed Pre-
dictive Control Approach to Building Temperature Regulation”. In: Proceedings
of the 2011 American Control Conference. 2011, pp. 2089–2094.

[72] Maasoumy, Mehdi; Pinto, Alessandro, and Sangiovanni-Vincentelli, Al-
berto: “Model-Based Hierarchical Optimal Control Design for HVAC Systems”.
In: ASME 2011 Dynamic Systems and Control Conference. 2011.

[73] Maciejowski, J.: Predictive Control with Constraints. Pearson Education Limi-
ted, 2002.

[74] Mattingley, Jason B.; Wang, Yang, and Boyd, Steven: “Receding Horizon
Control”. In: IEEE Control Systems 31 (2011), pp. 52–65.

[75] Morari, Manfred and Lee, Jay H.: “Model Predictive Control: Past, Present and
Future”. In: Computers & Chemical Engineering 23.4-5 (1999), pp. 667 –682.

[76] Morsi, Abdelrahman; Abbas, Hossam S., and Mohamed, Abdelfatah M.: “Mo-
del Predictive Control of a Wind Turbine Based on Linear Parameter-Varying
Models”. In: IEEE Conference on Control Applications (CCA). 2015, pp. 318–
323.

230

Bibliography

[77] Müller-Eping, Thorsten; Lichtenberg, Gerwald, and Vogelmann, Vivien:
“Fault Detection Algorithms based on Decomposed Tensor Representations for
Qualitative Models”. In: IFAC-PapersOnLine 50.1 (2017). 20th IFAC World Con-
gress, pp. 5622 –5629.

[78] Müller, Bernhard and Deutscher, Joachim: “Approximate Input-Output Li-
nearization Using L2-Optimal Bilinearization”. In: Proceedings of the 44th IEEE
Conference on Decision and Control and the European Control Conference. 2005.

[79] Müller, Thorsten; Kruppa, Kai; Lichtenberg, Gerwald, and Rehault, Ni-
colas: “Fault Detection with Qualitative Models reduced by Tensor Decomposi-
tion methods”. In: IFAC-PapersOnLine 48.21 (2015). 9th IFAC Symposium on
Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS,
pp. 416 –421.

[80] Negenborn, Rudy R. and Maestre, Jose Maria: “Distributed Model Predictive
Control: An Overview and Roadmap of Future Research Opportunities”. In: IEEE
Control Systems 34.4 (2014), pp. 87–97.

[81] OBSERVE: Optimierung und Betriebsführung komplexer Gebäudeenergieversor-
gungsanlagen, Abschlussbericht. Tech. rep. Fraunhofer ISE, HAW Hamburg, Kie-
back& Peter GmbH, Plenum Ingenieursgesellschaft, and IngSoft GmbH, 2018.

[82] Oseledets, I. V.: “Constructive Representation of Functions in Low-Rank Tensor
Formats”. In: Constructive Approximation 37.1 (2013), pp. 1–18.

[83] Oseledets, Ivan: “Tensor-Train Decomposition”. In: SIAM Journal of Scientific
Computing 33.5 (2011), pp. 2295–2317.

[84] Oseledets, Ivan; Dolgov, Sergey; Kazeev, Vladimir; Lebedeva, Olga, and
Mach, Thomas: TT-Toolbox 2.2. Available online. 2012. url: https://github.
com/oseledets/TT-Toolbox.

[85] Pangalos, Georg: “Model-Based Controller Design Methods for Heating Sys-
tems”. Dissertation. Hamburg: TU Hamburg, 2016.

[86] Pangalos, Georg; Eichler, Annika, and Lichtenberg, Gerwald: Hybrid Mul-
tilinear Modeling and Applications. Ed. by Obaidat, S. Mohammad; Koziel,
Slawomir; Kacprzyk, Janusz; Leifsson, Leifur, and Ören, Tuncer. Springer
International Publishing, 2015, pp. 71–85.

[87] Pangalos, Georg; Eichler, Annika, and Lichtenberg, Gerwald: “Tensor Sy-
stems: Multilinear Modeling and Applications”. In: 3rd Int. Conference on Si-
mulation and Modeling Methodologies, Technologies and Applications. Reykjavik,
2013.

[88] Patel, Nishith R.; Risbeck, Michael J.; Rawlings, James B.; Wenzel, Michael
J., and Turney, Robert D.: “Distributed Economic Model Predictive Control for
Large-Scale Building Temperature Regulation”. In: American Control Conference
(ACC). 2016, pp. 895–900.

231

https://github.com/oseledets/TT-Toolbox
https://github.com/oseledets/TT-Toolbox

Bibliography

[89] Polyak, Boris; Khlebnikov, Mikhail, and Shcherbakov, Pavel S.: “Sparse
Feedback in Linear Control Systems”. In: Automation and Remote Control 75.12
(Dec. 2014), pp. 2099–2111.

[90] Pop, Cristina Ioana and Dulf, Eva Henrietta: Robust Feedback Linearization
Control for Reference Tracking and Disturbance Rejection in Nonlinear Systems,
Recent Advances in Robust Control - Novel Approaches and Design Methods. Ed.
by Müller, Andreas. InTech, 2011.

[91] Rehrl, Jakob and Horn, Martin: “Temperature Control for HVAC Systems Ba-
sed on Exact Linearization and Model Predictive Control”. In: IEEE International
Conference on Control Applications (CCA). 2011, pp. 1119–1124.

[92] Röbenack, Klaus: “Automatic Differentiation and Nonlinear Controller Design
by Exact Linearization”. In: Future Generation Computer Systems 21 (2005),
pp. 1372–1379.

[93] Rostampour, Vahab and Keviczky, Tamas: “Energy Management for Buil-
ding Climate Comfort in Uncertain Smart Thermal Grids with Aquifer Thermal
Energy Storage”. In: IFAC-PapersOnLine 50.1 (2017). 20th IFAC World Congress,
pp. 13156 –13163.

[94] Sastry, Shankar: Nonlinear Systems: Analysis, Stability, and Control. Interdisci-
plinary Applied Mathematics. Springer New York, 1999.

[95] Scattolini, Riccardo: “Architectures for Distributed and Hierarchical Model
Predictive Control - A Review”. In: Journal of Process Control 19.5 (2009), pp. 723
–731.

[96] Schmid, Claudia and Biegler, Lorenz T.: “Quadratic Programming Methods
for Tailored Reduced Hessian SQP”. In: Computers and Chemical Engineering
(1993).

[97] Schuler, Simone; Zhou, Wenliang; Münz, Ulrich, and Allgöwer, Frank: “Con-
troller Structure Design for Decentralized Control of Coupled Higher Order Subsys-
tems”. In: IFAC Proceedings Volumes 43.19 (2010), pp. 269 –274.

[98] Semsar-Kazerooni, Elham; Yazdanpanah, Mohammad Javad, and Lucas,
Caro: “Nonlinear Control and Disturbance Decoupling of HVAC Systems Using
Feedback Linearization and Backstepping With Load Estimation”. In: IEEE Tran-
sactions on Control Systems Technology 16.5 (2008), pp. 918–929.

[99] Serway, Raymond A. and Jewett, John W.: Physics for Scientists and Engi-
neers. Thomson Brooks/Cole, 2004.

[100] Shaikh, Pervez Hameed; Nor, Nursyarizal Bin Mohd; Nallagownden, Peru-
mal; Elamvazuthi, Irraivan, and Ibrahim, Taib: “A Review on Optimized Con-
trol Systems for Building Energy and Comfort Management of Smart Sustainable
Buildings”. In: Renewable and Sustainable Energy Reviews 34 (2014), pp. 409 –
429.

232

Bibliography

[101] Shaikh, Pervez Hameed; Nor, Nursyarizal Bin Mohd; Nallagownden, Peru-
mal; Elamvazuthi, Irraivan, and Ibrahim, Taib: “A Review on Optimized Con-
trol Systems for Building Energy and Comfort Management of Smart Sustainable
Buildings”. In: Renewable and Sustainable Energy Reviews 34 (2014), pp. 409 –
429.

[102] Siljak, Dragoslav D.: Decentralized Control of Complex Systems. Boston : Aca-
demic Press, 1991.

[103] Sofroniou, Mark: “Symbolic Derivation of Runge-Kutta Methods”. In: Journal
of Symbolic Computation 18.3 (1994), pp. 265 –296.

[104] Sorber, Laurent; Barel, Marc Van, and Lathauwer, Lieven De: “Structured
Data Fusion”. In: IEEE Journal of Selected Topics in Signal Processing 9.4 (2015),
pp. 586–600.

[105] Tanaskovic, Marko; Sturzenegger, David; Smith, Roy, and Morari, Man-
fred: “Robust Adaptive Model Predictive Building Climate Control”. In: IFAC-
PapersOnLine 50.1 (2017). 20th IFAC World Congress, pp. 1871 –1876.

[106] Tashtoush, Bourhan; Molhim, Mohammad, and Al-Rousan, Mohammad:
“Dynamic Model of an HVAC System for Control Analysis”. In: Energy 30.10
(2005), pp. 1729 –1745.

[107] Thosar, Archana; Patra, Amit, and Bhattacharyya, Souvik: “Feedback Li-
nearization Based Control of a Variable Air Volume Air Conditioning System for
Cooling Applications”. In: ISA Transactions 47.3 (2008), pp. 339 –349.

[108] Van Overschee, Peter and De Moor, Bart: Subspace Identification for Linear
Systems. Boston, MA: Springer US, 1996.

[109] Vervliet, Nico; Debals, Otto; Sorber, Laurent; Van Barel, Marc, and De
Lathauwer, Lieven: Tensorlab 3.0. Available online. 2016. url: http://www.
tensorlab.net.

[110] Walker, Shalika S.W.; Lombardi, Warody; Lesecq, Suzanne, and Roshany-
Yamchi, Samira: “Application of Distributed Model Predictive Approaches to
Temperature and CO2 Concentration Control in Buildings”. In: IFAC-PapersOn-
Line 50.1 (2017). 20th IFAC World Congress, pp. 2589 –2594.

[111] Wang, Yang; Kuckelkorn, Jens, and Liu, Yu: “A State of Art Review on
Methodologies for Control Strategies in Low Energy Buildings in the Period from
2006 to 2016”. In: Energy and Buildings 147 (2017), pp. 27 –40.

[112] Zheng, Yi and Li, Shaoyuan Y.: “Distributed Predictive Control for Building
Temperature Regulation with Impact-Region Optimization”. In: IFAC Proceedings
Volumes 47.3 (2014). 19th IFAC World Congress, pp. 12074 –12079.

233

http://www.tensorlab.net
http://www.tensorlab.net

A Proofs
This chapter summarizes the proofs of the methods for tensors and MTI systems introduced
in Chapters 2 to 4.

A.1 Outer product in CP form

The proof of the computation of the outer product of tensors in CP decomposed format as
stated in Proposition 2.2 is given in the following.

Proof A.1 Inserting the elementwise descriptions (2.11) of X and Y

x(i1, . . . , in) =
rcp(X)∑︂
k=1

λX(k)u1(i1, k) · · · un(in, k), (A.1)

y(j1, . . . , jm) =
rcp(Y)∑︂

l=1
λY (l)v1(j1, l) · · · vm(jm, l). (A.2)

into the outer product (2.3), leads to

z(i1, . . . , in, j1, . . . , jm) = x(i1, . . . , in)y(j1, . . . , jm)

=
rcp(X)∑︂
k=1

λX(k)u1(i1, k) · · · un(in, k) ·
rcp(Y)∑︂

l=1
λY (l)v1(j1, l) · · · vm(jm, l)

=
rcp(X)∑︂
k=1

rcp(Y)∑︂
l=1

λX(k)λY (l)u1(i1, k) · · · un(in, k)v1(j1, l) · · · vm(jm, l)

= λX(1)λY (1)u1(i1, 1) · · · un(in, 1)v1(j1, 1) · · · vm(jm, 1)
+ λX(1)λY (2)u1(i1, 1) · · · un(in, 1)v1(j1, 2) · · · vm(jm, 2)
+ · · · + λX(rcp(X))λY (rcp(Y))u1(i1, rcp(X)) · · · vm(jm, rcp(Y)).

Comparing this representation of the outer product with the elementwise description

z(i1, . . . , jm) =
rcp(X)rcp(Y)∑︂

q=1
λZ(q)w1(i1, q) · · · wn+m(jm, q),

of the resulting tensor in CP decomposition, gives

λZ(lk) = λX(k)λY (l),
wr(:, lk) = ur(:, k), r = 1, . . . , n,

wn+r(:, lk) = vr(:, l), r = 1, . . . , m,

234

A Proofs

with k = 1, . . . , rcp(X) and l = 1, . . . , rcp(Y) and leads to the factors in (2.28) to (2.30). The
multi-indices notation of Definition 2.4 is used here to merge the indices k and l. �

A.2 Contracted product in CP form

In this section the computation of the contracted product of tensors in CP representation of
Proposition 2.3 is proven.

Proof A.2 The operands X and Y are described elementwise by

x(i1, . . . , iP , j1, . . . , jN)=
rcp(X)∑︂

l=1
λX(l)u1(i1, l) · · · uP (iP , l)uP +1(j1, l) · · · uP +N(jN , l), (A.3)

y(i1, . . . , iP , k1, . . . , kM)=
rcp(Y)∑︂
q=1

λY (q)v1(i1, q) · · · vP (iP , q)vP +1(k1, q) · · · vP +M(kM , q). (A.4)

Inserting the elements of X and Y into the definition of the contracted product (2.4) and
rearranging gives

z(j1, . . . , jN , k1, . . . , kM)

=
I1∑︂

i1=1
· · ·

IP∑︂
iP =1

rcp(X)∑︂
l=1

λX(l)u1(i1, l) · · · uP (iP , l)uP +1(j1, l) · · · uP +N(jN , l)

·
rcp(Y)∑︂
q=1

λY (q)v1(i1, q) · · · vP (iP , q)vP +1(k1, q) · · · vP +M(kM , q)

=
rcp(X)∑︂

l=1

rcp(Y)∑︂
q=1

λX(l)λY (q)
I1∑︂

i1=1
· · ·

IP∑︂
iP =1

u1(i1, l)v1(i1, q) · · · uP (iP , l)vP (iP , q)
⏞ ⏟⏟ ⏞

Part that belongs to λZ .

· uP +1(j1, l) · · · uP +N(jN , l)vP +1(k1, l) · · · vP +M(kM , l)⏞ ⏟⏟ ⏞
Part that belongs to the factor matrices Wi

. (A.5)

The terms are sorted, such that the first part contains the terms that do not depend on the
indices ji, i = 1, . . . , N and ki, i = 1, . . . , P of the resulting tensor Z. Because of that, this
part of the sum belongs to the weighting vector as indicated in (A.5). Comparing (A.5) with
the elementwise notation of Z

z(j1, . . . , jN , k1, . . . , kM) =
rcp(X)rcp(Y)∑︂

n=1
λZ(n)w1(j1, n) · · · wN(jN , n)wN+1(k1, n) · · · wN+M(kM , n), (A.6)

and merging the indices l and q of the summations into one index n by a multi-indices
notation lq, the weighting vector is given elementwise

λZ(lq) = λX(l)λY (q)
I1∑︂

i1=1
· · ·

IP∑︂
iP =1

u1(i1, l)v1(i1, q) · · · uP (iP , l)vP (iP , q).

235

A Proofs

where l = 1, . . . , rcp(X) and q = 1, . . . , rcp(Y). This describes the elements of (2.33). All
terms depending on the indices of Z can be found in the second part of the sum in (A.5).
Thus, from these elements the factor matrices Wi, i = 1, . . . , N + M of Z are constructed
by comparison to (A.6)

wi(ji, lq) = uP +i(ji, l), i = 1, . . . , N,

wN+i(ki, lq) = vP +i(ki, q), i = 1, . . . , M,

with l = 1, . . . , rcp(X) and q = 1, . . . , rcp(Y). This gives exactly the elements of (2.34)
and (2.35), such that Proposition 2.3 is proven. �

A.3 Concatenation of tensors in CP form

The concatenation of tensors in CP representation was introduced in Proposition 2.2.3 and
is proven here.

Proof A.3 The elements of the resulting tensor Z are computed by its CP factors

z(i1, . . . , ik, . . . , iN) =
rcp(X)rcp(Y)∑︂

j=1
λZ(j)w1(i1, j) · · · wk(ik, j) · · · wN(iN , j). (A.7)

With (2.6) and (2.8) the elements of the factor matrices (2.36) result in

wi(:, j) =

⎧⎨⎩ui(:, j) , for 1 ≤ j ≤ rcp(X),
vi(:, j − rcp(X)) , for rcp(X) < j ≤ rcp(X) + rcp(Y),

and the kth factor matrix (2.37) is given by

wk(ik, j)=

⎧⎪⎪⎨⎪⎪⎩
uk(ik, j) , for 1 ≤ ik ≤ Ik, 1 ≤ j ≤ rcp(X)
vk(ik − Ik, j − rX) , for Ik < ik ≤ Ik+Jk, rcp(X) < j ≤ rcp(X)+rcp(Y),
0 , else,

(A.8)

The weighting vector λZ is constructed from the weighting vector of X and Y, such that

λZ(j) =

⎧⎨⎩λX(j) , for 1 ≤ j ≤ rcp(X),
λY (j − rcp(X)) , for rcp(X) < j ≤ rcp(X) + rcp(Y).

(A.9)

Inserting these elementwise descriptions (A.8) and (A.9) in (A.7) and eliminating the zeros
terms leads to

z(i1, . . . , ik, . . . , iN) =

⎧⎨⎩x(i1, . . . , ik, . . . , iN) , for 1 ≤ ik ≤ Ik,

y(i1, . . . , ik − Ik, . . . , iN) , for Ik ≤ ik ≤ Ik + Jk.

This shows, that Z contains the tensors X and Y as stated by the concatenation Z = X �k Y.
�

236

A Proofs

A.4 Multiplication in tensor form

This section presents the proof of the multiplication in tensor form of Theorem 2.1.

Proof A.4 Considering (2.46) the monomial tensor MN1+N2
p (x) of the result is decomposed

by ⟨︂
H1 ◦ H2

⃓⃓⃓
MN1+N2

p (x)
⟩︂

=
⟨︂

H1 ◦ H2

⃓⃓⃓
MN1

p (x) ◦ MN2
p (x)

⟩︂
.

Using the elementwise representations (2.3) and (2.4) of outer and contracted product and
rearranging the terms belonging to the first h1(x) and the second h2(x) polynomial respectively
gives

h(x) =
⟨︂

H1 ◦ H2

⃓⃓⃓
MN1

p (x) ◦ MN2
p (x)

⟩︂
=

2∑︂
i1=1

· · ·
2∑︂

inN1 =1

2∑︂
j1=1

· · ·
2∑︂

jnN2 =1
h1(i1, . . . , inN1)h2(j1, . . . , jnN2)

· mN1
p (x) (i1, . . . , inN1)mN2

p (x) (j1, . . . , jnN2)

=
2∑︂

i1=1
· · ·

2∑︂
inN1 =1

h1(i1, . . . , inN1)mN1
p (x) (i1, . . . , inN1)

·
2∑︂

j1=1
· · ·

2∑︂
jnN2 =1

h2(j1, . . . , jnN2)mN2
p (x) (j1, . . . , jnN2)

=
⟨︂

H1

⃓⃓⃓
MN1

p (x)
⟩︂

·
⟨︂

H2

⃓⃓⃓
MN2

p (x)
⟩︂

= h1(x) · h2(x). �

This shows that the resulting function h(x) with parameter tensor H1 ◦ H2 is equal to the
multiplication of two polynomials h1(x) and h2(x) with parameter tensors H1 and H2, re-
spectively.

A.5 Differentiation in tensor form

The proof of the Theorem 2.2 of the differentiation of a polynomial in tensor form is given
here.

Proof A.5 All terms depending on the variables xi, with i = 1, . . . , n, of a polynomial in
tensor form are stored inside the monomial tensor. The parameter tensor H contains constant
elements only. Therefore, the partial derivative of the monomial tensor is investigated first.
In the multilinear case the partial derivative with respect to one variable xj can be found by
using the product rule of differentiation for the outer product, [14].
The partial derivative with respect to one variable xj, with j = 1, . . . , n of an outer product
of two tensors A(x) ∈ RI1×···×Il and B(x) ∈ RK1×···×Km depending on n variables x ∈ Rn is
given by

∂

∂xj

(A(x) ◦ B(x)) = ∂

∂xj

(A(x)) ◦ B(x) + A(x) ◦ ∂

∂xj

(B(x)) . (A.10)

237

A Proofs

This rule follows from the standard scalar definition of the product rule, by applying the
standard product rule to the elementwise description of the outer product (2.3)

(A(x) ◦ B(x)) (i1, . . . , il, k1, . . . , km) = a(x)(i1, . . . , il)b(x)(k1, . . . , km).

The product rule of differentiation for scalars is applied to each element of the resulting
tensor

∂

∂xj

((A(x) ◦ B(x)) (i1, . . . , km)) = ∂

∂xj

(a(x)(i1, . . . , il)b(x)(k1, . . . , km))

= ∂

∂xj

(a(x)(i1, . . . , ik)) b(x)(k1, . . . , km) + a(x)(i1, . . . , il)
∂

∂x
(b(x)(k1, . . . , km)) .

This leads to the full representation (A.10). This definition of the product rule of differen-
tiation for tensors is applied now to the monomial tensor for multilinear functions (2.42)
resulting in

∂

∂xj

M(x) = [w1, . . . , wn] = ∂

∂xj

(︄(︄
1
xn

)︄
◦ · · · ◦

(︄
1
x1

)︄)︄

=
(︄

1
xn

)︄
◦ · · · ◦

(︄
1

xj+1

)︄
◦
(︄

0
1

)︄
◦
(︄

1
xj−1

)︄
◦ · · · ◦

(︄
1
x1

)︄
. (A.11)

The factor matrices wi, i = 1, . . . , n of the derivative of the monomial tensor read

wi =

⎧⎪⎨⎪⎩
(︂
0 1

)︂T
, for i = n − j + 1,(︂

1 xn−i+1

)︂T
, else.

The differentiation influences the dimension belonging to the differentiation variable xj of the
monomial tensor only. Since the monomial tensor is a rank-1 tensor and has a CP structure,
the mode-k tensor product of Proposition 2.1 can be applied here. As given in (2.15) one
factor matrix is changed only by a multiplication with the considered matrix which is exactly
the desired operation here. The factor matrices of the differentiation of the monomial tensor
are computed by multiplying the (n − j + 1)th factor matrix

(︂
1 xj

)︂T
by a 2 × 2 matrix

wn−j+1 =
(︄

0
1

)︄
=
(︄

0 0
1 0

)︄(︄
1
xj

)︄
= ΘT

(︄
1
xj

)︄
,

as in the definition of the mode-k product for CP tensors. Thus, the differentiation can be
expressed in terms of a mode-k product by

∂

∂xj

M(x) = M(x) ×n−j+1 ΘT ,

setting the factor matrix of M(x) belonging to xj to
(︂
0 1

)︂T
.

Since the partial derivative can be found for the multilinear monomial tensor, the concept is
extended to polynomials with higher monomial orders N ≥ 1. In contrast to the multilinear

238

A Proofs

case, the variable xj does not occur in one factor matrix only, but in N factor matrices.
According to the product rule (A.10) the differentiation of MN

p (x) leads to a sum of N
rank-1 tensors

∂

∂xj

MN
p (x) =

N∑︂
k=1

[︂
wk

1, . . . , wk
nN

]︂
,

with factor matrices

wk
i =

⎧⎪⎨⎪⎩
(︂
0 1

)︂T
, for i = nk − j + 1(︂

1 xnk−i+1

)︂T
, else,

,

for all k = 1, . . . , N . As before, this change in the factor matrices can be expressed by mode-k
product leading to the partial derivative of the monomial tensor

∂

∂xj

MN
p (x) =

N∑︂
k=1

MN
p (x) ×kn−j+1 ΘT . (A.12)

With the derivative of the monomial tensor (A.12) the derivative of the function is given by

∂

∂xj

⟨︂
H
⃓⃓⃓
MN

p (x)
⟩︂

=
⟨︄

H
⃓⃓⃓⃓
⃓

N∑︂
k=1

MN
p (x)×kn−j+1 ΘT

⟩︄
!=
⟨︂

Hxj

⃓⃓⃓
MN

p (x)
⟩︂

. (A.13)

To find the parameter tensor Hxj
, (A.13) can be written as⟨︄

H
⃓⃓⃓⃓
⃓

N∑︂
k=1

MN
p (x) ×kn−j+1 ΘT

⟩︄
=

N∑︂
k=1

⟨︂
H
⃓⃓⃓
MN

p (x) ×kn−j+1 ΘT
⟩︂

, (A.14)

because of the linearity property of the inner product. The elements of the mode-k product
read (︂

MN
p (x) ×l ΘT

)︂
(i1, . . . , il, . . . , inN) = mN

p (i1, . . . , 1, . . . , inN)ΘT (il, 1),

because ΘT (il, 2) = 0, il = 1, 2. With that, the terms of the sum in (A.14) are written as

⟨︂
H
⃓⃓⃓
MN

p (x) ×l ΘT
⟩︂

=
2∑︂

i1=1
· · ·

2∑︂
inN =1

h(i1, . . . , inN)mN
p (i1, . . . , 1, . . . , inN)ΘT (il, 1). (A.15)

The goal is to isolate the monomial tensor on the right side of the contracted product, such
that ⟨︂

H
⃓⃓⃓
MN

p (x) ×l ΘT
⟩︂ !=

⟨︂
H̃
⃓⃓⃓
MN

p (x)
⟩︂

=
2∑︂

i1=1
· · ·

2∑︂
inN =1

h̃(i1, . . . , inN)mN
p (i1, . . . , inN).

Therefore, comparing this description with (A.15), the elements of H̃ are given by

h̃(i1, . . . ,il, . . . , inN) =

⎧⎨⎩h(i1, . . . , 2, . . . , inN) , for il = 1,

0 , for il = 2,

239

A Proofs

since
2∑︂

il=1
h(i1, . . . ,il, . . . ,inN)ΘT(l,1) = h(i1, . . . ,2, . . . , inN).

Using again the Definition 2.9 of the mode-k product, the parameter tensor H̃ can be directly
computed by

H̃ = H ×l Θ,

leading to ⟨︂
H
⃓⃓⃓
MN

p (x) ×l ΘT
⟩︂

=
⟨︂

H ×l Θ
⃓⃓⃓
MN

p (x)
⟩︂

.

Inserting this to (A.14) shows, that the partial derivative of a polynomial h(x) is computed
by

∂

∂xj

⟨︂
H
⃓⃓⃓
MN

p (x)
⟩︂

=
N∑︂

k=1

⟨︂
H
⃓⃓⃓
MN

p (x) ×kn−j+1 ΘT
⟩︂

=
N∑︂

k=1

⟨︂
H ×kn−j+1 Θ

⃓⃓⃓
MN

p (x)
⟩︂

=
⟨︄

N∑︂
k=1

H ×kn−j+1 Θ
⃓⃓⃓
MN

p (x)
⟩︄

,

such that the parameter tensor of the derivative reads

Hxj
=

N∑︂
k=1

H ×kn−j+1 Θ. �

A.6 Lie derivative and bracket in tensor form

Theorem 2.3 on the Lie derivative and the Lie bracket of Lemma 2.1 in tensor form are
proven in this section.

Proof A.6 For l = 0 the Lie derivative is equal to the scalar function g(x) by definition,
which leads to the tensor description

L0
hg(x) =

⟨︂
LH,G,0

⃓⃓⃓
MN

p (x)
⟩︂

=
⟨︂

G
⃓⃓⃓
MN

p (x)
⟩︂

= g(x),

with LH,G,0 = G. The first Lie derivative, i.e. l = 1, of g(x) along h(x) is defined by

Lhg(x) =
n∑︂

i=1
hi(x) ∂

∂xi

g(x). (A.16)

Since the scalar function g(x) is given in tensor form, (2.55) is applied to get the partial
derivative

∂

∂xi

g(x) = ∂

∂xi

⟨︂
G
⃓⃓⃓
MN

p (x)
⟩︂

=
⟨︄

N∑︂
k=1

G ×kn−i+1 Θ
⃓⃓⃓
MN

p (x)
⟩︄

, i = 1, . . . , n.

240

A Proofs

The multiplication with function hi(x) =
⟨︂

Hi

⃓⃓⃓
MN

p (x)
⟩︂
, where i = 1, . . . , n, using (2.53)

yields

hi(x) ∂

∂xi

g(x) =
⟨︂

Hi

⃓⃓⃓
MN

p (x)
⟩︂

·
⟨︄

N∑︂
k=1

G ×kn−i+1 Θ
⃓⃓⃓
MN

p (x)
⟩︄

=
⟨︄

Hi ◦
(︄

N∑︂
k=1

G ×kn−i+1 Θ
)︄ ⃓⃓⃓

M2N
p (x)

⟩︄
.

Summing up these elements to get the Lie derivative (A.16) leads to

Lhg(x) =
n∑︂

i=1
hi(x) ∂

∂xi

g(x) =
n∑︂

i=1

⟨︄
Hi ◦

(︄
N∑︂

k=1
G ×kn−i+1 Θ

)︄ ⃓⃓⃓
M2N

p (x)
⟩︄

=
⟨︄

n∑︂
i=1

Hi ◦
(︄

N∑︂
k=1

G ×kn−i+1 Θ
)︄ ⃓⃓⃓

M2N
p (x)

⟩︄
.

This approach is extended to multiple Lie derivatives along h(x) as given by (2.60) for arbi-
trary l ∈ N again by applying the concepts of multiplication (2.53) and differentiation (2.55)
by

Ll
hg(x) =

n∑︂
i=1

hi(x) ∂

∂xi

Ll−1
h g(x) =

n∑︂
i=1

⟨︂
Hi

⃓⃓⃓
MN

p (x)
⟩︂

·
⟨︄

lN∑︂
k=1

LH,G,l−1 ×kn−i+1 Θ
⃓⃓⃓
MlN

p (x)
⟩︄

=
⟨︄

n∑︂
i=1

Hi ◦
(︄

lN∑︂
k=1

LH,G,l−1 ×kn−i+1 Θ
)︄ ⃓⃓⃓

M(l+1)N
p (x)

⟩︄
. �

Proof A.7 The Lie bracket of two vector functions is defined by (2.63). With Theorem 2.3
the Lie derivatives of a vector function g(x) along a vector field h(x) and vice versa are
written as

Lhg(x) =
n∑︂

i=1
hi(x) ∂

∂xi

g(x) =
⟨︂

LH,G,1

⃓⃓⃓
M2N

p (x)
⟩︂

,

Lgh(x) =
n∑︂

i=1
gi(x) ∂

∂xi

h(x) =
⟨︂

LG,H,1

⃓⃓⃓
M2N

p (x)
⟩︂

.

Inserting this to (2.63) and rearranging results in

[h, g] =
⟨︂

LH,G,1

⃓⃓⃓
M2N

p (x)
⟩︂

−
⟨︂

LG,H,1

⃓⃓⃓
M2N

p (x)
⟩︂

=
⟨︂

LH,G,1 − LG,H,1

⃓⃓⃓
M2N

p (x)
⟩︂

. �

A.7 Scaling of MTI models

The proof of the scaling of MTI state space model introduced in Section 3.5 is given here.

241

A Proofs

Proof A.8 Inserting the linear transformations of the states and inputs to the factor ma-
trices of the monomial tensor (3.12) gives

M (x̃, ũ) =
[︄(︄

1
ãn+mũn+m + b̃n+m

)︄
, . . . ,

(︄
1

ã1x̃1 + b̃1

)︄]︄

=
[︄(︄

1 0
b̃n+m ãn+m

)︄(︄
1

ũm

)︄
, . . . ,

(︄
1 0
b̃1 ã1

)︄(︄
1
x̃1

)︄]︄
.

This description of the monomial tensor in the scaled variables is used together with scaling
of the time derivative of the states ẋi = ãi

̇̃xi in (3.37) to describe the dynamics of the scaled
system with (3.37) by

ẋ = F×̄1

(︄
1

um

)︄
×̄2

(︄
1

um−1

)︄
×̄3 · · · ×̄n+m

(︄
1
x1

)︄
,

diag
i=1,...,n

(ãi) ̇̃x = F×̄1

(︄
1 0

b̃n+m ãn+m

)︄(︄
1

ũm

)︄
×̄2 · · · ×̄n+m

(︄
1 0
b̃1 ã1

)︄(︄
1
x̃1

)︄
.

With the Definition 2.9 of the mode-k tensor matrix product, the parameters and the scaled
variables can be separated yielding

̇̃x = diag
i=1,...,n

(︂
ã−1

i

)︂
F ×1

(︄
1 0

b̃n+m ãn+m

)︄
×2 · · · ×n+m

(︄
1 0
b̃1 ã1

)︄
×̄1

(︄
1

ũm

)︄
×̄2 · · · ×̄n+m

(︄
1
x̃1

)︄

= F×1

(︄
1 0

b̃n+m ãn+m

)︄
×2 · · ·×n+m

(︄
1 0
b̃1 ã1

)︄
×n+m+1 diag

i=1,...,n

(︂
a−1

i

)︂
×̄1

(︄
1

ũm

)︄
×̄2· · ·×̄n+m

(︄
1
x̃1

)︄
=
⟨︂

F̃ | M (x̃, ũ)
⟩︂

.

The proof of the transformation of the output equation

y = G×̄1

(︄
1

um

)︄
×̄2

(︄
1

um−1

)︄
×̄3 · · · ×̄n+m

(︄
1
x1

)︄

follows from the monomial tensor in the scaled variables, too. Inserting the scaled monomial
to the output equation gives

diag
i=1,...,n

(c̃i)ỹ +
(︂
ẽ1 · · · ẽp

)︂T
=

G×1

(︄
1 0

b̃n+m ãn+m

)︄
×2 · · ·×n+m

(︄
1 0
b̃1 ã1

)︄
×̄1

(︄
1

ũm

)︄
×̄2· · ·×̄n+m

(︄
1
x̃1

)︄
,

ỹ = G ×1

(︄
1 0

b̃n+m ãn+m

)︄
×2 · · · ×n+m

(︄
1 0
b̃1 ã1

)︄

×n+m+1 diag
i=1,...,n

(︂
c̃−1

i

)︂
×̄1

(︄
1

ũm

)︄
×̄2 · · · ×̄n+m

(︄
1
x̃1

)︄
− diag

(︂
c̃−1

i

)︂ (︂
ẽ1 · · · ẽp

)︂T

=
⟨︂

Ĝ | M (x̃, ũ)
⟩︂

− diag
i=1,...,n

(︂
c̃−1

i

)︂ (︂
ẽ1 · · · ẽp

)︂T
. (A.17)

242

A Proofs

The parameter tensor E is defined by (3.69) to (3.71) in CP description, leading to

diag
i=1,...,n

(︂
c̃−1

i

)︂ (︂
ẽ1 · · · ẽp

)︂T
= ⟨ E | M (x̃, ũ) ⟩ .

Putting this into (A.17)

ỹ =
⟨︂

Ĝ | M (x̃, ũ)
⟩︂

− ⟨ E | M (x̃, ũ) ⟩ =
⟨︂

Ĝ − E | M (x̃, ũ)
⟩︂

,

gives the output equation in the transformed variables. �

A.8 Feedback linearization for MTI systems

The section presents the proofs of the Lemmas (4.1) to (4.3) belonging the the feedback
linearization of decomposed MTI systems. The proofs are given in the same order than the
lemmas in Section (4.2).

Proof A.9 The representation of the Lie derivatives of the system (4.21) and (4.22) fol-
lows obviously from the tensor description of the Lie derivatives of Theorem 2.3.

Proof A.10 Inserting the tensor representation of the Lie derivatives defined in Lemma 4.1
into the controller function (4.16) and rearranging leads to

u =
−

ρsys∑︁
i=0

µi

⟨︂
LA,C,i

⃓⃓⃓
Mi+1

p (x)
⟩︂

+ µ0 r⟨︂
LB,A,C,ρsys−1

⃓⃓⃓
Mρsys+1

p (x)
⟩︂ =

−
⟨︃ ρsys∑︁

i=0
µiLA,C,i

⃓⃓⃓
Mρsys+1

p (x)
⟩︃

+ µ0 r⟨︂
LB,A,C,ρsys−1

⃓⃓⃓
Mρsys+1

p (x)
⟩︂ . �

Proof A.11 The conditions for an affine SISO system to be feedback linearizable with
relative degree of n are given for nonlinear systems in [39]. The matrix(︂

b adab(x0) · · · adn−1
a b(x0)

)︂
must have rank n and can be expressed in the case of an MTI model given in tensor form
by

⟨︂
T
⃓⃓⃓
Mn

p (x0)
⟩︂
. Each repeated Lie bracket

⟨︂
Lk−1

adab

⃓⃓⃓
Mn

p (x)
⟩︂

is described with respect to
the monomial tensor of order n and concatenated resulting in

T = L0
adab �n+2 · · · �n+2 Ln−1

adab.

The evaluation of T with the monomial tensor of order n gives the matrix of the Lie brackets⟨︂
T
⃓⃓⃓
Mn

p (x0)
⟩︂

=
(︂
b adab(x0) · · · adn−1

a b(x0)
)︂

.

The matrix should have rank n, which can be easily checked, by evaluation of the contracted
product at x0. The second condition is the tensor formulation of the condition that the
distribution span {b, adab, . . . , adn−2

a b)} is involutive at x0. The distribution is involutive if
and only if

rank
(︂(︂

b(x0) · · · adn−2
a b(x0) [adi

ab(x0), adj
ab(x0)]

)︂)︂
=rank

(︂(︂
b(x0) · · · adn−2

a b(x0)
)︂)︂

is fulfilled for all i and j = 0, . . . , n − 2. Describing the two matrices in terms of parameter
tensors, like it was done for the rank condition before, leads to the second condition. �

243

B Application models

In Chapter 5 applications of the MTI model representation and design methods are described.
In the following the state equations of the heating system and HVAC example are given.
Furthermore the Lie derivatives of the feedback linearization application are presented.

B.1 Heating system

The thermal behavior of the heating system is described by the system of differential equa-
tions (5.1), (5.9) and (5.10). Putting the definitions of the states, inputs and disturban-
ces (5.25) to (5.27) into the state equations leads to the state space model with the state
equations belonging to the boilers

ẋi = kb,i

cρVb,i

Tamb − kb,i

cρVb,i

xi + Pmax,i

cρVb,i

ui +
NHC∑︂
j=1

− V̇max,j

NBVb,i

xiuNB+j

+ V̇max,j

NBVb,i

xiuNB+juNB+NHC+j + V̇max,j

NBVb,i

xNB+juNB+j − V̇max,j

NBVb,i

xNB+juNB+juNB+NHC+j,

with i = 1, . . . , NB and the state equations belonging to the consumers

ẋNB+i = − krb,i

cρVc,i

xNB+i + krb,i

cρVc,i

xNB+NHC+i − V̇max,i

Vc,i

xNB+iuNB+i

+ V̇max,i

Vc,i

xNB+iuNB+iuNB+NHC+i +
NB∑︂
j=1

V̇max,i

NBVc,i

xjuNB+i − V̇max,i

NBVc,i

xjuNB+iuNB+NHC+i,

ẋNB+NHC+i =krb,i

Cb,i

xNB+i + −krb,i − kbo,i

Cb,i

xNB+NHC+i + kbo,i

Cb,i

d1 + ks,i

Cb,i

d2,

with i = 1, . . . , NHC .

B.2 HVAC system

Inserting the definitions of states, inputs and disturbances (5.28) to (5.30) to the state
equations (5.11) to (5.24) leads to the state space model of the HVAC system of Section 5.1.2.

244

B Application models

The state equations are given by

ẋ1 = −
(︃2Aw,1Uw,1 + 2Aw,2Uw,2 + ARUR

Cb

)︃
x1 + 2Aw,1Uw,1

Cb

x2 + 2Aw,2Uw,2

Cb

x3 + ARUR

Cb

x4

− caρa

Cb

x1x12 + 1
Cb

d1,

ẋ2 =Aw,1Uw,1

Cw,1
x1 − 2Aw,1Uw,1

Cw,1
x2 + Aw,1Uw,1

Cw,1
d3,

ẋ3 =Aw,2Uw,2

Cw,2
x1 − 2Aw,2Uw,2

Cw,2
x3 + Aw,2Uw,2

Cw,2
d3,

ẋ4 =ARUR

CR

x1 − 2ARUR

CR

x4 + ARUR

CR

d3,

ẋ5 = − 1
Vb

x5x12 + 1
Vb

x11x12 + 1
Vb

d2,

ẋ6 =(hi + ho)ρaca

hiMdCd

x1x12 − (hi + ho)ρaca

hiMdCd

x6x12,

ẋ7 = − UcAc

Ch

x7 − caρa

Ch

x7x12 + caρa

Ch

x6x12x13 + cρ

Ch

x14x15 − cρ

Ch

x14x16 + UcAc

Ch

d3

+ caρa

Ch

x12d3 − caρa

Ch

x12x13d3,

ẋ8 = − x8x12 + x5x12x13 − x12d4 − x12x13d4,

ẋ9 =(hi + ho)ρaca

hiMdCd

x7x12 − (hi + ho)ρaca

hiMdCd

x9x12,

ẋ10 = − UhAh

Ch

x10 + ca

Ch

x9x12 − ca

Ch

x10x12 + UhAh

Ch

d3,

ẋ11 = 1
Vh

x8x12 − 1
Vh

x11x12 + 1
ρaVh

x17,

ẋ12 = − 1
τV̇ ,a

x12 + 1
τV̇ ,a

u1,

ẋ13 = − 1
τµ

x13 + 1
τµ

u2,

ẋ14 = − 1
τV̇ w

x14 + 1
τV̇ w

u3,

ẋ15 = − 1
τT wi

x15 + 1
τT wi

u4,

ẋ16 = − 1
τT wo

x16 + 1
τT wo

u5,

ẋ17 = − 1
τhvapor

x17 + 1
τhvapor

u6.

245

B Application models

B.3 Lie derivatives for the feedback linearzation controller

In Section 5.3.1 a feedback linearization controller was derived for a heating systems ex-
ample. The heating system model is represented as decomposed MTI system. To design
the controller, the Lie derivatives of the model have to be computed. This is done here by
the tensor based approach derived in Section 4.2. Evaluating the contracted product of the
parameter and monomial tensors leads to the symbolic description of the Lie derivatives

L0
ac(x) = ⟨ C | M (x1, x2, x3) ⟩ = x3,

L1
ac(x) =

⟨︂
LA,C,1

⃓⃓⃓
M2

p (x1, x2, x3)
⟩︂

= 1
Cb

(Tokbo + (−krb − kbo) x3 + krbx1) ,

L2
ac(x) =

⟨︂
LA,C,2

⃓⃓⃓
M3

p (x1, x2, x3)
⟩︂

= − krb

cρVcCb

(cρx1x2 − cρTsx2 + krb (x1 − x3))

− kbo + krb

C2
b

(kboTo − (kbo + krb) x3 + krbx1) ,

L3
ac(x) =

⟨︂
LA,C,3

⃓⃓⃓
M4

p (x1, x2, x3)
⟩︂

=
(︄

cρVc (kbo + krb)2 + Cbk
2
rb

cρVcC3
b

)︄
(kboTo − (kbo + krb) x3 + krbx1) − krbx2 (Ts − x1)

VcCbτV̇

+
(︄

krb (cρx2 + krb)
c2ρ2V 2

c Cb

+ krb (kbo + krb)
cρVcC2

b

)︄
(cρx1x2 − cρTsx2 + krb (x1 − x3)) .

The control law (5.38) of the feedback linearization controller follows from these Lie deriva-
tives.

246

	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Research questions
	1.3 State of research
	1.4 Modeling of heating systems
	1.5 Main contributions
	1.6 Outline

	2 Tensor operations
	2.1 Tensor basics
	2.1.1 Operations
	2.1.2 Decomposition methods
	2.1.3 Guiding questions

	2.2 Operations for canonical polyadic (CP) tensors
	2.2.1 Outer product
	2.2.2 Contracted product
	2.2.3 Tensor concatenation

	2.3 Polynomial calculus by operational tensors
	2.3.1 Tensor form of polynomials
	2.3.2 Multiplication
	2.3.3 Differentiation
	2.3.4 Lie derivative
	2.3.5 Jacobian and Hessian matrix

	2.4 Open and guiding questions

	3 Modeling for multilinear systems
	3.1 Multilinear time-invariant (MTI) systems
	3.1.1 Model classes
	3.1.2 Tensor representation
	3.1.3 Guiding questions

	3.2 Decomposed MTI system representation and simulation
	3.2.1 Canonical polyadic decomposition
	3.2.2 Tucker decomposition
	3.2.3 Tensor Trains
	3.2.4 Hierarchical Tucker
	3.2.5 Comparison of the decomposed representations

	3.3 Linearization
	3.4 Discretization
	3.5 Scaling
	3.6 Multi-step transitions of discrete-time MTI models
	3.7 Distributed systems with MTI subsystems
	3.7.1 MTI subsystem representation
	3.7.2 Affine MTI systems
	3.7.3 Augmentation of affine MTI systems
	3.7.4 Serial connection
	3.7.5 Parallel connection
	3.7.6 Feedback connection

	3.8 Open questions

	4 Controller design for MTI systems
	4.1 Controller design basics
	4.1.1 State feedback control
	4.1.2 Feedback linearization
	4.1.3 Model predictive control
	4.1.4 Guiding questions

	4.2 Feedback linearization
	4.3 Decentralized state feedback design
	4.4 Model predictive control
	4.4.1 Optimization problem for MTI systems
	4.4.2 Convexity analysis

	4.5 Adaptive model predictive control with successive linearization
	4.6 Distributed model predictive control
	4.7 Open questions

	5 Application of decomposed MTI systems in heating systems
	5.1 Application systems
	5.1.1 Large non-residential heating system
	5.1.2 Heating, ventilation and air-conditioning (HVAC) system
	5.1.3 MTI Toolbox

	5.2 Representation as decomposed MTI systems
	5.2.1 Heating system
	5.2.2 HVAC system
	5.2.3 Comparison of the decomposition methods

	5.3 Controller design for heating systems
	5.3.1 Feedback linearization
	5.3.2 Decentralized feedback design
	5.3.3 Adaptive model predictive control with successive linearization
	5.3.4 Distributed model predictive control
	5.3.5 Real-time implementation

	6 Conclusion
	6.1 Summary
	6.2 Outlook

	A Proofs
	A.1 Outer product in CP form
	A.2 Contracted product in CP form
	A.3 Concatenation of tensors in CP form
	A.4 Multiplication in tensor form
	A.5 Differentiation in tensor form
	A.6 Lie derivative and bracket in tensor form
	A.7 Scaling of MTI models
	A.8 Feedback linearization for MTI systems

	B Application models
	B.1 Heating system
	B.2 HVAC system
	B.3 Lie derivatives for the feedback linearzation controller

