
Particle Filtering with Geospatial Analysis for Indoor
Positioning

by

Dorian Harder

Thesis for the degree of
Master of Science

(Geodesy and Geoinformatics)
HafenCity University Hamburg

01.09.2021

Examiners:

Prof. Dr.-Ing. Harald Sternberg,
Msc. Hossein Shoushtari

Dorian Harder

dorian.harder@hcu-hamburg.de

Student ID: 6067534

© Dorian Harder 2021

DEDICATION

Many people have supported me in numerous ways throughout my time at the HafenCity
University and especially while I was writing this thesis. First of all I want to thank my fellow
students for their company especially through the events of the last year. Further I want to
thank all my friends and family for supporting me. I am especially thankful for Niko Khaled,
who provided much inspiration and inside into programming languages and all things regarding
information technology and who was allways available for deep and interesting conversations
that I always enjoy. Further I want to thank the examiners Prof. Dr.-Ing. Sternberg and Hossein
Shoushtari for the possibility to write this thesis and for assessing it. Special thanks go to Hossein,
who motivated me to work in the topic of this thesis and who always supports me in doing my best.

Hamburg, 31.08.2021
Dorian Harder

ii

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF FIGURES . v

LIST OF ALGORITHMS . vii

LIST OF ACRONYMS . viii

ABSTRACT . x

KURZFASSUNG . xi

SECTION

1 Introduction . 1

2 Literature Review . 3

3 Methodology . 6

3.1 Geospatial Analysis . 6
3.2 Particle Filter . 8

3.2.1 Bootstrap Particle Filter . 9
3.2.2 Particle Filter with Backtracking . 12

4 Implementation . 15

4.1 Data Set . 15
4.2 Bootstrap Particle Filter with Geospatial Analysis 18
4.3 Backtracking Particle Filter with Geospatial Analysis 25

5 Results . 33

5.1 Bootstrap Particle Filter . 33
5.2 Particle Filter with Backtracking . 41
5.3 Comparison of Bootstrap and Backtracking Particle Filter 47

6 Conclusion and Outlook . 53

BIBLIOGRAPHY . 55

iv

LIST OF FIGURES

FIGURE

3.1 Overview of some of the spatial relations that can be queried in Shapely 7
3.2 Overview of some of the used geospatial analyses in GeoPandas; with distance shown

in (a), spatial join in (b), query by attribute in (c) and buffer in (d) 8
3.3 Principle of particle weighting based on routing edges (blue point: position; grey:

distributed particles; cyan: orthogonal distances to selected routing edge) 10
3.4 Particle distribution based on step length and heading and the weighting, dependent on

wall information of the floorplan. (blue: last estimated position; red: particles behind
wall with minimum weight) . 11

3.5 Schematic picture of the resampling process. With particles and their weights before
(top) and after (bottom) the resampling . 12

3.6 Backtracking PF for pattern matching localization 13
3.7 Process of a backtracking test. Blue arrows are recent steps, red arrows are invalid paths 14

4.1 Floor plans of ground floor (a), 1st floor(b) and 4th floor (c), with the blue lines repre-
senting the routing edges . 16

4.2 Ground truth points (orange) of the “zerotofour-path” in (a) to (c) and the “eight-path”
in (d) . 17

4.3 Ground truth points (orange) of the zerotofour-path in(a) to (c) and the eight-path
in(d); the red dot is the starting position, the green dot is the finish 18

4.4 Overview of the used weighting methods, with the wm in (a), wr in (b), ww in (c) and
wl in (d) . 24

5.1 CDF of the positioning error of the eight path with step length correction of 0.1 m for
the bootstrap PF and the Pedestrian Dead Reckoning (PDR) without a step correction. 34

5.2 Trajectory from the wl method (a)) and the combination of wl and wr method (b)) for
eight path with step length correction of 0.1 m . 35

5.3 CDF of the positioning error of the zerotofour path with step length correction of 0.2
m for the bootstrap PF and and the PDR with a step correction of 0.2 m 36

5.4 Trajectories of the wl (a)), wm (b)) and ww (c)) methods in combination with the wr
for the zerotofour path with step correction of 0.2 m; green dots: estimated positions . 37

5.5 CDF of the positioning error of the eight path without step length correction for the
bootstrap PF and the PDR without a step correction. 38

5.6 Trajectories from the wl method (a)), turning back and the wm method (b)) cutting the
corner; green dots: estimated positions, red arrows: walked path 39

5.7 CDF of the positioning error of the zerotofour path with step length correction of 0.15
m for the bootstrap PF and the PDR with step length correction of 0.15 m. 40

v

5.8 CDF of the positioning error of the eight path with step length correction of 0.1 m for
the backtracking PF and the PDR with step length correction of 0.1 m. 41

5.9 Part of the trajectory of the eight path, that wrongly proceeds in the ”gallery”, when
using the wl method, black arrows indicating the walking direction, the green points
representing the position estimates for each step. 42

5.10 Example of the trajectory correction (from (a) to (b)) through the backtracking func-
tionality, the green dots represent the valid, propagated particles, the blue dot is the
resulting position estimate . 42

5.11 Effect of the support through the wr support on the deviated trajectory. 43
5.12 CDF of the positioning error of the zerotofour path with step length correction of 0.2

m for the backtracking PF and the PDR with step length correction of 0.2 m. 44
5.13 CDF of the positioning error of the eight path without step length correction for the

backtracking PF and the PDR without step length correction. 45
5.14 Trajectory (green dots) from the cl method for the eight path without step length cor-

rection for the backtracking PF . 45
5.15 CDF of the positioning error of the zerotofour path with step length correction of 0.15

m for the backtracking PF and the PDR with step length correction of 0.15 m. 46
5.16 Comparison between the CDF of the positioning error of the eight path with a step

length correction of 0.1 m of the backtracking PF and the bootstrap PF 47
5.17 Trajectories of the wm and wr method of the bootstrap PF (a)) and the cm method of

the backtracking PF (b)) for the eight path with a step length correction of 0.1 m . . . 48
5.18 Comparison between the CDF of the positioning error of the zerotofour path with a

step length correction of 0.2 m of the backtracking Particle Filter (PF) and the boot-
strap PF . 49

5.19 Comparison between the CDF of the positioning error of the eight path without step
length correction of the backtracking PF and the bootstrap PF 50

5.20 Comparison between the CDF of the positioning error of the zerotofour path with a
step length correction of 0.15 m of the backtracking PF and the bootstrap PF 51

5.21 Comparison between the trajectories of the bootstrap PF with the weighting by rooms
(wm) method (a)) and the backtracking PF with check for room (cm) method (b)).
Green dots represent the estimated positions at each step 52

vi

LIST OF ALGORITHMS

ALGORITHM
4.1 Bootstrap PF . 20
4.2 Create initial particles . 21
4.3 Weighting by line of sight . 22
4.4 Weighting by rooms . 22
4.5 Weighting by walls . 23
4.6 Weighting by routing . 23
4.7 Resampling . 25
4.8 Backtracking PF . 26
4.9 Create initial particles . 27
4.10 Check particles for intersections . 28
4.11 Check particles for containing room . 29
4.12 Check particles for distance to routing edges . 29
4.13 Backtracking . 30
4.14 Backtracking test intersections . 31
4.15 Backtracking test rooms . 31
4.16 Backtracking test routing . 32

vii

LIST OF ACRONYMS

5G Fifth-Generation of Mobile Telecommunications Technology

CAD Computer Aided Design software

CDF Cumulative Distribution Function

cl check for line of sight

cm check for room

cr check for routing

CSV Comma Separated Values

GIS Geographic Information System

GNSS Global Navigation Satellite System

HCU HafenCity University

IMU Inertial Measurement Unit

KF Kalman Filter

LIDAR Light Detection and Ranging

viii

LOS Line of Sight

MARG Magnetic, Angular Rate and Gravity

PDF Probability Density Function

PDR Pedestrian Dead Reckoning

PF Particle Filter

RF Radio Frequency

RSSI Received Signal Strength Indication

UWB Ultra Wide Band

WLAN Wireless Local Area Networks

wm weighting by rooms

wl weighting by line of sight

wr weighting by routing

ww weighting by walls

ix

ABSTRACT

Modern smartphones enable a wide range of people the use of location based services, such as per-
sonal navigation, in everyday life. The localisation in outdoor scenarios with smartphones is usu-
ally based on Global Navigation Satellite System (GNSS). However, the positioning with GNSS
fails to provide sufficient and accurate measurements in an indoor environment. To enable the
usage of location based services, for example the navigation at exhibition or airport areas or large
university buildings, other indoor positioning approaches have been researched. Most of those
can’t provide the needed accuracy or are expensive to install and maintain. A possible alternative
is the usage of the Inertial Measurement Unit (IMU) of the smartphone using a pedestrian dead
reckoning system Pedestrian Dead Reckoning (PDR). To correct the drift of the position estimate
that results from noisy measurements, corrections through additional information is necessary. For
this reason, two Particle Filter (PF) methods, a simple bootstrap PF and a backtracking PF, have
been developed in this thesis. They both use building information from floor plans and routing
edges, to improve the position estimate. The PF uses weighted particles to represent the proba-
bility density of the position estimate. The backtracking PF further stores the propagation history
that can be used for further improvements of the position estimate. One novelty of the developed
PF methods is the usage of geospatial analysis tools to derive information about the spatial relation
between the particles and the geometries from the building information. The implementation of
geospatial analysis tools further enables the use of geodata, which can be derived from building
plans in Computer Aided Design software (CAD) format. The developed PF methods have been
tested and compared with different methods for the weighting of particles regarding their posi-
tioning accuracy on two different test paths through the HafenCity University (HCU)-building in
Hamburg. It was possible to achieve a position error of less than 3 m for a path through narrow
corridors and less than 5.5 m for a path including wider spaces, such as hallways, 90 % of the time
for some of the tested methods.

x

KURZFASSUNG

Moderne Smartphones ermöglichen einem breiten Personenkreis die Nutzung ortsbezogener Dien-
ste, wie zum Beispiel die persönliche Navigation, im Alltag. Die Lokalisierung mit Smartphones
im Außenbereich basiert in der Regel auf Global Navigation Satellite System (GNSS). Ausre-
ichend präzise Messungen in Innenräumen sind mit GNSS jedoch in der regel nicht möglich.
Um die Nutzung ortsbasierter Dienste in Innenräumen zu ermöglichen, beispielsweise die Nav-
igation auf Messe- oder Flughafengeländen oder in großen Universitätsgebäuden, wurden andere
Indoor-Positionierungsansätze erforscht. Die meisten von ihnen können nicht die erforderliche
Genauigkeit bieten oder erfordern einen hohen Aufwand in der Installation und Wartung. Eine
mögliche Alternative ist die Nutzung der Inertial Measurement Unit (IMU) des Smartphones mit-
tels eines Pedestrian-Dead-Reckoning-Systems Pedestrian Dead Reckoning (PDR). Um die Drift
der Positionsschätzung, die aus verrauschten Messungen resultiert, zu korrigieren, sind Korrek-
turen durch zusätzliche Informationen notwendig. Aus diesem Grund wurden in dieser Arbeit
zwei Particle Filter (PF)-Methoden entwickelt, ein einfacher Bootstrap-PF und ein Backtracking-
PF. Beide verwenden Gebäudeinformationen aus Grundrissen und Routing-Kanten, um die Posi-
tionsschätzung zu verbessern. Der PF verwendet gewichtete Partikel, um die Wahrscheinlichkeits-
dichte der Positionsschätzung zu repräsentieren. Der Backtracking-PF speichert außerdem den
bisherigen Verlauf der Fortbewegung, welcher für weitere Verbesserungen der Positionsschätzung
verwendet werden kann. Eine Neuheit der entwickelten PF-Methoden ist der Einsatz von Geo-
datenanalysen, um Informationen über die räumliche Beziehung zwischen den Partikeln und den
Gebäudedaten abzuleiten. Die implementierung der Geodatenanalysen ermöglicht darüber hinaus
die Nutzung von Geodaten, die sich aus Bauplänen im Computer Aided Design software (CAD)-
Format ableiten lassen. Die entwickelten PF-Methoden wurden auf zwei verschiedenen Testp-
faden durch das HafenCity University (HCU)-Gebäude in Hamburg getestet und mit verschiedenen
Methoden zur Gewichtung der Partikel hinsichtlich ihrer Positionierungsgenauigkeit verglichen.
Bei einigen der getesteten Verfahren konnte in 90 % der Fälle ein Positionsfehler von weniger als
3 m für einen Weg durch enge Korridore und von weniger als 5,5 m für einen Weg mit breiteren
Fluren erreicht werden.

xi

1 Introduction
Nowadays the usage of smartphones for navigation, based on the global navigation satellite
system Global Navigation Satellite System (GNSS), is common in everyday life, especially for the
personal navigation. GNSS is the dominant technology for outdoor localization, but due to heavy
attenuation and reflection of the GNSS signals by building structures, a sufficient availability
and accuracy can not be provided indoors. Location based services, including positioning and
navigation, can be useful in indoor scenarios, too. They can for example be used for the navigation
at an exhibition area, in shopping malls, universities, office buildings, airports or train stations. To
enable the mentioned applications of indoor positioning, the development and research of GNSS
independent indoor navigation systems is neccessary.

Other GNSS independent localization approaches have already been explored, including
ultra wideband Ultra Wide Band (UWB), wireless local area networks Wireless Local Area
Networks (WLAN) [1], [2], magnetometer [3], vision [4] or ultrasound [5], among others. But
most of them can’t provide a needed meter-level accuracy, that is required to determine for
example the current room, that a user is in. Furthermore, infrastructure assisted approaches,
especially WLAN and UWB usually lead to high maintenance and implementation costs and
efforts, which must be expended by the individual facility management [6].

Many approaches use the inertial sensors, also called Inertial Measurement Unit (IMU), to
track a user’s position by continuously estimating the displacement from a known location. This
pedestrian dead reckoning PDR [7], [8], [9], [10] is not dependent on infrastructure assistance.
However, the IMU’s measurements are noisy, resulting in an accumulating positional drift over
time. Therefore it can only provide reliable position estimation for a limited time, making
additional support necessary. Several approaches exist, such as a visual support approach using
vision features [6], [11]. Other approaches use point clouds [12], [9] from cameras as well as Light
Detection and Ranging (LIDAR) sensors, that can be combined with the odometer information
to correct the drift and to provide more accurate localization estimations. These features are not
always available since vision sensors can’t be used all the time. State-of-the-art odometry based
learning approaches [8], [13], are an alternative, but they rely on label data that is laborious to
attain.

PDR-based localization with map matching support poses an alternative to the mentioned
methods. If building information in the form of floor plans and/or routing graphs are available,
the information about the environment can be combined with the IMU measurements to achieve a
more accurate position estimation. For this task, Particle Filter (PF), which belong to the Monte

1

Carlo algorithms, can be implemented. PF are well suited for processing the noisy data of the
smartphone sensors and the information derived from the building’s geometry. PF algorithms
enable the consideration of inaccuracies in the measurements for the position, by using weighted
particles as representation of the probability density distribution of possible position estimates
[14]. Different PF algorithms exist, from a simple bootstrap PF to a backtracking PF, that enables
the correction and re-estimation of implausible paths. For this reason, two PF algorithms, a
bootstrap PF and a PF with backtracking, have been developed for this thesis. Both PF algorithms
are developed on the base of existing approaches and have been modified to use geospatial
analysis to deal with spatial information. The usage of geospatial analysis tools enables the use
of building information in GeoJSON format. It can comparatively easily be derived from digital
plans, typically produced in Computer Aided Design software (CAD) environments. Furthermore,
the usage of geodata packages to query for spatial information (such as query for intersections)
make the implementation more robust and easier.

The bootstrap PF and the PF with backtracking functionality are tested with pre-calculated step
length and step heading values from two paths through the HafenCity University (HCU) building
in Hamburg, Germany. The two PF approaches have been compared regarding their accuracy,. For
both PF algorithms different weighting methods for the particles have been tested and compared.
The goal is to find the best approach for a PF algorithm for indoor navigation with map matching,
providing an comparatively easy handling of the needed data as well as a sufficient accuracy,
precision and robustness.

The remainder of this thesis is structured as follows: related literature is reviewed in the next
chapter; chapter three describes the underlying methodology with examples from related works;
in chapter four the implementation is explained and the used data set is presented; section five
presents and discusses the results of the two PF-based map matching algorithms and finally, chapter
six provides the conclusions and an outlook for future development.

2

2 Literature Review
Different methods for positioning in indoor environments with the use of smartphones have
been researched and developed, which can provide different levels of localisation precision and
accuracy. The available indoor navigation systems can be classified into infrastructure supported,
autonomous approaches (based on integrated sensors) and hybrid methods, which combine
integrated sensors and infrastructure support.

Positioning systems that are based on infrastructure, typically rely on signal information from
wireless technologies, where the distance to reference points is determined to calculate the users
position. In [1], a Radio Frequency (RF) based system has been developed. Signal strength
information of several base stations with known location is recorded and processed. With the use
of signal propagation models the position of the user can than be determined, resulting in a median
resolution of 2 - 3 m. Methods based on UWB can achieve a position accuracy of 1 to 5 m [15].
In [2] WLAN signal strengths are measured and compared to signal strength maps, that have been
created for the given area to determine a users position. This way a position error of less than 1 m
can be achieved in some cases. Various other methods for the positioning based wireless networks,
such as WLAN and Bluetooth exist. These include time measurements (time of arrival), relative
time measurements (time difference of arrival), cell based positioning (cell of origin) as well as
Received Signal Strength Indication (RSSI) approaches [16]. However, these methods have the
disadvantage of being costly and time-consuming to install and often fail to reach a meter-scale
accuracy. Infrastructure based systems that use laser light can reach sub-millimeter accuracies in
certain cases, but they require line of sight connections to the reference points.

The method presented by [17] uses magnetic coils to generate magnetic fields. The distance
to the coils with known position are derived through signal analyses and cross correlation. The
position of the users device can than be estimated through trilateration, with an accuracy of less
than a meter, for a close area (4 m distance to the coils). In [3] a different approach is presented
that determines a device’s position based on disturbances of the Earth’s magnetic field, caused by
steel elements in buildings. Large structures of magnetic sensitive material (e.g. steel) buildings
warp the geomagnetic field. A reference map is created that contains information of the spatial
variations of the geomagnetic field, which is compared with measurements from an array of
e-compasses by the user, to determine the position. With this approach, an accuracy of up to 1 m
could be demonstrated. Though the installation of a infrastructure, such as in the above mentioned
methods is not necessary, it is still needed to create the magnetic field map and the device used for
the positioning needs to be equipped with the necessary hardware.

3

Smartphones incorporate a variety of sensors to track the Magnetic, Angular Rate and Grav-
ity (MARG) values as well as environment sensors to measure pressure, temperature, etc. that
can be used for autonomous positioning. Typically a PDR serves as the basis of the localization.
Essentially, a PDR is a combination of a pedometer, estimated stride length, and orientation.
The system needs to estimate the step’s length and direction from the IMU measurements after
it detects a step [7]. The IMU measurements of smartphones are noisy and can only provide
reliable location estimation in a limited amount of time, so external assistance is necessary.
Approaches that use the integrated sensors with additional infrastructure support for positioning
are called hybrid methods. To correct for drift and provide efficient localization, visual support
can combine vision features [18, 19], point clouds from cameras [12], [9] and Light Detection and
Ranging (LIDAR) sensors with odometry data. However, because of environmental circumstances
or location of the smartphone, such as in a pocket or bag, such vision-based auxiliary features
may not always be available. Other methods, such as state-of-the-art odometry based learning
approaches [8, 13], which mainly rely on the history of motion and position sensor values to
regress the velocity vector, would heavily rely on labeled data. The main problem with these
methods is the lack of realistic data sets, which take into account long trajectory and unlimited
human activities.

Another possibility to enhance the precision of the autonomous localization approach is to sup-
port the positioning with environmental information, such as floor plans and routing graphs of
buildings. PF are well suited for processing the stochastically very different data of the smart-
phone sensors and the information of a building’s geometry. Using PF algorithms, it is possible to
consider inaccuracies in the position measurements, by using weighted particles as representation
of the probability density distribution of the position estimates [14]. The weighted sum than results
in the position estimate. The bootstrap PF, as used in [20, 21] is the most simple implementation
of a PF algorithm. The weights of the particles are determined according to the plausibility of
the position that they represent, e.g. their distance to routing edges or if the particles lie behind
walls. The backtracking PF [22, 23] is a more complex approach, that enables the correction and
re-estimation of implausible paths, based on the particles propagation history. This functionality
can be especially useful in complex building structures, where wrong trajectories of particle clouds
can be corrected, by resampling them to more plausible positions, based on the propagation his-
tory. PF can not only be used to combine the PDR approach with map material, but can also used
in combination with e.g. Fifth-Generation of Mobile Telecommunications Technology (5G) signal
information, as done in [24]. Here a concept has been developed to use signals from 5G antennas,
installed in a building, to determine the absolute position of a device whenever possible, while
using a PDR based method with PF for map matching the rest of the time.

4

The main drawback of the map matching approaches in general is the generation of the map
material, which needs to be of good quality and the right data format. In [24] a workflow has
been developed to extract the needed map material as GeoJSON-format from usually available
CAD building plans. The PF algorithms in this thesis have been developed to be able to use map
information in the GeoJSON-format, making the aquisition of the map material significantly easier.

5

3 Methodology
This chapter describes the underlying methodologies and concurrently presents related works. The
methodologies include geospatial analysis, as well as the principles of the bootstrap Particle Filter
(PF) and the PF with backtracking functionality.

3.1 Geospatial Analysis

Geospatial analysis describes the process of extracting, manipulating and visualizing of (usually
georeferenced) spatial information [25]. One use case for geospatial analysis is the investigation
of the spatial relationship between geometric objects. The most fundamental geometric objects
are so-called geometric primitives. These are geometric objects, which can be described by one
continuous geometry and include points, curves, surfaces and solids [26]. A point’s interior
consists of one point, it’s boundary of no points and it’s exterior of all other points. A curve has
an interior of an infinitely number of points along it’s length, a boundary of two end points and an
exterior consisting of all other points. The interior of a surface consists of infinitely many points
within, while the surface’s boundary consists of one or more curves and the exterior consists of all
other points.

Geospatial analysis can be done with a variety of tools, including Geographic Information Sys-
tem (GIS)-software such as QGIS or ArcGIS or by using programming languages, for example
Python, with libraries such as GeoPandas [27]. GeoPandas is an open source project, extending
the data types used by pandas to enable spatial analysis on geometric objects. These data types are
GeoSeries and GeoDataFrames. The fundamental geometric objects are implemented in Shapely
as (as Point class), LineString class and Polygon class. Several geometries of the same kind can
be unified as collections, resulting in so-called MultiPoints, MultiLinestrings and MultiPolygons

[28]. GeoSeries and GeoDataFrames can store one or several different geometric objects. Geo-

DataFrames, which are basically extensions of the DataFrames used in the Python library Pandas,
also enable the storage of attributes of geometric objects. This spatial data structure includes spa-
tial relationships between geometric objects, such as contains, intersects, overlaps, touches, etc.
Geometric operations, such as the investigations of the mentioned spatial relationships, are per-
formed by Shapely [28]. Queries for spatial relations will return a Boolean value (True or False).
Some of the queries for spatial relationships, implemented in Shapely are shown in figure 3.1 and
listed below:

• Intersects returns True if the boundary or interior of the object intersect in any way with
those of the other.

6

• Contains returns True if no points of the other geometry lie in the exterior of this geometry
and at least one point of the other geometry’s interior lies in the interior of this geometry. A
line’s endpoints are it’s boundary and are therefore not contained

• Within returns True if this object’s boundary and interior intersect only with the interior of
the other (not its boundary or exterior), making it the ’inverse’ of contains.

• Touches returns True if the given objects’ boundaries have at least one point in common, but
their interiors do not intersect with any part of the other.

Figure 3.1: Overview of some of the spatial relations that can be queried in Shapely

The function of some of the fundamental geospatial analyses that can be applied to GeoSeries

and GeoDataFrames, are listed below and are shown in figure 3.2:

• Distance returns the direct distance between geometries. It is also the orthogonal distance
between a point and a line feature or edge, if the orthogonal projection of the point exists
(see figure 3.2 (a). Here the distance from the corners of polygon B and the edges of the
polygons A and C is simultaneously the orthogonal distance, whereas the distance between
the corners of A and C is not).

• Spatial join is used to merge geometric objects based on their spatial relationships, as shown
in figure 3.2 (b). Spatial relationships, that can be used as requirements for the spatial join
include intersects, contains, within or touches.

7

• Query by attribute returns all objects of the given GeoDataFrame that hold the queried
attribute value, as shown in figure 3.2 (c), where all objects with the Type value of B are
selected and marked in blue.

• Buffer generates a representation of all points in a given distance of the geometry as polygon.
In figure 3.2 (d), the resulting buffer-polygons around a given line and a square shaped
polygon are displayed in green.

Figure 3.2: Overview of some of the used geospatial analyses in GeoPandas; with distance shown
in (a), spatial join in (b), query by attribute in (c) and buffer in (d)

3.2 Particle Filter

PF belong to the Monte Carlo Methods, which are groups of state estimation methods to model
highly non linear problems with very noisy measurements [29]. The PF, in contrast to the Kalman
Filter (KF), are able to handle highly non-linear problems, where the uncertainties are represented
by several estimation samples (so-called particles) [30]. The idea of a PF in the application of
navigation, specifically for Pedestrian Dead Reckoning (PDR), is to approximate the Probability
Density Function (PDF) of the position by a large number of weighted, independent particles [14].
The weighted sum of the particles will than result in a position estimate. In the following subsection
3.2.1, the general PF approach for indoor navigation is explained, based on the bootstrap PF. In
the subsection 3.2.2 the Backtracking PF, a variation of the PF model, is explained in detail. Many

8

other variations of the PF exist, which mainly differ to each other by modifications of one or more
of the components. For examples of other PF modifications, see [30] and [31] among others.

3.2.1 Bootstrap Particle Filter

The bootstrap PF is one of the simplest PF modification. For the bootstrap PF, at first a set of
initial particles is created, representing the PDF of the starting position. The starting position can
either be known or unknown. For the PDR, the particles are either all located at the known starting
point as in [20] or they can be distributed around the starting point according to the uncertainty of
the position. In other cases, for example in combination with absolute positioning methods such
as Received Signal Strength Indication (RSSI), the particles could also be randomly distributed
over the whole area, as done by [21]. The bootstrap PF then includes three main steps, called
propagation, weighting (or estimation step) and resampling, which are explained in the following :

Propagation:

During the propagation step the individual particles are changed to better represent the PDF. In
indoor positioning, the particles can spatially propagated, according to length and heading of the
current step, which are derived from the Inertial Measurement Unit (IMU) measurements. Possible
measurement errors can be taken into consideration by assigning a randomly distributed noise to
step length and step heading for each particle, as done by [20]. The coordinates of the Position
xi and yi for the ith propagated particle is then calculated from the coordinates of the last particle
position xlast,i and ylast,i by (3.1) and (3.2):

xi = xlast,i + (lstep + ϵl,i) ∗ cos(h+ ϵh,i) (3.1)

yi = ylast,i + (lstep + ϵl,i) ∗ sin(h+ ϵh,i) (3.2)

Where lstep is the length and h is the heading of the current step and ϵ is a normal distributed
noise value. This leads to a fan-like distribution of the particle in the walking direction. In [21], on
the other hand, the step length for the particle propagation, is predicted from the last three observed
steps. The weights of the particles remain unchanged during the propagation.

Weighting:

During the weighting step, the weights for the particles are updated according to the particles’
plausibility, this way the position estimate can be improved with relevant information (e.g. from
supported map material), while the position of the particles remains unchanged. A variety of
weighting methods and criteria could be used. Following some weighting methods are described,

9

that are mainly based on map information:

Weighting by routing: In the weighting by routing approach, as it is implemented by [20, 32],
the orthogonal distance of each particle to the closest routing edge is considered, as shown in figure
3.3. The weight of each particle is hereby decreasing with increasing distance to the routing edge
and can be calculated with equation 3.3:

wri = exp(−d2i /2) (3.3)

Where wri is the weight of the ith particle, with the orthogonal distance di to the closest routing
edge [20, 29].

Figure 3.3: Principle of particle weighting based on routing edges(blue point: position; grey:
distributed particles; cyan: orthogonal distances to selected routing edge) from [32]

Weighting by walls: Another weighting approach, used by [20], determines the weight in rela-
tion to the distance of a particle to the next wall and the difference in the orientation of the particle
propagation to the next wall’s orientation. Figure 3.4 shows the distribution and weighting of the
particles at a specific step. Red particles have the minimum weight, because they are behind walls
and the other particles’ weight, which increases with the distance to the wall, is displayed as shades
of grey.

10

Figure 3.4: Particle distribution based on step length and heading and the weighting, dependent on
wall information of the floorplan. (blue: last estimated position; red: particles behind wall with
minimum weight) from [33]

Weighting based on PDR and map material: Another approach for the weighting of particles
is used in [21]. First, particles which are not plausible, based on the building information, receive
a weight of zero, this includes particles that are outside of the building, inside walls, crossed walls
or have a low distance from the wall. For this, methods of computational geometry [34, 35] have
been adapted to determine if particles cross walls or are inside walls. The weight of each remaining
particle w(k) depends on the difference between the predicted position of the particle (xk, yk) and
the observed position (zxk, zyk), that is calculated according to the PDR from the last estimated
position. The weights are calculated with the following equation, where σz is the measurement
noise, derived from empirical studies:

wk =
1

2πσ2
e

∗ exp
(︃
−(xk − zxk)

2 + (yk − zyk)
2

2σ2
z

)︃
(3.4)

Resampling:

The weighting of the particles can lead to the situation, that a small number of particles have a high
weight which can lead to a diverging filter process. This can be avoided by a resampling process,
which is shown in figure 3.5. The few particles with high weight are split up in several particles
with weights that are in their sum equal to the original particles’ weight. The goal is to assign a
weight of 1/N for each particle, where N is the number of particles. For this the particles are put
into intervals according to their weights. Then a random number between 0 and 1 is generated and
if this number falls in a particle’s interval, than this particle will be reproduced with the weight
1/N . Since particles with bigger weights have bigger intervals (indicated with wi for the size of
the ith interval in figure 3.5), they are reproduced more often than particles with a lower weight
[20, 29].

11

Figure 3.5: Schematic picture of the resampling process. With particles and their weights before
(top) and after (bottom) the resampling (from [29])

To decide if a resampling should be done, the number of effective particles Neff can been used.
Neff is defined by equation 3.5:

1∑︁N
i=1 w

2
i

= Neff (3.5)

It is Neff = N if all particle have the same weight and Neff = 1 if only one particle holds the
whole weight. A threshold of Neff = 0.7 is suggested by [29] and also used by [20].

3.2.2 Particle Filter with Backtracking

A PF with backtracking works in its basic functionality such as the bootstrap PF. But Compared
to the simple bootstrap PF, it also considers the particle trajectory’s history to improve position
estimates. During positioning with the map information support, it can occur that paths are not
estimated correctly. For example, a change in direction occurs at a location where there are several
junctions close by. It can happen that the path follows the wrong junction, due to uncertainties in
the Positioning. The wrong path might lead to an aborting of the filter, due to strong corrections
from the map information. If the scattering of the particles is wide enough, part of the particles
might travel the correct path. In this case a backtracking functionality can recalculate the path
from the stored history of the movements of the particles. This was implemented, for example

12

in [22], where an approach was developed to fuse RSSI fingerprinting and information from map
material. In such a bactracking PF, after the propagation, the trajectories of invalid particles, for
example such that cross walls or not accessible areas, are deleted during the so-called filtering step,
in contrast to the typical case in the bootstrap PF, where the adjustment of the particles’ plausibility
at this point is done only by the assignment of weights. After this, the trajectories of valid particles
are resampled in the resampling step, until a specified number of particles is reached. In this way
the current as well as previous position estimations can be refined, as shown in figure 3.6.

Figure 3.6: Backtracking PF for pattern matching localization, from [22]

In [23] a backtracking approach was used, inspired by the above mentioned one from [22]. But
instead of storing the trajectory of every particle, only the history of the displacement, derived
from the PDR, is stored and a scaling factor for the displacement, representing the noise of the
step length, as well as a noise value for the orientation angle of the device is assigned to each

13

particle. During the propagation step, each particle’s position is updated according to the current
step’s displacement multiplied with the scaling value of the particle. After the deletion of invalid
particles in the filter step, the position estimate is calculated from the mean of the particle positions
and the orientation of the device is updated by the mean of the products of each particle’s noise
value for the orientation and the measured orientation for the position.

Then, for every particle that was deleted in the filter step, it is tried to generate a new particle
within a specified and random radius around a valid particle. The potential new particle’s propa-
gation history, according to the displacement of the steps, multiplied by the scaling factor of the
particle, is then checked for any intersections with walls. If no intersections are detected, the par-
ticle is accepted, otherwise a particle with a different position and a different random scale for the
displacement is proposed, as shown in figure 3.7.

Figure 3.7: Process of a backtracking test. Blue arrows are recent steps, red arrows are invalid
paths; from [23]

14

4 Implementation
This chapter describes the implementation of the bootstrap Particle Filter (PF) and backtracking
PF with geospatial analysis and the used data set. The developed algorithms are explained with the
help of pseudo code sections. Both PFs have been developed in Python 3.8. The Python library
GeoPandas [27], which includes Shapely [28], has been used for the implementation of geospatial
analyses (as described in section 3.1). GeoPandas and Shapely have been installed using the Conda
Forge environment. The Python scripts, developed in this thesis, along with the input data are
handed in es a separate folder, along with this thesis. The files containing the code as well as the in-
put and output data for the bootstrap PF are located at /Data_and_Code/bootstrap_PF and
for the backtracking PF at /Data_and_Code/PF_Backtracking. In both PF approaches,
the used data, described in section 4.1, has been loaded as global variables in the respective
input_data.py file and is imported in the respective main.py files, which run the PF cor-
responding algorithm. Both PF algorithms have been structured in a modular way, to enable the
relatively easy exchange and addition of further methods and functionalities.

4.1 Data Set

This section describes the used data sets, including the building information and the used values for
step heading, step length and height. The data has been provided by [24]. The sensor data as well
as the floor plans are openly accessible at https://github.com/Hossein-Shoushtari/
IPIN21Data.

Building Information

The building information of the HCU has been provided as floor plans in GeoJSON format, that
was extracted from CAD plans [24] and have been minimally cleaned up manually. They contain
polygons with attributes according to their type (e.g. walls, rooms, hallways, staircase, etc.).
The floor plans have been provided separately for each, the ground floor, 1st floor and 4th floor.
The complex architecture of the HCU building, including big, open hallways, small corridors
as well as unconventional shaped rooms with pointy corners (see figure 4.1) results in a distinct
environment to test the developed PF under various conditions.

15

https://github.com/Hossein-Shoushtari/IPIN21Data
https://github.com/Hossein-Shoushtari/IPIN21Data

Figure 4.1: Floor plans of ground floor (a), 1st floor(b) and 4th floor (c), with the blue lines repre-
senting the routing edges

Sensor Data

The values for the step length and the step heading for the two tested trajectories have been readily
provided in the Comma Separated Values (CSV) format. A handheld Samsung S10 5G smartphone
has been used to record acceleration, barometer measurements and angular velocities from the
gyroscope via an application named “sensor log”, to calculate the step length and step heading
[24]. The provided step headings are the orientation deviations in relation to the orientation at the
starting point, making it necessary to add the absolute starting orientation to each heading value
to derive the absolute heading to geographic north. The model for the step length calculation from
the IMU values were based on a person with a different height and therefore a different step length
than the persons who were generating the test data, which lead to a significant systematic error for
the step length values. The height difference for each step was also provided as CSV file. To get
the absolute height at any given step, the height differences until that step had to be summed up
and added to the starting height. The starting height was approximated as the height of the starting
floor plus 80 % of the users’ height. The ground truth of the walked trajectories has been provided
as CSV-file as well and contains the horizontal position, time stamp and the height difference for
each point.

The height of the floors was estimated as 0 m for the ground floor, 6 m for the 1stfloor and 19

16

m for the 4th floor. The two trajectories are referred to as eight path and zerotofour path in the rest
of this thesis. The eight path starts in a corridor of the 4th floor in front of an office in the western
direction and continues in the shape of an eight (see figure 4.2 for the ground truth of the eight

path).

Figure 4.2: Ground truth points (orange) of the “zerotofour-path” in (a) to (c) and the “eight-path”
in (d)

The zerotofour path starts in the entrance hallway on the ground floor (figure 4.3(a)) and leads
over the main stairs to the 1st floor. It than takes a left turn and proceeds to take the elevator figure
(4.3(b)) to the 4th floor. It continues along the corridor in the 4th floor southwards, then takes a
turn at the t-junction and leads into an office room in the south-eastern part of the 4th floor (4.3
(c)).

17

Figure 4.3: Ground truth points (orange) of the zerotofour-path in(a) to (c) and the eight-path in(d);
the red dot is the starting position, the green dot is the finish

4.2 Bootstrap Particle Filter with Geospatial Analysis

This section explains the methods and algorithms of the bootstrap PF with geospatial analysis,
starting with algorithm 4.1 that describes the overall algorithmic process of the PF. As input it
requires the used weighting methods as a list of strings and the name of the walked path (eight or
zerotofour) for which the data for step length, step heading, step height and start point are loaded
(line 1). In line 2 to 4 the values of the needed parameters are set. For this PF, the start position is
known and the initial particles are normally distributed around the starting point.

The initialization of the first particles is then done as described in subsection 4.2. The for-loop
from line 6 on is then performing the PF algorithm for each step. For each step, first the map
information for the current floor is selected. The particles’ positions are than updated as described
in section 4.2 and the weights for each particle are determined (line 9 to 24). The weights are
calculated with each weighting method (see algorithm 4.3 to 4.6) specified in the input of the
algorithm. The different weighting approaches have been tested separately as well as in several
combinations in pairs of two weighting methods. If two weighting method have been used, the
overall weight wi of each particle was calculated from the product of the two resulting weights w1,i

and w2,i with equation 4.1:

wi = w1,i ∗ w2,i (4.1)

18

If only one weighting method is used, the weights w are equal to the weights derived from the
used method. Afterwards, the calculated weights have been normalized according to 4.2:

wi∑︁N
k=1 wk

= wi,norm (4.2)

Where N is the number of particles and wi,norm is the normalized weight of the ith particle. The
coordinates of the position estimate X, Y were than calculated according to the weighted mean of
the particles’ coordinates xp, Yp using equation 4.3 and 4.4:

X =

∑︁N
i=1 wi ∗ xp,i

N
(4.3)

Y =

∑︁N
i=1 wi ∗ yp,i

N
(4.4)

If all weights are invalid and have the minimum value, the values are so low, that they are treated
as zero in Python. In this case the script raises an error notification and is unable to calculate the
position, but doesn’t abort and continues with the next step. Finally the particles are resampled
with algorithm 4.7 and the for-loop starts again until the last step is reached. After the end of the
PF algorithm, all calculated positions, as well as the standard deviation of each position estimate
is returned and saved as a Comma Separated Values (CSV)-file.

19

Algorithm 4.1 Bootstrap PF
Require: WeightingMethods, path

1: load Startpoint, StepHeading, Steplength, height according to chosen path
2: σS = 0.1
3: σH = 15 ∗ π/180
4: ParticleNumber = 200
5: particles← InitializeParticles(Startpoint, ParticleNumber)
6: for s in number of Steps do
7: walls, RoutingEdges, rooms← data for current floor according to height[s]
8: PropagatedParticles← propagation(particles, StepHeading[s], Steplength[s],

σS, σH)
9: if wl is in WeightingMethods then

10: weights← WeightingByLOS(PropagatedParticles, walls)
11: append weights to CalculatedWeights
12: end if
13: if wr is in WeightingMethods then
14: weights← WeightingByRouting(PropagatedParticles, RoutingEdges)
15: append weights to CalculatedWeights
16: end if
17: if wm is in WeightingMethods then
18: weights← WeightingByRooms(PropagatedParticles, rooms)
19: append weights to CalculatedWeights
20: end if
21: if ww is in WeightingMethods then
22: weights← WeightingByWalls(PropagatedParticles, walls)
23: append weights to CalculatedWeights
24: end if
25: wtotal ← product of all CalculatedWeights
26: PositionEstimate← weighted mean of particles positions
27: particles← Resampling(PropagatedParticles)
28: end for

Initialization

The initialization of the particles is done with algorithm 4.2 that requires the coordinates of the
start position (Xstart, Ystart) and the number of particles that have to be initialized as input. Each
particle’s position is calculated by adding a normally distributed error value to the coordinates of
the start position (line 2 to 3) and a Shapely Point-geometry is created for this position. At the end,
a GeoDataFrame containing all of these Point-geometries is returned.

20

Algorithm 4.2 Create initial particles
Require: Xstart, Ystart, std, ParticleNumber

1: for i such that 0 ≤ i ≤ ParticleNumber do
2: err ← randnorm
3: add Point(Xstart + err, Ystart + err) to ParticleList
4: end for
5: InitialParticles← GeoDataFrame(ParticleList)
6: return InitialParticles

Propagation

The particles’ position is updated with a similar approach as [20] has used, based on the Pedestrian
Dead Reckoning (PDR). The heading of the ith particle (Hi) is calculated by (4.5):

Hi = H0 +Hgy +Randnorm ∗ σH (4.5)

Where H0 is the initial heading, Hgy is the estimated heading from the PDR, σHi is the noise
value for the heading and Randnorm is a normal distributed random number. Following the ap-
proach from [20], the step length Si for the ith particle is calculated by (4.6):

Si = Sacc +Randnorm ∗ σS (4.6)

Where Sacc is the measured step length, and σS is the noise value for the step length. The
coordinates of the Position Xi and Yi for the ith particle is then calculated from the coordinates of
the last particle position Xlast,I and Ylast,i by (4.7) and (4.8):

Xi = Xlast,i + Si ∗ cosHi (4.7)

Yi = Ylast,i + Si ∗ sinHi (4.8)

Weighting methods

After the propagation of the particles, the weights of the particles are determined based on the
map information, using the following methods, which are also pictured in figure 4.4:

Weighting by line of sight: In the weighting by line of sight (wl) approach, the line representing
the direct connection between a particle and the last estimated position is checked for intersections
with walls for every particle, as shown in figure 4.4 (d). Algorithm 4.3 is the implementation of the
wl. First all weights are set to one. In line 2 to 5 a GeoDataFrame containing all direct connections
between the last estimated position and the current (propagated) particles as LineStrings. Then,

21

these connections are tested for intersections with the polygons representing the walls. For each
connection, that intersects a wall, the weight of the respective particle is set to the minimal weight.

Algorithm 4.3 Weighting by line of sight
Require: particles, walls, lastPosition

1: all weights = 1
2: for particle in particles do
3: append LineString(ParticlePosition, lastPosition) to connections
4: end for
5: convert connections to GeoDataFrame
6: intersections← spatial join on ’intersect’ of connections and walls
7: if number of intersections ≥ 1 then
8: for i← index of intersections do
9: wieghts[i]←MinimalWeight

10: end for
11: end if
12: return weights

Weighting by rooms: In the weighting by rooms (wm) method, every particle is examined if
it is positioned in a polygon representing a currently valid room. All particles located in a valid
room receive the weight 1, all other particles receive the minimal weight (see figure 4.4 (a)). In
algorithm 4.4, which implements the wm method, all weights are set to the minimal value of 0.001.
Then a spatial join between the two GeoDataFrames containing the particles and the valid rooms
are done, returning all particles within those valid rooms (line 2). For each of those particles in a
valid room, the weight is then set to 1 (line3 to 5). Different rooms could be used as valid rooms, in
this case all staircases, lifts and corridors are used as valid rooms. Rooms that are not part of these,
e.g. the small rooms in the test data set, can still be entered, if enough particles are in them, since
their weight is not set to zero but to 0.001 giving them still a very small influence on the position
estimate.

Algorithm 4.4 Weighting by rooms
Require: particles, V alidRooms

1: all weights = MinimalWeight
2: ParticlesWithin← spatial join on ’within’ of particles and V alidRooms
3: for i← index of intersections do
4: wieghts[i]← 1
5: end for
6: return weights

Weighting by walls: As in the wm approach, in the weighting by walls (ww) approach each
particle is checked if it is inside a polygon. In this case the polygons represent the buildings’ walls

22

and particles located in them are considered invalid and particles that are not inside the polygons
and are considered valid (see figure 4.4 (c)). The algorithm 4.5, used to implement the weighting
by walls (ww) method, is similar to algorithm 4.4, but the initial weights are set to 1. Now a spatial
join between the two GeoDataFrames containing the particles and the walls are done, returning all
particles within the walls (line 2). For each particle, that is located within a wall, the weight is then
set to the minimal weight.

Algorithm 4.5 Weighting by walls
Require: particles, walls

1: all weights = 1
2: ParticlesinWalls← spatial join on ’within’ of particles and walls
3: for i← index of ParticlesinWalls do
4: wieghts[i]← minimalWeight
5: end for
6: return weights

Weighting by rooting: The implemented weighting by routing (wr) approach is similar to the
approach of [20, 32], as described in section 3.2.1. Here the distance of each particle to the closest
routing edge is considered, as shown in figure 4.4 (b) and in line 2 of algorithm 4.6. For this,
the direct distances between all routing edges and the particle are queried, by using the distance

method of the GeoDataFrame containing all routing edges. The smallest of those distances is then
the direct distance between the particle and the closest routing edge (called mindist in algorithm
4.6. If this minimal distance is smaller than 3 m, the weight for this particle is calculated (line
4). If the minimal distance is greater than 3 m, the corresponding weight is set to the minimal
weight-value of 0.001. To make the algorithm faster and simplify the computations, the shortest
distance from each particle to the next routing edge has been used instead of always calculating
the orthogonal distances.

Algorithm 4.6 Weighting by routing
Require: particles, RoutingEdges

1: for particle in particles do
2: mindist← minimal of alldistances between RoutingEdges and particle
3: if mindist < 3 then
4: weight of particle← exp

(︂
−0.5 ∗ mindist2

ϵrout

)︂
5: else
6: weight of particle← minimalWeight
7: end if
8: end for
9: return weights

23

Figure 4.4: Overview of the used weighting methods, with the wm in (a), wr in (b), ww in (c) and
wl in (d)

Resampling

The algorithm for the resampling step (algorithm 4.7), is used to perform the low variance resam-
pling, as described in section 3.2.1. The resampling process is only started, if Neff is smaller than
0.7 (for the calculation see equation 3.5), otherwise the original particle positions are returned. To
determine the limits of the resampling intervals for the resampling, the cumulated values of the
particles’ weights are used (line3). In line 4 to 8, for each particle a random number between 0
and 1 is drawn and the position of every particle, which’s corresponding weight interval’s upper
limit is smaller than the drawn random number (line 6 and 7), is added to the list of particles to
resample (line 8). As explained in section 3.2.1 this results in particles with higher weight being
resampled more often. The weights are not changed, since the weights will be recalculated for
every particle during the next loop of the PF algorithm. The resampled particles are than returned
as a GeoDataFrame to be used in the next propagation step.

24

Algorithm 4.7 Resampling
Require: particles

1: if Neff =< 0.7 ∗ ParticleNumber then
2: for particle in particles do
3: intervals← list of cumulated weights
4: for each particle in particles do
5: rand1 ← randomnumber between 0 and 1
6: for i in Index of particles do
7: if intervalls[i] > rand1 then
8: append particles[i] to ResampledParticles
9: end if

10: end for
11: end for
12: end for
13: convert ResampledParticles to GeoDataFrame
14: return ResampledParticles
15: else
16: return Particles
17: end if

4.3 Backtracking Particle Filter with Geospatial Analysis

This section explains the implementation of the fundamental algorithms of the Backtracking PF
with geospatial analysis. Algorithm 4.8 describes the overall algorithm of this PF approach. As
input it requires the name of the chosen path and the name of the chosen filtering concept as string
and a boolean statement if the routing support (wr) should be used. Similar to the bootstrap PF
with geospatial analysis, first the data for the step heading, step length and step height for the
chosen path are loaded (line 1), followed by the setting of the needed parameters in line 2 to 5. In
line 6 the initial particles at the start position are created (see algorithm 4.9, before the for-loop
from line 7 on iterates over all steps while performing the PF-processes. For every step the current
floor is determined and the floor data is selected accordingly (line 8 to 10). In contrast to the
bootstrap PF with geospatial analysis, a step-object (Step) is created (line 11), which stores the
length, heading, height, current floor, the current position estimate and the room it is located in, as
well as all rooms where particles are allowed for the current step. In line 12 the particles’ positions
are then propagated and filtered regarding their plausibility according to the chosen filter concept
(for detailed explanation see algorithms 4.10 to 4.12). If routing support is active, the particles’
weights according to the wr method are determined afterwards, using algorithm 4.6, otherwise all
weights are set to one. The weighted mean of the particles position then, provides the position
estimate. Following the estimation of the position, the backtracking algorithm (see algorithm 4.13,

25

is executed to create new particles (corresponding to the resampling of the bootstrap particle filter)
and add them to the GeoDataFrame containing the propagated, valid particles. These are then
used in the next loop of the backtracking PF algorithm. After the PF is performed on the last step,
all calculated positions, as well as the standard deviation of each position estimate is returned and
saved as a CSV-file.

Algorithm 4.8 Backtracking PF

Require: path, FilterConcept, RoutingSupport = True/False
1: load Startpoint, StepHeading, StepLength, StepHeight according to chosen path
2: maxParticleNumber = 200
3: σR = 1.52

4: σH = 15 ∗ np.pi/180
5: σS = 0.1
6: particles← InitializeParticles(Start,maxParticleNumber, σH, σS)
7: for i in StepNumber do
8: CurrentF loor ← CheckFloor(Height)
9: FloorChanged← True/False

10: set FloorData according to the CurrentF loor
11: Step← Step(StepLength, StepHeading,Height, CurrentF loor, CurrentRoom,

V alidRooms,CurrentPosition, StepScale)
12: PropagatedParticles← CheckParticleSteps(particles, Step, F loorData,

F loorChanged, ransition)
13: if RoutingSupport is True then
14: weights← WeightingByRouting(PropagatedParticles, RoutingEdges)
15: else
16: set all weights to 1
17: end if
18: PositionEstimate← weighted mean of particles positions
19: append PositionEstimate to Trajectory
20: NumberOfNewParticles← maxParticleNumber−number of PropagatedParticles

21: BacktrackingStepNumber ← number of Steps, but max 32
22: BackTrackingSteps← walked Steps in reverse order until BacktrackingStepNumber

or a floor change is reached
23: particles← BackTracking(NumberOfNewParticles, PropagatedParticles,

BackTrackingSteps, F loorData,maxTries, σH, σS)
24: return PositionEstimate
25: end for
26: return Trajectory

26

Particle Initialization

In algortihm 4.9, the initialization of particles is shown. As for the bootstrap PF with geospatial
analysis, the start position is considered to be known and each particle position is calculated in
by adding a normally distributed noise value to the coordinates of the start position. Here, for
each particle an individual noise value for step heading and step length is generated by multiplying
the noise values for step heading (σH) and step length (σS) with a normally distributed random
number (line 3 and 4). The particles position, represented by Point-geometries, as well as the noise
values are then stored in a GeoDataFrame, that is returned.

Algorithm 4.9 Create initial particles
Require: Xstart, Ystart,MaxParticleNumber

1: for i such that 0 ≤ i ≤MaxParticleNumber do
2: append Point(Xstart + errrandnorm, Ystart + errrandnorm) to geometries
3: append σS + err to LengthNoise
4: append σH + err to AngleNoise
5: end for
6: InitialParticles← GeoDataFrame(geometries, LengthNoise, AngleNoise)
7: return InitialParticles

Propagation and particle check

In the backtracking PF with geospatial analysis, the propagation of the particles is integrated in the
filter process, in which the particles are checked for their plausibility by either the check for line of
sight (cl), check for room (cm) or check for routing (cr) concept. The new position of each particle
Xi, Yi is calculated in the propagation with equations 4.9 and 4.9:

Xi = Xlast,i + (S + ϵl,i) ∗ cos(H0 +Hgy + ϵh,i) (4.9)

Yi = Ylast,i + (S + ϵl,i) ∗ sin(H0 +Hgy + ϵh,i) (4.10)

Where H0 is the initial heading, Hgy is the estimated heading from the PDR, Sacc is the measured
step length and ϵl,i and ϵh,i are the noise values for step length and step heading for each ith particle.
The cl (see algorithm 4.10, requires the current particles, the current step object and the statement
if the floor changed in this step. It further requires the GeoDataFrame containing the polygons
representing the relevant stairs and lifts (called CurrentTransition in algorithm 4.10,4.11 and
4.12). In line 1 to 3, particles that are not located in the polygon contained in CurrentTransition

are deleted. The particles are than propagated as mentioned above. The step heading and step
length are obtained from the Step object. Next, a GeoDataFrame is created containing all the
connections between each propagated partice and it’s previous position (line 5 to 7). Every particle,

27

whose corresponding connection line intersects a wall is delete, every other particle is kept in the
GeoDataFrame (line 9 to 17). Finally the GeoDataFrame with the remaining particles is returned.

Algorithm 4.10 Check particles for intersections
Require: particles, Step, walls, F loorChanged, CurrentTransitions

1: if FloorChanged is True then
2: particles← particles in CurrentTransition
3: end if
4: PropagatedParticles← propagation(particles, StepHeading, StepLength)
5: for each p1 in particles and p2 in PropagatedParticles do
6: append LineString(p1,p2) to connections
7: end for
8: intersections← spatial join on ’intersect’ between connections and walls
9: if number of intersections ≥ 1 then

10: for p in PropagatedParticles do
11: if p is not endpoint of any line in intersections then
12: keep p
13: else
14: delete p
15: end if
16: end for
17: end if
18: return PropagatedParticles

Algorithm 4.11, for the cm concept is similar structured as algorithm 4.10. But here not
the walls are required as map information, but the rooms considered as valid for the particles
(V alidRooms) and doors. If a floor change took place, the rooms currently contained in the
GeoDtaFrame V alidRooms are replaced with the polygon-geometry representing the current tran-
sition (line 1 to 3). For each propagated particle, it is checked if it is either within one of the valid
rooms or if the LineString-geometry from it’s new and it’s previous position intersects either with
any door-polygon or any polygon contained in Transitions. If that is the case, it is appended to
the valid particles (line 5 to 9), which are finally returned as a GeoDataFrame.

28

Algorithm 4.11 Check particles for containing room

Require: particles, Step, F loorChanged, Transition, V alidRooms, doors)
1: if FloorChanged is True then
2: particles← particles in CurrentTransition
3: end if
4: PropagatedParticles← propagation(particles, StepHeading, StepLength)
5: for each p1 in particles and p2 in PropagatedParticles do
6: if p2 is in V alidRooms or LineString(p1,p2) intersects Doors or Transitions then
7: append p2 to V alidParticles
8: end if
9: end for

10: return V alidParticle

The algorithm 4.12, for the cr concept, is similar to 4.6. All particles are propagated in the
same way as in algorithm 4.10 and 4.11. For each propagated particle the smallest distance to the
routing edges is determined (as in algorithm 4.6). Only if the smallest distance to the routing edges
for a particle is smaller than 2 m, it is appended to the list of valid particles (line 3 to 4). The valid
particles are then, as for the other concepts, returned as a GeoDataFrame.

Algorithm 4.12 Check particles for distance to routing edges
Require: particles, Step, RoutingEdges

1: PropagatedParticles← propagation(particles, StepHeading, StepLength)
2: for each p in PropagatedParticles do
3: if distance between p and RoutingEdges < 2 then
4: append p to V alidParticles
5: end if
6: end for
7: return V alidParticles

Backtracking

Following, the algorithms for the backtracking procedure are explained. Algorithm 4.13 overall
procedure, which basically tries to generate new particles until the maximal number of particles is
reached again. First, a number particles, according to the difference between the number of valid
particles and the maximum number of particles, is randomly chosen from the currently existing
particles (line 2). For each sample particle, a new particle at a random position inside radius
(line 1) is proposed (line 5). For this proposed particle, a backtracking test is performed and if
it passes the test, it is appended to the existing particles (line 6 to 8). If the particle doesn’t pass
the backtracking test, the procedure is repeated until either the maximum number of particles is
reached or until a maximum number of tries (in this case eight tries) has been reached. The limited

29

number of tries will prevent an unnecessary slowing down of the algorithm, due to a very high
number of tries for each particle. The GeoDataFrame, to which the accepted particles are added,
is finally returned.

Algorithm 4.13 Backtracking
Require: NumberOfNewParticles, particles, BackTrackingSteps, walls,MaxTries,

σH, σS
1: Radius = 1
2: Samples← randomChoice(particles,NumberOfNewParticles))
3: for p in Samples do
4: while Try > 0 do
5: NewParticle← ProposeParticle(p,Radius)
6: if BackTrackingTest(NewParticle) is passed then
7: append NewParticle to particles
8: end if
9: Try = Try − 1

10: end while
11: end for
12: return particles

For each concept of the checking of particles, the corresponding concept for the backtracking
test is used. The backtracking test that is used with the cl concept is shown in algorithm 4.14. For
each backtracking step i− 1 from the current step i the new position Xp,i−1, Yp,i−1 of each particle
p is calculated from the current position of the particle Xp,i, Yp,i with equation 4.11 and 4.12:

Xp,i−1 = Xp,i − (Si−1 + ϵl,p) ∗ cos(H0 +Hgy,i−1 + ϵh,p) (4.11)

Yp,i−1 = Yp,i − (Si−1 + ϵl,p) ∗ sin(H0 +Hgy,i−1 + ϵh,p) (4.12)

Where Si−1 is the step length of the last step and Hgy,i−1 is the heading of the last step. Each new
particle position is added to the backtracking trajectory (line 1 to 3). The backtracking trajectory is
then checked for intersections with walls. If any intersections are found, the backtracking test is not
passed and it returns False, otherwise it is considered as passed and the algorithm returns True (line
5 to 8). It is not checked for intersection at every step, but for all steps simultaneously, because the
query for intersections is the most time consuming step and the usage of GeoDataFrames makes it
more efficient to query for intersections of the LineString-geometry representing the whole trajec-
tory, than to query for intersections at each step, if multiple steps are considered.

30

Algorithm 4.14 Backtracking test intersections
Require: particle, Steps, walls

1: for each s in BacktrackingSteps do
2: propagate(particle, s)
3: append new position of particle to trajectory
4: end for
5: if trajectory intersects walls then
6: return False
7: end if
8: return True

The algorithm 4.15 is used for the backtracking test, that is performed in the cr concept. For
each propagation according to the backtracking steps (see equation 4.11 and 4.12), it is checked
if any of the polygons in the GeoDataFrame of the valid rooms contains the particle at the new
position (line 3 to 7). If it is contained in a valid room, the test continues, otherwise it returns
False. If the for-loop can proceed for all backtracking steps, the backtracking test is considered as
passed and it returns True.

Algorithm 4.15 Backtracking test rooms
Require: particle, Steps, V alidRooms

1: for each s in Steps do
2: propagate(particle, s)
3: if V alidRooms contains particle then
4: continue with test
5: else
6: return False
7: end if
8: end for
9: return True

For the cr, the algorithm 4.16 is used for the backtracking test. It is similar to algorithm 4.15.
The only difference is, that here for every backtracking step the shortest distance between the
particles’ new position and the closest routing edge is determined. If it is less then 2 m the for-loop
continues, if it is 2 m or more the backtracking test stops and returns False.

31

Algorithm 4.16 Backtracking test routing
Require: particle, Steps, RoutingEdges

1: for each s in Steps do
2: propagate(particle, s)
3: if distance between particle and RoutingEdges < 2 then
4: continue with test
5: else
6: return False
7: end if
8: end for
9: return True

32

5 Results
In this chapter, the results of two test trajectories are presented and discussed. Both, the bootstrap
Particle Filter (PF) and the backtracking PF with geospatial analysis have been tested on two tra-
jectories through the HafenCity University (HCU) building, the eight path and the zerotofour path,
as described in section 4.1. First, different weighting methods for the bootstrap PF are tested and
compared (section 4.2), followed by the comparison of the test results of the different concepts
of the backtracking PF (section 4.3). For both PF approaches, different values to correct the sys-
tematic error of the step lengths (see section 4.1) have been tested. The comparison of different
corrections of the step length enabled interpretations regarding the robustness of the PF algorithms
in regards to systematic error of the step length estimation. Finally, the results of the backtracking
PF and the bootstrap PF are compared to each other (section 5.3). To compare the accuracy of the
different PF algorithms, the Cumulative Distribution Function (CDF) of the positioning error has
been calculated. The CDF has been calculated for discrete error values, without fitting of a normal
distribution function to the cumulative probabilities of the error values.

5.1 Bootstrap Particle Filter

The bootstrap PF has been tested with the following weighting methods (described in section 4.2):
weighting by rooms (wm), weighting by line of sight (wl), weighting by routing (wr) and weighting
by walls (ww). Further, the wm, wl and ww concept have been tested in conjunction with the wr

concept. Figure 5.1 shows the CDF of the the position error for the different weighting concepts for
the eight path with a step correction of 0.1 m. The wl method stands out by it’s bad performance,
an error of 5 m or less could only be achieved for slightly more than 40 % of the steps. In 90
% a position error of nearly 9 m or less could be achieved. The wm concept, with and without
additional use of the wr concept as well as the wl in combination with the wr concept provided the
best results, with an error of 2 - 3 m in 90 % of the time.

33

Figure 5.1: CDF of the positioning error of the eight path with step length correction of 0.1 m for
the bootstrap PF and the PDR without a step correction.

The combination of the wr and the wl method reduced the positioning error significantly, which
can also be observed on the respective trajectories, displayed in figure 5.2. When only the wl

method is used, the trajectory falsely deviates into neighbouring rooms (see figure 5.2 (a)) because
the doors are not considered in the wl method. Once the estimated position is in a wrong room, all
particles outside of this wrong room are falsely considered invalid because they are located behind
walls, viewed from the last estimated position. When additionally using the wl method, particles
close to the routing edges receive a higher weight. This decreases the influence of the particles
further away in the wrong rooms on the position estimate and therefore helps in preventing the
position to be calculated in a wrong room, resulting in the trajectory in figure 5.2 (b). Despite the
improved accuracy, the trajectory from the combination of wl and wr missed the last turn. For the
wm method, the additional use of the wr method had a negligible effect on the error of the position
estimate and for the ww method, the effect was small as well.

34

Figure 5.2: Trajectory from the wl method (a)) and the combination of wl and wr method (b)) for
eight path with step length correction of 0.1 m

Figure 5.3 shows the error CDF for the zerotofour path with a step correction of 0.2 m, that was
added to each step’s length. The position errors for the zerotofour path are generally larger than
for the eight path, while the accuracy of the individual weighting methods are less distinguishable
than for the eight path. This is mainly a result from the situation that this path lead through more
wide areas, such as the big entry hall at the ground floor, that provide only very little opportunities
to correct wrongly estimated paths of the particles. Since less information is available, the
trajectories are more similar to each other, as well as to the trajectory, which would be derived
solemnly from the PDR.

The wr as well as all other methods in combination with the wr method provided slightly better
results for the accuracy (with a probability of 90 % for an error of less than 6 m) than the ww, wm

and wl method by themselves, which could achieve a accuracy between 6 and 7 m or better at 90
% of the time.

35

Figure 5.3: CDF of the positioning error of the zerotofour path with step length correction of 0.2
m for the bootstrap PF and and the PDR with a step correction of 0.2 m

Figure 5.4 shows the trajectories of the wl, ww and wm methods in combination with the wr

for the zerotofour path. Of all the tested methods only the trajectories of the ww with wr and the
wm method were able to enter the elevator during the zerotofour path, while the other trajectories
missed it closely. The last room was only reached by the trajectories from the ww in combination
with the wr as well as the wm method with and without the additional support through the wr

method. The combination of wl and wr even missed the last turn in the 4th floor, where some
positions could not be estimated because all particles were invalid.

36

Figure 5.4: Trajectories of the wl (a)), wm (b)) and ww (c)) methods in combination with the wr
for the zerotofour path with step correction of 0.2 m; green dots: estimated positions

The results for the eight path without any step length correction is displayed in figure 5.5. The
performance of the wl method with and without the wr method worsens significantly. The accuracy
of the wm method is similar to the test with a step correction of 0.1 m, with a positioning error of
2 to 3 m 90 % of the time. The ww and the wr methods performed similar to the test with a step
correction with 0.1 m as well.

37

Figure 5.5: CDF of the positioning error of the eight path without step length correction for the
bootstrap PF and the PDR without a step correction.

The wl method is strongly effected by the smaller step correction, because shorter steps result
in earlier turns at corners, placing many particles behind corners or walls, blocking the Line of
Sight (LOS) to the last position. This leads to a back turn of the trajectory (as seen in figure 5.6 (a),
leading it through a door into the neighbouring room, while the wm method only cuts the corner a
bit too early (see figure 5.6), as the particles on the other side are in the same room (the corridor)
and therefor valid.

38

Figure 5.6: Trajectories from the wl method (a)), turning back and the wm method (b)) cutting the
corner; green dots: estimated positions, red arrows: walked path

For the zerotofour path, a decrease of the the step correction value to 0.15 m resulted in higher
positioning errors, shown in figure 5.7. The wl, ww and wm method, all in combination with the
wr method, reached a position accuracy of 7.5 m or better in 90 % of the steps. The wm and ww

methods with wr support achieved an overall better accuracy than the wr and wl combination. The
combination of the wl and wr method could enter the elevator, but failed to take last turn at the
4th floor. As in the previous test for the zerotofour path, at some positions at the missed turn, all
particles were invalid. The wm and ww methods with routing support on the other hand missed the
elevator slightly, but reached the last room.

39

Figure 5.7: CDF of the positioning error of the zerotofour path with step length correction of 0.15
m for the bootstrap PF and the PDR with step length correction of 0.15 m.

As it can be seen from the test results, a good step length estimation is important to reach a
high accuracy with the bootstrap PF with geospatial analysis. In contrast to the random error of
the step length and heading, which is the result of noisy measurements of the IMU, the systematic
error of the step length can not be mitigated as well by the PF algorithm. This is especially true
for the zerotofour path. The eight path mainly leads through narrow corridors with many turns,
which gives more opportunities to correct for wrongly estimated positions. The zerotofour path
on the other hand passes the entrance hall in the ground floor as well as in the first floor, provid-
ing less opportunities for corrections of the particles’ positions, especially in the first half of the
trajectory. For this reason, all weighting methods work less well, even with a sufficient correction
for the systematic step length error, for the zerotofour path. For both paths, the wm method in
combination with the wr method provided the best results overall, regarding the accuracy as well
as the determination of the correct room, closely followed by the combination of the ww and wr

method.

40

5.2 Particle Filter with Backtracking

The backtracking PF has been tested with the three different concepts check for line of sight (cl)),
check for room (cm), check for routing (cr) for particle checks (as described in section 4.2). The
CDF for the position estimate error for the different concepts used for the eight path, with a step
correction of 0.1 m, is shown in figure 5.8. The cm and cr method reached an overall similar
accuracy, with the cm method reaching a accuracy of less than 4 m and the cr method reaching a
accuracy of just less than 3 m in 90 % of the steps.

Figure 5.8: CDF of the positioning error of the eight path with step length correction of 0.1 m for
the backtracking PF and the PDR with step length correction of 0.1 m.

The cl method performed significantly worse, this is mainly due to the situation that at a step
correction of 0.1 m, enough particles are overshooting at one of the turns, ending up in the ”gallery”
that the positions for the next steps is estimated to be on the wrong side of the wall (see figure 5.9.

41

Figure 5.9: Part of the trajectory of the eight path, that wrongly proceeds in the ”gallery”, when
using the wl method, black arrows indicating the walking direction, the green points representing
the position estimates for each step.

At this point, the backtracking functionality can be observed (see figure 5.10). At the end of
the ”gallery”, with every subsequent step more particles get deleted because they would cross a
wall, resulting in the backtracking algorithm to resample the invalid particles at more plausible
corrections (as explained in section 4.3) and by this, changing the trajectory to the correct path.

Figure 5.10: Example of the trajectory correction (from (a) to (b)) through the backtracking func-
tionality, the green dots represent the valid, propagated particles, the blue dot is the resulting posi-
tion estimate

This was also an exception, where the wr method helped to significantly increase the accuracy

42

to less than 4.5 m in 90 % of steps, by correcting the trajectory closer to the next routing edge (see
figure 5.11). Since the ”gallery” does not contain any routing edges, the trajectory was directed
back into the corridor. The effect of the wr method was negligible for the other methods.

Figure 5.11: Effect of the support through the wr support on the deviated trajectory.

Figure 5.12 shows the CDF of the position estimate error for the zerotofour path with a step
correction of 0.2 m. The accuracy for all methods is between 5 and 6 m in 90 % of the steps.
The cm method can provide an position error of less than 4 m more often than the two other
methods. From the three methods, only the cm method lead the trajectory into the elevator, while
only the cr method reached the final room. The cm and the cl method both lead the trajectory in
the neighbouring room, west of the final room.

43

Figure 5.12: CDF of the positioning error of the zerotofour path with step length correction of 0.2
m for the backtracking PF and the PDR with step length correction of 0.2 m.

For the eight path without step correction, a accuracy better than 3 m can be achieved with
the cm and cl method, while the overall performance of the cr method falls behind the two other
methods, as shown in figure 5.13. The use of additional routing support (wr) even worsens the
achievable accuracy of the cr method. For the cm and cl method, the cr has only a small influence
on the error of position estimate. The cl method perform significantly better (also see figure 5.14),
mainly, because less particle overshoot at the turn at the eastern corner. This way the trajectory
doesn’t deviate into the ”gallery”.

44

Figure 5.13: CDF of the positioning error of the eight path without step length correction for the
backtracking PF and the PDR without step length correction.

Figure 5.14: Trajectory (green dots) from the cl method for the eight path without step length
correction for the backtracking PF

Figure 5.15 shows the different method’s CDF of the positioning error for the zerotofour path
with a step length correction of 0.15 m. All methods, with and without the additional use of the

45

wr method achieve a positioning error of less than 7 m in 90 % of the steps, while the cm and cl

methods achieve a significantly better accuracy for the positioning than the cr method. The wr

method only has a minor influence on the accuracy of the used methods, slightly improving the cl

method and slightly decreasing the accuracy of the cm method. The elevator could be reached by
the cl method as well as the cl and cm methods with routing support (wr). It was closely missed
by the cm method. The cr method, was the only one, which reached the destination room, all other
trajectories ended in the same neighbouring room.

Figure 5.15: CDF of the positioning error of the zerotofour path with step length correction of 0.15
m for the backtracking PF and the PDR with step length correction of 0.15 m.

In most cases the cm and the cl method had the best accuracy. The eight path with a step
correction of 0.1 m is the exception, here the cl method reached a significantly worse accuracy,
due to the above mentioned situation, that the trajectory gets ”trapped” in the gallery for a part of
the trajectory.

46

5.3 Comparison of Bootstrap and Backtracking Particle Filter

In this section the results for the test of the bootstrap PF and the backtracking PF with geospatial
analysis are compared with each other. Since the wr method didn’t reduce the run speed of the
weighting methods in the bootstrap PF, but increased the accuracy of the position estimation in
most cases, all weighting methods for the bootstrap PF are considered in combination with the wr

method for this comparison. Figure 5.16 shows the error CDF for the different methods of the
backtracking and the bootstrap PF algorithm for the eight path with a step correction of 0.1 m.
The bootstrap PF with the wm and the wl methods achieve the best accuracy, followed closely by
the backtracking PF with the cm method. Though the wl method of the bootstrap PF achieved an
overall good accuracy, it missed the last corner (see figure 5.2. The trajectories of the bootstrap PF
with the wm method and the backtracking PF with the cm method are shown in figure 5.16.

Figure 5.16: Comparison between the CDF of the positioning error of the eight path with a step
length correction of 0.1 m of the backtracking PF and the bootstrap PF

47

Figure 5.17: Trajectories of the wm and wr method of the bootstrap PF (a)) and the cm method of
the backtracking PF (b)) for the eight path with a step length correction of 0.1 m

The comparison of the error CDF of the two PF approaches for the zerotofour path with 0.2 m
step correction is shown in figure 5.18. The cm method of the backtracking PF achieves the best
accuracy most of the time. It is closely followed by the cl method of the backtracking PF and the
bootstrap PF methods, which provide overall similar accuracy most of the time. As mentioned
in section 3.2.1, the bootstrap PF with wl misses the last turn and doesn’t come as close to the
destination room as the other approaches. Even though the bootstrap PF with wm manages to
reach the last room, in contrast to the backtracking PF methods, it generally performs less well,
including the cutting of the last corner.

48

Figure 5.18: Comparison between the CDF of the positioning error of the zerotofour path with a
step length correction of 0.2 m of the backtracking PF and the bootstrap PF

For the eight path without step correction, the backtracking PF with the cm method achieved
the overall best accuracy, followed by the cl method and than the bootstrap PF with the wm and
wr method, as can be seen in figure 5.19. The wm method of the bootstrap PF could achieve a
accuracy of less than 2 m less often than the two mentioned backtracking PF methods, but errors
of more than 2.5 m occurred less often.

49

Figure 5.19: Comparison between the CDF of the positioning error of the eight path without step
length correction of the backtracking PF and the bootstrap PF

For the zerotofour path with a step length correction of 0.15 m, the cl and the cm method of
the backtracking PF could provide the best accuracy, with only minor differences to each other.
While the difference between these two backtracking PF methods and the bootstrap PF methods
wl and wm (plus wr) is pronounced for the occurrence of errors less than 4.5 m, the difference in
the number of occurrences of higher error values is considerably smaller.

50

Figure 5.20: Comparison between the CDF of the positioning error of the zerotofour path with a
step length correction of 0.15 m of the backtracking PF and the bootstrap PF

Altogether, the backtracking PF with the cm and cl method provides slightly better results than
the bootstrap PF methods, with the cm method being a little bit more robust, though the differences
are often small. But even in the cases, where the bootstrap PF algorithms show very similar or
even a slightly better accuracy, the backtracking PF methods tend to detect the position in specific
rooms slightly better, such as the lift or the final room in the zerotofour path, as seen in 5.21
where the trajectories of the zerotofour path of the bootstrap PF with the wm method (a)) and the
backtracking PF with the cm method (b)) are shown. In the backtracking PF, at least one position
is located inside the elevator and the last steps resemble more the actual walked path, even though
it enters one room too early. The jumps in the trajectory of the backtracking PF are the result from
the deletion of many particles when a floor change is detected and only particles in elevators and
stairs are considered valid. If many particles have been deleted, the next position estimate can
deviate more than the estimated step length from the previous one.

51

Figure 5.21: Comparison between the trajectories of the bootstrap PF with the wm method (a)) and
the backtracking PF with cm method (b)). Green dots represent the estimated positions at each step

Even though the cl method of the backtracking PF is temporary deviating from the walked route
for the eight path, the effect of the backtracking algorithm, correcting the wrong path, shows the
potential robustness of the backtracking PF.

52

6 Conclusion and Outlook
In this thesis, a bootstrap and a backtracking PF algorithm have been developed that use geospatial
analysis to determine the plausibility of the particles based on building information. The goal
was to develop a PF algorithm that provides a meter scale position accuracy for indoor navigation
without the use of GPS or infrastructure assistance and allows the use of building information in
the GeoJSON format.

For this, first the underlying concepts and methology were explained and related work was
presented. Then, the concepts as they were further developed and adjusted for this thesis have
been explained, including the underlying mathematics, followed by the detailed explanation of
the implementation in the algorithms of the two PF approaches. Finally the used data set was
presented and the results of the bootstrap and the backtracking PF with geospatial analysis have
been investigated and discussed.

For the bootstrap PF several methods for the determination of the particles’ weights were de-
veloped, namely the weighting by line of sight (wl) approach, weighting by rooms (wm) approach,
the weighting by walls (ww) approach and the weighting by routing (wr) approach. For the
backtracking PF algorithm three methods were developed, that determine invalid particles based
on different building information, namely the check for line of sight (cl), check for room (cm) and
check for routing (cr) method.

The results of the different methods of both PF approaches have been tested with the data from
two paths through the HafenCity University (HCU) building and have been compared in regards
to the attainable position accuracy as well as the ability to detect certain rooms.

For the bootstrap PF, the wm method provided the overall best results, while the wl method
was less reliable in the eight path. The cm and cl of the backtracking PF reached a slightly
better precision than the approaches of the bootstrap PF, with the cm method being a bit more
robust. The backtracking PF approaches admittedly needed more computation power, resulting
in significantly longer run times than the bootstrap PF methods, but they were better in detecting
estimating position to be in specific rooms (e.g. the elevator or the final room in the zerotofour

path). Altogether it was possible to develop two PF algorithms that could reach an accuracy of
2 to 7 m in most test cases for indoor navigation, by only using building information, without
any infrastructure or GPS support, if an sufficient step length estimation model is used for the
determination of the used step lengths.

53

There is still potential for improvement, especially for situations, where large hallways provide
only little possibilities for corrections. Further, the accuracy developed PF approaches is deendent
on the quality of the provided map information, resulting in better performances the better the
map material is. Of all the tested methods cm method of the backtracking PF approach might be
favorable, not only because it’s performance regarding the position precision and room accuracy,
but also because additional information for the accessibility of rooms can relatively easily be
implemented. An broken elevator could for example easily be declared an invalid room.

The weakness of both PF algorithms on the one hand is the sensibility to systematic errors in
the step length estimation and on the other hand open spaces, that provide little information for
corrections. The quality of the step length estimation could be improved either by scaling the step
length every time an absolute position can be attained with high precision and accuracy, either
through infrastructure support or when a position is determined with relatively high confidence
regarding their correctness, for example when using an elevator change the floor. On the other
hand machine learning algorithms could be used for a more precise step length estimation.
Another option would be to use data sets of step length in relation to other biometric information
from a huge number of people. But these are costly and hard to attain.

Because of the relatively simple and modular code structure, it is possible to add or exchange
methods and functionalities to both PF approaches that have been developed in this thesis. This
would also include the additional use of position estimation from 5G antennas, as implemented
in [24]. Since the already calculated step length and heading is used for the PF algorithms, their
usage is not limited for the use by pedestrians, but they could also, for example be implemented
for the indoor navigation of robots or any other moving object, as long as travelled distance (which
can easily be calculated from the speed) and heading is provided.

54

BIBLIOGRAPHY

[1] Paramvir Bahl and Venkata N Padmanabhan. RADAR: An in-building RF-based user loca-
tion and tracking system. In Proceedings IEEE INFOCOM 2000. Conference on computer
communications. Nineteenth annual joint conference of the IEEE computer and communica-
tions societies (Cat. No. 00CH37064), volume 2, pages 775–784. Ieee, 2000.

[2] Moustafa Youssef and Ashok Agrawala. The Horus location determination system. Wireless
Networks, 14(3):357–374, 2008.

[3] Jaewoo Chung, Matt Donahoe, Chris Schmandt, Ig-Jae Kim, Pedram Razavai, and Micaela
Wiseman. Indoor location sensing using geo-magnetism. In Proceedings of the 9th interna-
tional conference on Mobile systems, applications, and services, pages 141–154, 2011.

[4] Niklas Karlsson, Enrico Di Bernardo, Jim Ostrowski, Luis Goncalves, Paolo Pirjanian, and
Mario E Munich. The vSLAM algorithm for robust localization and mapping. In Proceedings
of the 2005 IEEE international conference on robotics and automation, pages 24–29. IEEE,
2005.

[5] Stephen P. Tarzia, Peter A Dinda, Robert P Dick, and Gokhan Memik. Indoor localization
without infrastructure using the acoustic background spectrum. In Proceedings of the 9th in-
ternational conference on Mobile systems, applications, and services, pages 155–168, 2011.

[6] Hossein Shoushtari, Thomas Willemsen, and Harald Sternberg. Many ways lead to the
goal—possibilities of autonomous and infrastructure-based indoor positioning. Electronics
(Switzerland), 10(4):1–17, 2021.

[7] Fan Li, Chunshui Zhao, Guanzhong Ding, Jian Gong, Chenxing Liu, and Feng Zhao. A
Reliable and accurate indoor localization method using phone inertial sensors. In Proceedings
of the 2012 ACM Conference on Ubiquitous Computing - UbiComp’12, pages 421–430, 2012.

[8] Changhao Chen, Peijun Zhao, Chris Xiaoxuan Lu, Wei Wang, Andrew Markham, and Niki
Trigoni. Deep-Learning-Based Pedestrian Inertial Navigation: Methods, Data Set, and On-
Device Inference. IEEE Internet of Things Journal, 7(5):4431–4441, 2020.

[9] Renaud Dubé, Daniel Dugas, Elena Stumm, Juan Nieto, Roland Siegwart, and Cesar Ca-
dena. SegMatch: Segment based place recognition in 3D point clouds. In Proceedings of the
2017 IEEE International Conference on Robotics and Automation (ICRA), pages 5266–5272,
2017.

55

[10] Elzbieta Lewandowicz. Network models of 2d and 3d carastral data. In Environmental Engi-
neering. Proceedings of the International Conference on Environmental Engineering. ICEE,
volume 9, page 1. Vilnius Gediminas Technical University, Department of Construction Eco-
nomics & Property, 2014.

[11] Chun Yang, Thao Nguyen, and Erik Blasch. Mobile positioning via fusion of mixed signals
of opportunity. IEEE Aerospace and Electronic Systems Magazine, 29(4):34–46, 2014.

[12] Jiaqi Yang, Zhiguo Cao, and Qian Zhang. A fast and robust local descriptor for 3d point
cloud registration. Information Sciences, 346:163–179, 2016.

[13] Sachini Herath, Hang Yan, and Yasutaka Furukawa. Ronin: Robust neural inertial navigation
in the wild: Benchmark, evaluations, amp; new methods. In Proceedings of the 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 3146–3152, 2020.

[14] Neil J Gordon, David J Salmond, and Adrian F M Smith. Novel approach to nonlinear/non-
Gaussian Bayesian state estimation. In IEE proceedings F (radar and signal processing),
volume 140, pages 107–113, 1993.

[15] Chi Ming Esmond Mok, Chung Ming Lau, L Xia, G Retscher, and H Tian. Influential factors
for decimetre level positioning using ultra wide band technology. Survey Review, 44(324):37–
44, 2012.

[16] Reza Zekavat and R Michael Buehrer. Handbook of position location: Theory, practice and
advances, volume 27. John Wiley & Sons, 2011.

[17] Jörg Blankenbach, Abdelmoumen Norrdine, Hendrik Hellmers, and Eduard Gasparian. A
novel magnetic indoor positioning system for indoor location services. In Proceedings of the
8th International Symposium on Location-Based Services, pages 1–11, 2011.

[18] 3gpp. Release 17. https://www.3gpp.org/release-17. Accessed: 2021-07-28.

[19] Adrián Cardalda Garcı́a, Stefan Maier, and Abhay Phillips. Location-Based Services in Cel-
lular Networks: from GSM to 5G NR. Artech House, 2020.

[20] Thomas Willemsen. Fusionsalgorithmus zur autonomen Positionsschätzung im Gebäude,
basierend auf MEMS-Inertialsensoren im Smartphone. PhD thesis, HafenCity Universität
Hamburg, 2016.

[21] Catia Real Ehrlich and Jörg Blankenbach. Indoor localization for pedestrians with real-time
capability using multi-sensor smartphones. Geo-Spatial Information Science, 22(2):73–88,
apr 2019.

[22] Widyawan, Martin Klepal, and Stéphane Beauregard. A Novel Backtracking Particle Filter
for Pattern Matching Indoor Localization. In Proceedings of the First ACM International
Workshop on Mobile Entity Localization and Tracking in GPS-Less Environments, MELT
’08, pages 79–84, New York, NY, USA, 2008. Association for Computing Machinery.

56

https://www.3gpp.org/release-17

[23] Chuanhua Lu, Hideaki Uchiyama, Diego Thomas, Atsushi Shimada, and Rin-ichiro
Taniguchi. Indoor positioning system based on chest-mounted IMU. Sensors, 19(2):420,
2019.

[24] Hossein Shoushtari, Cigdem Askar, Dorian Harder, Thomas Willemsen, and Harald Stern-
berg. 3D Indoor Localization using 5G-based Particle Filtering and CAD Plans. IPIN, 2021.
accepted (preprint).

[25] Christopher Cappelli. The Language of Spatial Analysis. Esri Press, 2013. https:
//www.esri.com/content/dam/esrisites/sitecore-archive/Files/
Pdfs/library/books/the-language-of-spatial-analysis.pdf, Ac-
cessed: 2021-07-01.

[26] Donna Peuquet. A conceptual framework and comparison of spatial data models. Car-
tographica: The International Journal for Geographic Information and Geovisualization,
21:66–113, 10 1984.

[27] GeoPandas developers. Geometric manipulations. https://geopandas.org/docs/
user_guide/geometric_manipulations.html. GeoPandas documentation, Ac-
cessed: 2021-07-02.

[28] Sean Gills. The Shapely User Manual. https://shapely.readthedocs.io/en/
latest/manual.html#binary-predicates, 2021. Accessed: 2021-07-02.

[29] Jan Wendel. Integrierte Navigationssysteme. Oldenbourg Verlag, München, 2011. doi:
10.1524/9783486705720, isbn: 9783486704396.

[30] Prianka Aggarwal, Zainab Syed, Naser El-sheimy, and Abeoelmagd Noureldin. MEMS-
Based Integrated Navigation. Norwood : Artech House, 2010.

[31] M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial on particle
filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal
Processing, 50(2):174–188, 2002.

[32] Thomas Willemsen, Friedrich Keller, and Harald Sternberg. Kartengestützte MEMS-basierte
Indoor- positionierung mittels Partikel Filter. In Oldenburger 3D-Tage 2015, 2015.

[33] Thomas Willemsen, Friedrich Keller, and Harald Sternberg. A topological approach with
mems in smartphones based on routing-graph. In 2015 International Conference on Indoor
Positioning and Indoor Navigation (IPIN), pages 1–6. IEEE, 2015.

[34] Franco P Preparata and Michael I Shamos. Computational Geometry – An Introduction.
Springer Verlag, 1988.

[35] Grinbergnir. Codeproject - is a point inside a polygon? http://www.codeproject.
com/Tips/84226/Is-a-Point-inside-a-Polygon. Accessed: 2021-07-20.

57

https://www.esri.com/content/dam/esrisites/sitecore-archive/Files/Pdfs/library/books/the-language-of-spatial-analysis.pdf
https://www.esri.com/content/dam/esrisites/sitecore-archive/Files/Pdfs/library/books/the-language-of-spatial-analysis.pdf
https://www.esri.com/content/dam/esrisites/sitecore-archive/Files/Pdfs/library/books/the-language-of-spatial-analysis.pdf
https://geopandas.org/docs/user_guide/geometric_manipulations.html
https://geopandas.org/docs/user_guide/geometric_manipulations.html
https://shapely.readthedocs.io/en/latest/manual.html#binary-predicates
https://shapely.readthedocs.io/en/latest/manual.html#binary-predicates
http://www.codepro ject.com/Tips/84226/Is-a-Point-inside-a-Polygon
http://www.codepro ject.com/Tips/84226/Is-a-Point-inside-a-Polygon

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Algorithms
	List of Acronyms
	Abstract
	Kurzfassung
	Introduction
	Literature Review
	Methodology
	Geospatial Analysis
	Particle Filter
	Bootstrap Particle Filter
	Particle Filter with Backtracking

	Implementation
	Data Set
	Bootstrap Particle Filter with Geospatial Analysis
	Backtracking Particle Filter with Geospatial Analysis

	Results
	Bootstrap Particle Filter
	Particle Filter with Backtracking
	Comparison of Bootstrap and Backtracking Particle Filter

	Conclusion and Outlook
	Bibliography

