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S1: Comparison of GRACE and GRACE-REC

Figure 1 shows the yearly global mean anomaly time series of GRACE-REC (Humphrey
& Gudmundsson, 2019), as displayed in figure 1 of the main text, together with the original
GRACE observations (Luthcke et al., 2013) used for creation of the GRACE-REC data set
for the time span 1970 – 2014 (2003 – 2014 for observations). The GRACE observations lie
within the error bounds of the reconstruction and the correlation of the two time series is
0.92. Thus, we consider GRACE-REC as a reasonably reliable proxy within the realm of our
study.

Figure 1. Yearly global mean anomaly time series of GRACE-REC (red) and original GRACE

observations (blue) for the time span 1970 – 2014 (2003 – 2014 for observations).
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S2: Calculation of uncertainties

Along with the GRACE-REC time series o(t), Humphrey and Gudmundsson (2019)
provide an ensemble of randomly generated ensemble members yi(t) to incorporate the spatial
and temporal error structure of the gridded TWS reconstruction into uncertainty estimates
of spatial averages (e.g. global continental mean). The standard deviation of the GRACE-
REC time series is computed as the unbiased sample standard deviation of these perturbed
ensemble members yi(t) according to

σo(t) =

√

√

√

√

1

M − 1

M
∑

i=1

(yi(t)− ȳ(t))2. (1)

Here, M is the number of ensemble members (here 100), yi(t) is the TWS anomaly of the
GRACE-REC member i at time step t, and ȳ(t) is the arithmetic mean of all ensemble
members.

The Init and Hist multi-model mean (MMM) time series (see figure 1 of the main text)
are each calculated as the weighted mean of all ensemble members, to avoid that a single
model contributes to the MMM with a higher weight due to a larger number of ensemble
members:

m(t) =

∑N
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wixi(t)
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wixi(t) (2)

The total number of ensemble members is denoted by N (e.g. 39 for Init), xi(t) is the mTWS
value of ensemble member i at time step t, and wi is the weight assigned to the ensemble
member i. The weights wi = 1/K are calculated as the reciprocal value of the number K
of ensemble members per model, with K varying between 3 and 10. E.g., if a model has 3
members, each of them gets a weight of 1/3. As a result, all weights wi sum up to the number
of models V =

∑N

i=1
wi (e.g. 5).

When calculating the uncertainties of the MMM time series also the internal model
uncertainties have to be taken into account, i.e., the weighted standard deviation has to be
applied. Analogously to the weighted mean, the (biased) weighted standard deviation is given
by
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However, to obtain the unbiased weighted standard deviation the factor 1

V
in equation 3 has

to be adjusted. This is similar to the bias correction in the case of an unweighted standard
deviation, where instead of 1

M
the factor 1

M−1
is applied (see equation 1). Bias correction

for weighted standard deviation is not straight forward (Gatz & Smith, 1995), but it can be
shown that

σx(t) =
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is a good estimate for the unbiased weighted standard deviation, with the adjusted factor
according to Kish (1965). Equation 4 describes the sample standard deviation for xi(t), i.e.
the ensemble spread around the MMM, but not the standard deviation σm(t) of the MMM
m(t) itself. Formally, σm(t) can be derived via variance propagation of equation 2 utilizing
the full variance-covariance matrix of the ensemble members xi(t). However, to come up with
this covariance matrix, the error correlations between all members (of all models) have to
be determined, which is not trivial. There is an ongoing discussion about the dependence of
models and derived accuracies of multi-model averages in the climate modeling community
(Knutti et al., 2010; Pennell & Reichler, 2011; Abramowitz & Bishop, 2015). In this study,
we make the practical assumption of full error correlations between the members belonging
to a particular model, and no error correlations between the members of different models. We
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admit that this is a simplification of the real error structure, however, the outlined uncertainty
assessment can easily be adjusted if more realistic correlation estimates become available.
With the current assumptions the standard deviation of the MMM becomes

σm(t) =
1

√

V
σx(t). (5)

The standard deviations of the correlations and RMSDs between the MMM and GRACE-
REC provided as 1-sigma boundaries in figures 2, 3, 4, and 6 of the main text, are obtained via
variance propagation from the standard deviations σm(t) of the Init/Hist time series and σo(t)
of the GRACE-REC data set. Given that the bias of the time series is removed and thus the
temporal mean is zero, the correlation of the MMM time series m(t) and the GRACE-REC
observational record o(t) is

ρ =
smo

sm · so
, (6)

where

smo =
∑T

t=1
m(t)o(t), sm =

√

∑T

t=1
m(t)2, and so =

√

∑T

t=1
o(t)2, (7)

and T denoting the length of the yearly time series (41 years). The standard deviation
σρ of the correlation is calculated by inserting equations 7 into equation 6 and performing
variance propagation with the covariance matrix of m(t) and o(t) obtained from σm(t) and
σo(t). As our time series has a low temporal resolution of yearly averages, we assume the
error correlations between subsequent time steps to be negligible and set the corresponding
elements in the covariance matrix to zero. If any reasons for assuming different correlations
should arise, these can easily be adopted within this framework.

The same approach as described for the correlations is applied for the derivation of the
standard deviations of the RMSD. The RMSD is calculated with

RMSD =

√

√

√

√

1

T

T
∑
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(m(t)− o(t))2. (8)

and by propagating the uncertainties ofm(t) and o(t) we obtain its standard deviation σRMSD.
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S3: Identification of regions with incompatibilities between TWS from
models and observations

We are aware of three geophysical signals contained in GRACE-derived TWS (and thus
to some extent in the GRACE-REC data set) that are not explicitly represented in the ESMs:

• surface water variability (S)
• anthropogenic groundwater abstraction and irrigation (G)
• mass displacement due to large earthquakes (E)

We note that also natural groundwater variability is a part of GRACE TWS which is probably
not properly represented in the climate models, but we would like to emphasize it is difficult
(1) to separate the groundwater signal from the remaining compartments in the observations,
and (2) to assess the degree to which groundwater is implicitly contained in the variable total
soil moisture content of an ESM. We therefore focus in the following exclusively on the S/G/E
effects. In regions where the influence of S/G/E is particularly large, TWS and mTWS are
probably not entirely compatible which leads to a degradation of the results. We thus aim to
identify such regions in order to exclude them from the further analysis.
In the following we briefly describe the data sets used and processing applied for the estimation
of the magnitude of S/G/E effects and the approach for deriving the mask of regions to be
excluded:

Surface water variability

Within the realm of the Research Unit GlobalCDA (funded by the German Research Foun-
dation) a data set was produced which describes the monthly (2003/01 – 2016/12) mean
influence of surface water storage change in lakes and reservoirs (in total 283 lakes/reservoirs
obtained from the DAHITI data base) on the GRACE TWS signal (Deggim et al., manuscript
in preparation). For this data set the surface water extent (from remote sensing) was com-
bined with surface water level time series (from satellite altimetry) and converted to the
spatial resolution of the GRACE data by applying appropriate spatial filtering (DDK3 filter,
Kusche, 2007). We project the global 0.5◦ maps of this data set to 2◦ resolution and calculate
annual anomalies. Afterward, we compute the root mean square (RMS) over 2003 – 2016
(figure 2a). We interpret this as the local influence of the annual surface water variability on
the GRACE observations.

Anthropogenic groundwater abstraction

To estimate the magnitude of groundwater abstraction we make use of data from the hydro-
logical model WaterGAP 2.2a (Döll et al., 2014). Net abstraction in WaterGAP 2.2a is defined
as groundwater withdrawals minus return flow from irrigation with both surface water and
groundwater. The global grids are converted from rates (in m3/month) to monthly cumulated
storage changes (EWH in mm), averaged per year, and remapped to 2◦ spatial resolution.
Subsequently, the RMS over 1996 – 2009 (14 years) is calculated from the annual anomalies.
To estimate the influence of these net abstraction changes on the GRACE observations we
apply a GRACE-like spatial filtering (DDK3 filter, Kusche, 2007) to the resulting map of
net abstraction RMS (figure 2b). Compared to the magnitude of surface water variability the
RMS of the net abstraction is substantially smaller. This is due to the fact that anthropogenic
groundwater abstraction mainly occurs as a linear mass trend whereas year-to-year variations
are minor. Thus, although the regions generally affected by groundwater abstraction are of
considerable size (Taylor et al., 2013), for the results of this study that focuses on annual
anomalies excluding linear trends, groundwater abstraction only has a minor influence.

Mass displacement due to large earthquakes

Large earthquakes involve mass displacements detectable with GRACE that in first approxi-
mation cause a step function in the GRACE-derived time series of mass variations (with the
discontinuity at the time of the earthquake). This step function cannot be removed by sub-
tracting bias and linear trend as is done for the creation of the GRACE-REC data set. Thus,
these mass variations distort the TWS estimates of GRACE-REC in earthquake regions. In-
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(a) RMS of surface water variability (b) RMS of groundwater abstraction

(c) co-seismic mass displacement (d) mean ensemble spread of GRACE-REC

Figure 2. (a) RMS of annual surface water anomalies from 2003 – 2016 (b) RMS of annual

net groundwater abstraction anomalies from 1996 – 2009 (c) co-seismic mass displacement due to

Sumatra (2004), Chile (2010) and Tohoku (2011) earthquakes (d) mean standard deviation of 100

ensemble members of GRACE-REC annual anomalies between 2001 – 2014. The different time spans

are due to data availability, but for comparability they all last 14 years (approx. GRACE time span).

formation on the spatial extent and magnitude of co-seismic mass variations contained in
GRACE observations is, e.g., provided by Mayer-Gürr et al. (2018). They co-estimate the
mass variations of the three largest earthquakes during the GRACE period (the Sumatra-
Andaman 2004, the Chile 2010 and the Tohoku 2011 earthquake) together with the gravity
field model ITSG-Grace2018s. The data are provided as spherical harmonic coefficients of
the gravitational potential, and we convert them into EWH, apply a DDK3 filter (Kusche,
2007), and evaluate them on a 2◦ spatial grid (figure 2c). The assessment is restricted to the
three largest earthquakes because GRACE is only sensitive to earthquakes with a magnitude
of about > 8.5 (Pail et al., 2015; Han et al., 2013) and only these three earthquakes (with
magnitudes 9.1, 8.8, and 9.0) are clearly above this threshold.

Derivation of a mask with regions to exclude

The magnitude of S/G/E effects (figure 2a-c) varies spatially and only substantially influences
the GRACE-derived TWS in distinct regions. In order to identify these regions we use as a
threshold for large S/G/E effects the noise floor of the GRACE-REC data set: For each grid
cell the standard deviation of the 100 ensemble members of GRACE-REC is calculated for
each year of the annual anomaly time series. We then average the standard deviations over
the time span 2001 – 2014 (14 years) to obtain a mean observation spread (Figure 2d). The
time span is slightly different to the GRACE time span (2003 – 2016) because the GRACE-
REC data set ends in 2014. All grid cells where the RMS of the surface water variability,
the groundwater abstraction, or the absolute influence of earthquakes (figure 2a-c) exceeds
the spread of GRACE-REC (figure 2d) are excluded from the further analysis. These regions
(figure 3) make up about 6.9% of the Earth’s land surface (Greenland and Antarctica not
considered).
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Figure 3. Mask with regions where the influence of surface water variability, anthropogenic

groundwater abstraction, or the absolute mass displacement caused by earthquakes is larger than

the spread of the GRACE-REC data set.
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