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Abstract

District Heating (DH) networks, like most of industries, are in transition to the fourth industry age and they are retrofitting
hemselves with different sensing and inspection technologies to enable cyber connectivity for different purposes, such as system
ptimization, failure detection, maintenance, etc. Since DH pipes show different ageing behaviour under different conditions
nd initially the pre-insulated bounded pipes had been designed for a minimum of 30 years life span, a long-term loading
istory is required for predictive maintenance (PdM) purposes and it is necessary to understand the ageing of the DH pipes.
hese historical temperature changes of the networks are not available for such a long period and they are usually limited to

he past few years. To exploit the available implemented technologies for PdM , the missing data must become available to
nderstand the ageing patterns and expand the ageing model to the pipes in use. In this research, various Machine Learning
ML) techniques such as Support Vector Machine (SVM), Random Forest algorithm (RF), Artificial Neural Networks (ANN)
ave been tested to train a model and backward simulate the temperature changes of the system based on recorded weather data.
arious none-temperature variables have been used to enhance the prediction qualities to the real-world data. The historical

emperature changes of the system shall be used for different ageing estimation such as fatigue cycles or remaining useful life
f the polyurethane (PUR) foam.
c 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

District Heating (DH) is an infrastructure, which transfers energy from a mass production heat source to numerous
onsumers. The DH system generally constitutes of three main parts: 1- Heat source, 2- Transmission network, 3-
onsumer. The current distribution networks, specially the urban grids, consist of various pipe system, including 2nd,
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Nomenclature

AI Artificial Intelligence
ANN Artificial Neural Networks
DH District Heating
DL Deep Learning
DTR Decision Tree Regression
DWD Deutscher Wetterdienst
HGBR Hist Gradient Boosting Regression
KNN K-Nearest Neighbours Regression
IoT Internet of Things
LAS LassoCV
LR Linear Regression
LSTM Long Short-Term Memory
MEA Mean Absolute Error
ML Machine Learning
MLP Multilayer Perceptrons
MSE Mean Squared Error
PdM Predictive Maintenance
PLS Partial Least Squares Regression
PUR Rigid Polyurethane
RDG Ridge Regression
R2 Coefficient of Determination
RF Random Forest
RFR Random Forest Regression
RNN Recurrent Neural Networks
SVM Support Vector Machine
SVR Support Vector Regression

3rd, and 4th generation [1]. The grids have been expanded with time based on the demand the asset owners expanded
their networks. This brought more complexity to the system in terms of maintenance and asset management. The
utilities changed their operating mode from constant temperature to dependent mode. While this change in the
system contributed in energy efficiency and drop of temperature in return pipes, it introduced a new force to this
complex system as thermal fatigue and cyclic load. All the mentioned evolutions led to different ambiguities for
understanding the ageing mechanism and the influence of various causes to the system.

The transition to industry 4.0 provided immense amount of data ready to be translated to information. On the
ne hand, the data collection from different sensing and inspection technologies, and interconnectivity with Internet
f Things (IoT), and on the other hand, the new artificial intelligence (AI) approaches such as machine learning
ML) and deep learning (DL), have introduced a new term in the maintenance dictionary as Predictive Maintenance
PdM). The data quality plays a major role in PdM.

The data availability in DH sector is limited or restricted. The DH asset owners and grid operators are in the
igitalization transition. Therefore, a big fraction of information is not available and mostly they are limited to the
ast few years. However, as mentioned before, DH has shown a great stamina and the pipes are sustaining more
han expected. Therefore, HCU developed a new model to backward simulate the temperature changes of the system
ith the help of ML. This model uses the temperature and non-temperature variables to find the correlation among

hem and the real-world operation data of the past few years. This model enables to derive and extract multiple
geing parameters such as steel fatigue, Polyurethane foam thermo-oxidation, full load temperature cycle, etc. These
erivations could be used as input data for PdM model. Alternatively, the damage statistics provided by multiple
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grid operators will be utilized to find the correlation among different ageing models and cause of damage at the
designated time.

In this paper, we would like to discuss a developed approach to overcome the scarcity of the available data and
ackward simulate the temperature changes of DH networks to prepare it to adopt the PdM models for the network.
he aim of this research is not only PdM but also ease of asset management for the grid operators. This paper is
ot discussing the complete PdM model in DH systems, it is only a sequence of a PdM model, which enables to
ave failure predictions in DH systems.

.1. Predictive maintenance

PdM enables to learn from the past data in order to predict the future and it is able to adopt the big-data approach.
herefore, the more experienced industries in data processing have targeted to collect the necessary data in order

o have higher accuracy predictions. In terms of maintenance, the main goal of predictions is about failures and
reakdowns. Therefore, as latest maintenance strategy, many sectors have employed PdM for their business. This
rend has mainly observed in fields where reliability is of paramount importance, such as power plants, oil and gas
ndustry, and utilities [2].

.2. Role of computer science in predictive maintenance

Based on the form, size, and the quality of the data availability there are different ANN architecture that can
e used in PdM application. Therefore, a review on the state of the art of the ANN architecture is required for
eveloping the PdM model and find the correlation based on different input data for predictions. Meireles et al.
onducted a comprehensive review on ANN use in industrial application divided the ANNs in to eleven groups,
hich the Multilayer Perceptrons (MLPs) were at rank one in usage [3]. In recent years, with development of IoT

quipment and data availability in real-time, employment of Recurrent Neural Networks (RNN) has been observed
or real-time monitoring. This real-time data is not only useful for monitoring, but also PdM could get benefit of
t. Sharma employed RNN in combination with a long short-term memory (LSTM) for predictive maintenance and
sset management in oil and gas industry [4]. In DH sector, ANNs mainly have been used for operation optimizations
nd the PdM models are in research and development phase.

. Material and methods

In this research, various supervised Machine Learning (ML) methods have been tried for backward-simulation
urpose. Three different grid operators have provided the sample data for temperature-changes of the DH networks.
he data format was hourly based and the length of the time-series was for three continues years. The data was

ogged in a substation of each DH network. To form the training set additional weather data was required, which has
een obtained from Deutscher Wetterdienst (DWD) ftp server. Based on the availability and quality of the weather
ata, different features have been used for training and prediction. These features are not only the temperature
ariables, but also non-temperature variables as well such as relative humidity, cloud cover, precipitation height and
orm, sunshine duration, mean wind speed, month, hour, and off days.

The criteria to choose a weather station was to compromise between the proximity to the DH substations and
ompleteness of the data and date of the records. However, some weather stations in some cases were closer to the
H substations, but the recorded data was not sufficient to cover the age of the DH network pipes.
There are some missing data in temperature change record of the DH substations. The reason is unknown. This

ould be a potential failure of the logging device or a shutdown for maintenance, which could have effect on the
imulation results. As to not lose much data, a large negative number has replaced the missing variables. This helped
o handle null values as outliers.

The mentioned outdoor temperature and non-temperature variables have been used as features and the temperature
hange record of the DH substations has been used as label. Based on the availability and cleanness of the feature

ata, different features have been used for backward simulation for each DH network.
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2.1. Data evaluation

The correlations among features have been calculated in two Pearson and Spearman methods to see if there is
ny monotonic effect. No significant change has been observed between correlation of the supply and return to
he rest of the variables in both methods. Non-temperature variables have less correlation but they increase the
rediction quality considerably. Among non-temperature variables, relative humidity, sunshine duration, month, and
our contributed most in simulation.

The quality of each data set was different in terms of completeness and availability of all features for a long
eriod. However, including the hydraulic model in data-sets increase the accuracy of predictions significantly but it
annot be used because these data is also limited to the past few years. In addition, only one network were able to
eliver the hydraulic model for investigation.

.2. Regressor selection

Since predicting temperature is a continuum, the regression algorithms have been employed for predictions. To
hoose the best solution for backward-simulation, a cross validation with 10 fold have been iterated through all
ata-sets. This process has been repeated for different algorithm to make the comparison available with the help of
ultiple metrics for scoring. The algorithms which have been tested are as follow:

• Linear Regression (LR)
• Decision Tree Regression (DTR)
• Ridge Regression (RDG)
• K-Neighbours Regression (KNN)
• Partial Least Squares Regression (PLS)
• Support Vector Regression (SVR)
• Random Forest Regression (RFR)
• LassoCV (LAS)
• Hist Gradient Boosting Regression (HGBR)

As Fig. 1 illustrates, RFR shows the best scoring among the named algorithms. In all three metrics that have
een chosen for comparison, including mean absolute error (MAE), mean squared error (MSE), and coefficient of
etermination (R2) metrics, RFR is showing an outstanding performance.

Fig. 1. Model comparison and evaluation with three MEA, MSE, and R2 metrics.

After RFR, the HGBR and KNN respectively have shown the best results. The rest of the algorithms were
approximately in the same tolerance of predictions. Based on the above results RFR has been chosen for the
backward simulation and further predictions. Each data-set has been split into training and testing sets with the
test size of 20%.

3. Results and discussion

The backward simulation has been run for three different utilities with Random Forest algorithm. The quality of
predictions in supply pipes result always higher accuracy between 0.81 to 0.92 and for the return pipes the accuracy
observed between 0.59 to 0.77 (see Table 1).
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Table 1. Sample description.

Network Event
counts

Outdoor temp.
correlation to supply

Outdoor temp.
correlation to return

Supply
accuracy

Return
accuracy

Training
algorithm

A 25537 −0.66 0.41 0.81 0.69 RFR
B 26280 −0.64 0.52 0.92 0.75 RFR
C 24394 −0.86 0.45 0.88 0.59 RFR
D 25171 −0.66 0.30 0.92 0.77 RFR

The difference of prediction qualities between supply and return is because of user behaviour and consumption
abits. Grid operators know the supply temperature based on the outdoor temperature and in high demand cases
ith more pumping, it is possible to compensate for the exceeded demand. In return pipes, the temperature depends
n the instantaneous consumption, which this depends on user behaviour and living habits. Even though the return
redictions are not as accurate as the supply, the observed results are inside the expected fluctuation range. This
nables the estimation of the remaining useful life of the PUR foam with calculating the subjected hours of the foam
t each temperature range. The Fig. 2 illustrates the quality of the simulation values compared to their original ones.
s it is visible in this graph, the simulated values are mostly within the ranged of peak and trough. Therefore, it
as plausible to miss some cycles on higher ranges and in return, an increase counts in lower ranges was expected.
hus, a comparison between cycles ran through all for both real and simulated data. Thermal cycle counting is at

mportance in this research, because it is the key to reveal the damage accumulation for the steel medium pipe.
or this purpose, the Rainflow-counting algorithm has been employed [5]. According to EN 13941-1:2019 [6], the
umber of equivalent full temperature cycles can be calculated from:

No =

∑
ni · (∆Ti )m

(∆Tre f )m
(1)

Where
ni is the number of cycles with temperature range ∆Ti

∆Tre f is the reference temperature at which No is calculated
m is the constant in the SN-curve
There is no clear advice at which step of degree centigrade, the ∆T shall be set and cycle counts shall be

calculated. Various step sizes such as 1 ◦C, 2 ◦C, and 5 ◦C had been used for fatigue analysis of DH systems
[7]. A calculation with 5 ◦C intervals could be found in Table 3 in Appendix. In this research, the one degree
centigrade step size has been used for cycle counting and the equivalent full temperature cycles has been calculated
with the formula (1). As it was expected, a shift is occurred on higher temperature differences on every network
(see Fig. 3). In all four networks, for each real count with the delta temperatures bigger than 20 degree, we see the
corresponsive simulated cycle count but in a lower temperature range for both supply and return time-series. Since
higher ranges have greater influence especially on damage accumulation of the steel pipes, it is decisive to identify
this deviation between the real and simulated values and optimize it on each network. In addition, the resolution of
the data and step size for cycle counting has great influence on calculation of the equivalent full load cycles. This
requires further investigations to standardize the mentioned parameters to obtain the equivalent results with the real
physical phenomenon. To make the results comparable, the interruptions in real-data have not been considered in
the calculations.

These interruptions could be caused by failure of the logging device, maintenance, or a failure in the network,
which is unknown to us. In the case the cause of interruptions was due to system shutdowns, it should be considered
in the cycle calculations and usually it has a considerable effect on the system.

Despite the higher accuracy in the supply pipes, less discrepancy has been detected in the full load cycle of the
return pipes. In contrast, the number of full load cycles in the networks B, C, and D are almost double than the
simulated values (see Table 2).

The calculated full load cycles with the m = 4 and ∆Tre f = 110 ◦C were less than expected, which might be
justified by the recent development of operation optimization technics. Since, these values are going to be calculated
for each pipe in the network, these values will anyway internally be scaled and normalized and presumably, it will
not affect the end goal, which is the failure prediction of the grid components.
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Fig. 2. Comparison of network sub-station temperature changes between real-world data and simulations in four networks.

Table 2. Equivalent full load cycles in four networks.

Supply Return

Real-world Simulation Real-world Simulation

Network A 0.03 0.03 0.01 0.01
Network B 0.76 0.44 0.004 0.006
Network C 0.44 0.20 0.24 0.06
Network D 0.10 0.06 0.001 0.001

4. Conclusion

Backward-simulation enables to revive the loading history on pipes. The loading history is at importance in PdM
pproach to understand the ageing behaviour of the DH pipes. This method facilitates the formation of a combined
geing model and bond the both deterministic and statistical approaches together. The available current logged data
rom the grid operators are limited to the past few years and it is not sufficient to see the entire loading history
124
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Fig. 3. Comparison of cycle count for real and simulated data in four networks.

n pipes, which is an essential element for PdM. Therefore, backward-simulation aid to fill the data scarcity with
rtificial data points. This method enables to overcome the unavailability of the network historical temperature
ata. The historical temperature could be used for estimation of remaining useful life of the PUR foam and fatigue
nalysis of the steel medium pipe in pre-insulated bounded pipes. Simulations ran for four different DH networks
n Germany. The Random Forest regressor showed an outstanding performance in predictions among variety of
lgorithms that have been tested. The accuracy of predictions were always higher in supply, rather than return
ipes. No significant cycles have been detected in return pipes. The number of full load cycles in three networks
ere almost double as the simulation values. Further investigations are required for finding the resolution effect in

ime-series and setting proper parameters for cycle counting.
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Appendix. Number of cycles in 5 degree temperature ranges

See Table 3.
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–45 45–50 50–55 55–60 60–65 65–70

2.0 0.5 1.5 0.5 1.0
2.0 1.0 0.0 0.5

1.0 0.0 1.0
0.5 0.5
0.0 0.5 0.0 1.0
0.5
Table 3. Cycle comparison and temperature ranges. The empty cells means that no cycle detected in this range.

Data form Mode Minimum
temperature
(◦C)

Maximum
temperature
(◦C)

Number of cycles in 5 degree temperature ranges (◦C)

0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40 40

Network A

Real-world Supply 82.28 119.57 5651.0 154.0 12.5 6.0 2.5 1.5 0.0 0.5
Simulation Supply 85.59 118.76 6739.5 126.0 19.5 6.5 0.0 1.5 0.5
Real-world Return 44.19 71.42 6543.0 132.0 14.5 4.0 1.0 0.5
Simulation Return 49.21 69.55 6846.5 126.5 11.0 3.0 0.5

Network B

Real-world Supply 62.83 130.77 5117.5 272.5 113.0 72.0 43.0 10.5 7.0 2.0 3.0
Simulation Supply 68.47 130.18 6308.0 233.5 100.0 65.0 33.0 7.5 3.5 4.5 0.0
Real-world Return 49.66 70.18 4473.0 60.0 4.5 1.0 0.5
Simulation Return 52.55 68.79 6493.0 123.5 8.5 0.5

Network C

Real-world Supply 64.20 124.105 2737.5 570.5 275.5 116.0 35.0 14.0 5.5 0.0 1.0
Simulation Supply 70.54 123.65 3659.5 514.0 196.5 42.0 15.5 4.5 0.5 0.0 1.0
Real-world Return 35.61 99.04 2856.5 162.0 30.5 8.5 5.0 2.5 3.0 1.5 1.0
Simulation Return 43.82 89.37 4117.5 168.5 23.5 4.0 1.5 2.5 0.0 0.5 0.5

Network D

Real-world Supply 65.24 110.21 1103.5 140.5 46.0 15.5 6.0 2.0 0.5 0.0 2.5
Simulation Supply 68.61 109.35 7172.5 214.5 50.0 11.5 2.0 0.5 0.0 2.0 0.5
Real-world Return 49.42 67.51 670.0 14.5 1.5 0.5
Simulation Return 51.92 63.85 7373.5 25.0 1.5
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