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Abstract: Assessing and monitoring benthic communities is increasingly important in view of global 
alteration of marine environments. Deep learning has proven to effectively detect marine specimen in 
underwater imagery but still face problems with small input datasets, unconstrained environments and class 
imbalance. This study evaluates a data augmentation strategy to alleviate these limitations. Through 
synthetically derived image compositions, the entire input dataset was greatly extended from 700 to 12700 
images. Additionally, specimen numbers of brittle stars, soft corals and glass sponges are equalized 
resulting in a mean average precision increase of 24 %. The overall mean average precision for box 
detections yields 76.7 and for instance segmentation 67.7 at an intersection over union threshold of 0.5. 
This study shows that deep architectures such as the deployed CenterMask via ResNeXt-101 model can 
successfully be trained with few original images from varying underwater scenes. 
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1. INTRODUCTION 

Global alteration of marine environments due to overfishing, 
pollution, physical habitat destruction and climate change have 
led to an increasing decline of animal diversity and abundance 
throughout many marine ecosystems (Jackson, 2008). 
Especially benthic megafauna in the Southern Ocean are at risk 
of environmental change and are of significant ecological 
value as they alter small-scale topography of seabed habitats 
affecting the entire benthic community (Gili et al., 2006). 
Assessing the biodiversity and characterisation of benthic 
communities is increasingly important for identifying 
vulnerable marine ecosystems and developing conservation 
strategies.  

Marine habitats have been studied based on mainly three 
practices: physical sampling methods using sledges or 
trawling, acoustical techniques and optical systems. While 
physical methods are able to collect specimen on a lower 
taxonomical scale they destruct the environment and their 
sampling rate is rather low. Optical systems are more cost 
effective, robust and precise than acoustic systems which led 
to a large growing library of digital underwater images 
throughout recent years paving the way for new research in 
automatic analytical methods.  

Object detection, classification and segmentation of imagery 
has become a substantial task in the field of computer vision. 
Prior traditional feature descriptors are often used to extract 
colour, shape or texture information and are good at detecting 
specific single objects such as scallops (Dawkins et al., 2013) 
or lobsters using classifiers such as support vector machine 
(Tan et al., 2018). However, they are not robust to varying 
underwater scenes that are exposed to marine snow, water  

 
 
turbidity, lens distortion, sparse, unstable illumination and 
colour shift due to the survey platform’s variation in speed, 
angle or altitude. Moreover, there is a high variability and 
invariability between features belonging to the same class and 
different classes, respectively (Pavoni et al., 2021).  

Deep learning (DL) using convolutional neural networks have 
proven to outperform traditional based object detection 
(Gonzalez-Cid et al., 2017) as they are more invariant to the 
deformation of images. Additionally, images can directly be 
used as input without the necessity of pre-processing.  Better 
results are often achieved using deeper layers thus increasing 
the number of parameters to several millions. To achieve high 
performances with those models using images of 
unconstrained underwater scenes or across varying platforms, 
a large training dataset size is the most crucial part 
(Langenkämper et al., 2020), often, however, very time-
consuming and costly to establish.  

This paper investigates the effect of input image data 
augmentation and composition strategies in an attempt to 
overcome limitations of large data set size and class 
imbalance. Taking account of the results, the state-of-the art 
anchor-free object detection and instance segmentation model 
CenterMask (Lee and Park, 2019) via ResNeXt-101 (Xie et al., 
2017) will be trained based on a small, highly diverse 700 
image dataset. In this work, the detection, segmentation and 
counting of glass sponges (hexactinellids), soft corals 
(primnoids and chrysogorgiids) and brittle stars (ophiuroids) 
will be assessed providing first steps towards future abundance 
and size estimations of these specimen. 
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2. RELATED RESEARCH 

Several previous works address object detection and 
classification of marine scenes using cutting-edge DL 
architectures such as RetinaNet with ResNet-50 (Boulais et al., 
2020) or FDCNet (Lu et al., 2018) showing good classification 
results on single-labelled or iconic images. Automatic 
segmentation for benthic fauna has been studied for corals 
using DeepLabv3+ (Pavoni et al., 2021) and scale worms 
using U-Net and VGG-16 CNN (Shashidhara et al., 2020). 
Securing enough training data for DL is crucial as described 
above hence data augmentation techniques are widely applied. 
Frequently used techniques include the change of light 
intensity, sharpness, noise and blurring (Salman et al., 2016) 
or change of perspective (Huang et al., 2019). Also, rotation 
and cropping of underwater images have been used 
(Langenkämper et al., 2020). These methods have proven to 
be useful, however, only limited image manipulations can be 
performed. Most notably, the number of original annotated 
images from most stated works exceed the amount of available 
training data for this research. Therefore, another technique 
will be used which changes the entire image composition and 
adds additional alteration to synthetically generated images. 
Also, no research regarding instance segmentation and 
counting of the selected morphotypes is known to the authors.  

3. MATERIALS AND METHODS 

3.1 Underwater Image Dataset 

The image dataset used for this study was collected during the 
expedition PS118 of the research vessel RV Polarstern in 2019 
(Purser et al., 2021). Images were sampled using the towed 
Ocean Floor Observation and Bathymetry System (Purser et 
al., 2019) with a flying altitude of approximately 1.5 – 2.5 m 
above the seafloor. Seven different sampling stations from the 
western Weddell Sea continental shelf to the northern Powell 
Basin were selected. Each station area features different 

substrate types ranging from soft and fine mud sediment to 
pebbles and complex rocky topography. The original 3840 x 
5760 sized images were tiled to 1440 x 960 to maintain 
resolution but reduce the need for computing power. 1000 
images were selected and annotated using the web-based 
image segmentation tool COCO Annotator (Brooks, 2019). Of 
the 1000 images, 700 were used as training set, 100 as 
validation set and 200 as test set. In total, 3550  annotations of 
the training set were made, of which 87 % belong to the class 
brittle stars, 8 % to the class glass sponges and 5 % to the class 
soft corals. For the test and validation set 85 % and 84 % of 
the annotations belong to the class brittle stars, 10 % and 
12 % to the class glass sponges and 5 % and 4 % to the class 
soft corals, respectively. It is apparent that there is a high class 
imbalance.   

3.2 Data Augmentation 

To increase the number of images for training, the image 
generator COCO Synth (Kelly, 2019) was utilised which 
composes cut out foreground images of objects over random 
image backgrounds. Foregrounds are randomly altered in 
scale, amount, rotation and brightness for each composition 
(Figure 1). For this study, 30 foregrounds per class and 30 
backgrounds from original images were used for training. 
Images for the compositions were selected from varying 
stations and differ from previous ones in 3.1. Overall, 12,000 
synthetic images were deployed for training of which 2000 
images were generated of glass sponges and soft corals each, 
to reduce the effect of class imbalance. Now, 33 % of the total 
annotations belong to the class glass sponges, 33 % to the class 
soft corals and 34 % to the class brittle stars. In order to 
emphasize the selected augmentation method, several 
frequently used image manipulation techniques were 
additionally performed and compared to the selected method. 
The following image attributes were altered: brightness, colour 
tone, contrast, saturation, sharpness and blur (Figure 1). In 
total, ten different alterations per image were conducted. 

 

Fig. 1. Example images of synthetically derived image compositions (1st row) and traditional data augmentation methods (2nd 
row, from left to right): original image, blur, low brightness, high brightness, blue colour, green colour, high contrast, low 
contrast, high saturation, low saturation, sharpness
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3.3 Deep Learning Architecture and Training 

The deep learning architecture chosen for this study is the 
anchor-free one stage instance segmentation and object 
detector CenterMask (Lee and Park, 2019) in combination 
with the backbone network ResNeXt-101 (Xie et al., 2017). 

While object detection is the central task for abundance and 
assemblage studies, predicting masks will be important for 
future size estimations and biomass predictions of benthic 
species. An instance segmentation model was therefore chosen 
in order to adapt to diverse research questions for future 
analyses. Also, the model should operate on high inference 
speed while maintaining strong performances to directly 
evaluate datasets on board of research vessels for strategic data 
collection. Since both selected architectures meet the 
mentioned requirements and further produce excellent results 
in recent benchmark challenges such as COCO (Lin et al., 
2014), they are an appropriate choice for the respective 
computer vision task of marine imaging.  

The backbone ResNeXt-101 used for feature extraction is an 
advancement of the deep residual network ResNet (He et al., 
2016) that has been recently proposed. Based on ResNet, 
ResNeXt-101 follows the strategy of repeating layers but 
stacks them parallel rather than sequentially. Thus, resulting in 
accuracy improvements while reducing the network 
complexity and number of parameters. For this study the 101 
layered network was used. 

As a one stage detector, CenterMask does not have a proposal 
step and prioritizes inference speed. Additionally, as an 
anchor-free detector, it does not use predefined bounding 
boxes to identify objects and is thus insensitive to different 
datasets and hyper-parameters (e.g. input size, scales, etc.). 
Hence, anchor-free detectors alleviate limitations of objects 
that have large shape variations and are rather small (Tian et 
al., 2019) which is ideal for the selected classes used in this 
research. CenterMask adopts FCOS (Tian et al., 2019) as 
detection head that directly computes a 4D vector and a class 
label at each proposed location of different levels of feature 
maps. Then, the spatial attention-guided mask (SAG-Mask) 
computes the segmentation masks on each predicted box 
region using the spatial attention module (SAM) that helps the 
mask to focus on significant pixels (Lee and Park, 2019). 

Training was executed on a 64-bit Linux machine equipped 
with an Intel® Xeon® Gold 6254 CPU @ 3.10 GHz and 5 
NVIDIA® Tesla® V100 GPU. The base learning rate was set to 
0.002 and reduced by a factor of 10 after 25400 and again after 
38100 iterations. To reduce early overfitting on highly 
differentiated datasets, the learning rate was also reduced for 
the first 5080 iterations. Additionally, a weight decay was 
implemented. The maximum number of iterations was 50800 
which corresponds to 20 epochs. All backbone models are 
initialized by ImageNet pre-trained weights.  

3.4 Evaluation Protocol 

To assess the performance of the model, the evaluation metrics 
average precision, average recall, F1 measure and accuracy are 

utilized. While the precision P reflects the proportion of false 
positives FP, the recall R defines the proportion of false 
negatives FN and can be mathematically expressed as follows: 

P = 
TP

(TP + FP)
 and R = 

TP
(TP + FN)

 , (1) 

with TP being the number of true positive predictions. In order 
to classify whether a prediction is a TP or FP, the intersection 
over union (IoU) threshold is used as it measures the overlap 
between the ground truth and the predicted bounding box or 
segmentation mask, respectively. Typical values for IoU 
thresholds are 0.5 or 0.75. The very common approach to 
summarize precision and recall into one value is the average 
precision (AP). The AP for a single class is the averaged 
precision across all recall levels. Complementarily, the 
average recall score (AR) averages recall values over all IoU 
∈ [0.5, 1.0] for each class. The mean average precision (mAP) 
and mean average recall (mAR) across all classes C are defined 
as (Raphael et al., 2020): 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  
1
𝐶𝐶𝐶𝐶
�𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖

𝐶𝐶𝐶𝐶

𝑖𝑖𝑖𝑖=1

  and mAR = 
1
𝐶𝐶𝐶𝐶
�𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖

𝐶𝐶𝐶𝐶

𝑖𝑖𝑖𝑖=1

 (2) 

As the evaluation metrics used for this research is based on 
COCO (Lin et al., 2014), it should be noted that mAP and mAR 
scores are further denoted as AP and AR for simplicity 
reasons. They are computed over single (0.5) IoU or the 
average of then IoU levels starting from 0.5 to 0.95 in steps of 
0.05 (the latter is further denoted as AP @.50:.95). AP and AR 
are also calculated for different object scales (small: < 72² 
pixels, medium: > 72² & < 214² pixels, large: > 214² pixels) 
and for different maximum number of detections per image (1, 
10, 100). Object scales deviate from COCO and are adjusted 
to fit scales in the proposed images.  

Additional adopted performance metrics are the accuracy to 
assess the total number of predictions that are correct and the 
F1 measure which evenly weighs between precision and recall 
(Manning et al., 2009): 

accuracy = 
TP + TN

(TP + TN + FP + FN)
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹1 =  

2𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴
𝑚𝑚𝑚𝑚 + 𝐴𝐴𝐴𝐴

     (3) 

 
4. EXPERIMENTAL RESULTS 

This section presents the performance evaluation of different 
investigated methods to detect, segment and count benthic 
megafauna across varying models and datasets as listed in 
Table 1. All test runs are performed on the 200 original image 
test set with no data augmentation. 

Table 1. Abbreviations for training strategies 

CM-X-101 CenterMask and ResNeXt-101 
CM-V-99 CenterMask and VoVNetV2-99 
CM-L-M CenterMask-Lite and MobileNetV2 
M-X-101 Mask R-CNN and ResNeXt-101 
R-X-101 RetinaNet and ResNeXt-101 
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3.3 Deep Learning Architecture and Training 

The deep learning architecture chosen for this study is the 
anchor-free one stage instance segmentation and object 
detector CenterMask (Lee and Park, 2019) in combination 
with the backbone network ResNeXt-101 (Xie et al., 2017). 

While object detection is the central task for abundance and 
assemblage studies, predicting masks will be important for 
future size estimations and biomass predictions of benthic 
species. An instance segmentation model was therefore chosen 
in order to adapt to diverse research questions for future 
analyses. Also, the model should operate on high inference 
speed while maintaining strong performances to directly 
evaluate datasets on board of research vessels for strategic data 
collection. Since both selected architectures meet the 
mentioned requirements and further produce excellent results 
in recent benchmark challenges such as COCO (Lin et al., 
2014), they are an appropriate choice for the respective 
computer vision task of marine imaging.  

The backbone ResNeXt-101 used for feature extraction is an 
advancement of the deep residual network ResNet (He et al., 
2016) that has been recently proposed. Based on ResNet, 
ResNeXt-101 follows the strategy of repeating layers but 
stacks them parallel rather than sequentially. Thus, resulting in 
accuracy improvements while reducing the network 
complexity and number of parameters. For this study the 101 
layered network was used. 
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anchor-free detector, it does not use predefined bounding 
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datasets and hyper-parameters (e.g. input size, scales, etc.). 
Hence, anchor-free detectors alleviate limitations of objects 
that have large shape variations and are rather small (Tian et 
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detection head that directly computes a 4D vector and a class 
label at each proposed location of different levels of feature 
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computes the segmentation masks on each predicted box 
region using the spatial attention module (SAM) that helps the 
mask to focus on significant pixels (Lee and Park, 2019). 
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implemented. The maximum number of iterations was 50800 
which corresponds to 20 epochs. All backbone models are 
initialized by ImageNet pre-trained weights.  
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between the ground truth and the predicted bounding box or 
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thresholds are 0.5 or 0.75. The very common approach to 
summarize precision and recall into one value is the average 
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As the evaluation metrics used for this research is based on 
COCO (Lin et al., 2014), it should be noted that mAP and mAR 
scores are further denoted as AP and AR for simplicity 
reasons. They are computed over single (0.5) IoU or the 
average of then IoU levels starting from 0.5 to 0.95 in steps of 
0.05 (the latter is further denoted as AP @.50:.95). AP and AR 
are also calculated for different object scales (small: < 72² 
pixels, medium: > 72² & < 214² pixels, large: > 214² pixels) 
and for different maximum number of detections per image (1, 
10, 100). Object scales deviate from COCO and are adjusted 
to fit scales in the proposed images.  

Additional adopted performance metrics are the accuracy to 
assess the total number of predictions that are correct and the 
F1 measure which evenly weighs between precision and recall 
(Manning et al., 2009): 

accuracy = 
TP + TN
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4. EXPERIMENTAL RESULTS 

This section presents the performance evaluation of different 
investigated methods to detect, segment and count benthic 
megafauna across varying models and datasets as listed in 
Table 1. All test runs are performed on the 200 original image 
test set with no data augmentation. 

Table 1. Abbreviations for training strategies 

CM-X-101 CenterMask and ResNeXt-101 
CM-V-99 CenterMask and VoVNetV2-99 
CM-L-M CenterMask-Lite and MobileNetV2 
M-X-101 Mask R-CNN and ResNeXt-101 
R-X-101 RetinaNet and ResNeXt-101 

 
 

     

 

Baseline Original dataset 
Synth Synthetic image composition with equal class 

distribution & Baseline 
Synth-Blncd Synthetic image composition including extra 

glass sponges and soft corals & Baseline 
(balanced training data set) 

Trad. Augm. Traditional augmentation using brightness 
(high, low), colour tone (green, blue), contrast 
(high, low), saturation (high, low), sharpness, 
blur & Baseline 

Fusion Synth-Blncd with 6,000 images and Trad. 
Augm. with 7,000 images combined & 
Baseline 

4.1 Evaluation of detection, segmentation and counting  

For future benthic assemblage and abundance analyses, the 
precision score as well as recall are both equally important as 
specimen should neither be misclassified nor missed. As can 
be seen in Table 2, the network CM-X-101 trained on Synth-
Blncd shows the highest bounding box results of 76.7 % AP 
@.50 and 59 % AR @10 compared to all other methods. 
Detections are accurate on various backgrounds, illumination, 
camera distances and distortions (Figure 2) confirming that 
automatic detection and classification methods are possible 
even on small highly diverse input datasets. Also, high AP and 
AR scores on segmentation masks are achieved, yielding 67.7 
% @.50 and 49.1 % @10, respectively (Table 2). Performance 
for bounding boxes are slightly higher than instance 
segmentation masks because very coarse object boundaries are 
drawn on each object including also many irrelevant pixels. 
Instance segmentation assigns only object relevant pixels to a 
label and is therefore computationally more advanced. 

It can be further noted, that the recall rate of single objects per 
image is much lower than the recall of multiple objects per 
image. This accounts for both segmentation masks and 
bounding boxes. Additionally, smaller objects <72² reach 
poorer results than large objects which might be caused by the 
downsampling in the ResNeXt backbone resulting in fewer 
features being extracted. Another factor is the relatively large 
ratio between pixel size and object size for small objects which 
might often lead to positioning errors when computing IoU. 

The performance of the model on different classes can be 
further investigated with a confusion matrix (Table 3) which 

is computed using a lower IoU threshold to favour a high recall 
especially for small objects. At first, it can be seen that no 
specimen are wrongly classified between classes. Brittle stars 
have the highest precision of 99 % and soft corals have the 
highest recall of 93 %. On the other hand, glass sponges and 
brittle stars are often not detected (high FN) and glass sponges 
and soft corals are often misclassified with background clutter 
(high FP). Using the values for TP, FP and FN, the accuracy 
amounts to 87 %, 73 % and 58 % for brittle stars, soft corals 
and glass sponges, respectively, resulting in a mean accuracy 
of 73 %. 

In total, 76 out of 82 glass sponges were counted, 49 out of 41 
soft corals and 597 out of 673 brittle stars leading to a 
percentage variation of -7 %, 20 % and -11 % for each 
respective class. 

4.2 Evaluation of data augmentation strategies 

The detection performance of marine organisms improves in 
both cases using either the data augmentation strategy of 
synthetic image compositions or the traditional image 
manipulation techniques. In fact, with the Synth-Blncd dataset, 
the bounding box AP @.50:.95 result was the most improved 
with an increase of 24 % over the Baseline dataset.  

Generally, AP and AR on bounding boxes are slightly higher 
on synthetically generated image compositions than traditional 
augmentation methods (Table 2). The disadvantage of the 
latter is that not as many images can be created without the risk 
of overfitting as object compositions are not changing. 
Synthetic generated images have proven to be a successful 
alternative and can be generated in a short amount of time as 
well. However, with regards to instance segmentation 
performance, synthetic image datasets show inferior results on 
AP scores especially for small and medium sized objects 
(Table 2). The reason for this might be the incorrect 
downsizing of foregrounds as they could appear pixelated in 
the process of image creation.  

Considering the problem of class imbalance, synthetic derived 
images have the potential to easily balance out numbers of 
specimen between classes. Table 4 shows that the detection 
performance of glass sponges and soft corals are increased by 
5-16 % over the Synth dataset. The performance for brittle 
stars, however, is not improved. 

 

Fig. 2. Example images of detection and segmentation results of test set with CM-X-101/Synth-Blncd at varying stations.
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4.3 Comparison with other state-of-the-art algorithms 

The selected CenterMask via ResNeXt-101 architecture was 
further compared to other state-of-the art detectors and 
backbones such as RetinaNet (Lin et al., 2017), Mask R-CNN 
(He et al., 2017), MobileNetV2 (Sandler et al., 2018) or 
VoVNetV2-99 (Lee and Park, 2019). Results are demonstrated 
in Table 2 for bounding boxes and segmentation masks. With 
regards to competing detectors, both CenterMask and 
RetinaNet are one stage detectors whereas Mask R-CNN is a 
two stage detector that utilizes a region-of-interest proposal 
step which typically prioritizes detection accuracy over 
inference speed. Moreover, RetinaNet and Mask R-CNN use 
anchor boxes for feature detection. From the results in Table 2 
it is evident that RetinaNet performs nearly as well as 
CenterMask whereas Mask R-CNN shows a much lower 
performance considering bounding boxes and segmentation 
masks. It can be noted that one stage anchor-free detectors can 

perform just as well on underwater imagery as other detector 
types.  

Furthermore, evaluations on three differently deep backbones 
were conducted: ResNeXt-101 with 114.3 million parameters, 
VoVNet-99 with 96 million parameters and MobileNetV2 
with 28.7 million parameters (Lee and Park, 2019). 
Noticeably, MobileNetV2 with fewer layers has considerably 
lower AP and AR results than the other two. Meanwhile, 
considering bounding boxes, VoVNet-99 performs nearly as 
well as ResNeXt-101 and with regards to small objects, AP 
and AR results are even slightly higher. The problem of 
detecting small objects is known to increase for very deep 
backbones as they need more input information to cope with 
the massive amount of parameters (Nguyen et al., 2020). Small 
objects are described by fewer pixels and might not be diverse 
enough to feed the network with sufficient information 
increasing the changes of overfitting. 

Table 2.  Summary of detection results with bounding boxes (1st row) and segmentation masks (2nd row/cursive)  

Table 3.  Confusion matrix for CM-X-101/Synth-Blncd 

Table 4.  Summary of performance results per class 

 

Model/Data AP.50:.95
bbox  AP.50

bbox APsmallbbox APmediumbbox  APlargebbox AR1
bbox AR10

bbox AR100
bbox ARsmall

bbox  ARmedium
bbox  ARlarge

bbox  
CM-X-101/ 
Baseline 

41.7 
35.2 

68.2 
63.0 

25.3 
5.70 

29.3 
21.2 

54.7 
50.7 

21.6 
19.4 

51.6 
44.4 

55.2 
45.2 

25.4 
8.90 

45.1 
32.7 

70.8 
57.9 

CM-X-101/ 
Synth 

48.8 
37.3 

71.0 
63.0 

27.4 
4.90 

39.1 
24.1 

62.8 
51.7 

24.7 
20.6 

58.8 
47.9 

64.2 
49.5 

27.9 
7.90 

57.3 
41.2 

77.1 
59.5 

CM-X-101/ 
Synth-Blncd 

51.8 
40.8 

76.7 
67.7 

27.5 
4.60 

40.2 
27.1 

66.1 
54.8 

25.7 
22.1 

59.0 
49.1 

63.9 
50.6 

27.9 
7.50 

55.7 
41.6 

77.9 
62.5 

CM-X-101/ 
Trad. Augm 

48.8 
40.2 

75.0 
70.4 

26.9 
7.00 

38.6 
27.6 

58.5 
52.2 

23.0 
20.4 

55.3 
46.8 

58.9 
47.9 

27.2 
10.6 

50.1 
36.8 

72.6 
58.6 

CM-X-101/ 
Fusion 

51.7 
41.5 

74.1 
69.7 

27.1 
6.60 

42.1 
29.0 

65.1 
53.9 

24.9 
21.7 

57.6 
47.0 

61.6 
48.4 

27.5 
10.6 

52.2 
37.1 

77.0 
59.3 

CM-V-99/ 
Synth 

47.9 
36.9 

72.0 
62.9 

27.9 
4.80 

37.0 
23.4 

62.8 
49.8 

23.6 
20.1 

56.6 
46.1 

61.9 
47.8 

28.3 
7.60 

52.6 
38.6 

77.1 
58.2 

CM-L-M/ 
Synth 

27.3 
18.4 

48.6 
32.6 

19.1 
0.60 

19.0 
6.30 

40.0 
34.6 

18.3 
15.2 

39.1 
31.8 

43.7 
33.4 

20.0 
2.00 

34.4 
20.3 

59.5 
50.5 

M-X-101/ 
Synth 

33.3 
25.7 

53.2 
41.6 

13.2 
1.70 

22.7 
11.8 

53.0 
37.9 

20.7 
15.2 

39.2 
31.8 

40.0 
31.9 

13.2 
3.80 

30.6 
20.5 

60.7 
43.6 

R-X-101/ 
Synth 47.8 70.7 27.9 37.1 62.2 24.2 56.6 61.9 28.4 53.8 76.7 

  Predicted  
  Glass Sponges Soft Corals Brittle Stars Background Recall 

Ground truth 

Glass Sponges 58 0 0 24 70.1 
Soft Corals 0 38 0 3 92.7 
Brittle Stars 0 0 591 82 87.8 
Background 18 11 6   

 Precision 76.3 77.6 99.0  Accuracy: 73 % 

 Glass Sponges Soft Corals Brittle Stars 
Model/Data F1bbox F1mask AP.50:.95

bbox  AP.50:.95
mask  F1bbox F1mask AP.50:.95

bbox  AP.50:.95
mask  F1bbox F1mask AP.50:.95

bbox  AP.50:.95
mask  

CM-X-101/ 
Baseline 67.7 67.7 41.4 46.3 70.3 69.5 36.8 45.5 80.2 67.9 46.9 13.9 
CM-X-101/ 
Synth 67.8 66.2 45.3 46.5 69.8 68.8 48.8 52.6 79.2 65.1 52.4 12.8 
CM-X-101/ 
Synth-Blncd 71.4 69.2 51.4 54.0 76.8 74.9 51.5 55.9 79.9 64.7 52.6 12.6 
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4.3 Comparison with other state-of-the-art algorithms 

The selected CenterMask via ResNeXt-101 architecture was 
further compared to other state-of-the art detectors and 
backbones such as RetinaNet (Lin et al., 2017), Mask R-CNN 
(He et al., 2017), MobileNetV2 (Sandler et al., 2018) or 
VoVNetV2-99 (Lee and Park, 2019). Results are demonstrated 
in Table 2 for bounding boxes and segmentation masks. With 
regards to competing detectors, both CenterMask and 
RetinaNet are one stage detectors whereas Mask R-CNN is a 
two stage detector that utilizes a region-of-interest proposal 
step which typically prioritizes detection accuracy over 
inference speed. Moreover, RetinaNet and Mask R-CNN use 
anchor boxes for feature detection. From the results in Table 2 
it is evident that RetinaNet performs nearly as well as 
CenterMask whereas Mask R-CNN shows a much lower 
performance considering bounding boxes and segmentation 
masks. It can be noted that one stage anchor-free detectors can 

perform just as well on underwater imagery as other detector 
types.  

Furthermore, evaluations on three differently deep backbones 
were conducted: ResNeXt-101 with 114.3 million parameters, 
VoVNet-99 with 96 million parameters and MobileNetV2 
with 28.7 million parameters (Lee and Park, 2019). 
Noticeably, MobileNetV2 with fewer layers has considerably 
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objects are described by fewer pixels and might not be diverse 
enough to feed the network with sufficient information 
increasing the changes of overfitting. 
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5. CONCLUSION AND FUTURE STEPS 

In conclusion, the used data augmentation strategy of 
synthetically derived image compositions proved to be a good 
alternative to frequently used augmentation techniques. 
Problems such as class imbalance can further easily be 
alleviated and boost the performance of underrepresented 
classes. Detection, segmentation and counting of benthic 
megafauna is a task that can be solved with good performance 
using few variant original input images using anchor-free one 
stage detectors. In comparison with other models, it is evident 
that the detection problem of small objects is a challenge yet 
to be solved. Additionally, future steps involve the 
introduction of more benthic morphotypes, improved counting 
to avert duplications for overlapping images and the allocation 
of position and water depth to each detected specimen for 
future assemblage studies.  
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