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Abstract
In profile monitoring, it is usually assumed that the observations between or within each profile are independent of each

other. However, this assumption is often violated in manufacturing practice, and it is of utmost importance to carefully

consider autocorrelation effects in the underlying models for profile monitoring. For this reason, various statistical control

charts have been proposed to monitor profiles when between- or within-data is correlated in Phase II, in which the main

aim is to develop control charts with quicker detection ability. As a novel approach, this study aims to employ machine

learning techniques as control charts instead of statistical approaches in monitoring profiles with between-profile auto-

correlations. Specifically, new input features based on conventional statistical control chart statistics and normalized

estimated parameters are defined that are capable of adequately accounting for the between-autocorrelation effect of

profiles. In addition, six machine learning techniques are extended and compared by means of Monte Carlo simulations.

The simulation results indicate that machine learning techniques can obtain more accurate results compared with statistical

control charts. Moreover, adaptive neuro-fuzzy inference systems outperform other machine learning techniques and the

conventional statistical control charts.

Keywords Adaptive neuro-fuzzy inference system � Artificial neural network � Deep learning � Long short-term memory �
Statistical process monitoring � Support vector regression

1 Introduction

Statistical process monitoring (SPM) is usually employed

for industrial processes to omit assignable causes that

deteriorate the product outcome. SPM is the major field for

controlling process variations to eventuate lower costs in

waste, scrap, rework and claims, better quality, and more

insights into the capability of the process. Seven main

tools, entailing scatter diagrams, Pareto charts, control

charts, histograms, cause-and-effect diagrams, check sheets

and stratification, are utilized in SPM to implement

inspection and monitoring procedures [1]. Among them,
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control charts are the most successful and effective tools

for quality control of manufacturing processes [2–4].

To employ a control chart for process monitoring, two

phases entailing Phase I and II should be initially defined.

In Phase I, it is tried to achieve proper estimations of the

process parameters, whereas Phase II monitoring aims to

find assignable causes in which the process situation

changes from In-Control (IC) to Out-of-Control (OC) state

[5–9]. Average Run Length (ARL) and Standard Deviation

of Run Length (SDRL) are two common performance

indicators in Phase II. The ARL is the average number of

samples to be obtained by the predefined control chart be-

fore the chart triggers an OC signal. Thus, a control

chart with larger (smaller) values of the ARL is to be

preferred when the underlying process is in IC (OC) state

[the more common notation is ARL0 (ARL1)] [10–12]. In

addition, the SDRL is defined in a similar way as a sec-

ondary criterion in Phase II (i.e., SDRL0 and SDRL1).

There are two common approaches to monitor a man-

ufacturing processes with the help of control charts namely

monitoring quality characteristics and profile monitoring

[13]. In this paper, we focus on profile monitoring. Here,

the quality of a process or product is modelled via a

functional relationship between a response (dependent)

variable and one or more explanatory (independent) vari-

able(s) [14]. The aim of profile monitoring is to check the

stability of a predefined IC relationship (or profile) over

time, and it is essential to reach a true OC signal as soon as

possible when the IC model shifts to an unknown OC

profile [15].

Different IC models can be employed due to the nature

of the underlying problem, such as circular [16], linear

[5, 17–22], logistic [23–25], nonlinear [26], nonparametric

[27, 28], multichannel [29], polynomial [30] or quadratic

[31]. Among them, linear profiles have received more

attention in the literature [32, 33]. The majority of previous

studies in linear profile monitoring is based on the inde-

pendency assumption regarding within or between profiles

in relation to the error terms. However, this assumption is

often violated in manufacturing practice that is character-

ized by autocorrelated profiles and consequently, conven-

tional approaches may lead to inaccurate outcomes for this

type of profiles.

Autocorrelated profiles consist of within- and between-

correlation models in the related literature [34–37]. In the

first group, Soleimani, Noorossana and Amiri [38] devel-

oped four control charts including T2 and three well-known

Exponentially Weighted Moving Average (EWMA) charts

considering the first order Autoregressive (AR) model, i.e.,

AR(1). The results showed the superiority of EWMA-based

approaches over T2. Autoregressive Moving Average

(ARMA), Vector ARMA (VARMA) etc. are other more

complex models that have been developed in this field

[39–43]. Due to the higher potential for applications of the

second group, this paper focuses on between-profile auto-

correlation. To the best of the authors’ knowledge, the

pioneering work is Noorossana, Amiri and Soleimani [44],

in which they developed T2, EWMA of residuals (EWMA/

R) and transformed individual EWMA (EWMA-3) control

charts for situations where autocorrelation effects exist

between profiles. Similar to Soleimani, Noorossana and

Amiri [38], they concluded that EWMA-based methods

outperform T2. Wang and Lai [45] aggregated the indi-

vidual EWMA statistics to a Multivariate EWMA

(MEWMA) control chart for profiles with between-auto-

correlation, and it has been shown that MEWMA outper-

forms T2. Khedmati and Niaki [46] considered both linear

and polynomial profiles; they first utilized the U statistic

for removing the effect of autocorrelation and then devel-

oped a T2-based control chart. The experimental results

showed that this method performs better than conventional

T2 control charts, but comparisons with EWMA are miss-

ing. Koosha and Amiri [47] proposed a similar T2-based

control chart for monitoring autocorrelated logistic profiles.

Wang and Huang [48] modified the estimation procedure

of the EWMA approach, and the simulation results

demonstrated that this scheme has a faster detection ability

than that of conventional EWMA.

From the literature, it can be inferred that the probability

of occurring autocorrelations in practical applications is

very high. Therefore, an early detection of OC conditions is

more important than simulation results, as a delay in

detection may result in the production of nonconformities

and additional costs. However, the conventional control

charts such as T2, EWMA/R and EWMA-3 are not able to

perform well in line with this aim as their performance

deteriorate in the occurrence of autocorrelation in com-

parison with simple situations; for example, it can be

referred to the results of ARL1 in Noorossana, Amiri and

Soleimani [44] versus Kim et al. [20].

Hence, proposing a novel control chart with a tangible

ability in reduction of the OC signaling time in autocor-

related profiles is crucial. To remedy this challenge, in

recent years, several studies incorporated machine learning

techniques in the SPM context in monitoring roundness

[49], nonlinear [50–52], linear [53, 54] and logistic
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[25, 55, 56] profiles. As a different approach, Chen et al.

[57] employed a deep learning technique, called stacked

denoising autoencoders, to monitor autocorrelated profiles.

Specifically, this scheme extracts a number of features

from the process using autoencoders, and then the extracted

features are used to develop control charts based on T2 and

EWMA. In other words, the main task of their approach is

to select proper features from the process, whereas the

direct usage of machine learning techniques as a control

chart would be more promising. As far as the authors

know, there are no further articles where machine learning

techniques are employed in monitoring autocorrelated

profiles.

The aim of this paper is to develop a robust control

chart based on machine learning techniques to alleviate the

above-mentioned challenges, i.e., reducing the values of

the ARL1 and SDRL1 for autocorrelated linear profiles that

can result in early detection of OC situations in Phase II.

To achieve this, three combinations of input features based

on the effect of the mean of responses, the mean of errors,

and T2 statistic, each in the current and previous sample,

are defined to fed into the machine learning techniques for

monitoring profiles with between-autocorrelation of first

order, i.e., AR(1). Since each machine learning technique

performs differently in tackling various problems, six

machine learning techniques ranging from shallow to deep

structures including adaptive neuro-fuzzy inference system

(ANFIS), artificial neural network (ANN) with Back-

Propagation (BP) training, Convolutional Neural Network

(CNN), long short-term memory (LSTM) network, Radial

Basis Function (RBF) network and support vector regres-

sion (SVR), are employed to find the most appropriate one.

To sum up, the main contributions of this paper are as

follows:

• Improving the detection ability of Phase II control

charts for monitoring linear autocorrelated profiles with

the help of machine learning techniques,

• Defining different combinations of input features based

on the effect of the mean of responses, the mean of

errors, and T2 statistic, each in the current and previous

sample, for monitoring the between-autocorrelation

effect of profiles,

• Evaluating the performance of the defined input

features and finding the best combination using the

proposed machine learning-based control chart, and

• Identification of the most appropriate machine learning

technique under the most suitable input combination for

this problem.

The rest of this article is organized as follows. In

Sect. 2, definitions of autocorrelated linear profiles are

discussed. Section 3 presents the framework of the pro-

posed approach. Results of simulation studies regarding

performance comparisons are given and discussed in

Sect. 4. To show the effectiveness of our method, an

illustrative example is given in Sect. 5. Finally, Sect. 6

gives some conclusions and suggests future research

directions.

2 Preliminaries

In this section, first, the general relations of linear profiles

with between-autocorrelation error terms are presented.

Then, three common control charts, namely T2, EWMA/R

and EWMA-3, are briefly introduced. Finally, details about

the Ordinary Least Squares (OLS) estimation of the

parameters are discussed. These basics are necessary

against the backdrop that (1) our proposed method employs

the T2 statistic as input feature, and (2) these conventional

charts are used for comparison purposes in our analyses.

2.1 The linear autocorrelated profile in Phase II

A common linear profile, which is the simplest but the

most fundamental type of profiles [19], is defined as:

Yij ¼ A0 þ A1Xi þ eij; eij �N 0; r2
� �

;

i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;
ð1Þ

where Xi represent the explanatory variable in a linear

profile and the response variable Yij is the quality charac-

teristic under study. The parameters of the above IC model

(intercept A0, slope A1 and error variance r2) are estimated

from Phase I samples, and it is usually assumed that sample

size n and independent variable Xi are fixed in each profile.

When there is an AR(1) structure between the random error

terms, (1) becomes:

Yij ¼ A0 þ A1Xi þ eij; eij ¼ /ei j�1ð Þ þ aij; aij �N 0; r2
� �

;

i ¼ 1; 2; :::; n; j ¼ 1; 2; . . .;

ð2Þ

where / is a constant autocorrelation coefficient, which is

assumed to be known in Phase II. To monitor the above IC

profile, we briefly present three common approaches in the

following subsections.
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2.2 The T2 control chart for monitoring
autocorrelated profiles in Phase II

By some calculations, it can be easily shown that the

estimated responses are obtained in the jth generated sam-

ple over time as follows [44]:

ŷij ¼ /yi j�1ð Þ þ 1� /ð ÞðA0 þ A1XiÞ: ð3Þ

Thus, the empirical residuals can be written as:

eij ¼ ŷij � yij: ð4Þ

Noorossana, Amiri and Soleimani [44] used a modified

form of the T2 statistics proposed by Kang and Albin [14]

in a simple linear profile:

t2j ¼ ej
X�1

e

e
0

j; ej ¼ e1j; e2j; . . .; enj
� �

; ð5Þ

where
P

e is the symmetric n 9 n matrix r2I. Since the

chart statistic ðt2j ) is ensured to be larger than zero, it is

compared with a predefined Upper Control Limit (UCLT)

to reach an OC signal. Note that the Lower Control Limit

(LCLT) is equal to 0.

2.3 The EWMA/R control chart for monitoring
autocorrelated profiles in Phase II

In the EWMA/R control chart, two simultaneous statistics

monitor the generated profiles. The first statistic is related

to the mean of the residuals and is defined as follows

[44, 53]:

zj ¼ hej þ ð1� hÞzðj�1Þ; ej ¼
1

n

Xn

i¼1

eij; ð6Þ

In (6), it holds z0 = 0, and h is the EWMA constant that

usually has a value between 0.1 and 0.9 [20]. Following

previous works [21, 53, 54, 58], h is set to 0.2 in this paper.

The second statistic of the EWMA/R chart is the range

of the empirical residuals defined by [37, 48]:

rj ¼ maxðeijÞ �minðeijÞ: ð7Þ

The EWMA/R declares the process as IC if both of the

following conditions are met [14]:

�Lr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2� hð Þn

s

\zj\Lr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

2� hð Þn

s

;

r d2 � Ld3ð Þ\rj\r d2 þ Ld3ð Þ
ð8Þ

In (8), the value of L is assigned to reach a predefined

ARL0, while d2 and d3 are two constants that depend on the

sample size (see Montgomery [1] for more details).

2.4 The EWMA-3 control chart for monitoring
autocorrelated profiles in Phase II

To solve the problem of dependency between the estima-

tors in linear profiles, Kim, Mahmoud and Woodall [20]

suggested to have zero mean explanatory variables, where

the least squares estimators of slope and intercept are

independent random variables. By this coding (transfor-

mation), the EWMA-3 approach has the IC model

Yij ¼ B0 þ B1Xdi þ eij; eij ¼ /ei j�1ð Þ þ aij; eij �N 0; r2
� �

;

i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;

ð9Þ

where the coded explanatory variables (Xdi ¼ Xi � X) lead

to the transformed IC intercept B0 = A0 ? A1 X, A0 and A1

are defined as in (1). Note that the transformed IC slope is

B1 = A1 in this approach. The OLS estimation of the

parameters ( bB0j; bB1j; br
2
j) generates three separate EWMA-

based errors for intercept (eIj), slope (eSj) and standard

deviation (eij), as follows:

eIj ¼ B̂0j þ ;B̂0 j�1ð Þ � 1� ;ð ÞB0;

eSj ¼ B̂1j þ ;B̂1 j�1ð Þ � 1� ;ð ÞB1;

eij ¼ yij � ;yi j�1ð Þ � 1� ;ð ÞB0 þ B1Xdi;

MSEj ¼
1

n

Xn

i¼1

e2ij:

ð10Þ

Based on the OLS estimation, the Mean Square Error

(MSE) of the jth profile is considered as the estimator of

the error variance (for details see Kim et al. [20], Huwang

et al. [59] and Yeganeh and Shadman [54]), thus, three

chart statistics can be calculated as follows:

EWMAIj ¼ heIj þ 1� hð ÞEWMAI j�1ð Þ;

EWMASj ¼ heSj þ 1� hð ÞEWMAS j�1ð Þ;

EWMAEj ¼ max h MSEj � 1
� �

þ 1� hð ÞEWMAE j�1ð Þ; 0
� �

:

ð11Þ

The control limits of the three separate control charts are

designed as:
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UCLI ¼ �LCLI ¼ LIr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

n 2� hð Þ

s

UCLS ¼ �LCLS ¼ LSr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

n 2� hð Þ

s

UCLE ¼ LE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hVar MSEj

� �

2� hð Þ

s

ð12Þ

It is worth noting that LCLE ¼ 0, and some suggestions

regarding VarðMSEjÞ can be found in Kim, Mahmoud and

Woodall [20], Noorossana et al. [44] and Hosseinifard et al.

[53]. EWMA-3 triggers an OC signal when at least one of

the statistics exceed the control limits. The proposed con-

stants entailing LI, LS and LE are usually adjusted to reach a

desired value of ARL0 in such a way that each of the

separate charts achieves an identical individual ARL0.

2.5 OLS estimation of the parameters

Since the parameters estimated via OLS are employed as

inputs of the machine learning techniques, some details on

the OLS estimators are given below [20, 21, 53]. While the

intercept of the original and the transformed model is

estimated by bA0j ¼ Yj � bA1jX and bB0j ¼ Yj, respectively,

the slope parameter in both models is estimated via

bA1j ¼ bB1j ¼
SXYj
SXX

, where SXYj ¼
Pn

i¼1 YijðXi � XÞ and SXY ¼
Pn

i¼1ðXi � XÞ2 (with Yj ¼ 1
n

Pn
i¼1 Yij and Xj ¼ 1

n

Pn
i¼1 Xij).

Note that the definition of MSEj based on (10) is equivalent

to the estimator of the error variance.

3 The proposed control chart for monitoring
autocorrelated profiles

The basic idea in this paper is to use machine learning

techniques instead of statistical control charts for moni-

toring profiles with between-autocorrelation. For this pur-

pose, several features are extracted from the process to

embed into the machine learning techniques. Using training

patterns and the obtained control limits help to improve

decision-making about the process.

To employ a machine learning technique as a control

chart, four main steps are defined in the following. In the

first step, the structure of the input features and outputs of a

machine learning technique are determined, and then, a

training data set based on the input features and outputs is

generated by simulating IC and OC profiles in the second

step. The third step uses the generated data set to train a

machine learning technique, and finally, by the definition

of a control limit, the machine learning technique provides

information about the process condition in the fourth step.

Figure 1 shows a step-by-step flowchart regarding the

proposed method in monitoring autocorrelated profiles.

Moreover, details of these steps are presented in the fol-

lowing subsections.

3.1 Defining the structure of input features
and outputs

Extracting proper input features is a key step in the

implementation of machine learning techniques [60]. In the

literature, various strategies have been employed for

extracting features. For example, Chen et al. [57] and

Sergin and Yan [51] used autoencoders to obtain Phase I

information, which is not compatible for this study. Hos-

seinifard et al. [53] and Yeganeh and Shadman [54] sug-

gested to take the OLS estimations of the linear profile

parameters as input features. This input structure performs

well in profiles without autocorrelation, but it is not able to

provide reliable results when between-autocorrelation of

the profiles is present since the effect of autocorrelation is

not captured by the distribution of the OLS estimators. So,

in addition to these inputs ( bA0j, bA1j, brj), further appropriate

input features are proposed in the following, which are

suitable to account for between-autocorrelation effects of

first order (i.e., AR(1) autocorrelation). In particular, the

proposed input structure addresses the effect of the mean of

responses, the mean of errors, and T2 statistic each in the

current sample (j) and the previous sample (j-1). It should

be mentioned that one of the main benefits of machine

learning-based algorithms is their independency to the

basic assumptions about the process. So, when replacing

proper estimations related to other autocorrelation models

Define input features

Generate training data set based on 

the input features

Select a machine learning technique

Generate IC profiles with target as 0 Generate OC profiles with target as 1

Train the machine learning technique 

Set CV based on the output of 

machine learning and ARL0

Generate random OC profiles

Compute proper inputs based on the 

generated profiles

Import the inputs to the machine 

learning technique

Compute output and compare it with 

CV to decide on the process

Fig. 1 The general step-by-step flowchart of the proposed method
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such as MA, ARMA and ARIMA, the proposed method

can be easily applied for other process conditions.

In machine learning, there are several approaches for

normalizing and scaling of the inputs, one of which

involves the parameter distribution to be used. For

instance, Yeganeh and Shadman [54] scaled the parameters

of simple linear profiles, i.e., intercept, slope and standard

deviation, with normal and chi square distribution (the

relations are not reported for brevity but the interested

reader is referred to Eqs. (4) to (9) in Yeganeh and Shad-

man [54]). Since the autocorrelation was not considered in

Yeganeh and Shadman [54] for OLS estimators, we sug-

gest to utilise the between-autocorrelation effect of the first

order by means of deviations between current (previous)

OLS estimators and their respective IC values, i.e., bA0j�
A0; bA1j � A1;brj � r0ð bA0ðj�1Þ � A0; bA1ðj�1Þ � A1; brðj�1Þ �
r0Þ. Using this approach, the means of current and previous

responses (yj; y j�1ð Þ) are automatically incorporated in the

input structure as they are functions of the OLS estimates

Â0j ¼ yj � Â1jx; Â0 j�1ð Þ ¼
�

y j�1ð Þ � Â1 j�1ð ÞxÞ.
By considering the above inputs, numerous input com-

binations can be defined in the proposed method. Having

investigated several input features, the following three

input combinations I, II and III with 8, 4 and 10 inputs,

respectively, are employed for each machine learning

technique based on their ability to: (1) adequately address

the specific effects of between-autocorrelation of type

AR(1), and (2) incorporate the deviations between OLS

estimates and their respective IC values for efficient Phase

II monitoring:

(I) bA0ðj�1Þ � A0, bA1ðj�1Þ � A1, brðj�1Þ � r0, bA0j � A0,

bA1j � A1, brj � r0, ej, eðj�1Þ.

(II) brðj�1Þ � r0, brj � r0, t
2
(j-1), t

2
j.

(III) bA0ðj�1Þ � A0, bA1 j�1ð Þ � A1, brðj�1Þ � r0, bA0j � A0,

bA1j � A1, brj � r0, ej, eðj�1Þ, t
2
(j-1), t

2
j.

These input combinations are motivated by their ability

to consider effects regarding autocorrelation in various

ways. While input combination I addresses the raw AR(1)

structure of the underlying model, input combination II

aims to isolate the effects of the current and previous T2

statistics extended by an additional consideration of the

current and previous error variances. Finally, input com-

bination III is the union of input combinations I and II, and

therefore, combines both main effects. In these three input

combinations, the following notations are utilized:

• Estimated parameters via OLS in the previous sample

( bA0ðj�1Þ, bA1ðj�1Þ, brðj�1Þ).

• Estimated parameters via OLS in the current sample

( bA0j, bA1j, brj).

• Mean of error terms in the previous sample (eðj�1Þ).

• Mean of error terms in the current sample (ej).

• T2 statistic in the previous sample (t2(j-1)).

• T2 statistic in the current sample (t2j).

Note that the T2 statistic is added as an input feature and

no further statistics from other conventional control charts

in order to: (1) increase the worse performance of the T2

control chart, and (2) avoid overparameterization and

complexity with regard to further common competitors.

3.2 Generation of the training data set

To construct the training data set, the IC and OC profiles

are generated by means of simulations. From the simulated

profiles, the inputs are constructed based on the predefined

three input structures I, II and III in Sect. 3.1. For example,

the inputs of the jth generated profile consist of 10 features

in input combination III as bA0ðj�1Þ � A0, bA1 j�1ð Þ � A1,

brðj�1Þ � r0, bA0j � A0, bA1j � A1, brj � r0, eðj�1Þ,

ej; t
2
ðj�1Þ and t

2
j : Considering the suggestions by Hosseini-

fard, Abdollahian and Zeephongsekul [53], equal numbers

of IC and OC profiles are generated in a way that the target

values of IC and OC profiles are set to 0 and 1,

respectively.

Hence, we consider the size of the training data set

(number of rows) as 6G. First, 3G IC profiles are generated

and their input features are recorded with a target value

equal to 0. Then, 3G OC profiles (G profiles with shift in

intercept, G profiles with shift in slope, and G profiles with

shift in standard deviation) are obtained in the same way

with a target value equal to 1. Finally, the training data set

has 6G rows and 9 (8 ? 1), 5 (4 ? 1) and 11 (10 ? 1)

columns for input combinations I, II and III, respectively

(note that the last column represents the target values). For

better understanding, pseudo code 1 illustrates the process

of data set generation for input combination III (an anal-

ogous procedure also applies to input combinations I and

II).
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3.3 Training a machine learning technique

After obtaining a training data set, a machine learning

technique can be trained on its basis. In this paper, six

common machine learning techniques, i.e., ANFIS, ANN,

RBF, SVR, CNN and LSTM, with the ability of generating

continuous outputs are investigated. For better under-

standing, we provide a brief description about the param-

eters and adjustments of each method in MATLAB

software.
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• The ANFIS approach utilizes fuzzy IF–THEN rules to

train the parameters with some basic algorithms such as

subtractive clustering and grid portioning, in which the

idea of rule generation is different. The ‘genfis’

function, which is a well-known single-output Sugeno

fuzzy inference system, is used to obtain a grid partition

for the training procedure.

• The ANN structure, especially a Multi-Layer Percep-

tron (MLP), with gradient-based optimization is

employed here. An important issue in ANNs is related

to the adjustment of the number of hidden layers and

the neurons. The function ‘feedforwardnet’ utilises a

fully connected network architecture using the BP

Levenberg–Marquardt training algorithm (‘trainlm’

option). In this study, a single hidden layer with 10

neurons is suggested for training.

• RBF considers different training approaches based on

the idea of clustering. It has only one hidden layer in a

way that the neurons with a distinct spread (radius) are

added to its structure until the pre-specified error or

maximum number of neurons is obtained. Because the

training procedure is completed by the aim of training

error reduction, the probability of overfitting would be

generally high in this approach. The function ‘newrb’

with spread (radius) 1, error rate 0.05 and maximum

neuron size 100 is selected for training purposes.

• As additional machine learning techniques, SVM and

SVR obtain the parameters based on generating a

hyperplane in the problem space in order to minimize

the gaps between the predicted and obtained values

considering a kernel function for mapping the inputs to

the problem space. As we aim to reach a continuous

output (regression problem) in this study, the SVR

function ‘fitrsvm’ with the gaussian kernel function is

used for training (more details about the classification

and regression nature of machine learning-based control

charts can be found in Yeganeh and Shadman [54]).

The parameter epsilon, which determines the distance

between the real and the estimated planes in the space,

is an important parameter of the SVR technique. As the

common range of epsilon is [0.3–0.5] [61], the value 0.3

is selected in this paper.

• The deep leaning technique CNN is utilized to inves-

tigate its detection ability in the SPM field. Generally, a

CNN layer moves some filters along the input vertically

and horizontally and computes the dot product of the

weights and the input, and then adds a bias term to

reach some novel features from the process. CNNs have

several parameters such as padding and filter size. As

the inputs of this paper are in vector form, the layers are

created with ‘convolution1dLayer’ function with filter

size 5.

• As a further deep learning technique, LSTM is trained

to evaluate its performance. Due to the consideration of

time dependencies with the aim of time units, LSTM

can identify the time series related patterns in an

effective way. The most important parameter of LSTM

is the number of hidden neurons in each unit that is

nearly like the number of hidden layers in common

ANNs. Two LSTM layers are defined by the

‘lstmLayer’ function with 40 hidden neurons in a way

that the Adam optimizer is utilised to obtain the best

weights.

3.4 Decision on the process condition

Considering the definition of target values, Hosseinifard

et al. [53] set the LCL of their proposed method to 0 and

denoted the UCL as Cutting Value (CV). The CV is

adjusted by simulations to reach the desired value of ARL0.

After adjustment of the CV, the output of the considered

machine learning technique, e.g., ANN, is compared with

the CV to make a decision on the process [43]. If the output

of the ANN in the jth sample (Oj) is larger than the CV, this

indicates an OC condition (see Fig. 1 in Hosseinifard et al.

[53] for more details).

By employing this approach in our proposed framework,

we can identify the process condition when comparing the

output Oj of a machine learning technique with the

respective CV. For better understanding, pseudo code 2

illustrates the procedure of reaching an OC signal in one

iteration of simulations when input combination III is used.

To compute the ARL and SDRL by means of Monte Carlo

simulations, this procedure is iterated 10,000 times.
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4 Simulation study

To show the effectiveness of our proposed method, a

comprehensive simulation study is conducted in this sec-

tion. To compare the six machine learning techniques

ANFIS, ANNBP, CNN, LSTM, RBF and SVR, the CV for

each method is set to reach ARL0 equal to 200, as it is the

most common value in profile monitoring. The next aim is

to find the best input among the three combinations I, II

and III. As such, three input combinations under different

parameter settings are used as inputs to the machine

learning techniques. Due to the page limit, we only present

the results of three input combinations for the shift in

intercept in Table 1 under / = 0.1 and other results can be

given to the interested readers upon request. As can be

seen, nearly all machine learning techniques produced the

best (i.e., lowest) values in terms of ARL1 for input com-

bination III. This is due to the fact that input combination

III is able to combine both main effects of input combi-

nations I and II, namely:

(1) appropriately addressing the raw AR(1) structure of

the underlying model, and.

(2) the effects of the current and previous T2 statistics as

well as of current and previous error variances.

In other words, only considering (2), i.e., using input

combination II, is not enough to reach proper results. On

the other hand, concentrating on (1), i.e., using input

combination I, enables to obtain better performance on

average than with (2). The combination of (1) and (2) via

input combination III clearly strengthens the effect of (1)

and leads to superior results.

Similar results are obtained for the rest of parameter

settings; thus, we only present the results of input combi-

nation III for the rest of the experiments. In addition, due to

the first-priority importance of detecting small shifts in the

underlying process, the focus is mainly on smaller shifts in

the simulation studies. As for larger shifts, there are gen-

erally the same patterns as for smaller shifts.

For comparisons of single shifts in intercept, slope and

standard deviation, the IC model is taken from Noorossana

et al. [44] and Wang and Huang [48], where A0 = 3, A1 = 2

and r2 = 1. In addition, the explanatory variables have the

values 2, 4, 6, 8 (n = 4), and 0.1, 0.5, 0.9 are considered as

fixed values of /. For comparisons of simultaneous shifts,

the IC model is extracted from Wang and Lai [45].

In Sect. 4.1, the performance of various machine

learning techniques is compared and the method with the

best performance is selected. In Sect. 4.2, the selected

machine learning technique and conventional statistical

control charts in Phase II profile monitoring are compared.

Finally, Sect. 4.3 reports the performance of the best

approach for simultaneous shifts in profile parameters.

4.1 Comparing different machine learning
techniques based on input combination III

In this subsection, three individual shifts are considered for

each parameter to compare the performance of each tech-

nique in a way that the shifted parameters are A0 ? kr,
A1 ? gr and cr. The values of ARL1 associated with

different machine learning techniques are given in Table 2.

To have a fair comparison, the values of the SDRL1 are

additionally provided in Table 3 for each of the considered

shifts. The bold values represent the approach with the best

performance.
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As can be seen in Table 2, ANFIS obtains the best

performance in terms of ARL1 for small shifts in intercept

and slope, given / = 0.1 and / = 0.5. As for / = 0.9,

mostly ANNBP (k = 0.6, 0.8, g = 0.075, 0.1, 0.125) and

LSTM (k = 0.2, g = 0.025, 0.05) produce better results.

These results are also reflected in the values of SDRL1 with

only a few exceptions (see Table 3). As for small shifts in

the standard deviation, RBF outperforms other machine

learning techniques, with only two exceptions for / = 0.9,

c = 1.8 and 2, where CNN performs marginally better.

However, RBF is not a preferable approach in comparison

with ANFIS regarding shifts in intercept and slope.

Note that the deep learning techniques CNN and LSTM

are generally not able to reach comparable results for the

most shifts, especially for smaller shifts. These find-

ings can be justified before the backdrop that deep neural

networks have superiority over shallow networks in prob-

lems with a large number of features such as image pro-

cessing and Natural Language Processing (NLP) [62, 63].

Based on the above findings and numerical evidence

regarding a wider range of shifts, ANFIS is the best of the

considered machine learning approaches regarding shifts in

intercept and slope, and RBF is the superior method

regarding shifts in the standard deviation. However, for /
= 0.9, ANFIS and RBF are not throughout the best meth-

ods. To illustrate this issue, we additionally provide the

results regarding ARL1 and SDRL1 of all techniques con-

sidering / = 0.9 with a wider range of shifts in Tables 4

and 5, respectively.

To reach a better judgment about the results of Tables 4

and 5, the Relative Mean Index (RMI) is implemented to

select the best machine learning technique. This measure is

frequently utilized in SPM (see, for example, Han and

Tsung [64], Perry [65] and Yeganeh et al. [24]) and con-

siders the average difference from the superior approach in

each treatment. The smaller the RMI, the quicker the

detection ability. Table 6 reports the values of RMI based

on the simulation results given in Tables 4 and 5.

Table 4 ARL1 comparisons considering a wider range of shifts in intercept (k), slope (g) and standard deviation (c) for the input combination III

and / = 0.9

Method k

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ANFIS 144.677 89.822 47.460 21.007 5.794 2.173 2.090 2.086 2.100 2.124

ANNBP 194.451 92.170 30.952 5.293 3.995 3.940 3.910 3.799 3.649 3.393

CNN 216.380 217.183 212.464 222.914 211.987 211.104 207.297 189.189 170.760 160.546

LSTM 139.426 103.727 79.522 53.711 39.301 29.880 18.956 12.976 6.747 3.904

RBF 188.115 119.235 56.713 8.788 2.395 2.152 2.264 2.315 2.433 2.519

SVR 164.683 108.124 68.474 33.823 8.631 2.285 2.173 2.124 2.281 2.313

Method g

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

ANFIS 175.783 143.763 109.363 74.653 50.791 31.012 15.633 5.825 2.567 2.176

ANNBP 248.431 158.491 87.173 50.070 26.125 7.654 4.190 3.955 3.870 3.815

CNN 214.247 219.537 205.613 225.729 227.702 222.676 212.587 210.799 216.418 202.293

LSTM 135.823 120.072 89.606 82.092 62.414 49.494 44.859 33.867 29.811 15.373

RBF 193.292 154.166 121.484 96.986 48.968 17.264 4.476 2.476 2.281 2.241

SVR 160.631 137.422 97.349 80.197 57.297 35.293 23.586 6.671 2.659 2.020

Method c

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

ANFIS 64.695 25.511 12.803 7.884 5.532 4.240 3.496 3.044 2.744 2.516

ANNBP 140.020 66.717 35.559 22.451 16.802 11.323 9.338 7.308 6.486 5.544

CNN 51.960 20.969 10.511 6.432 4.525 3.669 3.218 2.713 2.416 2.223

LSTM 81.518 62.422 62.602 58.711 63.530 69.185 89.924 94.494 100.394 98.791

RBF 40.287 15.934 9.748 8.203 8.842 11.009 15.450 21.748 33.891 51.241

SVR 55.655 39.398 40.116 42.161 62.349 97.647 157.309 250.867 465.365 736.960
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The order of machine learning techniques in terms of

ARL1 (SDRL1) for shifts in the intercept is RBF, ANNBP,

ANFIS, SVR, LSTM, CNN (ANNBP, ANFIS, RBF, SVR,

LSTM, CNN). As for shifts in the slope, the order in terms

of both ARL1 and SDRL1 is ANNBP, RBF, ANFIS, SVR,

LSTM, CNN, while the order for shifts in the standard

deviation is CNN, ANFIS, ANNBP, RBF, LSTM, SVR for

both ARL1 and SDRL1. To select the machine learning

technique with the best average performance regarding all

the shifts, we consider the average of the RMI values in

Table 5 SDRL1 comparisons considering a wider range of shifts in intercept (k), slope (g) and standard deviation (c) for the input combination III

and / = 0.9

Method k

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ANFIS 140.243 85.831 44.917 18.773 4.235 0.437 0.293 0.283 0.301 0.334

ANNBP 167.322 84.394 26.709 4.140 0.174 0.342 0.416 0.601 0.762 0.920

CNN 214.801 208.212 211.106 215.770 205.786 198.972 201.125 190.211 203.272 206.984

LSTM 143.447 89.651 78.859 52.650 42.535 37.556 28.578 24.562 15.248 9.900

RBF 173.271 107.553 48.343 7.315 0.787 0.367 0.460 0.465 0.496 0.512

SVR 162.555 105.062 63.735 35.477 9.428 1.189 0.777 0.565 0.576 0.659

Method g

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

ANFIS 171.757 140.779 104.133 70.735 46.725 27.908 13.429 4.196 0.896 0.398

ANNBP 221.148 153.464 79.820 43.473 23.121 7.017 1.580 0.359 0.494 0.581

CNN 208.397 213.699 190.458 215.281 228.720 207.836 205.684 203.201 199.125 212.372

LSTM 133.759 113.919 99.049 84.907 60.108 45.684 52.771 39.508 34.940 22.459

RBF 182.574 143.612 117.028 94.293 41.753 15.299 3.223 0.873 0.671 0.448

SVR 138.379 140.612 97.978 79.200 66.815 38.406 26.332 7.422 2.333 0.453

Method c

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

ANFIS 61.485 23.262 10.958 6.424 4.150 2.937 2.230 1.846 1.525 1.339

ANNBP 132.698 62.626 35.204 19.247 15.173 10.206 8.682 6.912 6.142 4.722

CNN 47.777 17.547 8.244 4.529 2.950 2.119 1.719 1.160 0.902 0.754

LSTM 81.664 60.809 64.828 63.546 59.199 76.749 103.126 138.067 108.859 113.859

RBF 34.356 12.626 8.112 6.717 8.054 10.517 20.154 24.031 38.982 54.605

SVR 59.005 38.480 40.647 43.803 71.503 115.210 162.199 274.770 525.780 742.972

Table 6 Comparing different

machine learning techniques

based on the RMI criterion with

respect to simulation results

given in Tables 4 and 5 (/
= 0.9)

Shift type ANFIS ANNBP CNN LSTM RBF SVR

ARL1

Intercept 0.497 0.495 57.634 5.550 0.271 0.989

Slope 0.952 0.333 36.899 4.859 0.434 1.234

Standard deviation 0.260 2.237 0.068 19.315 4.913 71.041

Average (ARL1) 0.570 1.022 31.534 9.908 1.873 24.421

SDRL1

Intercept 2.791 0.502 447.485 62.728 6.000 6.969

Slope 2.446 0.146 167.293 27.493 0.720 4.690

Standard deviation 0.555 4.146 0.080 52.626 15.026 198.764

Average (SDRL1) 1.931 1.598 204.953 47.615 7.249 70.141
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terms of ARL1 and SDRL1, respectively. Here, ANFIS

(ANNBP) has the best overall average performance

because the average of RMI with respect to ARL1 (SDRL1)

is 0.570 (1.598), but the difference in SDRL1 between

ANNBP and ANFIS (1.598 vs. 1.931) is negligible.

According to these results, ANFIS is selected as the best

machine learning technique, and thus we use it as bench-

mark technique in the subsequent simulations.

The superiority of ANFIS could be due to the estab-

lishment of two main training parts including the ante-

cedent part and the conclusion in its structure by the aim of

fuzzy IF–THEN rules. The effects of the current and pre-

vious T2 statistics, current and previous errors as well as of

the current and previous coefficients’ estimations, the

chance of getting unnatural trends is increased when

employing the ANFIS technique. A similar conclusion has

been achieved by Aziz Kalteh and Babouei [66] in a way

that they indicated the suitable performance of ANFIS in

control chart pattern recognition problems.

4.2 Comparing the best machine learning
technique with conventional statistical
approaches

In this subsection, the performance of ANFIS as the best

machine learning technique is compared with conventional

statistical control charts based on individual and simulta-

neous shifts in intercept, slope and standard deviation for

/ = 0.1. Because the performance of RBF regarding shifts

in the standard deviation is better as compared to ANFIS,

RBF is also embedded in the comparisons. Three

Table 7 Comparing the performance of ANFIS and RBF with con-

ventional statistical competitors considering small shifts in intercept

(k), slope (g) and standard deviation (c) in terms of ARL1 (/ = 0.1)

Method k

0.2 0.4 0.6 0.8 1

T2 162.800 99.700 52.500 27.400 14.600

EWMA/R 78.600 21.900 10.000 6.200 4.500

EWMA-3 68.900 19.700 9.300 5.900 4.300

ANFIS 43.486 3.096 2.013 2.000 2.000

RBF 177.846 98.682 46.009 23.104 11.437

Method g

0.025 0.05 0.075 0.1 0.125

T2 181.300 140.500 96.100 62.700 39.700

EWMA/R 129.900 53.900 24.500 13.800 9.200

EWMA-3 111.400 43.400 20.500 12.000 8.300

ANFIS 88.629 19.977 3.890 2.170 2.006

RBF 202.962 146.796 98.082 62.851 36.595

Method c

1.2 1.4 1.6 1.8 2

T2 28.200 9.100 4.600 3.000 2.200

EWMA/R 34.000 12.100 6.100 3.900 2.800

EWMA-3 23.900 8.200 4.700 3.300 2.600

ANFIS 49.657 24.790 16.089 12.685 10.510

RBF 27.041 8.772 4.580 2.966 2.248

Table 8 Comparing the

performance of ANFIS with

conventional statistical

competitors considering

simultaneous small shifts in

intercept (k and slope (g) in
terms of ARL1 (/ = 0.9)

g k Method

0.2 0.4 0.6 0.8 1

0.025 196.150 189.860 178.720 162.830 140.660 T2

180.420 155.300 127.930 102.660 81.120 MEWMA

135.733 60.576 31.535 10.410 3.455 ANFIS

0.05 192.530 183.330 169.010 149.150 123.280 T2

163.660 137.270 111.010 88.340 69.260 MEWMA

94.710 41.753 20.034 4.766 2.871 ANFIS

0.075 186.870 174.180 156.570 132.940 104.470 T2

145.870 119.460 95.480 75.230 58.900 MEWMA

63.953 28.939 10.529 4.012 2.777 ANFIS

0.1 178.750 162.610 141.230 114.160 85.130 T2

127.140 102.620 81.470 63.990 49.620 MEWMA

39.036 15.850 3.564 2.968 2.537 ANFIS

0.125 167.780 148.600 123.370 94.780 67.030 T2

109.180 87.680 69.090 54.080 41.400 MEWMA

19.410 7.530 2.470 1.970 1.910 ANFIS
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competitors entailing T2, EWMA/R and EWMA-3 are

selected following Noorossana et al. [44]. Table 7 shows

the results of ARL1 for ANFIS and the competitors. Note

that the setups are the same as in the previous subsection,

and the results of ANFIS and RBF are extracted from

Table 2.

As can be seen, ANFIS performs considerably better

than the other methods for shifts regarding intercept and

slope. There is a large difference especially for smaller

shifts; for example, ARL1 is 3.096 for ANFIS given

k = 0.4, while ARL1 is 99.7, 21.9 and 19.7 for the con-

ventional competitors T2, EWMA/R and EWMA-3,

respectively. However, EWMA-3 and RBF obtain the best

results for shifts in the standard deviation. In addition, the

statistical methods outperform ANFIS regarding shifts in

the standard deviation.

4.3 Comparing the best machine learning
technique with conventional statistical
approaches considering simultaneous shifts

In industrial processes, simultaneous shifts may occur, so a

control chart should also be able to detect such type of

shifts. Wang and Lai [45] conducted several simulations

about simultaneous shifts with the IC model proposed by

Noorossana, Amiri and Soleimani [44]. In the following,

we compare ANFIS with two reported schemes in Wang

and Lai [45], i.e., T2 and MEWMA. MEWMA is an

advanced version of EWMA control charts that integrates

the effect of previous samples in one statistic, and some

researchers reported that the performance of this approach

in profile monitoring is very well [17, 21, 59]. Table 8

shows the results in terms of ARL1 for simultaneous shifts

in intercept and slope. Note that we restrict the comparison

to location parameters and do not consider further simul-

taneous shifts, which include shifts in the standard devia-

tion, due to the superior performance of ANFIS regarding

shifts in intercept and slope. This is also in line with the

approach proposed in Wang and Lai [45].

According to Table 8, ANFIS outperforms both other

methods. The deviations in terms of ARL1 are tangible; for

example, the values of ARL1 are 135.73, 180.42 and

196.15 (1.91, 34.22 and 49.64) for ANFIS, MEWMA and

T2, respectively, for the smallest (largest) shift k = 0.2 and

g = 0.025 (k = 1 and g = 0.125). While there is no distinct

trend for the absolute deviations between the values of

ARL1 of ANFIS and each of both competitors for

increasing shift sizes, there is generally an increasing

behaviour for the corresponding relative deviations, i.e.,

ARLMEWMA
1 � ARLANFIS

1

ARLANFIS
1

and
ARLT2

1 � ARLANFIS
1

ARLANFIS
1

regarding small shifts (see Table 8). That is, the larger the

shifts in slope and/or in intercept, the larger the relative

deviations.

As for larger shifts in slope and/or intercept (k[1 and

g[ 0.125, not tabulated due to lower relevance), the val-

ues of ARL1 regarding ANFIS decrease to a small extent,

while the values of ARL1 regarding MEWMA and T2

become closer to the respective ARL1 values of ANFIS,

i.e., we observe a decreasing behavior for the correspond-

ing relative deviations regarding larger shifts. To sum up,

ANFIS clearly outperforms both methods in detecting

simultaneous shifts and its detection ability is especially

better for lower shift sizes.

Statistical control charts usually require the fulfilment of

some principal assumptions to reach the best performance,

while the occurrence of complicated patterns in the man-

ufacturing process may lead to the invalidity of some of the

presumed assumptions and thus to deteriorations in their

performance. In contrast, machine learning techniques

encounter less challenges provided that input combinations

and training procedure are defined properly. It could be

concluded from the above results that the machine learn-

ing-based techniques, and especially ANFIS, perform bet-

ter than conventional statistical methods when monitoring

autocorrelated profiles; however, some computational

effort may be required when implementing these approa-

ches. Due to the existence of online data collection systems

in real applications, big data storage and development of

high technology computers, this challenge is becoming

easier in a way that machine learning-based systems can

automatically analyze process data to identify OC situa-

tions. To this end, the definition of proper input features,

dataset development, relevant training adjustment and

acceptable false alarm rates are essential tasks. These steps

are usually performed as off-line modelling phase while the

operation (online) phase refers to the implementation of the

trained model on the online data to detect the process

Table 9 The IC (black) and OC (red) generated responses in the

illustrative example

j yij
1 72.253 73.264 72.967 75.188

2 72.345 73.845 73.610 74.569

3 72.333 73.363 72.709 74.548

4 72.193 73.147 73.649 73.942

5 73.157 74.618 73.373 74.962

6 73.239 74.219 73.498 75.270

7 72.352 74.249 73.949 74.897
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condition [57, 60]. By this procedure, the proposed

machine learning-based approach in this paper can improve

the monitoring of industrial processes in terms of OC

detection ability.

5 Illustrative example

In this section, an illustrative example of a chemical pro-

cess is conducted to demonstrate a real application. In fact,

this example could be considered as a calibration system in

the chemical industry. Sometimes, it is necessary to control

a chemical process far from the laboratory with remote

schemes in which some gas sensors are used as the con-

troller. These sensors are used to monitor such a chemical

process over time. Although it is a beneficial approach, it

needs new calibration by changing the sensors’ adjustments

as the variability of gas sensors may affect the performance

of the underlying calibration model [67]. These changes

may be caused by different chemical materials, process

conditions, and equipment movements so their calibration

should be checked over time. The approach of profile

monitoring can be applied to address calibration issues and

for online monitoring of the process.

For these reasons, some studies such as Mahmood et al.

[68] and Nadi et al. [36] suggested to apply profile moni-

toring. Metal oxide (MOX) as a conductometric type of gas

sensors is one of the best options due to its sensitivity,

operational ease, cost efficiency, rapid response, and the

capability of spotting a high number of volatiles. The

authors supposed MOX as a sensor and monitored a

functional relationship between the resistance (R) of the

sensor (i.e., MOX) as the dependent variable and the

concentrations of carbon monoxide in the sensor as the

independent variable.

To monitor this functional formula, they recorded the

results of sensor resistance and different concentration

levels over time. Based on the recorded data, the

explanatory variables are fixed at 25, 100, 125, and

150 ppm. To reach a better performance, it is suggested to

change the process situation with some additives. These

substances are blended to a special process to accelerate the

processing ability of the polymers, improve the character-

istics such as durability, stiffness, and enhance the service

life. A wide range of additives such as gas, feed, anti-wear,

food, fuel, antioxidant, plastic additives have been exten-

ded yet. Indeed, gas additives are usually added to the gas

sensor processes to adjust the flow of gas during the

experiment [67]. However, previous works showed that the

relation between resistance and carbon concentration might

change in the case of additive materials. To address these

issues, Nadi et al. [36] investigated situations related to the

before and after of adding the additive material in a way

that one additive material was added to the process after

time 3278; so, the IC model was extracted from the first

3278 profiles. Considering these profiles, Nadi et al. [36]

considered a simple linear IC model with the autocorrela-

tion effect as follows:

Yij ¼ 71:741þ 0:0176Xi þ eij;

eij ¼ 0:565ei j�1ð Þ þ aij; aij �N 0; 0:142ð Þ;
i ¼ 1; 2; 3; 4; j ¼ 1; 2; . . .

ð13Þ

To show the applicability of the proposed method in

monitoring the above IC model, Nadi et al. [36] utilized

simulations for OC data generation (instead of using the

data after the 3278th profile). Following them, we first

generated five IC profiles and then continued with the OC

profile generation considering a shift in the intercept until

reaching an OC signal. The magnitude of the OC shift was

considered as 0.15 (or 0.5r). Table 9 shows the response

variables of the generated profiles (the black and red values

are IC and OC profiles, respectively).

To specify the detection ability of ANFIS for this data

set, it is trained based on the IC model in Eq. (13) and input

combination III. Considering ARL0 = 200, the CV is set to

0.615. After adjustment of the CV, the generated data in

Table 9 is imported to ANFIS and the output of each input

is computed. Table 10 reports the input and output values

Table 10 Input and output

values for the first seven

generated profiles applying

ANFIS with input combination

III (/ = 0.565)

j Inputs Oj

1 0 0 0 0 -0.2 0.001 0.433 4.406 0 -0.08 0.477

2 -0.2 0.0012 0.4332 4.406 0.219 -0.001 -0.26 0.963 -0.08 0.14 0.358

3 0.22 -0.0013 -0.2557 0.963 0.124 -0.004 0.213 3.209 0.14 -0.31 0.230

4 0.12 -0.004 0.213 3.209 0.076 -0.003 -0.37 1.404 -0.31 -0.12 0.318

5 0.08 -0.003 -0.3709 1.404 1.194 -0.007 0.304 9.352 -0.12 0.68 -0.357

6 1.19 -0.007 0.3045 9.352 1.08 -0.005 0.196 1.575 0.68 0.26 0.157

7 1.08 -0.005 0.196 1.575 0.21 0.002 -0.22 0.971 0.26 0.05 0.849
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for the first seven generated profiles. Hence, ANFIS only

needs two OC samples to trigger a signal. The signal in the

7th sample appears because the final statistic exceeds the

CV (red horizontal line in Fig. 2), so ANFIS can trigger an

OC signal (O7 = 0.849[ 0.615 = CV).

6 Conclusions

In profile monitoring, the error term often does not follow a

simple structure and is affected by autocorrelations. For

this reason, a novel monitoring scheme for linear auto-

correlated profiles with between-autocorrelation of first

order in Phase II of process monitoring has been proposed

in this paper. Unlike most of the existing methods that use

common statistical control charts, this paper employed

various machine learning techniques, such as ANFIS,

ANNBP, CNN, LSTM, RBF and SVR as a control chart.

To this aim, four main steps were defined. In the first step,

the structure of the input features and outputs of a machine

learning technique were determined, and then, a training

data set based on the input features and outputs was gen-

erated by simulating IC and OC profiles in the second step.

The third step utilized the generated data set to train a

machine learning technique, and finally, by the definition

of a control limit, the machine learning technique provided

information about the process condition in the fourth step.

The study conducted pursued three main objectives. Due

to the high importance of input features in machine

learning, some input features, which are appropriate to

account for between-autocorrelation effects of first order,

were defined and compared to achieve the most appropriate

input combination. The results indicated that input com-

bination III, which is defined as the union of input com-

binations I and II and combines both main effects of these

input combinations, is the most appropriate one. For the

second aim, different machine learning techniques were

compared to identify the most adequate one. Experimental

studies showed that ANNBP, CNN, LSTM and SVR were

mostly not able to reach a satisfactory detection ability in

comparison with ANFIS and RBF. Among ANFIS and

RBF, ANFIS was preferable with respect to shifts in

intercept and slope, while RBF had the best performance

regarding shifts in the standard deviation. This superiority

was obvious for low and moderate autocorrelation coeffi-

cients (i.e., / = 0.1 and 0.5), while it was not possible to

identify a consistently best method for a larger value (/
= 0.9). To address this issue, we additionally implemented

an overall performance measure, called RMI. Following

RMI, we found that ANFIS turns out to be the method with

the best overall average performance for / = 0.9. The third

aim of this study was to compare machine learning-based

techniques with statistical control charts. This comparison

led to the result that the detection ability of ANFIS out-

performed all the competitors regarding shifts in intercept

and slope. However, the detection ability of ANFIS

regarding shifts in the standard deviation was inferior

compared to the selected statistical control charts. In this

regard, the EWMA-3 control chart performed better, and

the best machine learning technique for this purpose was

RBF (with a performance that is hardly worse than that of

EWMA-3). Hence, machine learning-based control chart-

s, and ANFIS in the first place, are suggested to be utilized

in profiles that are characterized by between-sample AR(1)

autocorrelation to considerably improve the detection

ability of the control chart.

Employing the proposed novel input features with other

machine learning techniques and other profile types such as

nonlinear or Generalized Linear Models (GLMs) in the

presence of autocorrelations could be a promising avenue

for potential future research. Also, implementing the pro-

posed method in profiles that are characterized by within

0.477

0.358

0.230

0.318

-0.357

0.157

0.849

-0.500

-0.300

-0.100

0.100

0.300
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0.700

0.900

1 2 3 4 5 6 7

O
j

Sample Number

Fig. 2 The final chart statistics

of the first seven random

generated profiles in the

illustrative example (/ = 0.565)
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sample autocorrelation or in profiles with other autocorre-

lation patterns, such as ARMA or VARMA are further

suggestions for potential future directions.
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