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Abstract: In this paper, a nonlinear time series model is developed for the case when the underlying
time series data are reported by LR fuzzy numbers. To this end, we present a three-stage nonpara-
metric kernel-based estimation procedure for the center as well as the left and right spreads of the
unknown nonlinear fuzzy smooth function. In each stage, the nonparametric Nadaraya–Watson
estimator is used to evaluate the center and the spreads of the fuzzy smooth function. A hybrid
algorithm is proposed to estimate the unknown optimal bandwidths and autoregressive order simul-
taneously. Various goodness-of-fit measures are utilized for performance assessment of the fuzzy
nonlinear kernel-based time series model and for comparative analysis. The practical applicability
and superiority of the novel approach in comparison with further fuzzy time series models are
demonstrated via a simulation study and some real-life applications.

Keywords: fuzzy regression; fuzzy time series model; nonparametric time series analysis; time
series analysis
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1. Introduction

The field of time series analysis comprises methods used to analyze the characteristics
of a response variable with respect to time. It takes into consideration the fact that obser-
vations made over time may have an internal structure (such as autocorrelations, trends,
seasonal and/or cyclic variations) that should be accounted for. The main aims of time
series analysis are as follows:

• Trend analysis: to identify the underlying pattern or trend in the data over time, such
as an upward or downward trend.

• Seasonality analysis: to identify if the data exhibit a repeating pattern over a set period,
such as daily, weekly, or yearly.

• Forecasting: to forecast future values using historical data.
• Anomaly detection: to identify any unusual or unexpected observations in the data that

deviate from the normal pattern.
• Model selection: to choose an appropriate model to represent the underlying relation-

ships between variables in the data.
• Noise reduction: to remove any unwanted variability or random fluctuations from the data

to improve the accuracy of predictions and make the underlying patterns more clear.

These aims can inform decision makers, provide insight into the underlying patterns
and relationships in the data, and support the development of data-driven strategies in
various fields such as economics, engineering, finance, and more (see, e.g., [1–8]).

Common time series models rely on exact observations and ensure crisp predictions.
However, due to various uncertainty factors, it is sometimes preferable to make predictions
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using imprecise values. For instance, we usually observe imprecise observations in carbon
emissions, social benefits and oil reserves, among others [9]. Traditional statistical time
series models fail to address prediction problems based on ambiguous or vague information
represented by fuzzy data. This shortcoming can be overcome by time series models that
use techniques of fuzzy statistics. In general, fuzzy statistics is a branch of statistics
that deals with uncertainty and imprecision, e.g., in the data. It includes, for instance,
the fields of fuzzy estimation, fuzzy regression, fuzzy clustering, and fuzzy hypothesis
testing [10–12].

Fuzzy time series models were originally introduced in 1993 [13], and since then they
have replaced conventional (crisp) time series approaches when observations are uncertain.
When considering fuzzy time series models, the prediction of future values requires three
principal steps. In step 1, the exact data are reported. In step 2, through the identification of
fuzzy logical relations [14,15], the predictions are transformed into fuzzy quantities. Finally,
step 3 provides a defuzzification approach [16–22] to transform the fuzzy values into crisp
ones. The techniques used to identify fuzzy logical relations in step 2 primarily involve
fuzzy logical relation groups and matrices [13,23–34], soft computing methods [35–44],
and statistical approaches in interaction with fuzzy logic [21,24,45–47]. Step 2 is an essential
part of the predictive power of the presented model. Fuzzy time series models that rely on
imprecise observations have attracted substantial attention in recent years, mainly due to
their high applicability to real-life problems.

In fact, a lot of researchers have focused on time series models using imprecise observa-
tions. The soft computing techniques employed in this framework are mostly combinations
of artificial neural networks, evolutionary algorithms, fuzzy and rough sets. These ap-
proaches are widely used for crisp or fuzzy forecasts based on crisp past observations such
as electricity load, stock index prices and temperature (for a review of these techniques, we
refer to [48–56]). In addition, various methods combine techniques of time series and fuzzy
regression analysis [57]. For some recent advances in fuzzy regression analysis, see [58–63].

The reliability of forecasting methods generally requires exact observations in the
sample. But there is often only vague information that is given in terms of imprecise
quantities. Moreover, there are various real-world problems related to biological, economic,
environmental, medical and sociological data where we face inaccurate instead of accu-
rate data. In many real-life applications, e.g., monthly Co2 emission, annual sea surface
temperature or the water level of a lake, conventional observations are often reported as
mean values. In such cases, the data obtained are not sufficient informative since some
information contained in the range of the data is neglected. To overcome this shortcoming,
one alternative would be to report such kind of data as interval valued (comparable to
conventional confidence intervals). However, a potential shortcoming of interval-valued
data is the fact that all values within the interval have the same importance. To avoid this
issue of interval-valued data, the reported data can alternatively be represented with help
of fuzzy numbers [64]. These fuzzy quantities can be modeled via experts opinion, or as
simple alternative, they can be constructed via a method proposed by Buckley [65]. In this
approach, conventional confidence intervals are employed to construct fuzzy numbers
around the conventional mean values.

In addition to the abovementioned methods, there are also fuzzy time series models
that rely on fuzzy data, but comparatively few overall. In this regard, Hesamian and
Akbari [66] first suggested a fuzzy semi-parametric time series model (FSPTSM) based on
fuzzy data, non-fuzzy coefficients, and fuzzy smooth functions. Secondly, Zarei et al. [67]
used a specific variant of the FSPTSM [66] for triangular fuzzy data and different distance
measures for fuzzy data. And thirdly, Hesamian et al. [68] introduced a forward additive
time series model (FATSM) for fuzzy observations.

In this paper we develop a fuzzy nonparametric time series model (FNPTSM) for
fuzzy observations that is inspired by nonparametric regression models and kernel smooth-
ing methods [57]. As an initial idea, note that in nonparametric regression analysis, the
Nadaraya-Watson estimator [69,70] is fairly common. Now, let us consider the issue of pa-
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rameter estimation in the nonlinear regression model xt = f (xt−1, xt−2, . . . , xt−p) + εt with
f : Rp → R. Based on this general model, a simple nonparametric way of estimating the
function f is to employ the kernel-based Nadaraya–Watson estimator

f̂ (xt) =
T∗

∑
j=p+1

wh(t, j)xj (1)

with

wh(t, j) =
∑

p
i=1 K

( xt−i−xj−i
h

)
∑T∗

j=p+1 ∑
p
i=1 K

( xt−i−xj−i
h

) ,

where K is a kernel function and h > 0 the bandwidth parameter. Note that the estimator (1) is
a weighted average of x1, x2, . . . , xT using the weights wh(t, j). As for determining the optimal
bandwidth h, the Generalized Cross Validation (GCV) criterion

ĥ = arg min
h>0

GCV(h) = arg min
h>0

1
T∗ − p

T∗

∑
t=p+1

 xt −∑T∗
j=p+1 wh(t, j)xj

1− tr(Wh)
T∗−p

2

can be utilized, where tr(Wh) is the trace of the matrix Wh = [wh(t, j)]. It is a matter of
fact that the estimated values of f are ensured to be within the range of the response
variable. This beneficial property is one of the reasons why we apply the Nadaraya–Watson
kernel-based estimator for our fuzzy time series model. By utilizing this idea, the proposed
FNPTSM provides an estimation procedure of the unknown (nonlinear) relationship be-
tween the fuzzy observations in three stages. The advantage of this methodology is that it
considerably decreases the complexity in the estimation procedure. While the other fuzzy
time series models [66–68] are based on estimating the unknown components of the model
by unifying the centers and spreads of fuzzy data and their corresponding predicted values,
our proposed method provides a smooth estimation procedure according to three separate
stages. In the framework of a simulation study and two real-data examples, the efficiency
and appropriateness of the FNPTSM is assessed in comparison with previous time series
models for fuzzy data by utilizing four approved goodness-of-fit criteria.

The paper is organized as follows. First, we recall some necessary concepts related to
fuzzy numbers in Section 2. In Section 3, the three-stage nonparametric kernel-based time
series model using fuzzy data is presented. In Section 4, various application examples are
given. Concluding remarks are provided in Section 5.

2. Fuzzy Numbers

In this section, we introduce basic definitions of fuzzy numbers that are needed to
develop our proposed method.

A fuzzy set Ã is a mapping on X that assigns a specific degree of membership
0 ≤ µÃ(x) ≤ 1 to each x ∈ X. In addition, a fuzzy number (FN) Ã is a convex nor-
malized fuzzy set on the real line R with an upper semi-continuous membership function
of bounded support [71]. In many real applications, vague data a can be reported as Ã:
“about a”. Such fuzzy data can often be represented via a special case of FNs, so called
LR-FNs, which split µÃ into two curves: a part on the left and a part on the right of the
modal value. So, when considering real-life applications in fuzzy environments, LR-FNs
play an important role. The membership function of an LR-FN µÃ(x) = (a; la, ra)LR can be
defined by:
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µÃ(x) =


L
(

a− x
la

)
if x ≤ a

R
(

x− a
ra

)
if x > a

(2)

In (2), L and R are continuous and strictly decreasing functions from [0, 1] to [0, 1]
satisfying L(0) = R(0) = 1 and L(1) = R(1) = 0. In addition, a ∈ R represents the
modal value, while la > 0 and ra > 0 are the left spreads and right spreads of Ã, respectively.
The set of all LR-FNs is represented by FLR(R). A special case of an LR-FN is the so-called
triangular fuzzy number (TFN), whose membership function has the following form:

µÃ(x) =


x−(a−la)

la
a− la ≤ x ≤ a

a+ra−x
ra

a < x ≤ a + ra

0 otherwise

There are various operations that can be defined between two LR-FNs, i.e., between
Ã = (a; la, ra)LR and B̃ = (b; lb, rb)LR. For instance, as we need both operations in this
paper, we define Addition and Scalar multiplication of Ã and B̃ in the following [72]:

• Addition: Ã⊕ B̃ = (a + b; la + lb, ra + rb)LR
• Scalar multiplication:

λ⊗ Ã =

{
(λa; λla, λra)LR if λ > 0
(λa;−λra,−λla)RL if λ < 0

Moreover, there are numerous concepts used to define distances between two LR-FNs
Ã = (a; la, ra)LR and B̃ = (b; lb, rb)LR [71]. Here, we utilize the squared error distance measure
D for performance evaluation of the FNPTSM in comparison with other models. It is
defined as

D(Ã, B̃) = (((a− b)2 + c1(la − lb)2 + c2(ra − rb)
2)/3)0.5

with c1 =
∫ 1

0 L−1(α)dα and c2 =
∫ 1

0 R−1(α)dα [73].

3. Nonparametric Kernel-Based Time Series Model for Fuzzy Data

In this section, the FNPTSM is developed along with the suggested parameter estima-
tion method.

3.1. The Model

First, we recall the definition of fuzzy time series data.

Definition 1. Let x̃T = {x̃1, x̃2, . . . , x̃T
}

be a set of FNs of size T. Then, x̃T is called fuzzy time series
data if {x̃1, x̃2, . . . , x̃T

}
is the vague concept of ordinary time series data {x1, x2, . . . , xT} [68,74].

As discussed in the Introduction, there are many situations where it is preferable to
report exact data x by an FN x̃ as “about x”. Then, x̃ is the respective vague concept of x.

Definition 2. Let x̃T = {x̃1, x̃2, . . . , x̃T
}

be fuzzy time series data. The FNPTSM for fuzzy time
series data x̃T is then defined by

x̃t = f̃ (x̃t−1, x̃t−2, . . . , x̃t−p)⊕ ε̃t, (3)

where

1. x̃t = (xt; lxt , rxt)LR,
2. f̃ (x̃t−1, x̃t−2, . . . , x̃t−p) = ( f (xt−1, xt−2, . . . , xt−p);

l f (lxt−1 ,lxt−2 ,...,lxt−p )
, r f (rxt−1 ,rxt−2 ,...,rxt−p )

)LR,
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3. ε̃t = (εt; lεt , rεt)LR’s are fuzzy errors, where εt ∈ R and lεt , rεt ∈ R+.

Remark 1. Note that (3) provides an FN in the form x̃∗t = (x∗t ; lx∗t , rx∗t )LR with x∗t = f (xt−1, xt−2,
. . . , xt−p) + εt, lx∗t = l f (lxt−1 ,...,lxt−p )+lεt

and rx∗t = r f (rxt−1 ,...,rxt−p )+rεt
with t = 1, 2, . . . , T.

According to Definition 1, as {x1, x2, . . . , xT} is ordinary time series data, x̃∗T = {x̃∗1 , x̃∗2 , . . . , x̃∗T
}

is also a vague concept of ordinary time series data {x∗1 , x∗2 , . . . , x∗T
}

. Thus, the proposed fuzzy time
series model (3) generates new fuzzy time series data.

3.2. Three-Stage Estimation Method for the Nonlinear Fuzzy Smooth Function

Below, we suggest a three-stage method to estimate the unknown fuzzy smooth func-
tion f̃ in (3). For this purpose, the fuzzy predictions are obtained based on a within-sample
forecast xT∗ =

(
x1, x2, . . . , xT∗

)> with T∗ < T. From (3), one can get three ordinary non-
linear time series models as (1) xt = f (xt−1, xt−2, . . . , xt−p) + εt, (2) lxt = l f (lxt−1 ,...,lxt−p )+lεt

,

and (3) rxt = r f (rxt−1 ,...,rxt−p )+rεt
for t = 1, 2, . . . , T∗. Therefore, to estimate the fuzzy smooth

function at x̃ = (x; lx, rx)T with x = (x1, x2, . . . , xp)>, lx = (lx1 , lx2 , . . . , lxp)
> and rx = (rx1 ,

rx2 , . . . , rxp)
>, we follow the three-stage procedure below:

• Stage (1): Consider the nonlinear regression model lxt = l f (xt−1,xt−2,...,xt−p) + lεt .

Based on the time series data lxt = (lxt−1 , . . . , lxt−p)
>, we employ the weighted

Nadaraya–Watson estimator to estimate l f for a within-sample forecast T∗ ≤ T at
lx = (lx1 , . . . , lxp)

>) as

l f̂ (lxt )
=

T∗

∑
j=p+1

whl (t, j)lxj ,

where

whl (t, j) =
∑

p
i=1 K

(
lxt−i−lxj−i

hl

)
∑T∗

j=p+1 ∑
p
i=1 K

(
lxt−i−lxj−i

hl

) (4)

with kernel function K(.) and bandwidth parameter hl > 0. The optimal value of hl
can be estimated by implementing the GCV criterion,

ĥl = arg min
hl>0

GCV(h) = arg min
hl>0

1
T∗ − p

T∗

∑
t=p+1

 lxt −∑T∗
j=p+1 whl (t, j)lxj

1−
tr(Whl

)

T∗−p


2

, (5)

where tr(Whl
) is the trace of the matrix Whl

= [whl (t, j)] with whl (t, j) as defined in (4).
• Stage (2): Consider the nonlinear regression model rxt = r f (xt−1,xt−2,...,xt−p) + rεt . Based

on the within-sample time series forecast data rxt = (rxt−1 , . . . , rxt−p)
>, t = 1, 2, . . . , T∗,

the weighted Nadaraya–Watson estimation of r f at rx = (rx1 , . . . , rxp)
>) can be estab-

lished via

r f̂ (rxt )
=

T∗

∑
j=p+1

whr (t, j)rxj ,

where

whr (t, j) =
∑

p
i=1 K

(
rxt−i−rxj−i

hr

)
∑T∗

j=p+1 ∑
p
i=1 K

(
rxt−i−rxj−i

hr

) (6)
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and hr > 0 is a bandwidth parameter. The optimal value of hr can be estimated using
the GCV criterion,

ĥr = arg min
hr>0

GCV(h) = arg min
hr>0

1
T∗ − p

T∗

∑
t=p+1

 rxt −∑T∗
j=p+1 whr (t, j)rxj

1− tr(Whr )
T∗−p

2

, (7)

where tr(Whr ) is the trace of the matrix Whr = [whr (t, j)] with whr (t, j) as defined in (6).
• Stage (3): Consider the nonlinear regression model xt = f (xt−1, xt−2, . . . , xt−p) + εt.

Based on the within-sample time series forecast data (xt = (xt−1, xt−2, . . . , xt−p)>),
t = 1, 2, . . . , T∗, a nonparametric estimator f can be achieved as

f̂ (xt) =
T∗

∑
j=p+1

wh(t, j)xj,

where

wh(t, j) =
∑

p
i=1 K

( xt−i−xj−i
h

)
∑T∗

j=p+1 ∑
p
i=1 K

( xt−i−xj−i
h

) (8)

and bandwidth parameter h > 0. Similar to the previous stages, the optimal value of
h is estimated with the help of the GCV criterion,

ĥ = arg min
h>0

GCV(h) = arg min
h>0

1
T∗ − p

T∗

∑
t=p+1

 xt −∑T∗
j=p+1 wh(t, j)xj

1− tr(Wh)
T∗−p

2

, (9)

where tr(Wh) is the trace of the matrix Wh = [wh(t, j)] with wh(t, j), as defined in (8).

Therefore, the forecast x̃T∗+k with time lag k ∈ N can be achieved by an LR-FN via˜̂xT∗+k = (x̂T∗+k; lx̂T∗+k
, rx̂T∗+k

)LR with

x̂T∗+k =
T∗+k−1

∑
j=p+1

∑
p
i=1 K

( xt−i−xj−i

ĥ

)
∑T∗+k−1

j=p+1 ∑
p
i=1 K

( xt−i−xj−i

ĥ

) · xj,

lx̂T∗+k
=

T∗+k−1

∑
j=p+1

∑
p
i=1 K

(
lxt−i−lxj−i

ĥl

)
∑T∗+k−1

j=p+1 ∑
p
i=1 K

(
lxt−i−lxj−i

ĥl

) · lxj ,

rx̂T∗+k
=

T∗+k−1

∑
j=p+1

∑
p
i=1 K

(
rxt−i−rxj−i

ĥr

)
∑T∗+k

j=p+1 ∑
p
i=1 K

(
rxt−i−rxj−i

ĥr

) · rxj .

According to Stages (2) and (3), it can be seen that the spreads of the fuzzy prediction
x̃T∗+k are always non-negative.

Remark 2. Since the proposed time series model relies on fuzzy data, let us recall the previous
time series models based on fuzzy data [66–68]. First, Hesamian and Akbari [66] proposed a fuzzy
semi-parametric autoregressive integrated moving average (ARIMA) model as follows:

x̃i =
p⊕

l=1

(θl ⊗ x̃i−l ⊕ f̃ (ti)⊕ ε̃i), i = p + 1, . . . , T.
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The parameters of the model are estimated by employing a hybrid method including a non-
parametric kernel-based method and least absolute deviations. For a second time series model based
on fuzzy data, Zarei et al. [67] applied the method [66] to estimate the model parameters and the
fuzzy smooth function based on a specific distance, kernel and triangular fuzzy numbers. Finally,
Hesamian et al. [68] proposed the fuzzy nonlinear time series model

x̃t = f̃ (x̃t−1, x̃t−2, . . . , x̃t−p)⊕ ε̃t, t = 1, 2, . . . , T,

where

f̃ (x̃t−1, x̃t−2, . . . , x̃t−p) =
p⊕

l=1

fl(x̃t−l).

As for the estimation of the unknown fuzzy smooth functions f̃l , they applied a forward additive
nonparametric technique.

Remark 3. We have extended some common performance measures used to compare the predictive
accuracy of different time series models that we implement in Section 4. For this purpose, a time series
model is first estimated based on a within-sample fuzzy time series dataset of size T∗ < T and then the
performance of the model is evaluated via the remaining fuzzy time series dataset of size T − T∗.

1. Mean Forecast Error:

MFE =
∑T

t=T∗+1 D2(˜̂xt, x̃t)

T − T∗

2. Mean Absolute Scaled Error:

MASE =
∑T

t=T∗+1 qt

T − T∗

with

qt =
D(˜̂xt, x̃t)

1
T−T∗ ∑T

t=T∗+1 D2(x̃t, x̃t−1)

3. Basis of the Index of Agreement:

BIA = 1− ∑T
t=T∗+1 D2(x̃t, ˜̂xt)

∑T
t=T∗+1(D(x̃t, x̃) + D(x̃, ˜̂xt))2

with

x̃ =
∑T

t=T∗+1 x̃t

T − T∗

4. Mean Similarity Measure:

MSM =
1

T − T∗
T

∑
t=T∗+1

∫
min{˜̂xt(x), x̃t(x)}dx∫
max{˜̂xt(x), x̃t(x)}dx

Let A and B be two fuzzy time series models. As MSM : FLR(R)×FLR(R) → [0, 1] is a
similarity measure, values of MSM above 0.5 show a good degree of similarity between the fuzzy
responses and their fuzzy predictions. If we observe MSMB < MSMA, then model A outperforms
model B. Further, if MFEA < MFEB, MASEA < MASEB or BIAA < BIAB, then model A acts
better in terms of prediction accuracy compared to model B.

Remark 4. While the proposed estimation procedure does not depend on the shape functions L
and R corresponding to fuzzy data, the performance measures MFE, MASE and MSM depend on
these shape functions. Therefore, the selected type of the shape functions L and R may affect the
prediction criteria. For instance, assume that the data have reported by x̃t = (xt, lxt , rxt)LR with
L(x) = 1− x and R(x) =

√
1− x. That is, c1 = 1

2 and c2 = 2
3 . Therefore, the distance between
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x̃t and its prediction is D2(x̃t, ˜̂xt) = (xt − x̂t)2 + 1
2 (lxt − lx̂t)

2 + 2
3 (rxt − rx̂t)

2. This implies that
the MFE criterion is more sensitive to right spreads than to left spreads in this case. Considering
L(x) = R(x) = 1− x, it can be seen that D2(x̃t, ˜̂xt) would be equally dependent from the left
and right spreads. However, when we compare the performance of fuzzy time series models, it is
reasonable that the shape functions L and R are assumed to be the same for all the considered models.
Thus, following this approach, the performance criteria are not sensitive to the selection of L and R
since c1 and c2 remain fixed for each model.

3.3. Selection of Autoregressive Order and Optimal Bandwidths

When implementing the FNPTSM (3), it is necessary to select the optimal bandwidths
h, hl and hr, to choose the kernel function and to determine the autoregressive order p.
The procedure used to select the autoregressive order and the optimal bandwidths is
proposed as follows:

(1) Let p = 1.
(2) (2.1) Compute ĥp

l based on (5).
(2.2) Compute ĥp

r based on (7).
(2.3) Compute ĥp based on (9).

(3) Let p = p + 1 and return to (2) until

p̂ = arg min
p

RMSEp,

where

RMSEp =

√√√√∑T∗
i=p+1 D2(˜̂xi, x̃i)

T∗ − p
.

Then, p̂, ĥp, ĥp
l and ĥp

r are the optimal values.

4. Numerical Examples

In this section, the effectiveness of the FNPTSM is investigated considering a simula-
tion study and application examples that rely on fuzzy data. Recall that there are three other
time series models that are based on fuzzy data (see Remark 2), i.e., the models introduced
by Hesamian and Akbari [66], Zarei et al. [67] and Hesamian et al. [68]. However, as the
method of Zarei et al. [67] is based on Hesamian and Akbari’s method [66] (with a different
distance measure), we omit this technique in the comparisons below. Thus, we compare our
proposed method with the models suggested by Hesamian and Akbari (FSPTSM) [66] and
Hesamian et al. (FATSM) [68] via three different kernel functions (Gaussian, Epanechnikov,
and triweight).

Example 1. In this example, 10 fuzzy datasets, each of size 300, are generated by the following
FNPTSM:

x̃t = f (x̃t−1, x̃t−2, x̃t−3)⊕ ε̃t, t = 4, 5, . . . , 300,

where

1.

f (x̃1, x̃2, x̃3) =

(
x1 − cos(x2)− exp

(
x3

1 + |x3|

)
; cos2

(
0.9

3

∏
j=1

lxj

)
, exp

(
0.002

3

∏
j=1

rxj

))
LR

2. x̃j = (xj; lxj , rxj)LR, j = 1, 2, 3 are the initial values with xj ∼ N(0, 1), and lxj and rxj are
random variables following U(0, 0.2) and U(0, 0.9), respectively,

3. ε̃t = (εt; lεt , rεt)LR with εt ∼ N(0, 4), lεt and rεt are random variables following U(0, 0.4)
and U(0, 0.5), respectively, and

4. L(x) = 1− x2 and R(x) = 1− x.
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The kernels Gaussian, Epanechnikov, and triweight are applied to predict x̃t. Based on the
10 sample fuzzy datasets (each of size 300), the mean values of the goodness-of-fit measures and their
corresponding bandwidth mean values are summarized in Table 1. Consulting the results for the
FNPTSM, it is evident that the best results among various kernels are obtained via the Gaussian
kernel (lowest values of MFE, MASE and largest values of BIA, MSM). In addition, the results of
the FSPTSM and FATSM can also be found in Table 1. Comparing these results with the results of
the FNPTSM, it is obvious that the FNPTSM provides more accurate predictions compared to both
other methods for all three kernels, as all the considered goodness-of-fit measures show better results
for the FNPTSM. That is, we observe the lowest values of MFE, MASE and the largest values of
BIA, MSM for the FNPTSM.

Table 1. The mean performance measures of the FNPTSM, FSPTSM and FATSM corresponding to
some specific kernels in Example 1.

Method Kernel Results Goodness-of-Fit
Criteria

FNPTSM

Gaussian

MFE = 1.0452

ĥ = 0.45 MASE = 1.6089

ĥl = 0.04 BIA = 0.9996

ĥr = 0.22 MSM = 0.4167

Epanechnikov

MFE = 1.1728

ĥ = 0.66 MASE = 1.6478

ĥl = 0.05 BIA = 0.9992

ĥr = 0.39 MSM = 0.3953

triweight

MFE = 1.2482

ĥ = 1.89 MASE = 1.6339

ĥl = 0.08 BIA = 0.9991

ĥr = 0.54 MSM = 0.3721

FSPTSM

Gaussian

hopt = 0.07 MFE = 8.9728
θ̂1 = 0.5575 MASE = 4.2652

θ̂2 = −0.0956 BIA = 0.9536
θ̂3 = −0.1247 MSM = 0.2207

Epanechnikov

hopt = 0.02 MFE = 5.2530
θ̂1 = −0.6424 MASE = 4.5383
θ̂2 = −0.5168 BIA = 0.9603
θ̂3 = −0.4258 MSM = 0.2920

triweight

hopt = 0.13 MFE = 11.5231
θ̂1 = 0.3757 MASE = 3.8643

θ̂2 = −0.1576 BIA = 0.9738
θ̂3 = −0.2568 MSM = 0.2133
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Table 1. Cont.

Method Kernel Results Goodness-of-Fit
Criteria

FATSM

Gaussian

MFE = 1.392

ĥ1 = 1.8 MASE = 18.028

ĥ2 = 0.7 BIA = 0.972

ĥ3 = 0.03 MSM = 0.321

Epanechnikov

MFE = 1.353

ĥ1 = 1.75 MASE = 17.548

ĥ2 = 1.20 BIA = 0.976

ĥ3 = 0.6 MSM = 0.339

triweight

MFE = 1.348

ĥ1 = 2 MASE = 16.459

ĥ2 = 1.5 BIA = 0.979

ĥ3 = 0.5 MSM = 0.349

Example 2. Three models, the FNPTSM, FSPTSM and FATSM, are implemented to analyze the
dataset in Table 2 taken from [67].

Table 2. Fuzzy time series data in Example 2.

t x̃t t x̃t

1 (1.7337; 0.8051)T 15 (2.9145; 1.1507)T
2 (2.3302; 0.9228)T 16 (2.6085; 1.1335)T
3 (1.3199; 0.7742)T 17 (3.0432; 0.4489)T
4 (5.0507; 0.8948)T 18 (6.8010; 0.9588)T
5 (1.4206; 1.0540)T 19 (4.9351; 0.8115)T
6 (4.0273; 0.9331)T 20 (3.5672; 0.6054)T
7 (2.8624; 1.0480)T 21 (3.8828; 1.1579)T
8 (4.7107; 1.0647)T 22 (0.5183; 0.9652)T
9 (4.1098; 1.1028)T 23 (3.6846; 0.8175)T

10 (4.4843; 1.0881)T 24 (3.5117; 0.4248)T
11 (1.3249; 1.0064)T 25 (2.8294; 0.7956)T
12 (3.2249; 0.5503)T 26 (2.3836; 1.0101)T
13 (3.2916; 0.5049)T 27 (3.9454; 0.7558)T
14 (3.5508; 0.9268)T 28 (3.6012; 1.0266)T

Eighty percent of the data were used for parameter estimation and the rest were applied to fit
the model. The goodness-of-fit values are given in Table 3 for the three kernels. The best results
among various kernels are obtained by employing the triweight kernel (lowest values of MFE,
MASE, and largest value of MSM). The results of the FSPTSM and FATSM are also given in
Table 3. As for the FSPTSM, the best results are obtained based on the triweight kernel with
MFE = 1.6252, MASE = 1.3371, MSM = 0.1205 and BIA = 0.9443. The best results of FATSM
are also obtained based on the triweight kernel with MFE = 0.254, MASE = 0.733, MSM = 0.358
and BIA = 0.958. However, all goodness-of-fit measures related to the FNPTSM show a better
performance compared to both the FSPTSM and FATSM, i.e., the lowest values of MFE, MASE
and the largest values of BIA, MSM are observed for the FNPTSM. The results show that the newly
presented FNPTSM is more efficient than the FSPTSM and FATSM for the data in Table 3. The
plot of the fuzzy data and corresponding estimates based on the triweight kernel is given in Figure 1
for all methods (FNPTSM, FSPTSM, FATSM).



Mathematics 2023, 11, 2800 11 of 17

Table 3. The performance measures of the FNPTSM, FSPTSM and FATSM corresponding to some
specific kernels in Example 2.

Method Kernel Results Goodness-of-Fit Criteria

FNPTSM

Gaussian

p̂ = 2 MFE = 0.1127
ĥ = 0.64 MASE = 0.4030
ĥl = 0.22 BIA = 0.9629
ĥr = 0.22 MSM = 0.3791

Epanechnikov

p̂ = 2 MFE = 0.1133
ĥ = 1.35 MASE = 0.4016
ĥl = 0.09 BIA = 0.9639
ĥr = 0.09 MSM = 0.3836

triweight

p̂ = 3 MFE = 0.1087
ĥ = 1.44 MASE = 0.3722
ĥl = 0.65 BIA = 0.9626
ĥr = 0.65 MSM = 0.4439

FSPTSM

Gaussian

ĥ = 0.13, p̂ = 3 MFE = 3.6124
θ̂1 = −0.2305 MASE = 2.1452
θ̂2 = −0.0613 BIA = 0.9666
θ̂3 = −0.4164 MSM = 0.0061

Epanechnikov

ĥ = 0.16 MFE = 1.5749
p̂ = 1 MASE = 1.3135

θ̂1 = −0.3192 BIA = 0.9438
MSM = 0.1080

triweight

ĥ = 0.23 MFE = 1.6252
p̂ = 1 MASE = 1.3371

θ̂1 = −0.3437 BIA = 0.9443
MSM = 0.1205

FATSM

Gaussian

p̂ = 2 MFE = 0.327
ĥ1 = 0.2 MASE = 0.943
ĥ2 = 0.3 BIA = 0.954

MSM = 0.341

Epanechnikov

p̂ = 2 MFE = 0.386
ĥ1 = 0.3 MASE = 1.302
ĥ2 = 1.5 BIA = 0.948

MSM = 0.3208

triweight

p̂ = 3 MFE = 0.254
ĥ1 = 0.5 MASE = 0.733
ĥ2 = 0.1 BIA = 0.958

ĥ3 = 0.05 MSM = 0.358
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Figure 1. Plot of x− l, x, x− r and x̂− r̂, x̂, x̂ + r̂ for FNPTSM, FSPTSM and FATSM (based on the
triweight kernel) in Example 2.

Example 3. In this example, we employ the FNPTSM and both the FSPTSM and FATSM to
predict the global land–ocean temperature [75]. For this purpose, we use the global land–ocean
temperature from January 2000 to December 2020, as shown in Figure 2. The data are reported
as average values for each month. Therefore, the data can also be interpreted as “mean of each
month" and appropriately modeled via triangular fuzzy numbers. Inspired by Buckley [65],
this dataset can be used to evaluate the global land-ocean temperature with the help of a TFN
x̃t = (xt; Z0.005st/

√
nt, 0.15Z0.025st/

√
nt)T , where nt, xt, and st denote the number of days,

mean, and standard deviation of the global land–ocean temperature in the tth month, respectively,
and Zα is the α-quantile of the standard normal distribution. However, since we do not have daily
values of the global land–ocean temperature, we model the monthly global land–ocean temperature
for a month t via x̃t = (xt; 0.2xt, 0.15xt)T .

2005 2010 2015 2020

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 2. Time series on global temperature in Example 3.

In this example, 200 observations were used to estimate the parameters. A further 52 obser-
vations were used to fit the model. The goodness-of-fit values that correspond to the FNPTSM,
FSPTSM and FATSM are given in Table 4. The results reveal that the FNPTSM outperforms the
FSPTSM and FATSM for the global land–ocean temperature dataset. Note that the best results
of the proposed FNPTSM are obtained based on the Gaussian kernel and the best results of both
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the FSPTSM and FATSM are given when implementing the triweight kernel. The fuzzy data,
along with the corresponding estimations related to the FNPTSM (based on the Gaussian kernel)
as well as of the FSPTSM and FATSM (based on the triweight kernel), are visualized in Figure 3.
In comparison to the FSPTSM and FATSM, the values predicted by the FNPTSM are closer to
the fuzzy observations, which reveals that the proposed FNPTSM performs better for the global
land–ocean temperature dataset.

Figure 3. Plot of x− l, x, x− r and x̂− r̂, x̂, x̂ + r̂ for FNPTSM, FSPTSM and FATSM in Example 3.

Table 4. The performance measures of the FNPTSM, FSPTSM and FATSM corresponding to some
specific kernels in Example 3.

Method Kernel Results Goodness-of-Fit Criteria

FNPTSM

Gaussian

p̂ = 2 MFE = 0.0061
ĥ = 0.030 MASE = 14.6082
ĥl = 0.006 BIA = 0.9783
ĥr = 0.005 MSM = 0.3781

Epanechnikov

p̂ = 2 MFE = 0.0061
ĥ = 0.051 MASE = 14.6360
ĥl = 0.013 BIA = 0.9782
ĥr = 0.007 MSM = 0.3787

triweight

p̂ = 2 MFE = 0.0067
ĥ = 0.032 MASE = 14.8885
ĥl = 0.011 BIA = 0.9761
ĥr = 0.010 MSM = 0.3921
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Table 4. Cont.

Method Kernel Results Goodness-of-Fit Criteria

FSPTSM

Gaussian

ĥ = 0.05, p̂ = 3 MFE = 0.0153
θ̂1 = 0.3912 MASE = 20.4387
θ̂2 = 0.2045 BIA = 0.9462

θ̂3 = −0.1916 MSM = 0.3714

Epanechnikov

ĥ = 0.10, p̂ = 3 MFE = 0.0148
θ̂1 = 0.4011 MASE = 20.0997
θ̂2 = 0.2095 BIA = 0.9483

θ̂3 = −0.1894 MSM = 0.3711

triweight

ĥ = 0.11, p̂ = 3 MFE = 0.0157
θ̂1 = 0.3643 MASE = 19.7872
θ̂2 = 0.1853 BIA = 0.9457

θ̂3 = −0.2175 MSM = 0.3954

FATSM

Gaussian

p̂ = 3 MFE = 0.011
ĥ1 = 1.5 MASE = 19.625

ĥ2 = 1.75 BIA = 0.964
ĥ3 = 0.05 MSM = 0.310

Epanechnikov

p̂ = 3 MFE = 0.010
ĥ1 = 1.25 MASE = 17.625
ĥ2 = 1.73 BIA = 0.966
ĥ3 = 0.1 MSM = 0.33

triweight

p̂ = 3 MFE = 0.0098
ĥ1 = 1.5 MASE = 16.745

ĥ2 = 1.77 BIA = 0.960
ĥ3 = 0.13 MSM = 0.345

5. Conclusions

Nonparametric statistical inference deals with situations where the functional relation-
ships of the involved distribution functions are unspecified. In this regard, nonparametric
time series models were broadly utilized to identify the “best fit” curve for a given time
series of data. However, there are numerous situations where the available data are fuzzy
rather than exact. In this paper, a nonparametric kernel-based time series model that relies
on fuzzy data was introduced. The Nadaraya–Watson estimator was utilized to provide a
fuzzy time series model within a three-stage procedure. Some popular goodness-of-fit mea-
sures have been implemented to investigate the performance of the fuzzy nonparametric
time series model based on different kernel functions. The effectiveness and feasibility of
the proposed time series model were also compared with the performance of existing time
series models based on fuzzy data. Considering three common kernel functions (Gaus-
sian, Epanechnikov, and triweight), the results indicated the superior performance of our
proposed method in comparison to previous approaches. In addition to the performance
aspect, the handling of the new nonparametric kernel-based time series model is much
simpler than that of the previous methods, as we implemented an estimation procedure that
is divided into three independent stages. In addition, our proposed time series model can
be employed for arbitrary shapes of LR fuzzy numbers. However, the model can be applied
only for LR fuzzy numbers, and thus it could be a promising future direction to develop
a more general methodology that can handle arbitrary fuzzy numbers. Future studies
could also focus on extending our approach to cases where the underlying time series data
contain outliers. Finally, extending the proposed methodology for other nonlinear models
such as wavelet-based or neural network-based time series models are further ideas for
future research.
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