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Summary 

Urban Building Energy Models (UBEMs) are representations of building stocks. They can be used by 
analysts and decision makers in government, private companies, NGOs, and, if made publicly accessible, by 
the public at large. Their purpose is the energy analysis of the building sector – as it is, as it could and should 
be in the future, and paths to get there. Insofar as UBEMs are the basis for policy measures that affect many 
actors in the building sector they play an important role in those actors’ communications and negotiations. 

In the last two decades, it has become obvious that UBEMs need to explicitly account for space, just as they 
need to represent the micro-level, i. e. individual buildings. The analysis of centralised heat supply (district 
heating) calls for spatial analysis. Renewable energies are often used most effectively in decentralised 
fashion. The interaction of heat demand and supply unfolds at the level of the urban neighbourhood. Indeed, 
today’s UBEMs are most often defined at the level of the individual building (though in publications, 
buildings are often clustered for data protection). 

UBEMs come in different forms. Until recently, they were often created ad hoc for a specific research project 
or for an individual consulting service to local, regional or national government. The last few years have 
seen such models in more formalised fashion and made publicly accessible, as “heat cadastres” 
(“Wärmekataster”, as in the city-state of Hamburg), or “Heat Atlas” (“Wärmeatlas”, as in the federal Land 
Bavaria). These cadastres and atlases contain a variety of energy-related information, like buildings, 
infrastructure, heat and power generating stations, waste heat sources and more. In this thesis, I focus on 
the residential building stock and its heat demand. 

The major challenge in creating a UBEM is the availability of data relating to the building stock. In 
Germany, there is a variety of data sources with different detail on building characteristics and at different 
levels of aggregation. Accordingly, UBEMs tend to be created with a Top-Down or a Bottom-Up approach. 
In simple terms, the former distributes total energy consumption at the city level onto all buildings according 
to their size. The latter makes use of building typologies and represents individual building characteristics 
and their specific heat demand by assigning “archetypes” to individual buildings. The Top-Down approach 
has the drawback of little flexibility in analysing measures that address individual building characteristics. 
UBEMs of the Bottom-Up type often overestimate total consumption as a consequence of how building types 
are defined and assigned to individual buildings. 

I propose a hybrid approach, based on combinatorial optimisation, inspired and heavily borrowing 
techniques from the field of spatial microsimulation. My case study is Hamburg. I use three main data 
sources: the digital building cadastre (ALKIS), 100m Census raster cells, and a sample of building energy 
audits. When aggregated, my UBEM comes within a couple of percent of consumption data for all of 
Hamburg. As a micro-model with detail at the building level, it offers the flexibility to analyse various cases 
and scenarios. I illustrate a number of different applications of my UBEM that show how its main features 
– the micro-level, the georeferencing (each building with its geographic coordinates), and the consumption-
adjusted heat demand – facilitate the analysis of a spectrum of energy policy measures.   
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Zusammenfassung 
Urban Building Energy Models (UBEMs) sind Datenmodelle, die Gebäudebestände abbilden und von 
Analysten und Entscheidungsträgern in Behörden, Wirtschaft, NGOs und, falls öffentlich zugänglich 
gemacht, von der breiten Öffentlichkeit verwendet werden können. Sie dienen der energetischen Analyse 
des Gebäudesektors, sowohl was seinen Ist-Zustand, als auch, was seine Ziel-Zustände und Wege dorthin 
betrifft. Als Grundlage für Politikmaßnahmen der öffentlichen Hand, die viele Akteure berühren, fällt 
UBEMs eine wichtige Rolle in deren Verständigung zu.  

In den letzten zwei Jahrzehnten ist die Notwendigkeit für die explizite Darstellung des Raums in solchen 
Modellen deutlich geworden, ebenso wie die explizite Berücksichtigung der „Mikro“-Ebene. Die Analyse der 
netzgebundenen Wärmeversorgung erfordert die räumliche Betrachtung. Erneuerbare Energien werden oft 
günstig dezentral genutzt. Das Zusammenspiel zwischen Angebot und Nachfrage erfolgt auf der Ebene des 
Quartiers. UBEMs werden heute meist auf der Ebene des einzelnen Gebäudes definiert (wobei in 
Veröffentlichungen die Gebäude aus Gründen des Datenschutzes in Clustern oder Gruppen dargestellt 
werden).  

Solche UBEMs gibt es in unterschiedlichen Formen. Bis vor kurzem wurden sie vielfach ad hoc für ein 
bestimmtes Forschungsprojekt oder als Dienstleistung für lokale, regionale oder nationale Verwaltungen 
erstellt. In den letzten Jahren sind solche Modelle mehr formalisiert und öffentlich zugänglich gemacht 
worden, als „Wärmekataster“ (z.B. in Hamburg) oder „Wärmeatlas“ (z. B. in Bayern). Diese Kataster und 
Atlanten können eine Vielzahl von energiebezogenen Informationen abbilden – Gebäude, Infrastruktur, 
Energieerzeuger, Abwärmequellen und mehr. Darin können sie über ein UBEM hinausgehen. In meiner 
Arbeit konzentriere ich mich auf den Wohngebäudebestand und dessen Wärmebedarf.  

Die große Herausforderung bei der Erstellung eines UBEMs ist die Verfügbarkeit von Daten zum 
Gebäudebestand. In Deutschland gibt es eine Vielzahl von Quellen in unterschiedlicher Detailschärfe und 
auf unterschiedlichen Aggregationsebenen. Dementsprechend werden sowohl der „Top-Down“- als auch der 
„Bottom-Up“-Ansatz bei der Erstellung von UBEMs verfolgt. Ersterer verteilt (vereinfacht gesprochen) den 
Gesamtenergieverbrauch auf Stadtebene auf alle Gebäude entsprechend ihrer Größe; letzterer nutzt 
Gebäudetypologien, um energetische Merkmale einzelner Gebäude abzubilden und ihnen typische 
spezifische Wärmebedarfswerte zuzuordnen. Das Problem des „Top-Down“ Ansatzes ist seine mangelnde 
Flexibilität, wenn es um die Analyse von Maßnahmen geht, die detaillierte Gebäudeeigenschaften 
adressieren. UBEMs mit „Bottom-Up“ Ansatz dagegen überschätzen oft den Gesamtverbrauch aufgrund der 
Art und Weise, wie Gebäudetypen definiert und einzelnen Gebäuden zugeordnet werden. 

Ich schlage einen hybriden Ansatz vor, der auf kombinatorischer Optimierung und Methoden der 
räumlichen Mikrosimulation basiert. Mein Anwendungsfall ist Hamburg. Ich verwende hauptsächlich drei 
Datenquellen: Das digitale Gebäudekataster, 100-Meter-Zensus-Rasterzellen sowie eine Stichprobe von 
Gebäude-Energieausweisen. Aggregiert kommt mein UBEM sehr nah an die Verbrauchsdaten auf 
Stadtebene heran. Als Mikromodell mit Detail auf Gebäudeebene bietet es die Flexibilität für die Analyse 
unterschiedlicher Fragestellungen und Szenarien. Ich illustriere verschiedene Anwendungen des UBEM, 
die zeigen, wie seine Hauptmerkmale – die „Mikro“-Ebene, Georeferenzierung (jedes Gebäude mit seinen 
geografischen Koordinaten) und verbrauchskorrigierter Wärmebedarf – eine Bandbreite energiepolitischer 
Analysen ermöglichen.  
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Prologue 

We live in fast times. Conveying information is ever easier, while doing it efficiently seems to have 
become more difficult. A wise person taught me the quote: “I am in a hurry friend, so my letter is long”. 
With that in mind, here I am listing, in short, some misconceptions and “gotcha” moments related to 
urban energy modelling that my research confronted me with. All of these I am addressing in the pages 
that follow. Perhaps these will stir you, my reader, to read on. Or at least leave you with a little more 
food for thought on the topic. 

• “Urban building energy modelling concerns buildings”. Yes, however, counting buildings per se 
is tricky. There are multiple definitions about where a building ends and a new one starts. The 
German Census counts “entrances”, the cadastre counts “objects”. No, they do not correspond 
or add up. Best is to use the area, as in X m2  of floor area. But be careful if it is residential floor 
area or total floor arear or net (not counting walls), etc. 
 

• “Heat Demand is well defined and when people discuss it, everyone is on the same page about 
what it is, like Pi.” No, heat demand may refer to a dozen different metrics – useful heat (what 
comes out of the radiators), delivered heat (what comes out of the boiler), final energy (what 
goes in the boiler). Further, if it is specific (per m2), then specific to which area (see above)? 
Sometimes it is used interchangeably with heat consumption, when the two are very different. 
 

• “3D data is better than 2D data”. If a 2D cadastre has information on the height of buildings 
or number of storeys it could potentially be more precise than an actual 3D object in some 
known 3D format, like CityGML. The fact that something has the 3rd dimension in its geometry, 
does not necessarily mean it is correct. The fact that something is represented as a 2D polygon 
does not necessarily mean it could not have good information on the 3rd dimension. 
 

• “The IWU residential building typology is not good, because I have tried to apply it to a building 
stock and it overshot the total consumption from other sources”. To that I would ask – How did 
you apply it? Did you use all renovation levels when applying the typology or did you use only 
the “baseline” state? Further note that the IWU Typology presents typical buildings, not 
average buildings. The difference is the same as between a statistical mode and a statistical 
mean. 
That being said, the underpinnings of the approach to characterise a building stock with a 
typology are, at this point in 2022, very shaky. This method was devised in 1990s, when 
energetic building renovations were just starting. At that time the majority of the buildings 
were, energetically, much more similar to when they were built. Nowadays, a majority of 
buildings have had some form of improvement. They no longer fit nicely into types.  
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1 Introduction & Literature 

1.1 Motivation: The Role of Urban Building Energy Models (UBEMs) 
Around the world, the building sector makes up around 20% of final energy consumption (U.S. EIA, 
2016, p. 101); in Germany, that share is 40% (BMWi, 2017, p. 16). With such high shares, policies that 
target building energy are an important part of climate protection. 

For decades, models for energy policy analysis have depicted building energy at the national level 
(Martinsen, Krey, et al., 2007; Martinsen, Linssen, et al., 2007). More recently, modelling of building 
energy has taken the city into focus. Municipalities play an important role in building stock 
development (an objective of urban planning) and heat supply (a local affair, due to the nature of heat, 
and often provided by municipally controlled companies). With the advent of Geographic Information 
Systems (GIS), Urban Building Energy Models (UBEMs) nowadays often represent buildings together 
with their spatial location and thus facilitate the analysis of neighbourhoods, allowing heat planning 
and urban development measures to be tailored to specific spatial constellations. 

1.2 Urban Building Energy Models (UBEMs) 

1.2.1 A note on terminology 

Firstly, a clarification of some terms is in order. What I mean by an Urban Building Energy Model is 
a dataset representing a building stock as opposed to f. ex. a statistical model1 or a machine learning 
model (which usually represent relations between variables). A UBEM consists of data structured in a 
specific way to represent real-world objects (in this case, usually buildings) and their characteristics 
specifically related to energy2. Statistical models may play a role in the field of UBEMs with regard to 
energy demand estimation. However, I do not regard them as part of a UBEM itself. 

The urban part in UBEM refers to the geographic scope of these models – usually an entire city3. The 
term building conveys, that although a city or country is modelled, the basic unit of analysis is the 
building, there are just many of them represented in the model4. A good overview of UBEMs is given 
by Reinhart and Cerezo (2016), Lim and Zhai (2017) and Li et al. (2017). 

 
1 For example, of the sort !! = #(%! , ') + *! (where * is a probability distributed variable) 
2 A closely related, but more general term is Urban Energy System Model (Keirstead et al., 2012). It refers to 
modelling urban energy systems, of which the buildings are a part, but also transport, district heating and 
electricity grids and other energy systems. 
3 A UBEM can technically encompass any spatial unit, a city, a neighbourhood or even a region or a whole country. 
Whether then “urban” is appropriate or should be substituted with “regional” is a matter of semantics. The key 
attribute is the building as the base unit. 
4 Note that representing a city with f. ex. three building types, each with a given weight, representing the number 
of such buildings in a city can be a “grey area” in the context of terminology. Such a model is definitely urban. 
Whether the aggregated representation of the buildings is enough to say the unit of analysis is the building is a 
valid question. I do consider it enough. However, I do not believe the semantics of it are critical enough to explore 
further. 
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A simulation is the imitation of a process incurring with or within the elements of the model. For 
example, deciding on how to represent a building (as an object with attributes or as an object consisting 
of other objects with attributes etc.) and filling the data structure with values would be part of urban 
building energy modelling. Using a UBEM to estimate the heat demand for each building could then 
be a simulation. However, there are technical differences between simulation and calculation. A 
simulation replicates the state transitions of a (dynamical) system, or model by computing the state of 
the system one time step after the other. The result for each time step depends on the preceding one. 
A calculation is simpler in that each state is computed in isolation from the previous state, hence no 
real “dynamics”5. For what I will do in this thesis, I argue calculating energy demand would be the 
most fitting term for this particular step. Lastly, in the context of this thesis, an algorithm is a set of 
rules, or steps, that a computer follows or performs. An algorithm can obviously be used to do 
simulations and calculations, but it can also be used to do urban building energy modelling (i.e. prepare 
the UBEM). 

1.2.2 Purpose of UBEMs 

The purpose of UBEMs falls under the general term data driven urban planning. It relies on the 
assumption that the more and better data is available, the better policy and planning decisions can be 
made. For illustrations see (García Kerdan et al., 2017; Martinsen & Krey, 2008; Vásquez et al., 2016). 
As an example for a national analysis, Sandberg et al. (2017) calculate different scenarios for the 
Norwegian building stock. In a simulation for the period 2016 to 2050, they obtain a decrease of yearly 
delivered building energy of 23% under the baseline building renovation scenario. The authors show 
this can be increased to a 52% reduction but with the integration of more heat pumps and photovoltaics, 
while increased renovation rate or deeper renovations would only bring very marginal decreases in 
delivered energy6. Such, more subtle conclusions provide important guidance for decision makers, 
pointing to possibly erroneous commonly held assumptions which stand in the way of effective climate 
protection. Note that this conclusion is for the Norwegian building stock, neither the authors nor I 
claim this to be a conclusion for buildings stocks in general. 

1.2.3 Types of models, state of the art  

Urban building energy modelling has to deal with the basic drawback that data on energy-related 
building characteristics are generally not available at the individual building level (Sola et al., 2020). 
The modelling therefore is first concerned with filling the data gaps. Decisions on data structure and 
richness of detail then follow from what could be accomplished from the first step. This has led to a 

 
5 Discussing the differences between „simulation“ and „calculation“ is a rather deep rabbit hole. Different fields of 
science would have different definitions. UBEMs are in many ways a cross-field, so one may encounter engineers, 
architects, computer scientists and physicists, all taking part. Because of this, I do not argue that the definition I 
give in the text is the one single source of truth. Only that it is useful in this context and that it helps explain what 
I actually do as opposed to what I do not do. 
6 Note that delivered energy is usually the energy at the point of sale or entry in the building/property. Thus, 
renewable energy integrated in the building usually decreases delivered energy, since it reduces the amount of 
energy needed “from the outside”. 
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couple of different approaches to urban building energy modelling. Li et al (2017) categorise them 
broadly as “top-down” and “bottom-up”. 

“Top-down” UBEMs are usually prepared (modelled) using total building energy consumption at coarse 
spatial scales – available from national or state-level energy balances, f. ex. in Germany the s. c. “energy 
balances” (AGEB e.V., 2018). The energy consumption is then distributed to finer-scale spatial units 
(individual buildings, neighbourhoods or raster cells) based on known characteristics of the latter, like 
population count or floor area. The upside of this approach is that it is, by definition, valid at coarser 
scales. The downside is that it has limitations when it comes to the analysis of policy scenarios, as such 
models are not flexible enough to simulate changes in the building stock in detail. 

“Bottom-up” modelling uses characteristics of individual buildings found in digital cadastres7 to create 
a model. Building size, shape and location is generally available either through extruded 2D cadastres 
or measured 3D observations (LiDAR or photogrammetry). However, there are no or extremely few 
exhaustive8 data sources with energetic information – heat transmissivity of building shell, types of 
heating systems, appliances etc. To fill this data gap a building typology approach or “archetype” 
approach is very often used (Reinhart & Cerezo, 2016). A building typology is derived usually from 
sample observations at national or regional scales and includes information (building attributes) that 
can be matched to the ones in the cadastre. It also includes the information that is not in the cadastre, 
but is energetically relevant and considered typical of a certain type (f. ex. transmissivity of building 
envelope typical for buildings built in 1920s). By matching the objects in the cadastre to the types by 
their common attributes, each building in the cadastre receives a type and “inherits” the needed 
energetic information from it. In this way, the bottom-up models are much more flexible, since each 
building can be represented as detailed as the building types are defined. 

Bottom-up models can be further divided into “statistical” and “engineering” (Lim & Zhai, 2017). The 
differentiation concerns the way the energy demand is calculated. Statistical models use usually a 
regression model with the building attributes as independent variables and the energy demand as the 
dependent variable. They require large datasets with building and consumption data to set up the 
regression model. Engineering bottom-up UBEMs calculate the energy demand from the building 
attributes via an energy balancing calculation (f. ex. the German DIN 4108 or DIN 18599) or via a 
dynamic simulation (f. ex. using software like EnergyPLUS, TRNSYS or others).  

Here I would argue, it is useful to consider this step (the estimation of the energy demand) as performed 
with a UBEM, rather than as part of creating the UBEM. One could use the same bottom-up UBEM 
to perform both a statistical and an engineering energy demand estimation. Therefore, the energy 
demand estimation should not be part of the definition of the UBEM. Viewing the UBEM preparation 
and energy demand estimation as two separate steps is also useful when considering the last 

 
7 Digital ledgers of buildings/real estate. 
8 Including all units within the scope of analysis, f. ex. all buildings in a city, as opposed to a sample of observations 
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differentiation found in the literature – probabilistic and deterministic UBEMs. The key issue is the 
general unavailability of data in the face of the data-hungry calculations, simulations and analysis 
that people need to perform. The archetype approach can only go so far in filling the necessary data 
gaps and after results stray far from external validation sources, researchers turn to probability to 
tackle the uncertainties (f. ex see Sokol et al (2017, p. 13)). The uncertainties mentioned in the 
literature can be summarised in two groups – building related (heat transmissivity coefficients, heat 
systems, appliances) and occupant related (ventilation, temperature, use of appliances). I would add a 
third – energy estimation method. With the same input data, a static heat balancing with DIN 4108 
would produce different results from an EnergyPLUS simulation. Probabilistic models use 
distributions, rather than fixed (assumed, estimated or plainly guessed) values for building- and 
occupant-related model attributes. Uncertainties are thus analysed and the model is calibrated to 
known external validation sources. 

1.2.4 Challenges 

Building-related 

Building-related challenges in creating UBEMs stem from the performance of the archetype approach 
– how are types defined and assigned. To quote:  

“While the actual division of a building stock into archetypes is obviously of paramount importance for 
the reliability of the resulting UBEM, the process typically remains ad hoc, relying on generic 
assumptions” (Reinhart & Cerezo, 2016, p. 198). 

“The largest remaining uncertainty for UBEM simulations is associated with the definition and 
detailed description of archetypes that reliably represent a building stock” (ibid, p. 199) 

More concretely, the archetype approach suffers again from data unavailability. Construction epoch 
usually serves as the main signal for building envelope efficiency, because types of materials and their 
energetic properties are associated with certain epochs and the introduction of energy efficiency 
regulation. Even though construction epoch of buildings is not widely available in digital cadastres, 
this is a manageable problem, some data exists. However, buildings continuously undergo changes: 
modernisation, exchange of windows, thermal insulation of the façade and installation of new heating 
and domestic hot water systems. This means that archetypes defined using a matrix of building size 
and building epoch (“single-family house (EFH)9 built in the 1920s”)10 are far from homogenous. In 
reality, buildings of the same archetype can vary greatly in key energetic parameters. A remedy would 
be to extend the typology with one more dimension – renovation level (as in “SFH built in the 1920s 
with renovations”). This has two issues. Firstly, German digital cadastres (as most European 

 
9 I refer to a “single-family house” as EFH, coming from the German Einfamilienhaus. This is to preserve 
consistency with the names of the types the IWU Typology, which is a widely used building Typology in 
Germany. 
10 “EFH built in the 1940s”, “Multifamily house (MFH) built in the 1920s” etc. 
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cadastres) do not include information on the state of renovation of buildings. Therefore, even if such 
archetypes are defined, they cannot be matched with the buildings in the cadastre. Secondly, there is 
high variability in renovations. A building owner could exchange only windows, or add only insulation, 
or only exchange a gas boiler or only add a PV-panel or any combination of these. Moreover, all of these 
can have different types that come with different levels of energy efficiency. The number of 
combinations explode and with them the number of archetypes. However, this conundrum can be 
tackled with the computing power of even an ordinary modern laptop, as I will show further in this 
thesis. 

All of this refers mostly to residential or, at most, institutional buildings where people do deskwork or 
simply reside, like offices or schools. The archetype approach is generally not suitable for industry and 
more specialised buildings. These are also beyond the scope of this thesis. 

Occupant-related 

Occupant-related challenges concern the assumptions about the behaviour of building occupants in the 
energy demand estimations. What room temperature do occupants prefer? How do they operate the 
heating equipment to obtain it? How often do they ventilate? These challenges are generally tackled 
with probabilistic approaches. My colleague Esteban Muñoz has done great work in advancing a 
different, more novel approach to this. He used spatial microsimulation (a technique from economics, 
see Section 6.1)  to model buildings together with their occupants in a deterministic way (Muñoz et al., 
2016; Muñoz & Peters, 2014). The microsimulation technique has a tradition in health and tax policy 
analysis and has been extended to account for spatial effects, but had not been applied to buildings by 
then. 

The demand-consumption discrepancy 

An additional challenge is the often observed and cited (see f.ex. Yan et el (2015)) discrepancy between 
demand and consumption. “Demand” is a calculated value based on the properties of a building and, 
in most cases, an assumed standard (“norm”) occupant or building user. Consumption is a measured 
(metered) value. With complete information on the building and the occupant and a perfect simulation 
of the thermal behaviour of the building, demand and consumption should be the same.  

However, even after an on-site building inspection, complete information on a building’s characteristics 
is close to impossible to obtain. Numeric values are estimated by categorising the type of masonry or 
by investigating the production year of the windows and checking in catalogues. More precision could 
be achieved with thermal cameras and generally more precise instruments, but few purposes would 
allow expending this effort.  

Standard energy audits generally do not model occupant behaviour. Applying a simple percentage 
correction factor derived from metered consumption is possible in some cases, although it is generally 
considered that a building’s energy efficiency should not depend on the user and an energy audit should 
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objectively evaluate the building itself. A problem arises when energy audits are used for calculating 
returns on investment of energy efficiency measures. If the user is more energy-conscious, actual 
energy savings would be lower than projected, since status quo is lower to begin with. For this, the 
mentioned consumption corrections are sometimes applied. Additionally, “rebound” effects play a role 
in the estimation of savings. With a more energy-efficient building, occupants tend to increase comfort 
whereby decreasing savings. 

Standard computation methods (DIN 18599 or DIN 4108) are “steady-state” or “static” heat balancing 
methods, which are inferior to dynamic simulations, but considered good enough for the purposes of 
building planning and retrofitting. More elaborate models and simulations are usually needed for 
smart building control systems or in highly efficient passive11 buildings where all aspects of the 
building design must be extremely optimised. 

1.3 Hamburg UBEM Status Quo 
Regarding UBEMs for Hamburg, Ecofys Germany GmbH produced a study on the status quo of the 
Hamburg building stock around 2013 (Ecofys Germany GmbH, 2013). The GEWISS Project 
(Geographical Heat Information and Simulation System (2019)) created a simulation tool to explore 
Hamburg building stock scenarios. The Behörde für Umwelt und Energie (BUE, Hamburg Ministry for 
Environment and Energy) published an online Wärmekataster in the fall of 2017 (Behörde für Umwelt 
und Energie [Hamburg Ministry for Environment and Energy], 2017). All three of these efforts are 
“bottom-up” in that they use data from the Hamburg digital cadastre, combined with an energetic 
building typology. GEWISS and Wärmekataster use the IWU (Institut Wohnen und Umwelt) typology 
(Loga et al., 2015), while Ecofys used their own typology. 

The Infrastrukturplanung und Stadttechnik group (Technical Urban Infrastructure Systems Group) 
at HafenCity University with which I was affiliated at that time was responsible for the “Data 
Integration” work package in the GEWISS Project. Through the close cooperation between the group 
and the BUE, I have also been the main author12 of the methodology for the Hamburg Wärmekataster 
(Behörde für Umwelt und Energie [Hamburg Ministry for Environment and Energy], 2017). 

2 Objectives and Research Question 

One problem of UBEMs in Hamburg is that not one bottom-up model managed to come close to the 
actual consumption values provided by the local statistical office. All models went around the problem 
in different ways. The Wärmekataster depicted only “useful” heat, since information on energy systems 
was not available and they were thus not modelled. The problem of the unknown building renovations 
was worked around by calculating the entire building dataset with three levels of renovation and 

 
11 “Passive” buildings refer to an unofficial yet widely adopted energy efficiency standard (Passive House Institute, 
n.d.) 
12 Which would not have been possible without the prior work of my colleague Esteban Muñoz. 
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displaying all three. Interested parties have to choose which one is more representative of the area 
they were interested in. A fine work-around, but not solving the problem. 

The GEWISS project used a (second13) consumption correction to make the model match the totals for 
Hamburg. For the older buildings built before 1978, which I suspected are the target of most existing 
renovations, I reduced the heat demand so that the city total moved closer to the values of the statistical 
office. Not ideal, since this means I averaged over all older buildings, so evaluating renovation policy 
was more difficult. 

Ecofys overestimated the residential heat demand by 20% but stated that the statistical office might 
have got it wrong (Ecofys Germany GmbH, 2018, p. 13). Although interpreting the numbers of the 
statistical office is not without its challenges, I highly doubt that this was the main issue.  

All models “skirted” around the problem of renovations - both of envelope and heating supply system. 
I set out to explore if it can be (at least partially) solved. A possibility existed in the integration of other 
data sources, which although perhaps known, were difficult to integrate14. In the end, I present 
practical use cases for an improved UBEM. 

The research question therefore has two parts: 

A. How can modelling and estimation techniques for data integration be used for improving Urban 
Building Energy Modelling (UBEM)? 

B. What insights for energy policy in Hamburg could a thus improved UBEM provide? 

3 Data 

3.1 Availability 
The appropriate methods have to come from the concrete task and since data integration and modelling 
is the task, I will first list what data is available in Hamburg: 

1) ALKIS (the acronym for Amtliches Liegenschaftskatasterinformationssystem) is the 
digital cadastre of the city of Hamburg (Freie und Hansestadt Hamburg, Landesbetrieb 
Geoinformation und Vermessung (LGV) [Hamburg State Office for Geoinformation and 
Surveying], 2020). It consists of (among many other things) 2D polygon representations of 
buildings (see Figure 1), their number of storeys and, for some buildings (around 50%), a 
construction epoch. Comparing samples with other sources, for example energy audits, 
reveals that the construction epochs in the ALKIS are not without mistakes. 

 
13 The buildings in the IWU Typology come with a consumption correction themselves. 
14 I worked on the „Data Integration“ package in the GEWISS Project. Although I could not finish work on this 
thesis prior to the project’s end, my work there was paramount to my dissertation. 
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Figure 1. Example of ALKIS buildings data 

2) Census Data – 100m raster cells (see Figure 2) for the entire Hamburg area with cross-
tabulations15 of different building characteristics – construction epoch, type of heating and 
type of ownership (Statistische Ämter des Bundes und der Länder [German Federal 
Statistical Office], 2018). These, I refer to, as “benchmark” attributes16. 
 

 

Figure 2. Example of Census cells 

  

 
15 Cross tabulations such as: Number of buildings according to an attribute value, f. ex. cell “X” contains 20 
buildings, built in the 1920s, 10 buildings with district heating, 10 buildings with individual boilers, 5 buildings 
owned by a residential cooperative. 
16 In the British school of Spatial Microsimulation these are referred to as “constraints”, while “benchmarks” is 
the Australian term. I will stick with “benchmarks” to avoid the ambiguity with “constraints” from the realm of 
mathematical/computer optimisation. 
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3) Energy audits – approx. 1300 energy audits for different buildings in Hamburg, containing 
all necessary energy related characteristics (heat transmissivity values, heating systems, 
etc). This data was provided by the BUE as part of the GEWISS Project (GEWISS Projekt 
Hamburg, 2019) 

 

Figure 3. Example of buildings with energy audits 

4) A distribution of the age of gas boilers in the city, prepared by the local union of chimney 
sweepers (Landesinnungsverband des Schornsteinfegerhandwerks Hamburg, 2016). 
 

5) Distributions of buildings across Germany according to the presence and type of energy 
efficiency renovation measures, prepared by Cischinsky & Diefenbach, (2016) from the 
IWU (Institut Wohnen und Umwelt). The distributions are based on a large (17000) 
stratified sample of buildings in Germany gathered in 2016. The data provides more 
advanced cross tabulations – f. ex. multi-attribute (joint) distributions (as in “percent of 
buildings built before 1970 AND having added insulation”). This data is at the national 
level, however, I will transfer it to Hamburg. The data shows very low differences between 
regions and city sizes, so this should not be much of an issue (see Section 5.1).  Further, the 
benchmarking techniques I am going to use can mitigate most of the possible issues with 
this. They will correct and adjust the data to known Hamburg distributions and thus 
minimise the possible error of transferring from the national to the city level. 
 

6) District heating grid layout. As part of the GEWISS Project, I had access to the district 
heating grid layout. I use this to designate all buildings connected to district heating. While 
being connected does not always mean one is using district heating, it is a rather strong 
signal for it. 
 

7) Addresses of some housing cooperatives (Wohnungsgenossenschaften). Some housing 
cooperatives in Hamburg are part of an association which publishes a list of their building 
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stock. I used these to populate some ALKIS buildings with an ownership type. The 
equivalent benchmarking attribute in the Census counts the addresses of the municipal 
housing company as well as other housing companies (non-cooperatives) together, so 
mapping the cooperatives does not exhaust all buildings with this ownership type as 
defined in the Census. This exemplifies to some extent the type of data integration problem 
– lots of different data, usually non-exhaustive, usually at different levels of aggregation. 
 

8) Information on renovation measures undertaken, found in construction permits from the 
years 2014-2018. These are public in the Hamburg “Transparency Portal”, however they 
are also not exhaustive by far. The reason is that not all types of energy efficiency measures 
require a construction permit. F. ex. adding insulation would not require, in most cases, a 
construction permit, only if done as part of another type of intervention (adding an extra 
storey f. ex.). The inverse, however, holds – by using a simple word search for “WDVS” 
(Wärmedämmverbundsystem - Exterior insulation and finish system (EIFS)) and similar 
insulation related German terms, I could filter the construction permits to include only 
those that relate to insulation. 

3.2 Transferability 
The data situation is not particularly specific to Hamburg. The ALKIS is a German-wide system. 
Although in some states it does not include number of storeys, 3D models are now available for all of 
Germany (see Section 6.4 for a note on 3D data). Census Data is available for the whole of Germany. 
The distribution of gas boiler age was obtained from a local report, however similar ones probably exist 
in most cities, since there are such reports at the national level and they must rest on locally gathered 
data.  

The distributions of renovations are from a nation-wide sample survey. Layout of district heating grids 
are usually moderately easy to come by. If not grid layout, then areas with district heating could be 
used. List of addresses of cooperatives and renovation measures from building permits are Hamburg-
specific, however, equivalents probably exist in many places. 

The only Hamburg-specific data source that is probably hard to come by anywhere else in Germany 
are the energy audits. Although energy audits are prepared in the whole of Germany (and most of 
Europe), Hamburg has a specific financial support program (“Hamburger Energiepass”), through 
which copies of the audits are gathered centrally and a combined dataset could be obtained.17 

 
17 Nevertheless, obtaining some sample of buildings with energy characteristics is not uncommon. One option 
would be to inquire with the rent and housing portals (f. ex. https://www.immobilienscout24.de/ or other similar). 
These obtain energy audit information as part of their offerings. This is because German building regulation 
stipulates that landlords hold ready a building energy audit (or “pass”) to prospective tenants. 
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3.3 Uncertainty 
No data source is perfect. The ALKIS has some known issues with the construction epochs. The Census 
has a data protection algorithm which changes some values at the cell level in order not to infringe 
upon personal data protection requirements. I georeferenced the energy audits using an address 
matching algorithm, which, from sample analysis, is approx. 95% correct, therefore some false geo-
reference could be present in the energy audits as well. 

4 Defining the Modelling Problem 

As noted in the introduction, the archetype approach has its shortcomings. Current Hamburg UBEMs 
do not mirror building renovations and the total calculated heat demand is 20-30% higher than official 
statistics, based on the sales of final energy by energy companies. Data on number and types of 
renovations (buildings with new insulation, buildings with new windows, etc.) is available however, 
although at an aggregated, Germany-wide level, from the IWU sample study in 2016. Data on 
construction epochs and ownership (which are important for policy analysis) is also available, but at a 
different aggregation level (Census cell). Finally, highly detailed data on a sample of buildings (the 
energy audits) is also available.  

The energy audits represent a variety of renovation levels. Some buildings in their “baseline” state (the 
status quo at the point of carrying out the audit) already have new windows and insulation. This 
information can be matched with the data on number and types of renovations at the city level. There 
are 291 unique combinations of energy-related characteristics within the energy audits. These 291 
combinations can be viewed as “archetypes” that can describe the building stock. The proper 
representation of the building stock would then come down to the way the archetypes are matched to 
Hamburg’s buildings18 and, equally importantly, to the distributions that would arise from this 
matching at the Census cell and city levels. These distributions have to match the known distributions 
from the data sources described in the previous section. Note that while the energy audits constitute a 
biased sample (self-selection bias) I can nevertheless use the information therein and attempt to correct 
for the bias, see further in Section 4.4. 

This points to a set of problems referred to, generally, as “combinatorial optimisation” (CO). CO is 
concerned with finding an optimal combination (in this case, one that is closest to the aggregated 
benchmarks, both at the city and Census cell levels) from a finite set of objects (in this case, the energy 
audit data). There are many concrete problems under the hood of CO, some are known to be NP-
complete19 (the Knapsack problem) and thus can only be approximated or brute-forced, others not – 
the Minimum Spanning Tree Problem can be solved in (almost) linear time. 

 
18 I treat the ALKIS objects as “buildings”, for more detail see Chapter 5 
19 Refers to computational problems for which no efficient algorithm has yet been found. 
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4.1 Evaluation criterion - “Good Enough” combinations 
Generally, when dealing with optimisation problems, an initial consideration is what solution is 
satisfactory. Since the aim is to find a realistic UBEM by way of minimising the difference between the 
resulting model’s characteristics and the benchmarks, the satisfactory solution would be, at first 
glance, one for which the fit is perfect (i.e., the difference is zero20). This would be “optimal”. 

However, given the uncertainties in the benchmarks (stemming from the sources themselves and from 
the pre-processing of the data) it may well be that a solution with a fit close to the benchmarks could 
be worse (further from the real building stock) than one with a looser fit. Therefore, an approximate 
solution to the mathematical optimisation problem would be, for practical purposes, just as good as the 
mathematically optimal solution. Given the difficulty of finding a mathematically optimal and not just 
approximated solution to many combinatorial optimisation problems, this is good from a computational 
standpoint. However, a choice must be made as to where the cut-off for the fit should be. In other words, 
what are “good enough” combinations? One might consider borrowing fixed numbers, like the 95% 
confidence level, widely used in statistics. This does not help much. Considering that, for example, for 
medical purposes, the 99% is more often used, it is evident that “good enough” is in the eye of the 
beholder or user. Because of this, I would abandon the strictly quantitative approach and not add any 
predefined cut-off values while modelling. Any model user should evaluate and judge the model fit 
depending upon the data and the use case. For the concrete Hamburg UBEM that I am preparing for 
this thesis, I discuss the model fit and what I deem “good enough” in Chapter 7. 

4.2 Same-fit combinations and spatial clustering 
Provided that the problem concerns optimising counts (numbers of buildings) it is possible that two or 
more distinct combinations may have exactly the same fit. This either leads to multiple outputs or a 
choice must be made which one to take. Producing multiple outputs is viable, but I reckon, for practical 
purposes, it should be avoided if possible. More crucially, it has algorithmic implications, which I will 
discuss in Section 7.1. 

In order to choose between same-fit combinations, I will use one last piece of information contained in 
the energy audit dataset – the location of each audit. The assumption would be that if audits exhibit 
spatial clustering along the constraining attributes, a combination of nearest neighbours would 
potentially be more realistic than another combination given they have the same fit. The presence of 
spatial clustering is evidenced in Section 5.4. 

 
20 Maximising the fit is equivalent to minimising the difference to the benchmarks. I define “fit” and by analogy 
“difference” in Chapter 7. 
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4.3 Additional requirements 

4.3.1 The need for explainability 

The purpose of UBEMs is to support policy analysis and implementation. Urban and regional planning, 
of which the building sector is a major addressee, has pushed for public participation in policy 
formation and implementation at least since the Copenhagen Charter (Danish Ministry of the 
Environment, 2002). In this regard, there is a benefit to and, I would argue, even a requirement for 
transparent policy based on explainable models and analysis. An example for this is the Hamburg Heat 
Demand Cadastre (Hamburgisches Wärmekataster). It is a tool for policy making and it is public and 
intended for public use as well. 

Although building renovation policies may be driven by an executive branch (for example the Hamburg 
BUE), building ownership is mostly private. Therefore, the authority to make decisions lies in many 
cases outside the executive branch and the executive branch has a guiding, mediating and 
communicating role and (nowadays) more limited regulatory power. Any tools it uses have to be 
explainable, the more the better. 

There are many ways this could translate to modelling methodology – f. ex. an algorithm with less or 
simpler steps would be better explainable. I argue, it also translates into a preference for deterministic 
over probabilistic modelling. Of course, obeying the prerequisite that both produce “good enough” 
models (see Section 4.1). Given the uncertainties in the input data, no solution is preferable to another 
beyond a certain point. A probabilistic algorithm could find a solution that is preferable based on some 
other, new criterion. However, this preference has to carry benefits which exceed the costs incurred 
because the algorithm is less explainable. I have not found such a criterion.  

I have to stress that this argumentation is specific to urban planning. For example, it is a different 
situation if an algorithm has to optimise the operational profiles of electrical power generators of a 
utility company and finds a solution in a probabilistic manner. The condition of explainability could 
still apply, but it would be narrowed down to engineers and at most the company board-room members. 
Provided that the Hamburg Heat Demand Cadastre, an example of the type of UBEM I am generating, 
is public and intended for public use, it is reasonable to set a higher bar for explainability. A bar higher 
than in the power generator optimisation example. 

Using probabilities and random sampling is a good way to analyse uncertainty and to validate an 
algorithm. I use these techniques in Section 9.2. However, I aim for a generally deterministic approach 
to modelling.  

4.3.2 Integrating sparse, incomplete building data 
UBEMs are primarily prepared by public bodies, which have access to different samples of building 
information (from local projects, initiatives etc.). This is usually data on only some building 
characteristics for only some buildings. Nevertheless, it is usually empirical and can be useful. Because 
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of this, it would be advantageous if a modelling algorithm can incorporate such data together with the 
sources listed in Chapter 3. 

4.4 Key Assumptions 
There are three key assumptions that underpin the modelling problem: 

• A combination of the energy audits (with their energetic characteristics) is enough to create a 
plausible representation of the energetic characteristics of the building stock. Firstly, the 
energy audits, per definition, cover the energetically vital characteristics of the buildings. 
Secondly, they are a sample spanning different locations, building construction epochs, types 
of heating system and building shell characteristics. They do not cover all possible 
combinations of building attributes (some are obviously not plausible, f. ex. a building built in 
2010 with a wall U-value21 of 2.0). Also, they are not a representative sample, but I also do not 
assume that. I assume that the sample contains enough information to allow it to be reweighted 
so that it can become representative. 
 

• A combination of energy audits such that, when aggregated, matches the benchmarks, would 
be a good representation of the building stock. The key issue here is that it is possible there are 
a number of very different combinations, that when aggregated lead to the same benchmarks. 
Therefore, is finding one such combination good enough to represent the building stock? I 
analyse this in Section 9.2. 
 

• Among all possible combinations of energy audits that match the benchmarks, the one that 
consists of nearest neighbours is the closest possible to the “true” building stock. I expand on 
that in Section 5.4. 

  

 
21 A measure of thermal transmittance 
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5 Preparing Data for Modelling 

I had to pre-process the three main datasets – buildings (approx. 200000 objects in the electronic 
cadastre), cells (approx. 20000 100x100m raster cells from the Census) and energy audits (approx. 
1300) before modelling. This included choosing appropriate attributes, matching attribute names, and 
integrating known information at the building level. I will present some of the pre-processing steps 
and the end results in this section. 

5.1 Building attributes 
The attributes used for benchmarking and their categories22 are presented in Table 1. These are the 
“benchmarking” attributes that apply to all three main data sources – buildings, Census cells and 
audits. Some of them are self-explanatory, f. ex. “DISTRICT HEAT” means a building is heated with 
district heating23. “BUILD_CENTRAL_HEAT” refers to buildings with a central (to the building) 
heating system. “APARTMENT_HEAT” and “ROOM_HEAT_STORAGE_HEAT’ refer to buildings 
where each apartment or each room is heated with a separate system. “EFH” stands for 
“Einfamilienhaus” or single-family house. “MFH”, respectively for multi-family building. Note that the 
information on insulations are in the form of joint distributions – “EFH_OTHER_NEW_INS_AW” 
means single-family house, not owned by a cooperative or public housing company (hence “OTHER”) 
that has new (added) insulation (“NEW_INS”) on the outer walls (“AW” stands for “Außenwände” – 
outer walls). Further, “KE” refers to “Keller” – basement, and “DA” refers to “Dach” or roof). Refer to 
Appendix I for a detailed description of all categories. 

  

 
22 For the purposes of this thesis, I use “category” as one of the possible values that an attribute (which is a 
categorical variable) can take. F. ex. “district heating” is a category of the “type of heating” attribute.  Using the 
term “categories” in this way might seem counter-intuitive to some readers. There are several ways of denoting 
these values, f. ex “classes” or “attribute values”. However, the computer scientist might object to “class” because 
that is a reserved term in his discipline. Using “attribute values” would run into issues when one looks at the 
Census cells, where these “categories” become attributes themselves. 
23 Note that some simplifications are necessary. The Census gathers data by asking people. Therefore, this 
attribute means, strictly speaking, “the building is said to be heated with district heating”. On the other hand, for 
the ALKIS objects I define as “DISTRICT HEAT” I use the presence of a district heating pipe as the criterion. 
There are edge cases where these two definitions would diverge and not mean the same thing. For practical 
purposes I take them as being equivalent. 
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Attributes Categories Level 

Type of 
Heating 

DISTRICT_HEAT 

Census cell 
(local) 

BUILD_CENTRAL_HEAT 
ROOM_HEAT_STORAGE_HEAT 
APARTMENT_HEAT 

Construction 
Epoch 

(1400,1918)  
(1919,1948)  
(1949,1978)  
(1979,1986)  
(1987,1995)  
(1996,2000) 
(2001,2008) 
(2009,2011) 
(2012,2015) 
(2016,2020) 

Type of 
Ownership 

COOPERATIVE_OR_MUNICIPAL_COMPANY 
OTHER 

Building 
Type 

MFH 
EFH 

Insulation 
outer walls 

 

EFH_OTHER_NEW_INS_AW 

City 
(global) 

EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NO_NEW_INS_AW 
MFH_OTHER_NO_NEW_INS_AW 
MFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NO_NEW_INS_AW 
MFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_AW 
MFH_OTHER_NEW_INS_AW 
EFH_OTHER_NO_NEW_INS_AW 
EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_AW 

Insulation 
attic 

MFH_OTHER_NEW_INS_DA 
MFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NO_NEW_INS_DA 
EFH_OTHER_NEW_INS_DA 
MFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_DA 
EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_DA 
EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NO_NEW_INS_DA 
MFH_OTHER_NO_NEW_INS_DA 
EFH_OTHER_NO_NEW_INS_DA 

Insulation 
cellar 

EFH_OTHER_NEW_INS_KE 
EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NO_NEW_INS_KE 
MFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_KE 
MFH_OTHER_NEW_INS_KE 
MFH_OTHER_NO_NEW_INS_KE 
EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_KE 
EFH_OTHER_NO_NEW_INS_KE 
MFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NO_NEW_INS_KE 

Gas- or  
Oil-Boiler age 

GAS_OIL_BOILER_ab1996 
NO_GAS_OIL_BOILER 
GAS_OIL_BOILER_1995 
GAS_OIL_BOILER_1987 

Table 1. Overview of building attributes and respective categories used for benchmarking the model 
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The importance of most of these variables for heat demand calculation are obvious (type of heating, 
insulation etc.). The construction epoch is generally used as a proxy for building materials and their 
characteristics. For buildings built after 1978, the second oil crisis, the introduction of energy efficiency 
standards in Germany led to a notable increase in efficiency. For those built before 1978, one could 
argue that the older the building, the likelier it was already renovated at some point. This assumption, 
according to the sample study of the IWU (Cischinsky & Diefenbach, 2016, p. 49) holds. However, the 
percentages of buildings with insulation is almost the same (~40% for wall, ~65% for roof/ceiling and 
~18% for cellar) across buildings built before 1968, therefore having a finer differentiation into 
construction epochs might not be needed24. Nevertheless, I use all epochs available in the data, because 
the epoch is a defining building characteristic that can be assumed to correlate with a variety of other 
characteristics (façade decorations for example, that can make the addition of shell insulation 
impossible or improbable). 

There is an additional important detail – the definition of “insulation” in the context of this thesis. 
Since the construction epoch is a signal of the way a building was built (mostly because of regulation), 
insulation added at the time of construction is implicitly mirrored by it. Because of this, when I refer 
to “insulation”, I mean additional insulation, added after construction. The said distributions (ibid, 
p.49) also refer to “added insulation” (nachträgliche Wärmedämmung). Looking at the numbers, one 
notices that, logically, the share of buildings with added insulation falls to 11% for buildings built after 
1979 and then further down to 2.8% (after 1995), since the buildings are newer and were built to be 
more energy efficient. At this point, I simplify the modelling, by neglecting added insulation for 
buildings after 1978. The main reason for this is that differentiating any given attribute too much leads 
to more benchmarks, which makes finding a good combination harder. Therefore, I needed to simplify 
where possible.  

It was important to find variables which correlate with the presence of insulation, since insulation is 
one of the most important attributes that is generally unavailable at the Census cell level. The same 
IWU study (p. 50-51) suggests that the state, city size and also whether a municipality has population 
growth or decline do not influence much the shares of buildings with insulation. There are minor 
differences in the percentages, but they are below or close to the standard error of the sample25. 
However, ownership type does have a large effect. Table 2 (or Nr. 22 in the original report) gives the 

 
24 The reader might ask about insulation thickness. While it is a valid point that the thickness of added insulation 
varies across time and in their study IWU gathered data on this, I purposefully ignore the effects of this. Firstly, 
the added benefit of insulation thickness decreases exponentially, not linearly. The vast majority of reduction in 
the U-values is gained with the first 5-8 cm of insulation. Everything on top of this has diminishing returns (yes, 
passive houses require insulation around 30 cm thick to reach the required efficiency, but this does not invalidate 
the fact that these extra 22 cm or more of insulation bring a lot less than the first 8 cm). Secondly, differentiating 
insulation thickness rather than modelling a simpler “presence of insulation” would lead to a lot more archetypes 
and make model fitting a lot harder. Given the first and second point, I believe that, in my case, the informational 
benefits of modelling insulation thickness do not outweigh the practical costs to the creation of the UBEM. 
25 The only exception is the geographical dimension - the states which were territory of the former GDR exhibit a 
larger difference when it comes to renovations compared to the rest of Germany. Their share of buildings with 
insulation is 15 percentage points higher. 
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joint distribution of added insulation and ownership for multifamily buildings built before 1978 in the 
“old” states (“Alte Bundesländer”, the states in the former West Germany). The data exhibits large 
differences between the shares of buildings with added insulation when split into ownership types – 
47% for housing companies, 33% for private owners and only 17% for buildings with multiple owners 
(individual apartment owners). A plausible explanation for these differences lies in the administrative, 
planning and organisational capacity of these different ownership types. Housing companies, logically, 
have the highest share since they can both take decisions and carry them through faster than a building 
with multiple owners would. In the category “private owners” fall mostly single-family houses26. In this 
case, it is less the ability to take decisions and more the financing that might be a challenge. 

Since ownership is available at the Census cell level and the data shows it makes a large difference for 
the presence of insulation, it was important to use it for benchmarking. For this reason, at the city-
level the insulation categories included (f. ex. “EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_AW”) 
actually have the aforementioned multi-attribute (joint) categories – referring to size, ownership and 
presence of insulation together. 

 Added Insulation [% buildings] 
 Outer Walls Roof/Attic Cellar/Ground 
All multifamily buildings 

built before 1978 32.7% +/- 2.4% 60.9% +/- 2.0% 15.1% +/- 1.2% 

Small cities and 
municipalities 32.1% +/- 3.2% 62.4% +/- 2.5% 16.8% +/- 1.7% 

Large cities and 
municipalities 33.2% +/- 3.4% 59.8% +/- 2.8% 13.9% +/- 1.7% 

Municipalities with 
growing population 34.9% +/-4.6% 61.9% +/-3.3% 12.3% +/-2.2% 

Municipalities with 
stagnating population 32.2% +/- 2.8% 60.6% +/- 2.3% 15.8% +/- 1.4% 

Multi-owner buildings 17.1% +/- 3.4% 54.7% +/- 4.0% 10.1% +/- 2.2% 
Single private owner 33.0% +/- 3.4% 65.7% +/- 2.3% 15.8% +/- 1.6% 

Housing company 47.5% +/- 4.9% 58.8% +/- 3.9% 18.6% +/- 3.0% 

Table 2. Presence of insulation according to size of the of city (town), population dynamic and ownership. Source 
(Cischinsky & Diefenbach, 2016, p. 51) 

For building construction epoch the mutual exclusion of categories within attributes is obvious. A 
building cannot be built both before 1900 and after 1900. Other attributes are not per definition 
mutually exclusive, for example “type of heating”. A building can have district heating and a back-up 
or peak load boiler. However, the Census simplifies this and gives the predominant type of heating. A 
simplification that I am bound by, since I use the Census.  

 
26 But not only, some wealthy indviduals might own a building or multiple buildings. While there is no specific 
data on such, they probably act more like a housing company than like a private owner in terms of their potential 
for renovations. 
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Another key step in the pre-processing and analysis of the ALKIS buildings and Census cells is to 
understand how the two relate to each other. The ALKIS contains cadastral objects (buildings). While 
the Census measures “buildings” as well, if one sums up the totals for both, the results would differ 
markedly. That is because the Census actually counts a building entrance as a separate building. The 
way to match the counts is by counting ALKIS address points and compare those to the number of 
“buildings” in the Census cells. An example is given in Figure 4. The cell pictured has 12 “buildings” 
according to the Census. It also contains three ALKIS buildings. The red dots are address points. It is 
clear then that the Census counts the latter as buildings. 

 

Figure 4. Example of relationship between ALKIS building, Census cell and address points. The black rectangles 
are buildings in the ALKIS, the red dots are address points, the yellow squares are Census cells. 

While understanding this discrepancy allows for its mitigation by simply knowing what counts to sum 
up, there is also another practical problem. Some ALKIS buildings reside in multiple Census cells. This 
means the lowest unit of analysis – the ALKIS building – actually has to be broken down into address 
points. On the other hand – it is unlikely that an address point would have different building 
characteristics compared to other address points in the same ALKIS object. Therefore, the modelling 
algorithm has to ensure that a single ALKIS building is not assigned different energetic characteristics 
from the different address points. This would have further complicated the modelling task and added 
an additional requirement. I tackled the problem by aggregating all cells until the address points of an 
ALKIS building always reside in the same aggregated cell. This reduced the number of cells from 26600 
raster cells to 19900 cells. An example of this aggregation is in Figure 5. Note that the address point 
geometry is key here. It is not a problem when a building polygon intersects multiple cells. The problem 
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arises when the address points associated with a single ALKIS building reside in multiple cells. That 
is what the aggregation tackles. 

 

Figure 5. Example of aggregating Census cells so that address points of a ALKIS building always reside in the 
same cell. 

With this aggregation I can keep the smallest unit of analysis to be the ALKIS building and when 
Census values are concerned, I do not count each ALKIS building, but its number of address points. 

Finally, the data on gas (or oil) boiler age comes in the form of a distribution of boilers according to 
their age (Landesinnungsverband des Schornsteinfegerhandwerks Hamburg, 2016). While this does 
not necessarily mean that each boiler corresponds to one building27, I make this assumption. Thus, I 
view the distribution of boilers to be equivalent with the distribution of buildings with such boilers. F. 
ex. if the data on boilers shows 20% of boilers are 20 years old or older, I view that as 20% of buildings 
not using district heating having a boiler 20 years or older. Single-family houses with multiple boilers 
would probably be an edge-case, so this equivalence would likely be unproblematic for them. It is more 
likely that a multi-family building could have multiple boilers. Correcting for this however would be 
highly problematic. In order to find the connection between building and boiler counts, one has to also 
pinpoint the end of the supply zone of one boiler in the building and beginning of another zone, together 

 
27 There could be multiple boilers in one building, or one boiler for two buildings (ALKIS objects) 
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with the end of one building and the beginning of another. The latter is more or less a given in this 
case by the ALKIS objects. The former is largely an unknown. The connection between the ALKIS 
object and the potential supply zones in the building is also unknown. At this point I chose to simplify 
and assume a one-to-one, one boiler to one building for all buildings. I chose this over attempting a 
complex correction and estimation that I believe lacks a stable enough footing. Thus, using the 
distribution of boilers with certain age as equivalent to the distribution of buildings with boilers with 
certain age is a form of simplification and assumption. 

5.2 Excluding Heat demand from benchmarked building attributes 
After looking at all attributes above, one might wonder why is heat demand not part of the 
benchmarking attributes. Each energy audit comes with values for heat demand, which, with a 
correction for typical consumption, can be benchmarked to known consumption values at the city level. 
The reason for omitting the heat demand from the benchmarking is that I wanted to use it for external 
validation. One key argument I make in this thesis is that given a good quality estimation of the 
building characteristics, a consumption-corrected demand can be calculated that comes very close to 
metered consumption. It is this argument that I put to the test by not benchmarking the heat 
demand/consumption itself, but only the building characteristics. If they are well modelled, the 
consumption should match at the end without explicitly benchmarking it. Refer to Sections 6.2 and 9.3 
for evidence for this argument. 

5.3 Examples of the datasets used for modelling 
The building attributes are the same for all three main datasets (buildings, energy audits and Census 
cells). I will present examples of these datasets for better understanding of what the modelling 
algorithm presented in Chapter 8 takes as input. Firstly, an example of the cadastral building dataset 
after pre-processing and adding known information on the building level is presented in Table 3. 

ID Geometry 
Number 

of 
storeys 

Number of 
Addresses 

Type of 
Heating 

Construction 
Epoch 

Type of 
Ownership 

Build-
ing 

Type 

Insula-
tion 

outer 
walls 

Insula-
tion 
attic 

Insula-
tion 

cellar 

Gas- or 
Oil-

Boiler 
age 

1 POLY-
GON (…) 2 1 - (1949,1978) - EFH 

EFH_ 
OTHER_ 

NEW_ 
INS_AW 

- - - 

2 POLY-
GON (…) 5 3 DISTRICT

_HEAT - 
COOPERATIVE_ 
OR_MUNICIPAL_ 

COMPANY 
MFH - - - - 

… 

197
857 

POLY-
GON (…) 8 2 - - - MFH - - - - 

Table 3. Example of the input cadastral buildings dataset 
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The underlying cadastral building dataset in its raw ALKIS form contains the geometry, the number 
of storeys and the number of addresses. The modelling algorithm should however be able to deal with 
partially available information at the building level. In the example, one building (ID 1) has a known 
construction epoch and type of ownership, another (ID 2) has a known type of heating. In the concrete 
Hamburg case, I estimated the “building type” from the geometry and the buildings with district 
heating by using information on the location of heating grid pipes. Similarly, using the data on building 
cooperatives, for some buildings, I could note the type of ownership prior to the algorithmic modelling. 
Further, here I use the addresses of the energy audits together with the construction permits28 obtained 
from the Hamburg “Transparency Portal” to note individual buildings which are most likely already 
renovated. 

The example of the energy audit data looks similar (Table 4). It has the same attributes as the building 
dataset, however, it is complete (all attributes have values) and there are a number of additional 
attributes (in italics), which are not used for benchmarking the model, but for calculating the heat 
demand. 

ID Geometry … 
Gas- or 

Oil-Boiler 
age 

Roof U-
Value 

Wall U-
Value 

Cellar 
U-

Value 
Window 
U-Value 

Win-
Wall 
Ratio 

Domestic 
Hot Water 

type 
Circulation 

System 
Supply 
Temp 

Pipe 
Insulation 

Generator 
Location 

1 POLYGON 
(…) … 

GAS_OIL_ 
BOILER_ 

ab1996 
1.0 2.5 1.0 2.8 0.22 

CENTRAL
_ 

WW 
mit Zirk. 55 

mäßig 
(Altbau)/h
albeEnEV 

außerhalb 
der 

thermischen 
Hülle 

2 POLYGON 
(…) … 

NO_GAS_ 
OIL_BOIL

ER 
1.7 2.8 1.2 2.8 0.19 

DE-
CENTRAL

_WW 
ohne Zirk. 70 unge-

dämmt 

innerhalb 
der 

thermischen 
Hülle 

…              

1502 POLYGON 
(…) … 

GAS_OIL_ 
BOILER_ 

1995 
0.8 0.6 0.8 1.1 0.3 

DE-
CENTRAL

_WW 
ohne Zirk 90 

EnEV/ 
doppelteE

nEV 

außerhalb 
der 

thermischen 
Hülle 

Table 4. Example of the energy audit dataset. Attributes in italics are not benchmarked, but used for calculating 
heat demand. 

Finally, Table 5 is an example for the Census cell dataset. Each row represents a Census cell, and each 
column has numeric values – the number of address points in the cell having the respective category 
of the respective building attribute. F. ex. a building attribute is “type of heating”, which can have the 
categories (values) “DISTRICT_HEAT”, “BUILD_CENTRAL_HEAT”, etc. These categories then 
become columns of the cells, since their occurrence in a cell has to be counted. 

  

 
28 Note that most renovations do not require a construction permit and not all construction permits relate to energy 
efficiency measures. However, I took only those construction permits that do relate to energy efficiency by filtering 
based on energy-related keywords. Also, I do not claim that these represent a complete picture of renovated 
buildings in Hamburg. 
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ID Geometry DISTRICT
_HEAT 

BUILD_ 
CENTRAL

_HEAT 

ROOM_ 
HEAT_ 

STORAGE_ 
HEAT 

APARTMENT
_HEAT 

(1400, 
1918) 

(1919, 
1948) 

(1949, 
1978) 

(1979, 
1986) 

… 

EFH_COOPERATIVE
_OR_PUBLIC_ 

COMPANY_ 
NO_NEW_INS_KE 

1 POLYGON 
(…) 5 0 0 0 0 5 0 0 4 

2 POLYGON 
(…) 0 10 0 0 0 4 0 6 0 

…   

19900 POLYGON 
(…) 0 5 4 1 2 4 4 0 … 2 

Table 5. Example of the Census cells used as benchmarks 

5.4 Analysis of spatial clustering 
To test the assumption made in Chapter 4, that using the spatial location of energy audits could be 

used to choose between same-fit combinations, I will use the nearest neighbour index (!!") (Wilson & 
Din, 2018) on the energy audits. The NNI is a global measure of clustering and dispersion. It is the 
ratio between the observed and expected average distance between all pairs of nearest neighbours. In 
the concrete case, the energy audits are selected based on their category for each attribute. For each 
category I then compute the nearest neighbour index. 

Wilson and Din use bootstrapping to compute the expected distance, while I use a regular pattern as 
is standard in the ESRI ArcGIS tool Average Nearest Neighbour (Mitchell, 2009). Contrary to Mitchell 
and in accordance with Wilson and Din, I will use the median rather than the arithmetic mean to 
compute the observed average distance. This decreases the effect of outliers. Given a regular pattern, 
the median and arithmetic mean are the same for the expected distance: 

 

Eq. 1. !!" =
$%&((!)
(!!  

  

Eq. 2. (!! = 	2,
-
. 

Where: 
!!" is the nearest neighbour index 
#$%() is a function to return the median value from a group of numbers 
(! is the set of all nearest neighbour distances of category X in the energy audits 
(!! is the expected average distance for category X in the energy audits 
) is the number of energy audits 
* is the total area of all Census cells 
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NNI values of above 1 are a signal for dispersion, while below 1 a signal for clustering. The index is 
very sensitive to the target area via the area parameter. An assumption when using it is that the 
locations have an unconstrained probability to fall in any location within the target area. Due to this, 
I used only the area of the Census cells (~262 km2) instead of the area of the city (~755 km2)29. In this 
way, areas where a residential building cannot be located (water bodies, industrial zones, harbour, etc.) 
are excluded and the expected distance is not overestimated. The results for all categories and an 
interpretation are presented in Table 6.30 

Attribute Categories NNI Z-Score 
Energy 
Audit 
Count 

Interpretation 

Type of 
Heating 

DISTRICT_HEAT 0.2 -28.51 312 
Highly clustered, to be expected, given the need 

for a grid 

BUILD_CENTRAL_HEAT 0.7 -16.13 1084 
Somewhat clustered, probably due to the lower 

count in areas with district heating 
ROOM_HEAT_STORAGE_HEAT 0.9 -2.0 62 More or less neutral 

APARTMENT_HEAT 0.6 -2.8 12 Clustered, but too few audits 

Construction 
Epoch 

(1400,1918) 0.4 -17.9 237 
Clustered, to be expected, given the natural 
growth of the city and the re-building after 

World War II 

(1919,1948) 0.5 -15.87 299 
(1949,1978) 0.6 -22.88 824 
(1979,1986) 0.8 -2.89 68 
(1987,1995) 0.9 -1.34 32 
(1996,2000) 2.2 5.5 6 

Too few audits far plausible interpretation 
(2001,2008) 0.0 -3.82 4 

Type of 
Ownership 

OTHER 0.7 -17.21 1233 
Somewhat clustered, probably the result of the 

cooperatives being clustered 
COOPERATIVE_OR_ 

MUNICIPAL_COMPANY 
0.1 -26.76 237 Clustered, to be expected 

Building 
Type 

EFH 0.7 -16.02 736 Clustered, the general city centre vs. outskirts 
pattern MFH 0.3 -36.94 734 

Insulation 
outer walls 

_NEW_INS_AW 0.7 -9.91 283 

Somewhat clustered, an important result 
Insulation 

attic 
_NEW_INS_DA 0.6 -34.16 2140 

Insulation 
cellar 

_NEW_INS_KE 0.8 -6.41 280 

Gas- or 
Oil-Boiler 

age 

NO_GAS_OIL_BOILER  0.3 -27.12 374 
Clustered, the audits with district heating are 

counted here 
GAS_OIL_BOILER_1987 0.9 -2.1 159 More or less neutral, rather inconclusive 
GAS_OIL_BOILER_1995 0.7 -12.71 375 

Moderately clustered, also an important result 
GAS_OIL_BOILER_ab1996 0.7 -14.81 556 

Table 6. Nearest Neighbour Index as a measure of global spatial clustering 

 
29 Census cells cover only areas with residential buildings 
30 Note that the number of categories here is 22, as opposed to 46 in Table 1., because here I do not use categories 
representing joint distributions (f. ex. EFH_OTHER_NEW_INS_KE). 
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Another way of analysing the clustering is by finding the number of nearest neighbours needed for 
finding the same audit again (“same” as in “has the same categories”). Running the analysis gives the 
following values according to percentiles - Table 7: 

Percentile 10th 20th 30th 40th 50th 60th 70th 80th 90th 

Same 
nearest 

neighbour 
found at 

neighbour: 

1 1 3 6 11 19 34 69 174 

Table 7. Percentiles of the distribution of same nearest neighbour 

The way to interpret the table is the following: For 20% of the approx. 1351 energy audits31 an audit 
with exactly the same categories is actually the nearest neighbour. For 50%, an audit with the same 
categories can be found among 11 nearest neighbours, etc. These values are referred to again in Section 
9.2. 

All in all, most attributes exhibit spatial clustering which gives plausibility to the assumption that a 
nearest neighbour combination would be preferable (potentially more realistic) than any other, given 
the same fit. 

5.5 Supplementing the audits with IWU buildings 
As a final step in the pre-processing, I added approximately 151 energy audits that are “synthetic”. 
These are audits that I created for variable combinations that most probably exist, but are not found 
in the sample. These are for example newly built buildings after 2016. Their attributes I took from the 
IWU Typology. 

  

 
31 1351 and not 1501, because 1501 are the energy audits together with the 151 “synthetic” audits – see Section 
5.5 
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6 Existing Methods 

6.1 Spatial Microsimulation 
The problem setup points the search for methods to a field of economics, known as “microsimulation”, 
pioneered by Guy Orcutt (Orcutt, 1957). At the time, economists were using mostly aggregated 
economic data for their models. Orcutt argued that models have to be at the “micro” or 
person/household levels for some concrete simulations, such as health or tax policy. The reason was 
(still is) that these policy issues have usually multiple, interconnected reasons, the combination of 
which matters and differs at the individual level. This gets lots in aggregation. F. ex. health is 
influenced by a large number of factors or personal characteristics – from diet, through genetics and 
environmental factors to behavioural factors such as smoking and sports. Aggregated models in the 
form of cross tabulations could not be used to analyse such characteristics in their combinations. In 
some cases, such data on individual level could be available. The original applications of 
microsimulation to tax and healthcare used (and still use) “micro-datasets”, f. ex the German 
“Mikrozensus” (a household survey). In some cases, even building “micro-datasets” are available (such 
as in Peters et al.(2002)). In many other cases however, researchers in the field need to put considerable 
effort to come up with techniques that create such “micro” datasets from various available data. An 
example is the more recent “spatial microsimulation”, whereby individual data on, f. ex, country level 
is combined with aggregated data on, f. ex., regional level to obtain a regional-level “microdataset”. 
This allows the analysis of differences of the “micro”-units across regions. 

The methods used for combining aggregated and individual data can be found in the literature under 
the general term population synthesis, benchmarking or reweighting. The basic idea is to use the 
aggregated data as benchmarks. Then find such weights for the entries in the individual data that, if 
aggregated, the variables in the individual dataset match the benchmarks. The reweighted individual 
data can then be regarded as a disaggregated representation of the population, or “synthetic” 
population. A known prerequisite for the individual data is to be representative of the general 
population or at the very least include all or nearly all combinations of individual’s characteristics 
found in the general population. 

If one performs the reweighting for a country, then the model is at the national scale. If the reweighting 
is performed for regions, districts or some other spatial unit, then a “synthetic” population is created 
for each unit. Thus, differences between regions and spatial clusters can be analysed. 

These techniques have been used in transportation planning (J. Ma et al., 2014) and to a much lesser 
extent in UBEMs (Chingcuanco & Miller, 2012; Muñoz et al., 2016; Muñoz & Peters, 2014; Nägeli et 
al., 2018). Tanton (2014) gives an overview of “spatial microsimulation” methods. 
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Figure 6. Overview of spatial microsimulation methods32. Own elaboration based on Tanton (2014, p. 7) 

6.1.1 Static vs Dynamic Microsimulation 

Static microsimulation refers to simulations which are static in time - a representation of the 
population for current policy decisions. In dynamic microsimulation, the population is “aged”, its 
development through time is simulated so that longer lasting effects can be analysed over time. Of 
course, one can simulate the “ageing” (as in changes over time) of not only people or households, but 
other micro units as well (f. ex. buildings). An UBEM can be used for both static and dynamic 
microsimulation, but since the current task is modelling and not simulation, I will not delve further 
into this differentiation. 

6.1.2 Combinatorial Optimisation vs Synthetic Reconstruction 

The difference between the two modelling techniques is that Combinatorial Optimisation (CO) involves 
aggregated data and a sample of individual data, while Synthetic Reconstruction uses aggregated data 
and known distributions of characteristics of individuals. In the latter case, probabilistic sampling of 
the distributions is used until the aggregated benchmarks are matched33. Since, in the concrete case of 
this thesis, a sample is available, the search for appropriate methods is narrowed further to CO. 

 
32 A side note on terminology: Looking at these methods, however, one finds mostly “modelling” methods (how to 
get the data?) and much less “simulation” (performing tasks with the data). This is indicative of how much effort 
is needed (and put) into modelling. 
33 This is essentially very similar to what stochastic bottom-up UBEMs as in Sokol et al. (2017) make use of. 
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6.1.3 Probabilistic vs Deterministic 
All remaining techniques are a form of Combinatorial Optimisation (CO) in that they all search for an 
optimal combination of a finite set of elements, given some benchmark. Some of them are “stochastic”, 
which means they make use of a random number generator somewhere along the process. If the 
provided seed is not constant, the result would be (usually slightly) different each time the algorithm 
is run. “Deterministic” methods, given the same input, always produce the same result.  

6.1.4 Integer vs Floating point results 

Another important differentiation is between “Fitness-based algorithms” and “Simulated Annealing”, 
on the one hand, and “Generalised Regression” and “Iterative Proportional Fitting (IPF)” on the other 
(see Figure 6). The difference lies in the nature of their results. The former produces integer weights, 
while the latter – floating point weights, which require a further “integerisation” step (Lovelace & 
Ballas, 2013). In simpler terms – some algorithms produce weights (e.g. number of times a type of 
person/households is to be found in an area) which are whole numbers – 1, 3, 10, 100 etc. Other 
algorithms produce decimal weights. Since there cannot be 1,5 households in an area, the decimal 
weights need to be converted to integers, which becomes an additional modelling step. 

6.2 Calculating heat demand 

6.2.1 The TABULA34 Method 

Added to the task of modelling the building stock’s properties comes the task of converting building 
characteristics to energetic values (heat demand). While dynamic simulations of heat demand could 
provide superior results, they are computationally heavy even for individual buildings, let alone for an 
entire building stock. Because of this, the most widely used approach in Germany is the heat balancing 
(“steady-state”) calculation according to DIN 4108 (Deutsche Institut für Normung, 2003) or DIN 18599 
(Deutsche Institut für Normung, 2018). The former was the standard for residential buildings until 
recently, while the latter for non-residential. For the purposes of this thesis however, I will use a 
modified approach to the DIN 4108 - the “TABULA reference method” designed by the already 
mentioned IWU (Loga et al., 2015, p. 47; Loga & Diefenbach, 2013). It is based on the DIN 4108, but is 
a yearly rather than a monthly calculation and more crucially, includes a “consumption-correction”. As 
described in Subsection 1.2.4, calculated heat demand regularly diverges from measured consumption. 
However, measured consumption is what is mostly used for UBEM validation. Furthermore, any 
building model, regardless if for a building stock or for an individual building, that fails to model 
consumption properly loses credibility with the policy makers and the public.  

It is of course essential to understand the reasons for the discrepancy in any individual case and tackle 
each reason accordingly. When it comes to UBEMs, failing to model renovation levels or, more 

 
34 “TABULA” stands for „Typology Approach for Building Energy Assessment“ and is the name of an EU project 
with IWU in the lead that developed energy typologies for European countries - https://episcope.eu/iee-
project/tabula/  
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generally, a bad (as in “unrealistic”) estimation of building characteristics is usually the first concern. 
After that comes user behaviour and lastly the calculation method itself. The bigger part of this thesis 
is concerned with tackling the first problem – modelling the building stock properly. The other two I 
would tackle in a simpler, but I reckon effective way, by making use of the TABULA reference method 
and the aforementioned “consumption correction”. The consumption correction is based on a sample of 
metered data, from which a function was derived. This function is used to convert the calculated heat 
demand to an estimation of the heat consumption (Loga et al., 2015, p. 77). The benefit of using a 
function rather than a simpler correction factor is that the demand-consumption discrepancy is not 
linear. It is usually larger (demand being much greater than consumption) for less energy efficient 
buildings. Respectively, for moderately insulated buildings, the discrepancy is small and then it 
reverses for highly energy efficient buildings – demand tends to be lower than actual consumption35. 
This is nicely reflected in the TABULA method (Figure 7). 

 

Figure 7. Empirical correction of the demand-consumption discrepancy. Source: Loga et al.(2015, p. 78)  

Of course, the sample that IWU used is limited (1702 buildings) and Figure 7 shows that the numbers 
deviate from the function line. Nevertheless, it is an effective and practical way to describe the 
connection between demand and consumption. 

Still, I performed my own plausibility check of this method. I used the study of the building stock of 
the state of Schlesswig-Holstein by the building construction association ARGE36 (Walberg et al., 2012). 
ARGE had gathered a sample of buildings and metered data and created a typology to describe the 
building stock in the state (similarly, but mostly independently of IWU). The ARGE typology defines 

 
35 See Subsection 1.2.4 for a further discussion of the demand-consumption discrepancy and possible reasons for 
it. 
36 ARGE is the “Arbeitsgemeinschaft für zeitgenössisches Bauen e.V.“, an association based in Kiel, federal state 
Schleswig-Holstein. 
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12 building types according to size (single-family and multi-family) and construction epoch (before 
1918, 1918-48 etc, see Walberg et al (2012, p. 19)). The 12 types are further subdivided in three baseline 
states (“not renovated”, “moderately renovated” and “well renovated”) and three “state of the art” 
modernisation possibilities at the time (2012). These are the “adequate modernisation”, “EnEV 2009 
modernisation” and “Effizienzhaus 85” 37. For these types and renovation levels the typology gives the 
building characteristics (U-values, systems etc.) and average metered consumption per square meter. 
I took two building types and four renovation levels. I matched them to the corresponding IWU 
buildings and corrected where the building characteristics didn’t match. Then I calculated the 
consumption-corrected heat demand according to the TABULA method and compared it to the values 
for the average consumption given by ARGE. The result is in Figure 8. It shows that the TABULA 
method comes generally quite close to the average metered consumption (provided that the buildings 
have the same characteristics, which I had made sure of). 

Given the authority of the IWU (it is a respected organisation) and my own independent plausibility 
check, I reckon I have enough evidence to adopt the TABULA method as a realistic and practical way 
of calculating heat demand for the purposes of this thesis. 

Lastly, one might ask, if metered consumption exists why do I need a heat calculation method at all? 
The reason is that metered consumption is always bound by a sample and the building types (or 
“energetic archetypes”) contained in or derived from it. This can greatly limit the flexibility of model 
creation and use. The model as a baseline state and further analysis of scenarios would both be bound 
by the building types for which consumption is available. An empirically derived calculation that 
corrects for the demand-consumption discrepancy serves to lift this limitation. 

 

Figure 8. Comparison of TABULA consumption-corrected heat demand and metered average consumption 

 
37 For the purposes of simplicity, one can view this as simply six renovation levels.  
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6.2.2 Calculation parameters 

The heat demand calculation requires some global38 input parameters. Firstly, for Hamburg, I will use 
Climate Zone 2 DIN 4108-6:2003 Hamburg Fühlsbüttel, with a long-term average (1970-2019) of 222 
heating days, 4.85°C average outside temperature (Institut Wohnen und Umwelt, 2018). This amounts 
to 3140 heating degree days with heating beginning at 12°C average daily temperature and 19°C indoor 
target-temperature. Both 19°C and 20°C can be considered standard numbers. I use the lower one for 
the following reason. Most building energy calculations are for one building, for which heated and 
unheated spaces are known. In my case, I approximate the heated space via the living space. However, 
it is implausible that the whole living space of Hamburg is heated to 20°C all day long. To account for 
that I use 19°C internal temperature. An overview of all parameters is given in Table 8. 

Parameter Value Units 
Heating Days 222 Days 

External Temperature 4.85 
Degrees Celsius (°C) 

Internal temperature 19 
Solar Gains Horizontal 366 

kWh/m2*a 
Solar Gains East 252 

Solar Gains South 370 
Solar Gains West 211 
Solar Gains North 130 

Internal Heat Gains 3 W/m2 
Air Change through User 0.4 1/h 

Air Change through Infiltration 0.2 1/h 

Table 8. Global parameters for the heat demand calculation for Hamburg, see Loga and Diefenbach (2013)  

6.3 A note on building typologies 
There are many discussions in the field of heat demand estimation39 of whether a typology and 
especially the IWU Typology is “good”. The reason for the existence of the ARGE Typology is probably 
that the IWU Typology is German-wide and an assumption was made on part of the ARGE that a 
regional one would be better, more accurate. However, I looked at the two typologies and noted that 
the assumed U-values are really not very different. Figure 9 presents an example for a EFH (single-
family house) built in the 1960s and one in the 1980s together with a MFH (multifamily) in the 1920s 
and 1950s, so as to cover the major epochs. 

 
38 Applied to all data points irrespective of their attributes. 
39 I use “estimation” not in the strictly statistical sense, but in the sense “to arrive at a value for”. 
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Figure 9. Examples of U-values of the IWU-Typology compared with the ARGE-Typology (SH-Typology). 
“DA/OG” stands for “roof”, “AW” for “outer walls”, “KE/FB” for “cellar or ground floor”. 

I compared the individual building envelope elements (roof, walls, windows and cellar) for each 
building type. With the exception of the outside walls of the MFH in the 1950s, most values are within 
0,1-0,2 W/m2K, which is a small difference. 

The ARGE typology however has some superior properties. It distinguishes more finely between the 
different building types with a total of six renovation levels (three baseline states and three 
modernisation options on top of them) compared to the IWU’s three. This is important and a step in 
the right direction. All typologies are a form of simplification, where a broad spectrum of real-world 
objects (in our case, buildings) are grouped together, so that analysis and calculations are easier. Also, 
in most cases where a typology is not strictly consumption based, but attempts some sort of heat 
demand calculation, a building type is not an average building, but a typical building. In other words, 
not a mean, but a mode (in the sense of the statistical measures of centrality). If there is high variance 
of building attributes within a type, its typical value (mode) would not represent it very well, neither 
at the individual level, nor when scaled up (aggregated for hundreds or thousands of buildings). 
Averages are different, although wrong at the individual level, when scaled up, they will represent 
better the group. 

According to the sample survey of IWU (Cischinsky & Diefenbach, 2016, p. 50) approx. 30% of buildings 
built before 1978 have new wall insulation, 60% new roof/attic insulation and 20% cellar insulation. 
Also, 60% of renovations have been carried out for a single element, while another 26% are for two 
elements (ibid p. 95). Renovations of all four elements or more (f. ex. together with the exchange of 
heating) are between 1% and 3% of all buildings. In other words, most buildings have had some form 
of renovation. Few are in their original state, and few are completely renovated. And this is across 
building sizes and epochs. This leaves the typical matrix of sizes and epochs vastly insufficient. A 
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“typical” (from an energetic perspective) single family house building in the 1950s does not really exist 
anymore. The vast majority have had something changed or renovated. For this reason, moving to a 
finer renovation level split is a step in the right direction if one attempts to represent the building stock 
properly. In this thesis, I have taken this a step further. I consider all energy audits in my sample as 
a form of building types. If this is an extreme version of the typology approach, where instead of 42 
types I have 300 types, or whether it constitutes a different approach altogether, is besides the point. 
The bottom line is that it better captures the heterogeneity of the building stock, which the data shows 
is present. 

6.4 On using 3D data 
It is safe to assume that in the future most cities would probably have and use 3D-data, so at this point 
the reader should ask where 3D-data comes in? Some researchers in the field are using 3D data 
explicitly and exclusively, f. ex the group around Ursula Eicker and Volker Coors working on SimStadt 
in Stuttgart (Nouvel et al., 2015). I have addressed this issue both in a publication on an archetype 
approach (Dochev, Seller, & Peters, 2020) and also in a publication with the SimStadt group on 
comparing our methods (Dochev, Gorzalka, et al., 2020). Still, an explanation is in order. 

The first thing to clarify is what is 3D-Data and what is 2D-Data. Consider Figure 10, on the left is the 
footprint of a building. That is 2D building data. In the middle, the same building as a 3D object. This 
is a Level of Detail 1 (LoD1) 3D building object, a mere extrusion of the footprint. 

 

Figure 10. 2D vs 3D building data. Sources: ALKIS (Freie und Hansestadt Hamburg, Landesbetrieb 
Geoinformation und Vermessung (LGV) [Hamburg State Office for Geoinformation and Surveying], 2020), 3D 

model (Freie und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV) [Hamburg State 
Office for Geoinformation and Surveying], 2017) found in (Dochev, Seller, & Peters, 2020, p. 246) 

Using solely the geometry of the footprint of a building will not be enough for almost any UBEM. But 
that is also not what I am using. Note the “number of storeys” label inside the footprint. The ALKIS 
data I am using has this attribute for all buildings. Consider now the LoD1 object, the difference then 
between what I am using and LoD1 is only in the way the 3rd dimension is measured or derived40. In 
my case it is via the number of storeys and an assumed height per storey. The LoD1 is derived from a 

 
40 And how they are visualised, but visualisation is not the issue here. 
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LiDAR41 point cloud, which was further processed and cleaned. Therefore, in a way, I am using a form 
of 3D data, because I have data on the 3rd dimension. 

Then the question becomes, is the LoD1 not more precise? Well, yes, but for residential buildings the 
difference is not very large. The real benefit of LoD1 comes for non-residential buildings42 where the 
actual geometry in the 3rd dimension can be complex – f. ex. Figure 10, where in different parts of the 
footprint the building has different heights However, for Hamburg the LoD1 actually tends to be wrong 
exactly where it would bring most benefits. See how this non-residential building actually looks like 
compared to the LoD1 in Figure 10. Neither the ALKIS nor the LoD1 come even close to modelling the 
actual building volume. Interestingly, the ALKIS as a cadastral system has provisions to tackle such 
cases. “Building parts” can be defined, which would have different number of storeys and can be then 
used to model such complex building volumes. The Hamburg ALKIS regrettably does not utilise this 
feature of the ALKIS, i.e. there is very limited data on building parts. The Berlin ALKIS, however, 
uses it and that allows a more adequate modelling of such a building (Dochev, Gorzalka, et al., 2020) 
without formal “3D data” in the form of a LoD model. 

Looking at the same Figure 10 one notices that some other buildings have more sophisticated roof 
forms. That is because the data is actually LoD2, although the building in the middle is presented as 
LoD1 (the difference between LoD1 and LoD2 is roof form). Residential buildings often have gable or 
hipped or other non-flat roofs and using only footprint and number of storeys would not capture this. 
However, the ALKIS actually has information on the type of roof as an attribute and I could factor this 
in without using the 3D models. The availability of this attribute differs regionally, some cities do not 
have it. In this case, the Hamburg ALKIS has it, the Berlin ALKIS does not. 

Overall, the key issue is to calculate the building volume as close to reality as possible. Having 
information on the height of buildings is critical. This can be achieved with the ALKIS or with 3D data. 
The choice depends on the availability and the context. However, merely having something that can be 
visualised with a 3D-object is by no means a guarantee that this thing is a correct representation of 
reality. Or that it is better than something visualised on a 2D map with height as attribute. 

  

 
41 Light Detection and Ranging - an airborne remote sensing technique 
42 Which I am not covering in this thesis. 
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7 Formal Representation of Modelling Approach 

7.1 Definition of terms 
For modelling the Hamburg building stock, the assigning of energy audits to cadastral building has to 
be benchmarked in a specific way. Let ) be the number of (ALKIS) buildings and # be the number of 
audits.  The assigning can be represented with a two-dimensional (2D), boolean array + (+",$ ∈ {0,1}) 
with size )x# where the first dimension (rows (2)) are the buildings and the second dimension (columns 
(3)) are the audits. A value of 1 for any +",$ indicates that a building with index 2 has audit with index 
3 assigned. Because a building should get only one, whole audit assigned the sum of all columns for 
each row of + has to equal 1. Obviously, within the constraints (+",$ ∈ {0,1}	and	∑ +∗,$%

$ = 1) there are 

numerous possible instances of +. These represent the search space for the problem. 

 

Example: with -=4 and .=3. I will use the * sign to mean “all indices of a dimension of an array”. 
Additionally, I will introduce the concept of advanced indexing, which is when an array is indexed with 

another array43 

+ =	 0
1&,& ⋯ 1&,'
⋮ ⋱ ⋮

1(,& ⋯ 1(,'
5 + =	 6

1 0 0
0 0 1
1 0 0
0 1 0

8 

+&,∗ =	 [1 0 0] 

+∗,) =	 6
0
0
0
1
8 

+&,): =	 [0 0] 

+∗,):+ =	 6
0 0
0 1
0 0
1 0

8 

 

Advanced indexing: 

+&,[&,+] =	 6
1 0 0
0 0 1
1 0 0
0 1 0

8 

 

The benchmarks are the values (number of address points) that the available data gives for each 
category for each Census cell or for the city. Since + relates to buildings, I will define array 9" ∈ ℤ% 
(positive integers, including zero) of size ) to store the number of address points per building. In this 
way, I can relate the buildings to the counts provided in the benchmark data. 

 

Example: -=4, Each value is the number of address points for the row index. The first building has two 
address points, the second one address point etc. 

9 =	<

2
1
3
4
=	 

 
43 This notation is very similar to the Python numpy array indexing. Introducing it makes describing the algorithm 
and the code for it more intuitive. However, I avoid using Python’s zero indexing and the default right open 
intervals, because they might be counter-intuitive to the “non-pythonic” reader. So, all indices start from 1, not 
from 0 as in Python and are both left and right closed. As an example 1:3 means 1 to 3 inclusive. 



  June 2023 / Ivan Dochev 

46 
 

I am looking for an instance of + that fits the benchmarks. The benchmarks are building counts of 
(mutually exclusive44) categories of building attributes. There are > categories, hence > benchmarks.  
F. ex., an attribute is “type of heating”, a category of this attribute is “district heating”. The benchmark 
would be 39924 – the number of address points that have district heating according to the Census. I 
can represent the relationship between audits and categories with a 2D boolean array ? of size #x> 
where rows (3) are the audits, columns (@) are all categories. Analog to the above, if ?$,& = 1, then audit 
3 has (“is in”) category @45. However, some benchmarks are at the Census cell level, while others at the 
city level. Let B be the number of Census cell benchmarks. Then, > − B is the number of city 
benchmarks. Let the columns (@) be ordered so that the Census cell benchmarks are the first ones 
(indices	1 ≤ @ ≤ B, and the city benchmarks indices are B < @ ≤ >)46. 

  

Example: .=3, >=6, s=4 Each audit (row) has some categories, the first four are for the cell benchmarks 
(indices	1	to	A) and the last two for the city level. 

? =	 F
1 0 1 0 					0 1
0 1 0 1 					0 1
0 1 0 1 					0 1

G 

I will represent the connection between buildings and Census cells with another 2D boolean array H. 
It will have size )xI, where I is the number of cells. Rows (2) represent buildings and columns (J) 
represent Census cells. A value of 1 for any H",' indicates that the building with index 2 resides in cell 
with index J. 

 

Example: -=4, B=2, first two buildings (C, row) reside in one cell (D, column), 
 the others reside in the second cell 

H =	 <

1 0
1 0
0 1
0 1

= 

Then, I will use a 2D array K with size Ix> to store the values for the benchmarks. The rows (J) are the 
Census cells and columns (@) are the categories. Since these are counts and not relationships as the 
previous arrays: K',& ∈ ℤ%. However, only some benchmarks have values for the cell level47, therefore 
there are no values for some elements of K. For this, I will use two versions of K, one for the Census 
cell benchmarks (K!), and one for all benchmarks at the city level (K!!). Both have the same number of 

 
44 See Section 5.1. 
45 Note that in the example array E it is unclear which categories correspond to which attributes so the mutual 
exclusiveness is not represented in any way. It is unnecessary to represent it, because it is a characteristic of the 
data (or my data pre-processing) and not a constraint on +. 
46 This is for convenience of description. An implementation in a programming language can easily generalise this 
by indexing an array with another array to extract the different types of benchmarks, so that the order would not 
matter.  
47 Benchmarks at the Census cell level can easily be summed up to the city level, so all benchmarks have values 
at the city level. 
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columns >, but K!′ has only one row. For K∗,)*+:-!  there are no values, but I will denote with a placeholder 
“?”, so that the number of dimensions stays the same. This is purely for illustrative purposes. 

 Example: B=2, >=6, A=4 Each Census cell (D, row) has some total count for each category (F, column) 

K! =	 M2 1 2 1 ? ?
3 4 3 4 ? ?R 

K!! =	 S5 5 5 5 048 10U 

As discussed in Sections 4.2 and 5.4 the assigning of audits to buildings should also take into account 
the spatial relationships between them. For this, I will define yet another array V with dimensions 
(Ix#) which will store the order (from closest to furthest) for every cell-audit pair. Note that I simplify 
and measure the distances from each cell to each audit rather than from each building to each audit. 
The difference in terms of result is very small. In the vast majority of cases the order of nearest 
neighbours for each building is the same as the order for the cell centroid. Computationally, however, 
this decreases the size of  V significantly. 

 

 
Example: Values are spatial orders – a value of 1 would mean the first closest neighbour, 2 the second 

etc. 

G =	 H1 3 2
3 1 2I 

I will use ⊙ for the element-wise multiplication (“Hadamard product” in matrix algebra) of two arrays. 
A Hadamard product is defined for two matrices with the same dimensions. However, I will include in 
the definition the concept of broadcasting. It means expanding an array to match the dimensions of an 
array of higher dimensions by copying it multiple times. This is best explained with an example. 

 

Examples: 

+⊙ +),∗ 	= 6
1 0 0
0 0 1
1 0 0
0 1 0

8⊙	[0 0 1] = 6
1 0 0
0 0 1
1 0 0
0 1 0

8⊙	6
0 0 1
0 0 1
0 0 1
0 0 1

8 = 	 6
0 0 0
0 0 1
0 0 0
0 0 0

8 

+⊙ +∗,)		 = 6
1 0 0
0 0 1
1 0 0
0 1 0

8⊙	6
0
0
0
1
8 = 	 6

1 0 0
0 0 1
1 0 0
0 1 0

8⊙	6
0 0 0
0 0 0
0 0 0
1 1 1

8 = 	6
0 0 0
0 0 0
0 0 0
0 1 0

8 

 
48 The sharp-eyed reader would notice here that if this is a zero, then no building in the entire city should be in 
this category, which sounds strange – why have the category then? The answer is that this is a very simple example 
for a city with just four buildings, the characteristics of which I made up only for the purpose of the example. The 
real dataset does not have such a zero. 
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Lastly, in Subsection 4.3.2 I define a requirement that sparse information on individual buildings 
should be integrated and taken into account while assigning. Let X be a 2D boolean array of size )x> 
where rows are buildings and columns are categories. A value of 1 for any X",& signals that it is already 
known that a building has that category. The interpretation of a value of 0 however is different from 
the previous cases and here it stands not for a negative, but for an unknown, as in if X",&= 0 the building 
may or may not have that category. 

 

Example: -=4, >=6 Each building (row) has some categories 

X =	 <

0 0 1 0 0 0
0 0 0 1 0 1
1 0 0 0 0 0
0 0 0 0 0 0

= 

Representing the buildings, cells, benchmarks etc. in this form facilitates the understanding of its 
details, the objective function and the algorithm presented in the next sections. Table 9 provides an 
overview of the input arrays. 

Array Type Size Indices Rows Columns 

* Boolean 
)x#	

	(197587x1502) 
2, 3 (ALKIS) buildings Energy Audits 

] Integer 
)x1	

(197587) 
2 (ALKIS) buildings 

Nr. of address 
points 

^ Boolean 
#x>	

(1502_46) 
3, @ Energy Audits 

Categories (f. ex. 
“District Heating”) 

( Boolean 
)xI	

(197587_19900) 
2, J (ALKIS) buildings Census Cells 

a Integer 
Ix>	

(19900_46) 
J, @ Census Cells 

Categories, 
whereby the first B 
(=18) are cell level 
benchmarks, the 

rest city level. 

b Integer 
Ix#	

(19900_1502) 
J, 3 Census Cells Energy Audits 

c Boolean 
)x>	

(197587_46) 
2, @ (ALKIS) buildings 

Categories, 
whereby the first B 
(=18) are cell level 
benchmarks, the 

rest city level. 

Table 9. Overview of input arrays (matrices) 
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7.2 Objective function(s) 
Boolean array A is the unknown (target). Integer array B stores the number of address points for every 
building. Boolean arrays C and D represent the current relationships between buildings, audits, 
categories and Census cells as derived from the data. With this I can now calculate the number of 
building addresses in each Census cell (J) with each category (@) for any given instance of A. I will store 
this in an array d49. It is effectively an aggregation of the buildings’ attributes at the Census cell and 
city levels.  To correspond to the benchmarks, I will again define two versions of d. One for benchmarks 
at the Census cell level: d',&!  a 2D array with size Ix> (logically this array has the same shape as K!). 
And one for the city level benchmarks: d&!! a 1D array with size > (same shape as K!!). The two arrays 
are simply an aggregation of an instance of an assigning (A): 

Eq. 3. /",$! =0 0 (1⊙3⊙4∗," ⊙5∗,$&
'

(
))(

*

)
 

Eq. 4. /$!! =0 0 (1⊙3⊙5∗,$&
'

(
))(

*

)
 

Integer arrays K! and K!! store the values for the benchmarks that have to be matched. Floating-point 
array V stores the spatial relationships between buildings and audits (using cells as proxy). Boolean 
array X stores the information on individual buildings where one or more attribute categories are 
known and the target assigning has to match. 

With this apparatus I can now define an objective function which gives a meaningful answer to the 
question “does my model fit the benchmarks well? ”. Note that the true task is to arrive at the instance 
of + that is closest to the real building stock. Let this be +e. Finding an instance of + that fits benchmarks 
would mean that it is likely that + is close to +e. However, this is still an assumption. One I test in 
Section 9.2. For now, the objective is to fit the benchmarks. 

I use the sum of squared differences as the type of metric for optimisation. I have two sets of 
benchmarks: at the city and Census cell levels. Further, I want to assign audits that are close in 
geographic space. This turns the problem into a multi-objective one: 

  

 
49 i.e. for every assigning of audits to buildings 
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 Minimise with respect to A:  

Formula  1 0 (6",$! − /",$! )+
,

$-.
 

Minimise the sum of squared 
differences between estimated counts 

and benchmarks at cell level 

Formula  2 0 (6′$! − /′$! )+
/0,

$-.
 Minimise the sum of squared 

differences at city level 

Formula  3 0 0 (1⊙9
'

(-.
))(

*

)-.
 

Minimise the spatial orders (in 
geographic space) from a building to 

an assigned audit 

 where:  

Eq. 3. 
(defined 

previously) 
/",$! =0 0 (1⊙3⊙4∗," ⊙5∗,$&

'

(-.
))(

*

)-.
 

The two aggregation terms - Census 
cell and city levels Eq. 4. 

(defined 
previously) 

/$!! =0 0 (1⊙3⊙5∗,$&
'

(-.
))(

*

)-.
 

 subject to:  

 1),( ∈ {0,1} 

Only one, whole audit assigned 
 0 1∗,(

'

(-.
= 1 

 @),$ = 1	 → 	1),( ⊙	?.,/ 	= 1 If an attribute category is known, 
make sure the assigning keeps it 
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8 Designing the Modelling Algorithm 

My aim in this thesis is to contribute to the development of UBEMs by finding a good way to integrate 
widely and regularly available data sources50. This has two implications for the modelling algorithm. 
Firstly, it has to be able to tackle distinct, but similar datasets from other cities, so a certain degree of 
transferability has to be evidenced. Secondly, the logical similarities of characteristics of the datasets 
can be used to guide the development of the algorithm. 

A simple example for what I mean is the estimation of the search space for the choice of algorithm. The 

number of possible instances of 1, given the constraints, are #0 instances. Hamburg, for which I will 
test the algorithm has a population of approx. 1.8 million with 250 000 residential buildings. The 

sample of energy audits is approx. 1300. The possible instances of 1 are then approx. 1300250000, an 
obviously astronomical number. At this point, it is rather safe to assume that just brute-forcing (going 
through all possible permutations) to find a solution is not possible. Additionally, it is also safe to 
assume that there would hardly be a use case where this is not true51. 

However, the energy audits are not a set (every member being unique), when it comes to the 
permutations of their categories. They are unique with their spatial locations, but for the purposes of 
maximising the fit to the benchmarks only the unique ones according to their characteristics can be 
taken – 291. The search space still cannot be brute-forced, but this step can have computational 
benefits.  

Simple brute-force is obviously not possible, a smarter search is required. Given the optimisation 
methods presented in Chapter 6 – “simulated annealing”, “fitness-based”, “generalised regression” and 
“IPF” some logical arguments can be made as to which ones would have most potential. 

Firstly, both “generalised regression” and “IPF” produce non-integer results (“weights”). This means 
that with them a resulting instance of + would be an array of floating points. It could match the 

benchmarks well and ∑ ∑ +",$1
$ = )01 , but +",$ ∉ {0,1}. In Spatial Microsimulation, this is typically solved 

with an “integerisation” step (a state of the art method for this “truncate, replicate, sample” (Lovelace 
& Ballas, 2013)). There are two general approaches to the integerisation step – a deterministic (the 
simplest of which is rounding) and a probabilistic, where weights are treated as a probability 
distribution. The “truncate, replicate, sample” method is actually a hybrid of the two, where the 
decimal weights are split into an integer and decimal part. The “sample” step in the method samples 
from the probability distribution of the decimal part of the weights and adds the results to the integer 
part of the weights. Thus, the weights are “integerised”.  

 
50 As explained in Chapter 3 most of the datasets I use are not unique to Hamburg, but rather standard in spatial 
planning – buildings, Census cells etc. 
51 Even a town with 10 audits and 120 buildings would have 10120 permutations, roughly the number of possible 
chess games, still incomputable. 
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However, here, the nature of the problem at hand renders this approach unsuitable. There are, on 
average, 12 buildings in each Census cell and 291 unique energy audits (ratio of 0.04). This means that 
the “candidates” for each cell are on average approx. 25 times more than the targets52. After testing 
IPF, the vast majority of weights I obtained were small decimal numbers (10-2). In other words, in far 
too many weights, there was no integer part to begin with. 

This meant that, in my case, the integerisation step (which came down to sampling) gained far too 
much on influence and made the whole approach more probabilistic than usually. In Spatial 
Microsimulation, populations, not buildings are usually modelled and at Census tract or similar spatial 
level rather than 100m Census cells. At the usual spatial levels, the usual situation is at least a couple 
of hundred inhabitants per spatial unit (f. ex. Hamburg has on average 2000 inhabitants per Census 
tract). Then the ratio between the size of the individual sample (energy audits in my case, surveys in 
Spatial Microsimulation usually) and population size of spatial unit on average is much closer to 1 or 
above and not 0.04. 

For this reason, I concentrated on innately integer-producing algorithms - “fitness-based” and 
“simulated annealing”. Between the two approaches, I adopted the “fitness-based” approach, because 
it is deterministic. It had produced good results for similar problems in the literature (Ma & Srinivasan, 
2015). Note that a fitness-based approach can be transformed into a quasi-annealing approach. 
Consider taking a window of n top “fitness” scores and choosing among them rather than the single 
best score. The window can then be reduced after each iteration (similar to what the “temperature” 
does in simulated annealing). Then the algorithm will be close to a simulated annealing algorithm. I 
implemented this logic, but do not use it per default, see next section for details. 

8.1 Algorithm – simple explanation and pseudocode 
The algorithm I use is based on the “fitness-based” approach described by Ma and Srinivasan (ibid) 
whereby audits are assigned based on a “scoring” (“fitness”) value53. The basic logic is to iteratively 
pick energy audits for each building such that the aggregates for the cells and the city converge on the 
benchmarks. The algorithm orders the buildings according to the number of categories that are known 
(X) and the buildings’ size. It then assigns each unique energy audit to the first building in the first 
cell and chooses the one that best fits (according to the objective function). The tie-breaker, if needed, 
is the geographical distance from an audit to a building. Note that when an energy audit is assigned to 
a building this changes the difference between the aggregates (given the concrete assigning) and the 
cell and city benchmarks. Thus, each assigning influences the scores for the ones that follow. This is 
not a problem for the cell benchmarks, since each cell’s newly calculated aggregates are independent 

 
52 This is a peculiarity, which is uncommon in the field of spatial microsimulation, where the spatial units comprise 
of at least a couple of hundred individuals. Therefore, it was not surprising that I did not find examples of similar 
situations in the literature. 
53 In the field of computer science, the strategy to modify hill-climbing by using some sort of “fit” measure (“Best 
fit search”) to choose the next candidate can be traced back to Pearl (1985). 
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from those of other cells. For city benchmarks however, every building’s assigning influences all others, 
since they all adhere to a single benchmark for the city. In order to decrease the importance of the 
building order, the algorithm uses batches of buildings and updates the city benchmarks not after each 
building, but after each batch. Each batch consists of a number (an algorithm parameter) of buildings 
each from a different cell. F. ex. batch one would be the first building from cell one, the first building 
from cell two etc. The algorithm loops over all batches and then starts from the beginning. This gives 
it multiple chances to “check again” the scores for a building, after other assignings have been changed. 
The first building in a cell would be checked again after the first iteration of all buildings, but this time 
its fitting score might change, since the other buildings with assigned audits would influence the totals 
for the benchmarks. Note that this does not prevent the possibility to get stuck in local optima, but it 
helps against it. Attempting to (approximately) solve the local optima problem would require a form of 
stochasticity, similar to the simulated annealing approach. The algorithm I propose allows for this by 
specifying an “assigning_window_size” and “window_reduction” parameters. The 
“assigning_window_size” controls how many top scoring audits to consider at each assigning and take 
a random audit among them. The “window reduction” is by how much to decrease the window size after 
each batch. I practically turn-off this functionality by setting a window size of 1. The reasons are that 
even without this stochasticity the algorithm performed well on the Hamburg data and that a 
deterministic algorithm has benefits when trust and explainability to stakeholders are concerned. Still, 
the option is available. 

The algorithm written with for loops and in pseudocode is given below. A more detailed example using 
arrays is given in the next section. 

#prepare inputs and parameters 
DECLARE INPUTS 

 alkis_buildings,  
 census_cells,  
 energy_audits 
 
DECLARE PARAMETERS  
 max_iterations = 100,  
 batch_size = 500,  
 scoring_metric = sum_of_squared_differences 
 iteration_stop_metric = frobenius_norm,  
 assigning_window_size = 1,  
 window_reduction = 0 
 
#prepare derived variables 
energy_audits_unique = GET UNIQUE energy_audits #unique in terms of their categories 
 
distances_of_audits_to_cells = SPATIAL DISTANCE (energy_audits, cells) 
 
ORDER buildings BY (Census_cell_id, building_known_attributes, building_floow_area) 
ORDER buildings BY (index in cell, building_known_attributes, building_floow_area) 
          ) 
batches_of_cells_with_buildings = GROUP cells_with_buildings IN BATCHES OF batch_size 
#Note that the batches are created and ordered in a special way. The buildings are sorted according to their index in each cell, 
which is based on the known attributes (categories) and their size. So, at the beginning of the “buildings” list are all “first 
buildings”. The list continues with all “second buildings”, etc until the n-th buildings, where n is the max number of buildings 
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in the Census cells. Within all the first buildings, the order is based again on known attributes and floor area. Then, within all 
“second buildings” again the same etc. Finally, the list is split into batches of size equal to the batch size. 
 
#run fitting 
FOR iteration IN max_iterations: 
 FOR batch IN batches_of_cells_with_buildings: 
  FOR building IN batch: 
   IF assigned_audit NOT none:  #if the building has an audit assigned 
    current_cell_aggregates -= this_building_cell_attributes #remove it … 
    current_city_aggregates -= this_building_city_attributes #… we check if another fits better 
   ELSE: 
    PASS 
   FOR unique_audit IN energy_audits_unique: 
    ASSIGN unique_audit TO building 
    score_local = CALCULATE scoring_metric ( 
                 building,  
               current_cell_aggregates,  
                 cell_benchmarks 
               ) 
    score_global = CALCULATE scoring_metric ( 
                building,  
                current_city_aggregates, 
                city_benchmarks 
                 ) 
   END FOR 
   SORT unique_audits_assigned ACCORDING TO ( 
             known_building_benchmarks,  
         min_score_local,  
          min_score_global, 
            distances_of_audits_to_cells 
                ) 
   CHOOSE RANDOM top_unique_audit FROM unique_audits IN window_size #if size is 1: the top score 
 
   UPDATE current_cell_aggregates WITH buildings_with_assigned_audits 
  END FOR  
 
  UPDATE current_city_aggregates WITH buildings_with_assigned_audits 
  assigning_window_size -= window_reduction 
 END FOR 
 
 all_current_aggregates = AGGREGATE buildings_with_assigned_audits 
 difference_to_benchmarks = current_aggregates - benchmarks 
  
 convergence = CALCULATE iteration_stop_metric ( 
                  difference_to_benchmarks,      
                    difference_to_benchmarks_from_previous_iteration 
            ) 
  
 IF convergence = 0: 
  TERMINATE 
 ELSE: 
  CONTINUE 
 
END FOR 
 
#now all buildings have a unique_audit assigned, next I choose which energy audit to assign, based on the #spatial distance 
FOR building IN buildings_with_assigned_audits: 
 CHOOSE energy_audit ACCORDING TO distance( 

                building,   
                      energy_audits_of_assigned_unique_audit 
                     )  
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8.2 Algorithm – more detailed explanation and example with matrices/arrays 
While the pseudocode in the previous section describes the major steps, an implementation using 
arrays is described below. For simplicity I am presenting an example with the “assigning_window_size” 
and “window_reduction” parameters set to 1 and 0 respectively, which basically turns them off. 

Since the benchmarks count the building address points, the algorithm has to account for that and 
count each building with its respective number of address points. From the examples in Chapter 7: 

Example: Notes 

%
1 1 1
1 1 1
1 1 1
1 1 1

& ⊙ %
2
1
3
4

&	= %
2 2 2
1 1 1
3 3 3
4 4 4

& 

 

   The process starts with a fully filled out version of + where every 
building has every audit assigned and multiply it with 9. The row 

and column indices point to buildings and energy audits respectively. 

Since the energy audits are not unique, this can be simplified by tacking only the unique and keeping 
track of which non-unique audits point to each unique audit: 

Example: 

 
Notes 

+ = 	 -
1 0 1 0 0 1
0 1 0 1 0 1
0 1 0 1 0 1

. 

%
2 2 2
1 1 1
3 3 3
4 4 4

& → 	 %
2 2
1 1
3 3
4 4

&  

Array ? holds the energy audits. Since audits at indices 2 and 3 have 
the same categories, the result from the previous step can be 

simplified. The rows remain the same, but the number of columns is 
reduced. A different array is kept which tracks which indices from the 

non-unique correspond to which in the unique. 

Then the now simplified + is split according to the Census cells in which the buildings reside using H 

Example: 

 
Notes 

2 =	5
1 0
1 0
0 1
0 1

8  

→ 02 2
1 11 				0

3 3
4 41 

Array H describes the connection between buildings (rows) and cells 
(columns). According to it, the first two buildings are in cell 1 and the 

other two in cell 2. The original order of the buildings can be 
arbitrary, from here on it is not anymore. 

The algorithm then sorts the buildings within the cells firstly by the number of known categories and 
then by the floor area (more known categories and larger area go higher up in the order). 
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Example: Notes 

9 = 	 5
0 0 1 0 0 0
0 0 0 1 0 1
1 0 0 0 0 0
0 0 0 0 0 0

8 

 

2 3∗,#
$

#
= %

1
2
1
0

& 

H2 2
1 1I				H

3 4
3 4I →	 H

1 1
2 2I				 H

3 3
4 4I 

Array X holds the known categories for individual buildings. 
Summing up over all categories shows how many known are 
there for each building (row). In the example, buildings with 

indices 1 and 3 have one known category, index 2 has two and 
index 4 has none. The split version of + gets reordered again. 

According to Array X, in the first cell, building with index 1 has 
one known category, while building with index 2 has two known 

ones. The order is flipped. Note, the numbers in the array 
represent the address points, while the reordering is done with 
via the indices. The second Census cell remains the same, since 
the building with index 3 (which is index 1 in the cell) has more 

known categories than the building with index 4.  

After that, the algorithm starts assigning audits to buildings for groups of buildings in parallel. The 
groups are based on the index of the building within a cell, so first all buildings with index 1 in their 
respective cells, then index 2 etc. These groups are further subdivided with a “batch size” variable, 
which is a parameter that can be set. The batch size can take values between 1 and the total number 
of cells. With f. ex. 1000 cells, a “batch size” of 100 would mean the buildings with index 1 in the first 
100 cells get an audit assigned first, then the next batch and only after all batches, the algorithm moves 
to building with index 2. With this, the order of the cells also becomes important. The cells are pre-
sorted, similarly to the buildings, based on the known categories and the size of the cell, with cells with 
more known categories and larger sum of floor areas taken first.  

Example: Notes 

 

H1 1
2 2I				H

3 3
4 4I 

In this example, the buildings with index 1 in their respective 
cells have address point counts of 1 and 3 respectively. A batch 
size of 2 would mean that they get audits assigned in parallel. 

A batch size of 1 would mean they get audits assigned in a 
consecutive fashion. See further down for an explanation into 

“parallel” vs “consecutive” assigning. 

Then, for each building all potential candidate energy audits and their categories are taken. 
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Example: Notes 

0111 ⊙?′ 

0111 ⊙ 01 0 1 0 0 1
0 1 0 1 0 11 

M11R is simply a transposed [1 1]. So, building with index 1 in 

cell one. It gets multiplied with ?, which stores the categories of 
the energy audits, however only the two unique ones instead of 

all54. 

Then the algorithm considers the benchmarks for the cell and for the city before assigning an audit to 
the building at hand. For the very first building at the very first iteration, the difference to the 
benchmarks are the values of the benchmarks themselves. After each building gets an audit assigned, 
the difference to the benchmarks is changed, because the cells start getting “populated” with audits 
and thus the modelled counts of categories start to change. 

Example: Notes 

K;<=! =	 [2 1 2 1 − −] 

K!! =	 [5 5 5 5 0 10] 

Before the first building in the first cell gets an audit assigned, 
the benchmarks have the original values. When the second 
building gets its turn, the benchmarks are already modified 

Then fitting scores are computed for the building in question. They are the squared sum of differences 
to the benchmarks. 

Example: Notes 

Census Cell Benchmarks City Benchmarks For both Census cell 
benchmarks and city 

benchmarks, both unique 
candidates get a score. 

Lower scores are preferred. 

_	[2 1 2 1 ? ?]										   
					[1 0 1 0 0 1]
					[1 1 1 1 0 0]

→ [4] 

_	[5 5 5 5 0 10]										 
					[1 0 1 0 0 1]
					[0 0 0 0 0 27]

→ [27] 

_	[2 1 2 1 ? ?]										   
					[0 1 0 1 0 1]
					[4 0 4 0 0 0]

→ [8] 

_	[5 5 5 5 0 10]										 
					[0 1 0 1 0 1]
					[0 0 0 0 0 27]

→ [27] 

→ :;<=;<>? 0@81 0
AB
AB1 

 

 

After computing the fitting scores, the known categories are considered again.  

  

 
54 Obviously having a single address point makes the multiplication unnecessary, but I am giving a generalised 
presentation of the steps. 
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Example: Notes 

3 = 	 %
0 0 1 0 0 0
0 0 0 C 0 1
1 0 0 0 0 0
0 0 0 0 0 0

& 

 

+% = 	 01 0 1 0 0 1
0 1 0 C 0 11 

 

→ :;<=;<>? 02C1 

Array X points to building 2 (which is now taken with index 1) 
as having category 4. From the potential candidates ?! the 

second one has it, the first does not, so the priority is 02C1 which 

means “prefer the second one”. 

With the two fitting scores and the known categories a choice is made as to which energy audit to 
assign. The choice is based on a priority of scores which is again a setting that can be changed. I use 
the known categories first, then the Census cell benchmarks and then the city benchmarks. The final 
tie-breaker is spatial distance – if all else is equal the closer energy audit gets assigned. 

Example: Notes 

:;<=;<>? 02C1 0
@
81 0

AB
AB1 

For the scores, lower is always better. Energy audit 2 gets 
assigned, because it has a known category and the known 

categories are preferred over the other scores. In this case the 
scores obviously don’t change anything, but this is because of 

the simplicity of the example.     

With the current ordering of the scores instead of some compounded index or integral measure, the 
known categories have a hard and fixed influence. In reality, this means that if a given building is 
known to have a category, the assigned audit will always also have it. In other words, the known 
categories are taken as the most accurate of data and the algorithm tries to fit the benchmarks around 
this known information. 

After an audit is assigned, the difference between model (aggregates) and benchmarks is updated to 
reflect that. 

Example: Notes 

_	[2 1 2 1 ? ?]   

					[0 1 0 1 0 1]
					[2 0 2 0 ? ?]

 
Update K+,∗! . I assigned unique audit with index 2, so now the 

difference to the benchmarks of the cell changes.  

Note that in the example only the Census cell (K!) benchmarks were updated. This is an important 
point – the moment when the city benchmarks (K!!) are updated is not after each building, but after 
each batch. If batch size equals 1 (the minimum), then both benchmarks are updated at the same time. 
If batch size equals the number of cells (the maximum), then the city benchmarks get updated after 
each building cell index. The necessity for this is that as opposed to Census benchmarks, city 
benchmarks include all buildings. In other words, an assigning of audits within a cell can be 
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independent of other cells when it comes to the Census cell benchmarks, but not when it comes to the 
city benchmarks. The following example explains this further: 

Example for: Notes 

[3 3] Consider the second building with index 1 in its cell. It is 
different from the previous building. For Census cell 

benchmarks, whichever audit was assigned to the previous 
building in the batch does not matter, the building is from a 

different cell. However, the city benchmarks influence all 
assignings. If batch size is 1, then the city benchmarks would 

have been updated after the previous building was assigned and 
would have slightly lower values then if batch size was 2. 

 

With batch size=1 

K!! =	 [5 5 5 5 0 9] 

With batch size=2 

K!! =	 [5 5 5 5 0 10] 

The moment at which the city benchmarks get updated is what I referred to previously with “parallel” 
vs “consecutive” assigning. If two buildings get audits assigned in parallel, the fitting scores used 
consider the same city benchmarks for both buildings. If they are assigned “consecutively”, then the 
assigning of the first building influences the fitting scores and thus the assigning of the second building. 
The algorithm continues assigning by looping over all batches of buildings, indices within cells and 
iterations (Figure 11).  

 

Figure 11. Structure of algorithm loops 

After each building from each batch gets assigned an audit an iteration finishes. Then another one 
begins with the first building. All buildings “remember” their last assigned audit from the previous 
iterations. Because the benchmarks are calculated at the cell and city levels, for the first building the 
fitting scores might now be different, because it takes into account the assigned audits to all other 
buildings which came after it in the previous iteration. Therefore, any building might get a different 
audit in each subsequent iteration. 

The algorithm still needs a termination point. After each iteration a convergence score is calculated. It 
is the Frobenius norm of the differences to the benchmarks between iterations. If the norms for both 
Census cell and city benchmarks reach zero, the algorithm terminates. The logic is that if there is no 

Iterations

Building 
indices in 

cell

Batches
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difference between two iterations, then no building got a re-assigned audit. No future iteration would 
change that, we have reached convergence. Alternatively, a max number of iterations can be set. I used 
100 iterations, but the algorithm converged usually sooner. 

The assigning until now assigned unique audits (in terms of their combination of benchmarking (!) 
attributes). In a final step, I use V to convert unique audits to the original audit dataset. Basically, for 
every building multiple non-unique audits can be assigned, so I choose one based on the spatial 
proximity to the given building. 

Figure 12 presents all these steps and how they relate to each other. See next section for runtime and 
convergence metrics.  
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55 Buildings 1 and 3 have just 1 known category, but 3 goes higher in the order since it is bigger. I omit the floor 
area calculation based on which the algorithm decides which building is bigger, to keep the example simpler. 
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8.3 Runtimes and convergence 
The following testing was performed using a python numpy implementation of the algorithm within 
QGIS. The hardware I used was a Core i7, 8GM RAM laptop. 

For the real data (~250 000 ALKIS building objects, 1500 energy audits, 291 unique energy audits and 
~20 000 Census cells) the algorithm reached convergence after 9 iterations. For the convergence, I use 
the Frobenius norm of the element-wise difference between the modelled aggregates and the 
benchmarks.  If the difference between the norm in two consecutive iterations reaches zero, the 
algorithm terminates. Note that this does not mean that the algorithm minimised the difference to the 
benchmarks, only that it could not do better on the subsequent iteration. Since there are benchmarks 
on the city level and the cell level, both have to stop improving for the algorithm to terminate. 

Iteration City Benchmarks Cell Benchmarks 
1 25573 4655 
2 973 28 
3 26.7 0.75 
4 13.7 0.027 
5 2.08 0.06 
6 2.42 0.01 
7 1.62 0.005 
8 0.71 0.0 
9 0.0 0.0 
   

Table 10 Convergence measured with differences in Frobenius norm between two iterations for the Hamburg data 

Additionally, I tested the average number of iterations until convergence in a randomised simulation. 
For the details of how are the random building stocks generated see Section 9.2.    

Number of iterations* 
Building Stock Size** 

500  1 000 5 000 
Min 3 4 5 
Max 17 23 50 

Mean 6.21 8.79 22.18 
Std. Dev. 2.70 3.62 12.35 

    
* Exploratory statistics of the number of iterations after 100 randomised runs 
** Measured in number of Census cells 

Table 11. Convergence in 100 simulated modelling cases with building stocks of different sizes 

It is worth noting that due to the city benchmarks, the assigning of audits in one cell is not independent 
from the assigning in other cells56. Thus, in some situations the algorithm might diverge and instead 
terminate when the maximum number of iterations is reached. The divergence would be caused by the 
attempts of the algorithm to balance the Census cell and city benchmarks. 

  

 
56 This is because difference between modelled and city benchmarks is recalculated after each iteration, while for 
Census cell benchmarks after each batch of cells within an iteration. 
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9 Validation 

The validation of the model has three parts. The internal validation represents how well the algorithm 
matched the benchmarks. It is “internal”, because the benchmarks are used as part of the modelling. 
The part “Validation through random generation” is where I to attempt to estimate how good the same 
technique would be for other cities (different input data). For this I use a randomised dataset. The 
external validation is about comparing the model to known data, which was not part of the modelling. 
In this case – consumption data. 

9.1 Internal validation 
For the metric of optimisation, I use the sum of squared differences between category counts in the 
data (benchmarks) and category counts as computed by my model. While this has some practical 
benefits while fitting – it penalises larger deviations exponentially57 – it is not very intuitive for 
interpretation. Hence, I will use the mean and standard deviation of the absolute percentage difference 
(APD) for the internal validation of the final result: 

 

Eq. 5.58	 
BCDEF.G( =

∑ (|6$
!! − /$!!|
6$!!

/
$-. )6$!!

∑ 6$!!
/
$-.

	100% 

Weighted mean absolute percent 
deviation at city level (“city weighted 

MAPD”) 

    where  
    @ = 1, …, > counts over the categories  

 

Eq. 6. 
B%KKF.G( =

∑ ∑ L6",$! − /",$! L
6",$!

1
2-3

,
$-.

MN 	100% 
Mean absolute percent deviation at cell 

level (“cell MAPD”) 

    where  
    @ = 1, …, B counts over the categories that have a value at the Census cell level 

    J = 1, …, ! counts over the Census cells 

 

I would additionally reweight the MAPD based on the number of building addresses with the respective 
category (Eq. 5.). A high percent difference for a group of buildings that makes up just a small 
percentage of the building stock (f. ex. buildings built before 1900) is much less of a problem than on a 

 
57 Of course, it also serves to make all deviations positive, so as to avoid cancelling out. 
58 Obviously, the two 6$!! terms in this equation cancel each other out, I leave them in the equation in grey, because 
it makes it easier to understand the logic. First one takes the absolute difference. Then relativises with totals 6$!!. 
Then calculates a weighted mean, by first multiplying each value by a weight (6$!!) and then divide by the sum of 
the weights ∑ 6$!!

/
$-. .  
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group of buildings which makes up a larger share. I calculate the absolute percent difference for each 
benchmark at the city level (for both city and cell level benchmarks, Table 13 and Figure 14) 

For cell level benchmarks alone, I calculate the MAPD over each cell and benchmark attribute (cell 
MAPD, Eq. 6.) and Pearson’s R2. Additionally, for both metrics I compute the standard deviation, in 
order to track the dispersion. 

Figure 13 presents a scatterplot of the model vs benchmark counts per benchmark category at the city 
level. While the R2 is very high, a closer look is required. Firstly, looking at Table 12, with 4% weighted 
MAPD at the city level, the model performs more than reasonably. The standard deviation of 9% shows 
that for some attributes the performance is worse. Looking at Table 13, most of these categories have 
low building counts. F. ex. the buildings (address points) built between 2009 and 2011, according to the 
Census are 1276, while the model has 1655, a 30% absolute percent difference. While this seems like a 
lot, there are 250 000 address points overall. In other words, large deviation, but on a relatively small 
group of buildings. 

 

Figure 13. Scatterplot of Model vs Benchmark aggregates 

City weighted MAPD 4% 
City APD std 9% 
Cell MAPD 6% 

Cell APD std 26% 

Table 12. Model MAPD (Mean Absolute Percent Deviation) on the city and cell levels 
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As to be expected, the performance drops at the cell level. The cell MAPD59 is 6%, but with a much 
higher standard deviation of 26%. This points to limitations in the possible use-cases. Looking at an 
individual cell from the UBEM in isolation would be a challenge. Then again, if the target buildings 
are so few, the cost of analysing them simply on-site would also be low. The UBEM is thus suited for 
use in projects involving multiple 100m raster cells. The mean number of address points per cell is 12, 
multiple cells would mean approx. 50 address points or more. This is in-line with the scale of the 
“neighbourhood” (in German: Quartier). 

 
59 Note that the mean MAPD is the mean of a mean. The MAPD is the mean absolute percent difference over the 
building attributes and the mean MAPD is the mean over the cells and then over the attributes. 
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Figure 14. Building categories counts. Refer to Chapter 3 for descriptions of the attributes. 
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Building Attribute 
Model  

[Number of  
address points] 

Benchmark  
[Number of  

address points] 
APD 

BUILD_CENTRAL_HEAT 188250 191478 2% 

DISTRICT_HEAT 45942 39924 15% 

APARTMENT_HEAT 10204 12015 15% 

ROOM_HEAT_STORAGE_HEAT 6194 7194 14% 

(1979,1986) 15157 15131 0% 

(1987,1995) 10163 10544 4% 

(1996,2000) 3454 3783 9% 

(2012,2015) 26063 23678 10% 

(1919,1948) 34556 33578 3% 

(2001,2008) 3472 3896 11% 

(1949,1978) 119746 122723 2% 

(1400,1918) 23060 23109 0% 

(2009,2011) 1655 1276 30% 

(2016,2020) 13264 12893 3% 

COOPERATIVE_OR_MUNICIPAL_COMPANY 37345 34405 9% 

OTHER 213245 216206 1% 

EFH_ 159251 159140 0% 

MFH_ 91339 91471 0% 

EFH_OTHER_NO_NEW_INS_AW 115149 118070 3% 

MFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NO_NEW_INS_AW 12477 11679 7% 

MFH_OTHER_NO_NEW_INS_AW 44095 40058 10% 

MFH_OTHER_NEW_INS_AW 20908 16871 24% 

EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NO_NEW_INS_AW 5731 5447 5% 

EFH_OTHER_NEW_INS_AW 33093 36015 8% 

EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_AW 5278 5306 1% 

MFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_AW 13859 13061 6% 

MFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NO_NEW_INS_DA 12563 11764 7% 

EFH_OTHER_NO_NEW_INS_DA 90257 93179 3% 

MFH_OTHER_NO_NEW_INS_DA 30296 26259 15% 

EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_DA 5045 4918 3% 

EFH_OTHER_NEW_INS_DA 57985 60907 5% 

EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NO_NEW_INS_DA 5964 5836 2% 

MFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_DA 13773 12975 6% 

MFH_OTHER_NEW_INS_DA 34707 30670 13% 

MFH_OTHER_NO_NEW_INS_KE 51959 47922 8% 

MFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NO_NEW_INS_KE 22806 22007 4% 
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EFH_OTHER_NEW_INS_KE 14013 16935 17% 

MFH_OTHER_NEW_INS_KE 13044 9007 45% 

EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NO_NEW_INS_KE 9846 9718 1% 

MFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_KE 3530 2732 29% 

EFH_OTHER_NO_NEW_INS_KE 134229 137151 2% 

EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_KE 1163 1035 12% 

NO_GAS_OIL_BOILER 52393 47125 11% 

GAS_OIL_BOILER_1995 79222 80517 2% 

GAS_OIL_BOILER_ab1996 98694 99988 1% 

GAS_OIL_BOILER_1987 20281 21576 6% 

Table 13. Model Aggregates vs Benchmarks. APD – absolute percent difference 

9.2 Validation through random generation 
All the techniques presented in Chapter 6 are generally under the hood of combinatorial optimisation, 
since they are all techniques for finding a certain “optimal” combination. In the context of Spatial 
Microsimulation and UBEMs, this combination should be the one most similar to the real population 
(or building stock, in this case). However, all these techniques use benchmarks to arrive at this 
“optimal” combination. This leads to the notion that maximising the fit (i.e., minimising the difference 
(MAPD)) between model aggregates and benchmarks is the objective. Hence, I defined my objective 
function(s) to minimise the squared sum of differences. 

However, considering the nature of the problem, the objective is actually to find the combination closest 
to the real population, while minimising the differences is the way (a proxy) to get there. The difference 
between objective and proxy becomes apparent when one considers that there could be multiple 
combinations that fit the benchmarks (as noted in Chapter 4). In this situation, whether all of these 
are equally similar (if at all) to the real population is an assumption. One that is not tested in any way, 
since it is outside the objective function. Nevertheless, defining the similarity to the true building stock 
cannot be the objective function for the algorithm, since the true building stock is unknown. Its 
benchmarks are. 

However, I can explore the connection between building stock characteristics (expressed as 
combinations of energy audits) and benchmarks by simulating the problem. I can randomly create 
different building stocks, aggregate the building variables, let the algorithm find a combination that 
matches these aggregates and then compare the found combination to the randomly generated building 
stock. 
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For this, first I define a “similarity” score. It is a measure of how similar two combinations of energy 
audits are. The similarity is the average of the percent of matching benchmark attribute categories 
between each pair of unique energy audits of the two compared combinations60.  

Then comes the issue of how to generate the random building stocks. Given that I am comparing 
combinations (not permutations) repetitive sampling from the unique energy audits converges to the 
same combination, because each audit is picked roughly the same number of times. This means that 
the algorithm gets tested against the same combination multiple times. This is hardly a good way to 
validate it. To correct that, I introduce a random bias in the sampling. By randomly excluding between 
0% and 50% of the unique audits, the pool from which the building stocks are generated is more 
different each time and the generated stocks vary much more. 

Furthermore, I noted in Section 5.4 that spatial clustering is observed. In order to let the algorithm 
run against combinations that have spatial clustering, when I assign a random audit from the biased 
pool I choose among the 20 nearest neighbours for each building, which is the 60th percentile referred 
to in Section 5.4. 

With 200 random combinations of 1000 Census cells, the “similarity” scores and MAPD, I generated 
Figure 15.: 

 

Figure 15. Scatterplot of MAPD vs Similarity for 200 randomly generated building stocks of size 1000 cells. 

The figure shows the relationship between the MAPD (city-level) and the similarity exhibited from the 
randomised simulation. It shows a clear negative correlation between the similarity and the MAPD, 

 
60 For example, a combination consists of 70 assigned unique audits with index 1 and 30 with index 2 Another 
combination has 50 with index 1 and 50 with index 2. There are 8 categories. The similarity between the two is 
the average of the pair-wise comparisons: 50 with index 1 are common between the two, so the first 50 comparisons 
are for a perfect similarity - 1.0. For the other 50 pairs, the number of matching categories divided by the total 
number of categories gives the scoring. This results in another 50 scores between 0 (no categories are mutual in 
the pair) and 0.875 (7 out of 8 categories are mutual).  
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which supports the assumption, that minimising the MAPD leads to building stocks which tend to be 
similar to the real building stock. This suggests that it is likely that having the algorithm minimise 
the MAPD would result in a building stock that is similar to the real one. 

The same concept in more formal terms: 

Let iʹ be iʹʹ be two combinations of audits. A combination can be expressed as an integer array of length 
#, where the indices 3 represent a unique energy audit, and the value at index 3 represents the number 
of times this audit occurs in the combination. 

Then j is the “similarity” score between them: 

Eq. 7 O = P(iʹ,iʹʹ) = 	Q −
∑ LR( −	S(L'
(
∑ R('
(

 

 

 
Example: .=3, Each value is the number of times an audit appears in the combination 

i =	 [2 2 3] 

 k =	 [1 2 4] 

 P(R, S) = 1−	
2
7
= 0.71 = 71% 

It is clear from the above that l() is simply the total absolute error relative to the size of the arrays61, 
and taken out of 100%, so that it constitutes a “similarity” score. It is also clear that the usefulness of 
l() is under the assumption that such an i exists, which represents well the building stock. In other 
words, there is enough information in the energy audits, so that a combination of them is enough to 
represent the stock. 

Then, let K be the benchmarks62 and assume that they are 100% correct. There exists a function m() 
which takes any combination (i	or	k or any other) and aggregates it according to the benchmarks. If i 
is the true building stock, then m(i) = K, since aggregating the “true” building stock equals the true 
benchmarks. 

The notion explained previously can now be presented in formal terms. Most methods described in 
Chapter 6 assume that if a k is found for which m(k) = K, then k is a good representation of the whole 
population (is “similar” to the “true” i). In other words, if m(k) − K can be minimised, then k is a good 
model. For this reason, one might be inclined to define m(k) − K as the objective function. However, to 

 
61 The size of the arrays is per definition equal. 
62 A more concrete definition of K is given in the next section 
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conclude that if m(k) − K = n, then l(i, k) equals a high number is only an assumption. The problem 
with l(i, k) is obviously that it is unknown, because i is unknown. 

9.3 External validation 
As opposed to using the data already used for the creation of the model to validate it, in this part I will 
use external data. It is highly important however to describe the details involved in pre-processing the 
data for external validation so that false comparisons are avoided (for example comparing values for 
useful heat with values for final energy or not accounting for weather etc.). Note that in this chapter I 
will not analyse what the data means for climate policy. Here the goal is to validate the model. 

9.3.1 The Hamburg energy statistics 

The first way to externally validate the Hamburg UBEM is by using the consumption statistics that 
the local statistical office prepares (Statistical office for Hamburg and Schleswig-Holstein, 2018a, 2019, 
2020). The statistics are gathered from energy providers and give the energy consumption of the city 
according to sectors and fuel types. Since I am modelling the residential building stock the sector 
“households” is the one I use for validation. Due to the way the data is gathered, the statistical report 
lags two or three years behind, so the most current at the time of writing is the 2018 report, published 
in 2020. Since the local consumption data does not differentiate between heat uses, I use the German-
wide split estimated by the Working Group on Energy Balances. It is an association of industry and 
energy researchers, which is regularly tasked with preparing the official energy balances for the 
Federal Government (AGEB e.V., 2018). In this way, I estimate the consumption for space heating and 
domestic hot water (DHW) for Hamburg and correct for weather with degree days (Institut Wohnen 
und Umwelt, 2018), Table 14)). The assumption I make is that the split of Hamburg does not differ 
much from the national one. Of course, this is an assumption, therefore the validation should be 
considered with a grain of salt. 

Energy 
Carrier 
[GWh] 

Hamburg Statistics 
Households 2018 

Country-wide Split Degree-days 
2018/Long 

Term 
Average 

Result 

Space Heating DHW Space 
Heating DHW 

Oil 2145 86.1% 13.0% 

2850/3140 

2035 279 

Gas 4165 81.3% 18.4% 3731 766 

Electricity 3148 6.6% 12.0% 229 378 
District 
heating 2653 91.9% 8.1% 2686 215 

Coal 15 100.0% 0.0% 16 0 

Renewables 180 87.3% 12.7% 173 23 

Total     8870 1661 

Table 14. Hamburg heat consumption 2018, own elaboration based on data from AGEB e.V. (2018), Institut 
Wohnen und Umwelt (2018) and Statistical Office for Hamburg and Schleswig-Holstein (2020) 

In the same way, I calculate and weather-correct the consumption also for the years 2016 and 2017. 
Then using data from the same statistical office on residential floor area (Statistical Office for Hamburg 
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and Schleswig-Holstein, 2016, 2017, 2018b). I calculate the specific heat consumption for space heating 
and DHW for the three years (Table 15) and calculate an average for the three years. 

Year  
Residential 
Floor area 
[Mill.m2] 

Consumption [GWh] Specific Heat Consumption* 
[kWh/m2] 

Three year average 
 [kWh/m2] 

Space 
Heating DHW 

District 
Heating 
(Space 

Heating + 
DHW) 

Space 
Heating DHW Space 

Heating DHW Total 

2016 71.3 7487 1587 2362 105.4 22.2 

112.9 22.3 134.2 2017 72.0 8060 1572 2576 115.1 21.8 

2018 72.8 8870 1661 2570 121.4 22.8 
*The listed external validation sources do not include the floor area supplied with district heating, so the specific heat 

consumption is only for the total for space heating and DHW 

Table 15. Hamburg heat consumption for the years 2016, 2017 and 2018. Own elaboration based on data from: 
AGEB e.V. (2018), Institut Wohnen und Umwelt (2018), Statistical Office for Hamburg and Schleswig-Holstein 

(2016, 2017, 2018b, 2018a, 2020) 

Table 15 shows that the area, consumption and specific consumption have all increased in the last 
three-year period. Although this seems like an important and rather worrisome tendency, I would not 
draw too many conclusions. The year-to-year consumption can fluctuate and even with a weather 
correction looking at only three years might lead to some spurious observations. Another possible 
inaccuracy can come from the way the consumption is allocated to the sectors. The data is gathered 
from energy companies, but the allocation to sectors involves statistical methods and could lead to 
inaccuracies. For these reasons, for the task of evaluating the UBEM for Hamburg, I consider the three-
year average. I will also account for the fact that even the average might be a couple of percent off63. 
Still, with a grain of salt, the tendency of slight increase is observable and the Techem report (on p.17, 
see next section) confirms that. 

9.3.2 The Techem report on energy consumption 

Independently of the Hamburg energy balances of the statistical office, the heat accounting firm 
Techem published a report on heat consumption prepared with their own metering data (Techem 
Energy Services GmbH, 2019). In this report (2019, p. 193) values are given for the average specific 
heat consumption of residential buildings in Hamburg. Note that I define the specific heat consumption 
(SHC) for a building stock as the total consumption over the total floor area. Given that the Techem 
data comes from a (potentially) non-random sample and that I could not find a mention of reweighting 
in the report, I assume that the specific heat consumption in the report is actually the average specific 
heat consumption (aSHC): 

 
63 In Chapter 2 I quoted the Ecofys report stating that the discrepancy between their UBEM and the consumption 
data of the energy balances was possibly due to an error in the statistics. In this Chapter, I also argue that the 
statistics might not be 100% correct. However, I argue the statistics could be off, but a couple of percent, not 20%, 
as was the case with the Ecofys UBEM.   
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Eq. 8. UVW =
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Eq. 9. 
YUVW =

∑ X)
.)

*
)-.

-  

Where:  
X) is the total consumption of building C 
.) is the residential floor area of building C 
- is the number of buildings in the building stock or sample 

The difference between SHC and aSHC is subtle64 and noticeable mostly when the efficiency of smaller 
buildings differs significantly from that of larger buildings and the sample at hand is highly skewed. 
Both are possible, so this also has to be considered when comparing the values with the UBEM. The 
Techem values for the Mop^ for Hamburg for 2018 split according to different energy carriers are given 
in Table 16. The weather correction is again from the (Institut Wohnen und Umwelt, 2018) and equals 
2850 degree days divided by 3140 degree days. A complication here is that for buildings with a 
combined heating and DHW system, the consumption is for the totals. In order to correct for the 
weather, however, the DHW needs to be subtracted. The report provides values for heating 
consumption of buildings with decentralised DHW. Simply taking the difference between consumption 
for heating alone and DHW and consumption for heating in order to estimate the consumption for 
DHW is, however, not a good way of tackling the problem. This is because when the DHW is centralised 
and with a circulation system, it acts partially as a secondary heating system. This is mirrored also in 
the TABULA reference method in that heat losses of distribution for the DHW system are used to offset 
part of the heating demand. This is the reason why a simple subtraction would result in improbable 
values for DHW heat demand – 16 and 14 kWh/m2 final energy. Such values are plausible for useful 
heat, but not for final energy. The report gives average heat consumption values for DHW of 30 and 31 
kWh/m2 for district heating and natural gas respectively (Techem Energy Services GmbH, 2019, p. 54). 
I will take these out of the totals, correct for weather and then add them again (Table 16). 

  

 
64 KLM is actually equivalent to the area-weighted 1KLM. 
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Energy 
Carrier 

aSHC [kWh/m2] 

Weather 
Correction 

 

Space Heating + 
DHW for buildings 

with a combined 
heating and DHW 

system 

Space Heating 
for buildings 

with 
decentralised 

DHW 

Average 
DHW 

consumption 

Space Heating for 
buildings with 

centralised DHW 

Space Heating for 
buildings with 

centralised DHW, 
weather corrected 

Gas 139.0 125.1 31.0 108.0 
2850/3140 

118.7 

District 
Heating 

120.4 104.4 30.0 90.4 99.4 

        

Table 16. Hamburg average specific heat consumption according to the report by Techem (Techem Energy 
Services GmbH, 2019) 

Additionally to the aSHC for Hamburg, the report by Techem provides a frequency distribution of 
buildings with different energy efficiency at the level of grouped postal codes (ibid, 2019, pp. 69–70). 
The details of how the buildings are classified is provided in the Appendix. The split for postal codes 
20000-29999 (of which Hamburg is part) is given in Table 17. The column names refer to the name and 
year of energy efficiency regulations in Germany. It is used as a proxy for energy efficiency. “WSVO” 
and “EnEV” refer to “Wärmeschutzverordnung” and “Energieeinsparverordnung” respectively – the 
names of past energy efficiency ordinances. The number refers to the year – WSVO77 is the ordinance 
from 1977. “Altbau” means “older construction”, which in this context means “older than the first 
energy efficiency ordinance in 1977”. Note that Techem classify into these standards based on the size, 
energy carrier and yearly SHC, not based on the construction date. Therefore, a building may be built 
in 1940, but because of energy efficiency improvements fall in the “EnEV02” category. 

PostalCode Area Altbau WSVO77 WSVO95 EnEV02 EnEV09 

20000-29999 0.545 0.16 0.136 0.106 0.054 

Table 17. Distribution of buildings according to energy efficiency standard in Postal Code Area 20000-29999 
(includes Hamburg and the region around). Source: (Techem Energy Services GmbH, 2019, p. 70) 

9.3.3 Comparison with the UBEM 

A comparison between the energy statistics, the Techem report and the UBEM is given in Figure 16. 
Firstly, the estimated heat consumption for space heating of the UBEM is very close to the energy 
statistics. For DHW the difference is more substantial – 32.4 kWh/m2 from the UBEM compared with 
22.3 kWh/m2 calculated from the statistics. Looking at the energy carriers, the numbers are again very 
close – 94.6 and 99.6 for district heating and 122.4 and 119.0 for Gas. Overall, at this level the model 
is very close to the actual consumption. 

An interesting note here is that the table contains eight pairs of numbers to be compared, all of which 
could fall under a general term “heat demand”. This means that when communicating and discussing 
“heat demand” great care must be taken that all parties are aware of which “heat demand” exactly is 
discussed. Otherwise, it would become an “apples vs oranges” type of comparison. 
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Figure 16. Comparing the UBEM's estimated heat consumption with external sources 

Furthermore, Figure 17 gives a comparison of the splits according to the Techem classification. It is 
clear that while plausible, the model is not perfect. The size of the WSVO77 and the EnEV09 categories 
are underestimated in the model, while the Altbau, EnEV02 and WSVO95 are overestimated. 

The underestimation of the EnEV09 category is compensated by the EnEV02 category. This is 
expected. The energy audits are biased towards older buildings and the reweighting can only partially 
compensate the fact that newer, better buildings do not need an energy audit. There simply are not 
enough examples in the sample with such high energy efficiency. 

 

Figure 17. Comparison between the distribution of building energy efficiency in the UBEM and the Techem 
Report.  
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10 Use Cases 

In the last part of this thesis, I will present some use cases for the UBEM generated in the previous 
chapters. First, I will give a background to energy policy in Hamburg and then introduce the policy 
questions and scenarios developed in the GEWISS project. These are to serve as examples of what 
kinds of questions are important and interesting for the local authorities. I will not delve into 
simulating the scenarios. Simulating the development of the building stock over a 30-year timeframe 
would be beyond the scope of this thesis. I will, however, present how these policy questions and the 
respective parameters relate to my UBEM and why I argue it contains enough information to allow 
such a simulation. 

Finally, I will formulate and analyse a couple of use cases of my own. They are real, and realistic, and 
constitute applied energy policy (analysis), ranging from the effects of legislation to the socioeconomic 
conditions relating to building energy efficiency. 

10.1 Energy policy in Hamburg 
The city-state of Hamburg has taken a number of steps with varying degree of stringency to comply 
with European, national and global climate protection goals in the past decade. A Climate Protection 
Concept was approved in 2011 (Behörde für Stadtentwicklung und Wohnen [Hamburg Ministry for 
Urban Development and Housing], 2011). Then, in 2015 a Climate Protection Plan was adopted 
(Behörde für Umwelt und Energie [Hamburg Ministry for Environment and Energy], 2015) and in 
2019 this plan was updated (Behörde für Umwelt, Klima, Energie und Agrarwirtschaft [Hamburg 
Ministry for Environment, Climate, Energy and Agriculture], 2019)65. Furthermore, an act of the 
Hamburg Parliament – Hamburgisches Gesetz zum Schutz des Klimas - HmbKliSchG [Hamburg 
Climate Protection Act], 2020 was passed.  Additionally, a number of neighbourhood energy plans were 
prepared and the Hamburg state investment bank (IFBHH) provides programmes and financial 
incentives for energetic building retrofits and the installation of renewable energy systems. 

The goal of all these steps and measures is climate protection. More concretely according to §4 
HmbKliSchG, Hamburg has to reduce its carbon footprint by 55% and 95% by 2030 and 2050 
respectively, compared with 1990 levels. The legislation explicitly mentions the city energy balances 
(“Verursacherbilanz der Freien und Hansestadt Hamburg”) as the data source that is to be used for 
measuring compliance66. 

10.2 Scenarios of the GEWISS project 
As part of the GEWISS Project, I and colleagues from HCU and Die Hochschule für Angewandte 
Wissenschaften Hamburg (HAW) worked together with the BUE on the definition of scenarios (Dochev, 

 
65 All the different names refer to the same entity. The state ministry responsible for energy was reorganised 
multiple times in the last decade, hence the different names. 
66 This is the same data that I used for the external validation. 
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Seller, Peters, et al., 2020, p. 346) that the GEWISS simulation tool would simulate. The latter was 
developed by the HCU and HAW teams as a deterministic rule-based simulation of a given baseline 
building stock. The time horizon was 2050, or approx. 30 years. The scenarios are defined with a key 
policy question and corresponding simulation parameter combinations. A key policy question would be 
“Given the current renovation rates, how would Hamburg’s building stock look like (energetically) in 
2050”? 

An example of a parameter is the renovation rate, defined as a percentage of buildings that are 
renovated per year. Another parameter would be the share of passive house standard67 among 
renovated buildings. The corresponding scenario parameter combination would then be 1% renovation 
rate and a 5% passive house standard rate. This would mean the simulation will pick 1% of buildings 
per year for renovation and 5% of those would be renovated to the higher energy efficiency standard. 
These values are also approximately the current (2020) values, hence this is a “baseline” scenario and 
reflects current renovation rates. 

As in any type of analysis of a future development, one always has to start with an understanding of a 
“baseline” situation. In other words, in order to understand how the building stock will look in 2050, 
one needs to know how it looks today. Therefore, any parameter that is not present in the UBEM can, 
almost per definition, not be analysed for the future. By mapping the scenario parameters to my UBEM 
attributes, I attempt to show that the UBEM can be used in such a simulation. 

The scenarios of the GEWISS project are grouped thematically and vary the parameter values. For the 
first scenario (“baseline”) the associated UBEM attributes are “renovated buildings”, “renovations with 
passive house standard”, “type of heating system” and “ownership”. Ownership plays a role since 
cooperatives and housing companies tend to renovate more than private owners. Looking at the UBEM, 
building ownership is explicitly modelled as such (refer to Table 5 of Section 5.3). By contrast 
“renovated buildings” and “renovations with passive house standard” cannot be explicitly mapped to 
attributes. There is however detailed information on insulation, wall and window U-values and heating 
systems (refer to Table 4) which allows for any such classification. 

The renovation rate and depth may imply a change in the heating source and system of a building. In 
GEWISS this is operationalised with a heating exchange matrix (see Table 18). Similarly to above, 
while the exact same attributes are not present in the UBEM, it actually has even more detailed data 
– boiler age f. ex. Therefore, the UBEM can be used here as well, with little to no data crunching. 

All the scenarios and respective policy questions are presented in groups and briefly described below 
(Dochev, Seller, Peters, et al., 2020, p. 346): 

 
67 “Passive House” refers to a German unofficial yet widely adopted energy efficiency standard 
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• Scenario Group 1 – “Baseline renovation rates and passive house quotas”. The key policy 
question is the very first example from above: “Given the current renovation rates, how would 
Hamburg’s building stock look like (energetically) in 2050?”.  
Scenario 1.1 – “Faster renovation, at current depth”. The key policy question is “How would 
the building stock look like if the renovation rate is increased, but the depth (of the renovation) 
is retained?”. 
Scenario 1.2 – “Same renovation rate, but deeper”. The key policy question is “How would the 
building stock look like if the renovation rate is retained, but the depth is increased?” 
Scenario 1.3. – “Faster and deeper renovation” – “What if Hamburg renovates both faster and 
deeper?” 
Scenario 1.4. – “Gradual increase in both the rate and depth over time” – The core concern here 
is whether there is time still to postpone measures. 
 

• Scenario Group 2 – “Heating system exchanges”. The scenarios concerning heating system 
exchanges revolve around different probability matrices, where each cell gives the probability 
of a switch from the system in the row to the system in the column. 
Table 18 gives an excerpt of the exchange matrix for a baseline scenario. Low temperature 
boilers (in German, Niedertemperaturkessel) are not supposed to be installed anymore, so the 
scenario gives a 0.00 probability for this outcome. The outcome assumed to be most likely is 
exchanging a low temperature boiler for a condensing boiler (in German, Brennwertkessel), 
hence the 0.44 probability in the table. Similarly, to the above scenarios, the UBEM has 
information on the heating system so this kind of probabilistic simulation can be carried out.  

 
LOW_TEMPERATURE_ 

BOILER 
CONDENSING_

BOILER 
CONDENSING_BOILER_

SOLAR 
… 

LOW_TEMPERATURE_ 
BOILER 

0.00 0.44 0.42 … 

DISTRICT_HEAT 0.00 0.00 0.00 … 
CONDENSING_BOILER 0.00 0.44 0.42 … 

… … … … … 

Table 18. Example of a heating system exchange matrix. Source: (Dochev, Seller, Peters, et al., 2020, p. 348) 

 
• Scenario Group 3 – “Impact of the housing companies”. The focus here is on giving the housing 

companies different over- or under-proportional renovation rates, so as to measure their effect 
on the housing stock. A key question is f. ex. “What would happen if the housing companies do 
not renovate faster” or “What if they renovated more deeply?”. 
 

• Scenario Group 4 – “CO2-neutral district heating”. This scenario analyses the building stock 
under the assumption that the district heating grid is climate neutral after 2030. 
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All of these scenarios can be simulated with my UBEM with little data crunching, since it contains the 
relative attributes or even more detailed ones. 

10.3 Heating System Exchanges (§17 (1) HmbKliSchG) 
After presenting some example of policy questions that were formulated within the GEWISS project, I 
will formulate one of my own. A straightforward example of a model use-case is the analysis of the 
effects of §17 (1) HmbKliSchG, which legislates that after the 30th of June 2021, when a heat generator 
in a building is exchanged, the owner has to integrate renewable energy in the heat supply. The amount 
is set at 15% of the building heat demand. The heat demand is defined as the final energy for space 
heating and DHW (§3 (11) ibid).  

The use-case can be viewed from the point of view of the policy maker, as in “how to shape the 
legislation to achieve an ultimate goal?” or the view of the policy analyst – “what will be the effects of 
the legislation?”. In both cases the questions that need to be asked are similar, since the latter is part 
of the process of the former. Still, I will be viewing it from an analyst’s perspective. 

An obvious place to start is to attempt to estimate how big an impact §17 (1) HmbKliSchG could have. 
Since it comes into force when a boiler is replaced, the question becomes “how many boilers are probably 
going to be replaced soon?”68. Let us assume a typical gas boiler has a lifetime of 20-30 years. If we 
consider 2021 as the reference year, then 1991-2001 would be the cut-off for construction year for the 
boilers. Boilers constructed before 1991 would, by 2021, have an age of 30 years or more, so they are 
likely candidates for replacement.  

Attribute Categories Level 

Gas- or  Oil-Boiler Age 

GAS_OIL_BOILER_ab1996 
City 

(global) 
NO_GAS_OIL_BOILER 

GAS_OIL_BOILER_1995 
GAS_OIL_BOILER_1987 

Table 19. UBEM variable related to boiler age. Excerpt from building attributes table. 

The UBEM has the “Gas- or Oil-Boiler” variable (see 5.1 Building attributes, Table 19 presents an 
excerpt relating to only this variable). The cut-off years, as found in the data on boiler ages I used 
(Landesinnungsverband des Schornsteinfegerhandwerks Hamburg, 2016) are 1987 and 1995. Looking 
at our boiler lifetime range 20-30, I would take the middle (25 years). Thus, I consider all buildings in 
the UBEM with the attribute “GAS_OIL_BOILER_1995” and “GAS_OIL_BOILER_1987” as the 
buildings which likely would need a replacement of their boiler soon and these are the ones which the 
legislation will probably affect. From the UBEM, I can calculate that this is 42% of address points. For 

 
68 Theoretically all boilers would be exchanged at some point, but Hamburg (as is Germany and the world for that 
matter) are in a race against time when it comes to reaching its goals, so it matters when would a legislation start 
to make a difference. 



  June 2023 / Ivan Dochev 

80 
 

energy policy however, neither the number of address points, nor the number of buildings are very 
telling. Buildings vary wildly in their size, address points could have one, two or up to a dozen storeys. 
For most UBEM-related matters, I argue the better unit to measure is the floor area, as in “how much 
of the residential floor area is/has attribute X”. In the concrete case, the residential floor area of the 
buildings with boilers 25 years old or older69 sums up to 31% of the total floor area. This is already an 
important insight - it shows the scale at which the legislation could affect the building stock. Taking 
this a step further, from the UBEM, I can calculate how much of the heat demand is in buildings with 
such boilers – 36%. So, this legislation is likely to target approx. 36% of the heat demand of the city. 

Policy relevant question Answer 
How many address points are likely to be affected by §17 (1) HmbKliSchG? 42% 

What percent of the residential floor area is that?  31% 
What percent of the total heat demand? 36% (4 TWh) 

Table 20. Examples for relevant policy question concerning §17 (1) HmbKliSchG and the respective answers 
according to the UBEM. 

Until now the analysis could, in theory, have been carried out without the UBEM, but with the raw 
benchmark data itself and a bit of calculation. The raw data comes in the form of number of boilers, 
split into their power capacity in kW and their construction year (before 1987, before 1995 etc). From 
this data a share of boilers can be calculated directly. Further, based on the kW capacity of boilers one 
could attempt to estimate the heated area that each boiler supplies and thus estimate my second 
insight from above (31% of total residential floor area). With area and kW and a bit more data 
crunching70, one could approximate also my last insight from above – the percent of the heat demand 
supplied (the 36%). Of course, this estimation technique comes with its own caveats – everything hangs 
on the kW and thus the detail of over/under-sized boilers is tacitly ignored.  

However, where the UBEM and generally microsimulation techniques shine and definitely outperform 
other estimation techniques is in the cross-reference of different attributes. In this case, a policy maker 
might want to investigate which types of owners will be most affected – private owners or housing 
cooperatives? Given the differences in both financial resources and project management capabilities 
this is an important question. With the raw data, such analysis would be impossible. On the other 
hand, the UBEM includes an ownership type attribute, therefore answering the question becomes a 
trivial table operation – selecting on multiple attributes. The process is similar for all other attributes, 
present in the UBEM – f. ex. for the presence of wall insulation (Table 21). The implications of this are 
f. ex. that since over half of the affected heat demand is in buildings with insulation, their boilers could 

 
69 A sensitivity analysis regarding boiler lifetime age (I assumed 25 years) could be carried out, by computing the 
target variable for different life spans. However, there are limits to this, due to the boiler age classes found in the 
data. The original data not provide the construction date of each boiler, so the exact age is not known. It is known 
that it is “after 1996” or “before 1995” etc. 
70 Assume some typical load curve for the power capacity, integrate under the curve, get the yearly heat demand 
related to each boiler. 
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be currently oversized. Since the vast majority (32 percentage points out of 36%) are private owners, it 
becomes important to inform them of the potential efficiency gains for adjusting the power capacity to 
the now reduced loads (because of the insulation) when replacing their heating systems.  

One could add various other, more advanced analyses to this, f. ex. looking at attributes that are not 
benchmarked (heating systems, temperatures, pipe insulation etc.). 

 

Policy relevant question Answer 
How much of the city’s heat demand resides in privately owned buildings which are 

likely to be affected by §17 (1) HmbKliSchG? 
32% 

And how much in cooperatives and “SAGA” (the municipal housing company)?  4% 
How much of the heat demand resides in buildings with wall insulation which are 

likely to be affected by §17 (1) HmbKliSchG? 
20% 

And without? 16% 

Table 21. Examples for relevant policy question concerning §17 (1) HmbKliSchG that could not be answered by 
raw data, but require a UBEM. 

Another important benefit of the UBEM is that it is georeferenced. This allows using location to 
combine it with other data, where the location is used to link the two datasets. For example, in the 
context of §17 (1) a logical question after knowing how many buildings would be affected is “what 
options would they have once affected?”. Thus asking, f. ex., how many of the affected buildings/area 
could replace their boilers with district heating?  

Combining the UBEM with spatial data on district heating grids (Behörde für Umwelt und Energie 
[Hamburg Ministry for Environment and Energy], 2018), I can estimate an answer to this. Considering 
a 200m distance to an existing district heating area as viable for district heating, I produced Table 22. 
For comparison I will give also a 50m buffer. Figure 18 gives a visual example of what 50 and 200 
meters around heating grids look like in an urban setting.  

Policy relevant question Answer 

How much of the city’s heat demand (A) which is likely to be affected by §17 (1) 
HmbKliSchG (B) resides in buildings within 200 meters of existing heating grids? 

1,4 TWh /  
12% of A 
35% of B 

And within 50m? 
0,7 TWh/ 
6% of A 
17% of B 

Table 22. Examining policy relevant questions by combining the UBEM with other spatial data 

Looking at the table, more than 1/3 of the affected buildings are within the 200m buffer. Looking at 
Figure 18 and considering the generally expensive and difficult underground construction required by 
underground heating grid connection, the 200m buffer might be too ambitious. Nevertheless, even the 
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50m buffer (for which usually only a house connection would be needed) catches circa 17% of the 
affected buildings. On the whole with 12% and 6% of the total heat demand (depending on the buffer) 
a potential synergy between §17 and the overall goal of increasing district heating share is possible. 

 

 

Figure 18. Different buffers (50 and 200m) around a district heating grid. Heating grids source: (Behörde für 
Umwelt und Energie [Hamburg Ministry for Environment and Energy], 2017), basemap source: (Freie und 
Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV) [Hamburg State Office for 

Geoinformation and Surveying], 2022) 

10.4 Combining with data on purchasing power 
The benefits of the dataset being geo-referenced can be further shown in the following example. Until 
now, most of the use cases were on the technical side, affected buildings, viable technical options etc. 
Here, I would add a social aspect. The city of Hamburg has ambitious CO2 goals and rightfully so, but 
good policy requires an appreciation of the socioeconomic condition of the affected households. An 
interesting and, I believe, important question is how the current energy efficiency is distributed among 
the socioeconomic classes. There are many ways and angles from which one could analyse this. I will 
attempt to operationalise it by looking at the average specific heat demand (kWh/m2) in relation to 
purchasing power.  
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For this, I would use data on purchasing power obtained as part of the GEWISS project (panadress 
marketing intelligence/WIGeoGIS GmbH, 2019). Among other things, this dataset contains purchasing 
power at the address point level for Hamburg (see Figure 19). The data is categorical, split into five 
categories – average and two classes lower or higher. The dataset metadata does not provide more 
detail on what the classes mean. I would take them as they are and use them as proxy for the socio-
economic status of the households. 

 

Figure 19. Purchasing power at the address level. Data source: (panadress marketing intelligence/WIGeoGIS 
GmbH, 2019), basemap: (Freie und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung 

(LGV) [Hamburg State Office for Geoinformation and Surveying], 2022) 

In order to integrate this data with the UBEM, some data crunching is necessary. The relationship 
between the address points and the buildings is in some cases many-to-one. For the simplest case, one-
to-one, if only one address point intersects the geometry of a building, I just transferred the point’s 
attributes to the building. For buildings, which did not contain a specific address point I took the 
attributes of the nearest one to the building as the buildings’ attributes. Lastly the many-to-one case, 
there I took the mode (most common value). In case of a tie, I took the lower value. The result is 
presented in Figure 20. The data seems plausible with neighbourhoods like Wilhelmsburg and Harburg 
shown to have lower purchasing power than Blankenese. However, adding Eimsbüttel to the “further 
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below average” class seems strange. Eimsbüttel is a rather expensive, well-off neighbourhood west of 
the Alster, so this seems less plausible. Therefore, using this data should be taken with a grain of salt. 

 

Figure 20. Hamburg household purchasing power at the building level. Data source: (panadress marketing 
intelligence/WIGeoGIS GmbH, 2019) 

With the data on purchasing power now at the building level, I can calculate the specific heat demand 
split into the five purchasing power classes (Table 23). 

Specific Heat Demand of buildings with households with following purchasing power: kWh/m2 
1 – further below average 119 

2 – below average 122 
3 – average 126 

4 – above average 142 
5 – further above average 145 

Table 23. Specific Heat Demand and purchasing power 

The numbers suggest that households with more purchasing power have higher specific heat demand. 
One could think that is because these households are less inclined to save energy. While this probably 
plays a role, the main reason lies elsewhere (see Table 24). More higher income households live in 
single family houses, while less well-off households in large multi-family buildings. The latter are 
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usually owned by cooperatives or the public housing company and actually have large shares of 
renovations. 

Specific Heat Demand of buildings split into building types: kWh/m2 
EFH (single-family house) 162 

RH (row-house, terraced house) 145 
MFH (Multifamily building) 123 

 GMH (Large multifamily building) 118 
HH (Highrise (7+ storeys)) 116 

Table 24. Specific Heat Demand and building types 

Further, due to their geometry, multi-family buildings are more energy efficient than single-family 
houses, even if all else is equal. The reason is that volume and area scale differently. It does not take 
twice as much outer wall area to build a building with twice as much volume. This is an old and 
generally well-known geometric effect which benefits multi-family buildings (expressed with the area-
to-volume ratio A/V). Overall, the analysis suggests that well-off households have more potential to 
increase energy efficiency which is an encouraging conclusion, since they should be the ones who are 
more able to afford it. Further, given German demographics, such single-family houses are often 
inhabited by older people whose children have left the house, which sometimes constitutes a barrier 
for renovation. This could be addressed with policies specifically tailored to this phenomenon. 
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11 Conclusion and Outlook 

In my work, I presented a urban building energy modelling technique that, I believe, can substantially 
improve UBEMs. Compared to other available models for Hamburg, the presented UBEM has major 
benefits. It is bottom-up, but also validated with consumption data top-down. It integrates data at 
various spatial scales. It is georeferenced and is composed of micro-units (buildings) as opposed to 
neighbourhoods or being an aggregate model at the city level. 

Adopting methods from spatial microsimulation – “benchmarking” – allows one to overcome the top-
down-bottom-up modelling dilemma. When using top-down, one misses on detail and microdata. When 
using bottom-up, aggregates often fail to match known aggregate data. Credibility thus diminishes. 
Benchmarking allows for the creation of a hybrid, whereby microdata and aggregate data can both be 
used. Of course, one has to take caution not to use all data for modelling and none for validation. By 
using building attribute data for modelling, and actual energy consumption for validation, I believe I 
found a good balance. 

My work in the GEWISS project gave me the unique opportunity to talk and work with a variety of 
professionals from the local administration and from energy suppliers. One direct effect was that I 
understood that being able to integrate known data at every level is important. However good the 
micro-dataset (in my case the energy audits) and the spatial (aggregate) data are, looking at a single, 
random building the model might still be wrong. How would one know the model is wrong? In most 
cities, there would usually be some concrete data from piece-wise renovation initiatives and energy 
concepts, which, if not integrated into a UBEM, would be at best not optimally utilised, at worst used 
to contradict the UBEM. This would reduce the UBEM’s credibility. Overall, in my experience, there 
is some understanding among policy makers, analysts and practitioners that a model with 200 000 
buildings is bound to be wrong here and there. However, if such sample data can be integrated, the 
modeller can actually state that what is known is integrated and what isn’t, is estimated. It would be 
the best use of the data, given the many expectations in a policy analysis model, some of which concern 
the user’s perspective and preferences. Therefore, I believe this is an important requirement for the 
modelling technique. 

Nevertheless, there are limitations. Mainly, the availability of aggregate data on added insulation. The 
overall distribution of buildings with and without insulation that I used comes from an IWU study, 
which, while respectable, is based on a Germany-wide sample, not a Hamburg-specific one. While the 
benchmarking technique can correct some of the error, by reweighting to Hamburg-specific 
benchmarks, having Hamburg-specific data would have been preferable. Further, and perhaps more 
importantly, the spatial distribution of the renovations would have been more accurate given Census 
data and not having to depend solely on spatial clustering. 

The possible availability of such data is not far-fetched. From personal communication with the local 
administration, I know there were intentions to add such a question relating to insulation to the 2022 
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Census. As of May 2022, this does not seem to be the case. That, I consider a huge loss for energy 
planning. Usually, each question in the Census is carefully picked and of course every planner would 
like to have it tailored to their needs. However, with energy being such a central topic due to climate 
change and more recently the war in Ukraine, I believe this omission was a mistake. 

While creating a model is all fine, modellers are often confronted with the “so what?” and “what do we 
use it for?” questions. These questions I attempted to address in the last part of this thesis. First, I 
presented how one can use the UBEM to analyse the possible effects of legislation. Then, I looked at 
scenarios for the future development of the building stock and how the UBEM could be used for that. 
Lastly, I looked at combining the UBEM with socio-economic data to exemplify the benefits of having 
a geo-referenced micro-level model and what insights can be drawn from that. With the presented use-
cases, I tried to cover a broad spectrum and showcase various types of use-cases. Of course, I did not 
exhaust all possibilities. 

In the future, 3D data and BIM (Building Information Modelling) will probably be state-of-the-art. 
That does not invalidate my work. I explained in Section 6.4 that although not stated as 3D data, I am 
implicitly using such. As for BIM, an UBEM is a form of a building information model, one that is 
specialised in energy. An interesting and important development here is the CityGML Energy ADE 
(“Energy Application Domain Extension”, see Agugiaro et al., (2018)) standard, which attempts to 
formalise and standardise the way buildings are energetically described. This is definitely the right 
way to move forward.  

All in all, I believe that while my work is by no means the ultimate solution to all challenges facing 
UBEMs, it does present a notable improvement and contribution to the field. 
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Appendix I 

Description of all building attributes. 

Category Description 
DISTRICT_HEAT Building is heated with district heating 

BUILD_CENTRAL_HEAT 
Building has a central heating system. “Central” in terms of the 
building, not district heating. 

ROOM_HEAT_STORAGE_HEAT 
The rooms in the building are heated independently of one 
another. F. ex. with a night storage or air conditioner  

APARTMENT_HEAT Each apartment in the building has their own heating system. 
(1400,1918)  Building built before 1918. 
(1919,1948)  

… 

(1949,1978)  
(1979,1986)  
(1987,1995)  
(1996,2000) 
(2001,2008) 
(2009,2011) 
(2012,2015) 
(2016,2020) 

COOPERATIVE_OR_MUNICIPAL_COMPANY 
Building owned by a housing cooperative or the municipal 
housing company 

OTHER All other types of ownership 
MFH Multi-family building 
EFH Single-family house 

EFH_OTHER_NEW_INS_AW 
Single-family house with “other” type of ownership and new 
(added insulation) of the outer walls 

EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NO_NEW_INS_AW 
Single-family house owned by a housing cooperative or municipal 
company and without any new (added insulation) of the outer 
walls (“AW” – “Aussenwände”). 

MFH_OTHER_NO_NEW_INS_AW 

… 

MFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NO_NEW_INS_AW 
MFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_AW 
MFH_OTHER_NEW_INS_AW 
EFH_OTHER_NO_NEW_INS_AW 
EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_AW 

MFH_OTHER_NEW_INS_DA 
Multi-family building with “other” type of ownership and new 
insulation of the roof (“DA” – “Dach”). 

MFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NO_NEW_INS_DA 

... 

EFH_OTHER_NEW_INS_DA 
MFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_DA 
EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_DA 
EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NO_NEW_INS_DA 
MFH_OTHER_NO_NEW_INS_DA 
EFH_OTHER_NO_NEW_INS_DA 

EFH_OTHER_NEW_INS_KE 
Single-family house with “other” type of ownership and new 
(added) insulation of the cellar (“KE” – “Keller”). 

EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NO_NEW_INS_KE  
MFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_KE  
MFH_OTHER_NEW_INS_KE  
MFH_OTHER_NO_NEW_INS_KE  
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EFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NEW_INS_KE  
EFH_OTHER_NO_NEW_INS_KE  
MFH_COOPERATIVE_OR_MUNICIPAL_COMPANY_NO_NEW_INS_KE  
GAS_OIL_BOILER_ab1996  
NO_GAS_OIL_BOILER  
GAS_OIL_BOILER_1995  
GAS_OIL_BOILER_1987  
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Appendix II 

Building energy efficiency types according to the Techem study (Techem Energy Services GmbH, 2019) 

 

 

 

 
 


