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Abstract. Water storage changes in the soil can be observed
on a global scale with different types of satellite remote sens-
ing. While active or passive microwave sensors are limited
to the upper few centimeters of the soil, satellite gravimetry
can detect changes in the terrestrial water storage (TWS) in
an integrative way, but it cannot distinguish between storage
variations in different compartments or soil depths. Jointly
analyzing both data types promises novel insights into the
dynamics of subsurface water storage and of related hydro-
logical processes. In this study, we investigate the global re-
lationship of (1) several satellite soil moisture products and
(2) non-standard daily TWS data from the Gravity Recovery
and Climate Experiment/Follow-On (GRACE/GRACE-FO)
satellite gravimetry missions on different timescales. The six
soil moisture products analyzed in this study differ in the
post-processing and the considered soil depth. Level 3 sur-
face soil moisture data sets of the Soil Moisture Active Pas-
sive (SMAP) and Soil Moisture and Ocean Salinity (SMOS)
missions are compared to post-processed Level 4 data prod-
ucts (surface and root zone soil moisture) and the European
Space Agency Climate Change Initiative (ESA CCI) multi-
satellite product. On a common global 1◦ grid, we decom-
pose all TWS and soil moisture data into seasonal to sub-
monthly signal components and compare their spatial pat-
terns and temporal variability. We find larger correlations be-
tween TWS and soil moisture for soil moisture products with
deeper integration depths (root zone vs. surface layer) and
for Level 4 data products. Even for high-pass filtered sub-
monthly variations, significant correlations of up to 0.6 can
be found in regions with a large, high-frequency storage vari-
ability. A time shift analysis of TWS versus soil moisture

data reveals the differences in water storage dynamics with
integration depth.

1 Introduction

Freshwater stored on the continents sustains life on Earth
and is a key variable in the global cycles of water, energy,
and matter. Among the different continental storage com-
partments that make up terrestrial (or total) water storage
(TWS), such as glaciers and ice caps, surface waterbodies,
and groundwater, soil moisture (SM) plays a particularly
important role at the soil–vegetation–atmosphere interface.
Recognizing its important control of numerous processes in
the climate system, SM and TWS have been declared as es-
sential climate variables (Dorigo et al., 2021a). SM is de-
fined as the water contained in the unsaturated soil zone
(i.e., the zone above the groundwater table that is not com-
pletely filled with water). Even though SM only accounts for
0.05 % of the total freshwater resources on Earth (Shiklo-
manov, 1993), SM is fundamental for providing the water
supply for the Earth’s vegetation cover and for ecosystems in
the critical zone. In spite of its small absolute volume, SM
can make a large contribution to TWS variations (e.g., Günt-
ner et al., 2007). SM is directly influenced by water fluxes at
the land surface, such as precipitation, snowmelt, and evap-
otranspiration, and plays a decisive role in how the water in-
put is distributed among root water uptake and groundwater
recharge or runoff, for instance (i.e., how water fluxes are
partitioned between different storage compartments). While
near-surface SM usually exhibits high fluctuations on short
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timescales due to its direct exposure to the hydrometeorolog-
ical forcing, temporal SM variations tend to be smoother and
delayed with increasing soil depth (e.g., Xu et al., 2021b),
while the degree of coupling between near-surface, deeper,
or depth-integrated water storage may vary considerably with
the site conditions (e.g., Carranza et al., 2018). Overall,
jointly analyzing both SM and TWS data sets may reveal
better insights into the hydrological dynamics and the pro-
cesses that govern water storage changes in the subsurface.
Monitoring SM and TWS is thus crucial for understanding
the variations and changes in the global water cycle. In spite
of considerable efforts in collecting in situ SM observations
at the global scale (Dorigo et al., 2021b), a global coverage
that includes even remote regions of the globe is only pos-
sible by means of satellites. Moreover, for TWS monitor-
ing, only very few in situ observations exist (e.g., Güntner
et al., 2017), while large-scale and global coverage can be
achieved by remote sensing. Two different types of satellite
observations are sensitive to changes in the water in the sub-
surface. (1) Active or passive microwave remote sensing can
observe SM in the top few centimeters of the soil, exploit-
ing the fact that the dielectric constant of the soil changes
with varying soil water content. Several dedicated instru-
ments are currently in operation on different satellite mis-
sions (e.g., Soil Moisture and Ocean Salinity (SMOS), Soil
Moisture Active Passive (SMAP), Advanced SCATterome-
ter (ASCAT), or Advanced Microwave Scanning Radiome-
ter 2 (AMSR2)). Also, the first results were obtained based
on reflected signals of navigation satellite systems received in
space (e.g., Camps et al., 2016; Chew and Small, 2018; Kim
and Lakshmi, 2018). For estimating soil moisture with higher
spatial and temporal resolution, optical approaches are used
(e.g., Sadeghi et al., 2017). (2) Due to the fact that any redis-
tribution of water mass on or above the Earth’s surface leads
to variations in the Earth’s gravity field, satellite gravimetry
can relate the changes in the gravitational acceleration that
are acting on a satellite to variations in TWS, which includes
SM. The twin satellite missions of Gravity Recovery and Cli-
mate Experiment (GRACE; Tapley et al., 2004) and its suc-
cessor mission GRACE Follow-On (GRACE-FO; Landerer
et al., 2020) have been observing gravity field changes since
2002.

The two types of satellite observations (remotely sensed
surface soil moisture (SSM) and TWS from satellite
gravimetry) both have their individual advantages and draw-
backs. Satellite gravimetry is sensitive to all parts of TWS on
and underneath the Earth’s surface but cannot distinguish be-
tween water mass changes in individual water compartments
(e.g., snow cover, groundwater, SM, and surface water). The
separation of the integrative signal for studying individual
compartments, e.g., SM variations, is challenging (Schmeer
et al., 2012). Furthermore, the low spatial resolution of the
GRACE data of a few 100 km makes the analysis of local
phenomena difficult. SM remote sensing provides a much
higher spatial resolution (20–40 km) but observes SM only

in the top few centimeters (∼ 2 cm) of the soil (Escorihuela
et al., 2010). Also, measuring SM with microwave satellites
is problematic in regions such as tropical rainforests due to
dense vegetation or in Arctic regions because of snow cover
or frozen ground (Karthikeyan et al., 2017). How (and if)
the satellite-based surface SM can best be used to empiri-
cally extrapolate the wetness conditions into deeper soil lay-
ers and thus give evidence of large-scale contributions to
the global water cycle is still under investigation (De Lan-
noy and Reichle, 2016). Approaches for estimating root zone
SM from satellite surface SM data have been exploited by
the operational Copernicus Global Land Service, which pro-
vides soil water index values (Bauer-Marschallinger et al.,
2018), and by the EUMETSAT H SAF root zone SM prod-
ucts (H SAF, 2020). However, existing vertical extrapolation
or depth-scaling algorithms exhibit large discrepancies, and
their validation is difficult (Zhang et al., 2017). The com-
parison of the extrapolated root zone soil moisture (RZSM)
dynamics against the integrative observations of TWS varia-
tions can be a valuable means of evaluating the depth-scaling
approaches, in particular in areas where TWS is dominated
by water storage variations in the unsaturated zone.

However, the temporal resolution of the standard GRACE
data of 1 month is too low to record any fast water mass
changes in the upper soil layers. Recent developments in
GRACE data processing (Kvas et al., 2019) have enabled the
computation of daily gravity fields with increased accuracy.
Such daily gravity data were successfully used to study high-
frequency, wind-driven sea level changes (Bonin and Cham-
bers, 2011), short-term transport variations in the Antarctic
Circumpolar Current (Bergmann and Dobslaw, 2012), the
characteristics of major flood events (Gouweleeuw et al.,
2018), high-frequency atmospheric fluxes (Eicker et al.,
2020), and to analyze the development and propagation of
water extremes by using a standardized drought and flood
potential index (SDFPI; Xiong et al., 2022). Furthermore, the
daily gravity-based TWS data appear particularly promising
for capturing SM variations at short timescales but have not
been used for this purpose yet.

While a large number of studies have examined TWS and
SM individually, joint (global) analyses of the two observa-
tion types are largely missing. Only Abelen et al. (2015) and
Abelen (2016) have provided the first comparisons between
two satellite SM products and TWS but only on monthly and
not on daily timescales. Besides the direct data comparison,
the joint assimilation of both observables into hydrological
models is currently an emerging field (e.g., Tian et al., 2019;
Tangdamrongsub et al., 2020).

Given the potential value of combining SM and TWS ob-
servations for understanding water cycle dynamics as out-
lined above, the aim of this study is to investigate the global
relationship between (1) non-standard daily TWS data from
GRACE(-FO) and (2) several satellite SM products on differ-
ent timescales to derive novel information content on Earth
system dynamics. An overview of the data sets and their
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characteristics is shown in Fig. 1. The six SM products an-
alyzed in this study can be categorized based on their de-
gree of post-processing and their integration depth into the
soil. Original Level 3 (L3) surface SM data sets of SMAP
(Entekhabi et al., 2010) and SMOS (Kerr et al., 2010) are
compared to post-processed Level 4 (L4) data products (SSM
and RZSM) and a multi-satellite product provided by the Eu-
ropean Space Agency Climate Change Initiative (ESA CCI;
Gruber et al., 2019; Dorigo et al., 2017). While strong cor-
relations of the two data types in the dominant seasonal cy-
cle are to be expected, finding such correlations on shorter
(down to sub-monthly and daily) timescales would be first-
time evidence that satellite gravimetry can indeed observe
such fast-changing SM signals, opening new opportunities
of applications of this observation technology.

The paper is organized as follows: in Sect. 2, we describe
the satellite data products used for the comparison of the
different data sets (SM and TWS), followed by information
on the applied data processing in Sect. 3. The results are
presented in Sect. 4, first for the full signal and afterwards
for sub-monthly timescales isolated by high-pass filtering.
In both cases, we first illustrate signal characteristics using
an exemplary time series for a specific grid cell, followed
by global maps of correlation coefficients and relative time
shifts to show the (dis)agreement between the data types.

2 Data sets

2.1 GRACE and GRACE-FO data

To investigate fast temporal water storage changes, we use
the daily gravity field solutions of the ITSG-Grace2018
model (Kvas et al., 2019) converted to a global time series
of daily TWS anomalies. Compared to the standard monthly
solutions, the limited satellite ground track coverage during
1 d does not allow for a stable global gravity field inversion;
thus, additional information has to be introduced. The pro-
cessing of the daily solutions is therefore carried out using a
Kalman smoothing approach (similar to Kurtenbach et al.,
2012), which introduces statistical information on the ex-
pected evolution of the gravity field over time in its process
model. As a tradeoff, the resulting daily gravity field data are
not fully independent daily solutions but exhibit some degree
of correlation with previous time steps.

Daily gravity field data are given in the form of spheri-
cal harmonic coefficients (so-called Level 2 products) of the
gravitational potential up to a degree of n= 40, correspond-
ing to a spatial resolution of 500 km. During the data pro-
cessing, temporally high-frequency mass variations caused
by tides (ocean, Earth, and pole tides), in addition to non-
tidal atmospheric and ocean mass variations, are removed by
subtracting the output of the geophysical background mod-
els from the observations (dealiasing; Dobslaw et al., 2017).
Post-processing steps account for the effect of geocenter mo-

tion (adding the degree 1 harmonic coefficients given by Sun
et al., 2016, on the basis of Swenson et al., 2008), replace
the c20 coefficient based on a time series from satellite laser
ranging (Cheng and Ries, 2017), and subtract the influence of
glacial isostatic adjustment (GIA), using the ICE6G-D model
(Peltier et al., 2017). No extra spatial filtering is needed be-
cause the Kalman smoother effectively suppresses spatially
correlated noise. After these processing steps, the resulting
gravity field models are assumed to primarily contain water
mass changes above and below the Earth’s surface and can be
converted to equivalent water heights on a global geographi-
cal grid of 1◦× 1◦, according to the following:

TWS(λ,ϑ)=
M

4πR2ρw

nmax∑
n=1

n∑
m=−n

(2n+ 1)(
1+ k′n

) cnmϒ (λ,ϑ), (1)

where λ and ϑ symbolize the spherical coordinates, M and
R are the mass and the radius of the Earth, ρw is the density
of water

(
1000 kg

m3

)
, k′n denote the load love numbers (Lam-

beck, 1988), cnm are the spherical harmonic coefficients of
the gravitational potential, andϒ (λ,ϑ) are the surface spher-
ical harmonic functions. The degree and order of the spher-
ical harmonic functions are denoted by n and m. For a rea-
sonable overlap with all satellite-based SM products, we used
the time period from April 2015 to December 2021 for our
study, excluding the time span between the end of the mission
GRACE (August 2017) and the start of the successor mission
GRACE-FO (July 2018). Even though the Kalman smoother
output provides a continuous daily time series without data
gaps for the mission time periods, all days with insufficient
GRACE observations were excluded from our analysis (i.e.,
days with an observation count of less than 10 000 observa-
tions per day as given on the website of the ITSG-Grace2018
product). On these days, the daily solutions are mainly in-
formed by the process model of the Kalman filter and thus
tend towards an a priori mean trend and annual signal. Calcu-
lation of the GRACE TWS data was done using the Gravity
Recovery Object Oriented Programming System (GROOPS;
Mayer-Gürr et al., 2021).

Limitations of the GRACE TWS data that are relevant for
this study relate to the limited spatial resolution (i.e., 500 km
for daily data, as stated above), which results in the TWS
grid cell values not being independent from neighboring grid
cells. This can lead to leakage effects (Longuevergne et al.,
2013) of spatially localized mass variations that are small in
their spatial extent but strong in magnitude, such as surface
water storage change in lakes or reservoirs. Coastal areas
should also be regarded with care because the limited spa-
tial resolution prevents a strict separation between land and
ocean signals in the GRACE data sets. While a mere damp-
ening of the continental signal caused by a much lower mass
variability on the ocean does not influence the correlations
between the TWS and SM discussed in the present study,
the so-called “leakage in” (Baur et al., 2009; i.e., spurious
high-frequency ocean signal being leaked onto land areas)
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Figure 1. An overview of the soil moisture data sets used and their characteristics.

might have an influence on the comparison of TWS and SM
in coastal areas. A more detailed discussion on this and a map
(with areas that should be regarded with caution) is shown
in Eicker et al. (2020, see Fig. 4 in their Supplement). An-
other issue that needs to be kept in mind when comparing
TWS with SM data is the fact that the GRACE TWS obser-
vations represent the fully integrated vertical water column,
which includes SM but is not limited to it. On the one hand,
this is a challenge, as the two quantities (TWS and SM) are
not directly comparable. One the other hand, it is the par-
ticular strength of the TWS observations to be sensitive to
water storage dynamics that otherwise are not observable by
remote sensing, such as those in deep soil layers down to the
groundwater. To explore what we might learn from such dif-
ferences (TWS versus SM), regarding hydrological process
dynamics in the subsurface, is one motivation for this study.

2.2 Soil moisture data sets

Active or passive microwave remote sensing can observe SM
in the top few centimeters of the soil, exploiting the fact
that the dielectric constant of the soil changes with vary-
ing soil water content. Several dedicated instruments are cur-
rently in operation on different satellite missions. Active mi-
crowave sensors (radars) transmit an electromagnetic pulse
to the Earth and measure the pulse’s backscattered energy
from the surface of the Earth, whereas passive microwave
sensors (radiometers) observe the radiation naturally emit-
ted by the Earth’s soil, which is expressed as the brightness
temperature (Robinson et al., 2008). The observed param-
eters (backscattered energy and brightness temperature) of
both techniques depend on the dielectric constant of the soil,
which allows the measurement of SM.

In our study, we use satellite-derived SSM products from
the missions SMOS, SMAP, and from the combination data
product ESA CCI, as well as RZSM products from SMOS
and SMAP. Both SMOS and SMAP provide so-called Level
3 (L3) and Level 4 (L4) data, with L3 referring to the origi-
nal satellite observations acquired over a 24 h period given as
a multi-orbit global map of retrieved soil moisture (L3 data
do not have complete global coverage), while L4 relates to
post-processed data products. The way of post-processing
differs between the two satellite missions and will be de-
tailed below. The overlapping time span of all missions be-
tween April 2015 (start of the SMAP mission) and Decem-
ber 2021 was selected. In addition, it should be mentioned
that the orbit direction (ascending/descending orbit) differs
across the L3 products and therefore also the overpass time.
In this study, the early morning overpass is chosen for the L3
satellite SM products. This is suggested for passive measure-
ment methods, as the temperature difference between the soil
surface and the vegetation canopy in the morning and night,
in addition to the thermal difference between various types
of land cover, within a pixel is reduced; this results in a min-
imization of SM retrieval errors and better reliability (Owe
et al., 2008; Entekhabi et al., 2014; Lei et al., 2015; Montzka
et al., 2017).

2.2.1 SMOS

The Soil Moisture and Ocean Salinity (SMOS; Kerr et al.,
2010) satellite was implemented by ESA as part of the Earth
Explorer missions and launched in November 2009. The
satellite operates in a sun-synchronous orbit, and the ascend-
ing orbit overpasses the Equator at 6:00 local time. SM is
observed by using an L-band radiometer, which receives the
radiation emitted by the Earth’s surface and measures the
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brightness temperature. This technique allows observations
in the first few centimeters of soil (SSM). SMOS needs less
than 3 d to revisit the same area, with a maximum spatial res-
olution of around 40–50 km.

In this study, we use the daily L3 (v3.0) SSM prod-
uct of the Centre Aval de Traitement des Données SMOS
(CATDS), operated by the Centre National d’Etudes Spa-
tiales (CNES). The L3 data contain all of the collected SM
data for each day on a global grid, with a spatial resolution
of 25 km× 25 km (Al Bitar et al., 2017). Additionally, the
CATDS L4 RZSM product is used, which propagates the L3
SSM data set (0–5 cm) into the underlying soil (5–40 cm),
using an exponential filter. Then, from the 40 cm layer to the
root zone layer (up to 1 m soil depth), a budget model based
on a linearized Richards equation formulation is adopted
to compute the water content (Al Bitar et al., 2013). The
RZSM is a weighted average of the two layers (expressed
in m3 m−3). Starting in February 2020, the SMOS L4 data
set has been processed using a new algorithm. The method
uses the SSM product from SMOS to calculate the SM of the
root zone (1 m depth), based on a modified formulation of a
recursive exponential filter, while considering soil properties
and an optional implementation of transpiration (Al Bitar and
Mahmoodi, 2020). As the data from 2015 to 2020 have not
yet been reprocessed using the new algorithm, we decided
to concatenate the two time series in order to adhere to the
general comparison period of April 2015 to December 2021.
An offset between the two differently processed time spans
was calculated from the 14 d overlap period from 31 January
to 13 February 2020 and removed from the February 2020 to
December 2021 data to achieve a seamless transition with the
previous data (April 2015 to January 2020). The L4 RZSM
data set is provided in a global grid, with a spatial resolution
of 25 km× 25 km.

2.2.2 SMAP

The Soil Moisture Active Passive (SMAP; Entekhabi et al.,
2010) satellite was launched in January 2015 by the National
Aeronautics and Space Administration (NASA) to observe
SSM with an L-band active radar and passive radiometer.
After a few months, the active system failed and since then
only the passive system has been operational; it observes the
brightness temperature of the Earth. Like the SMOS satellite,
SMAP operates in a sun-synchronous orbit, but in contrast to
SMOS, the overpass of the Equator at 06:00 local time oc-
curs on the descending orbit. SMAP needs a maximum of
3 d to revisit the same area and measures the brightness tem-
perature with a spatial resolution of around 40 km.

In this study, the L3 and L4 products from SMAP are used.
The daily L3 data (v8.0; O’Neill et al., 2021) contain all SSM
retrievals for an entire day mapped to a global grid with a
spatial resolution of 36 km. In contrast, the L4 products are
derived by assimilating SMAP surface brightness tempera-
ture observations into the Goddard Earth Observing Model

System version 5 (GEOS-5) catchment land surface model.
The land surface model is driven by observation-based sur-
face meteorological forcing data, including precipitation, and
represents essential land surface processes, such as the ver-
tical movement of water in the soil between the surface and
the root zone. Therefore, it should be pointed out that the re-
sulting L4 data products cannot be regarded as purely being
based on satellite soil moisture observations but have to be
interpreted as a modeled data set that is heavily influenced by
data assimilation and thus by the climate data used as input
for the land surface model and by its model structure. Finally,
the assimilation system interpolates and extrapolates SMAP
observations in time and space using the land model, which
gives estimates for the SSM (5 cm depth) and the RZSM (up
to 1 m depth), which is provided with a temporal resolution
of 3 h and a 9 km spatial resolution. Both L4 data sets (SSM
and RZSM v6.0; Reichle et al., 2021), available from the
website of the National Snow and Ice Data Center (NSIDC),
are used in our analysis. To evaluate all products at the same
daily scale, the SMAP L4 products are resampled to daily
data by taking the average of all observations for 1 d (eight
observations per day for a 3 h temporal resolution).

2.2.3 ESA CCI

The ESA CCI SM data set (Gruber et al., 2019; Dorigo et al.,
2017) is provided as part of ESA’s Climate Change Initia-
tive (CCI). The ESA CCI SM product is based on harmo-
nizing and merging SM retrievals from multiple satellites
into a combined daily product. Three different data sets are
provided, namely an active-microwave-only-based product,
a passive-microwave-only-based product and a combined ac-
tive and passive SM product.

We select the combined active and passive SSM prod-
uct (v7.1) for our analysis. It provides daily SM observa-
tions, with a spatial resolution of 0.25◦ and is available
from the ESA data archive. This product includes SM re-
trievals from active satellites, such as the Active Microwave
Instrument Wind Scatterometer (AMI-WS) European Re-
mote Sensing satellites ERS 1 and ERS 2 Wind Scatterom-
eter Mode (SCAT) and MetOp-A and MetOp-B Advanced
Scatterometer (ASCAT), and from passive satellites, such
as the Nimbus-7 Scanning Multichannel Microwave Ra-
diometer (SMMR), Defense Meteorological Satellite Pro-
gram (DMSP) Special Sensor Microwave/Imager (SSM/I),
the Tropical Rainfall Measuring Mission’s (TRMM) Mi-
crowave Imager (TMI), Aqua Advanced Microwave Scan-
ning Radiometer for Earth Observation Satellite (AMSR-
E), Coriolis/WindSat, SMOS, GCOM AMSR2, and SMAP.
Overall, this product covers SM data from 1978 to the
present. It should be noted that tropical rainforest areas are
completely masked out because of the strong signal scat-
tering in the microwave observations caused by vegetation
(Ulaby and Long, 2014).
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3 Data processing

A comparison between satellite gravimetry and the SM prod-
ucts is carried out on grid cell level; therefore, the SM prod-
ucts are harmonized to the same 1◦× 1◦ geographical grid
used in Eq. (1) to compute TWS from the GRACE and
GRACE-FO data. Downsampling was performed using a
first-order conservative remapping function, which leads to a
lower spatial resolution for the various SM data sets. Despite
a remaining difference in the spatial signal content between
the frequency-limited TWS and the gridded SM data, no fur-
ther downsampling was performed in order to preserve the
characteristics of the SM time series.

The linear trend of the time series is removed before exam-
ining the agreement between SM and TWS. To isolate sub-
monthly variations, a third-order Butterworth high-pass filter
with a cutoff frequency of 30 d is applied in the forward and
backward directions (to avoid a phase shift). This filter con-
serves the phase but removes signals with periods longer than
30 d which dominate the time series. The computation of the
high-pass filtered signal is presented in further detail in Ap-
pendix B.

Since a direct comparison of the absolute values of SM and
TWS is not possible due to the different integration depths
and units of the respective data sets, we analyze their rela-
tionship using Pearson’s pairwise correlation coefficient ρxy .
Possible time lags between TWS and SM are determined
using a cross-correlation analysis, which indicates the time
shift for which two signals best agree with each other. Ap-
pendix A1 provides further information on these metrics. The
data gaps in the TWS data set (see Sect. 2.1) were also ex-
cluded from the SM time series prior to comparison. No fur-
ther temporal masking, e.g., based on quality flags, was per-
formed for the SM data.

3.1 Spatial mask

The type of land cover can lead to limitations for observing
SM. In densely vegetated areas such as tropical rainforests,
the observed emissivity by passive satellites or the backscat-
tered energy by active satellites is primarily caused by the
vegetation (Ulaby and Long, 2014; Owe et al., 2001). In
deserts, the SM signal may be unreliable, as the variability
in the water in the upper soil is low (Dorigo et al., 2010). The
problem of reduced sensitivity in deserts also accounts for the
satellite gravimetry observations from GRACE and GRACE-
FO, as their signal-to-noise ratio is low, and the noise floor
of GRACE strongly dominates the time series. Other surface
characteristics that limit the measurements of satellite SM
are snow cover and frozen soil, since the dielectric constant
of snow and frozen water varies significantly from the one of
liquid water (Wagner, 1998).

Therefore, three spatial masks have been defined to iden-
tify problematic regions for observing SM. These are dense
vegetation, regions with snow and frozen ground throughout

large parts of the year, and areas with low SM (e.g., deserts),
as seen in Fig. 2. To indicate dense vegetation, in our study
we use the tropical rainforest mask that is also applied in
the ESA CCI data set. Also, for regions with a large frac-
tion of snow cover and frozen soil, the same method used for
the ESA CCI mask is applied. It uses soil temperature (TS)
and snow water equivalent (SWE) estimates from the Global
Land Data Assimilation System Noah (GLDAS Noah) to flag
satellite observations that were taken under the conditions of
frozen soil (TS < 0 ◦C) and snow cover (SWE> 0 mm; Gru-
ber et al., 2019). Grid cells in which more than 40 % of all ob-
servations are influenced by these conditions were included
in the mask. We classify dry (desert) regions based on the SM
signal variability, i.e., the root mean square (rms) of the daily
SM time series in each grid cell. As a threshold value for low
variability, we use twice the mean rms of a test region in the
Sahara desert, where no major day-to-day SM variations can
be expected. To define the mask with this criterion, we used
the SMOS L3 data product. Using the other SM data products
led to very similar results. In some regions, the low SM vari-
ability mask overlaps with the snow cover and frozen ground
mask. The low SM variability areas are excluded from fur-
ther analyses because no discernible signals of both SM and
TWS can be expected. As we want to use the maximum of
the available information of both data sets for the first analy-
sis of this kind performed in the present study, values in the
region of the other two masks (dense vegetation and snow
cover and frozen ground) are considered in the analyses but
will be discussed with care to recognize the limitations of
SM retrieval.

4 Results

4.1 Time series comparison for an example location

The comparison of time series between TWS from ITSG-
Grace2018 and SM from various products is first shown for
one exemplary grid cell. We chose one cell, with marked
short-term and seasonal SM variations, close to the city of
Kota (25◦ N, 75◦ E), located in the southeast of the Indian
state of Rajasthan and characterized by a hot semi-arid cli-
mate, with a monsoon season from July to September. The
location of this grid cell is indicated in the maps in Fig. 4
(blue circle). Figure 3 (top) shows daily TWS in this grid
cell in comparison to SSM derived from satellite observa-
tions only. While TWS exhibits a comparatively smooth be-
havior for short timescales and a dominant seasonal signal,
the SSM time series are of considerably higher variability
at short timescales. One reason is the noise of the satellite
SM observations themselves (e.g., Karthikeyan et al., 2017).
On the other hand, this variability can partly represent a real
signal, as near-surface SM exhibits quick wetting and dry-
ing dynamics from individual precipitation events and from
subsequent evaporation. In contrast, the much larger integra-
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Figure 2. Spatial masks applied in this study for low SM variability (red), dense vegetation (green), and snow cover and frozen ground (blue).
In the other areas (beige; here denoted as the area suited for analysis), reasonable satellite-based SM signals can be expected.

tion depth of the GRACE observations down to groundwater
results in integral water storage with much slower dynam-
ics. Furthermore, it has to be noted that, for an integration
depth of the SSM products of a few centimeters, the over-
all amplitudes of SM experience a change of the order of
40 vol. % (shown in Fig. 3) that corresponds to water stor-
age changes that are 1 order of magnitude smaller than those
of the GRACE-based TWS. An investigation into whether
the fast-changing surface signals can also be detected in the
GRACE data will be pursued in Sect. 4.3 for high-pass fil-
tered time series. Comparing the time series of the three SSM
products for this particular location, SMAP L3 and the multi-
satellite combination product ESA CCI time series appear
less noisy than the SMOS L3 time series, which is in good
agreement with findings of, e.g., Montzka et al. (2017), Cui
et al. (2017), Xu and Frey (2021), and Kim et al. (2021).

While there is a general correspondence in the dynamics
of TWS and SSM regarding the dominating seasonal sig-
nal (strong rise in water storage and SM during the mon-
soon season followed by a quick decline), a time shift can
be identified between both quantities. The seasonal maxima
and minima of the GRACE time series occur approximately
1–2 months later than those of SSM. This can again be at-
tributed to the slower and delayed water storage change in
the deeper layers seen by GRACE, in which a change from
dry to wet conditions (or vice versa) takes much longer to
evolve than in the layers close to the surface. In addition to
the main seasonal maximum, a minor secondary maximum
can be identified each year in the period from November to
January in the SSM time series, and it is particularly well vis-
ible in the SMAP L3 data (yellow line). For the TWS data,
minor peaks or a less steep TWS recession can be observed
during this period, although a more general statement is hin-

dered by the gaps in the TWS time series. Further discussion
on this feature follows in the next paragraph.

Figure 3 (middle) compares the TWS time series and the
L4 SM products. For SMAP, both the surface (SSM) and
the root zone (RZSM) products are the result of the data as-
similation procedure described in Sect. 2.2.2. The SMAP L4
RZSM time series has a smaller variability compared to the
SSM data at both short-term and at seasonal timescales. This
is also the case for the L4 RZSM product of SMOS, in which
the seasonal variability is dampened even more strongly. The
secondary maximum in November–January obvious in the
L3 products is still visible in the L4 RZSM data set of SMOS,
since the physical extrapolation of the SSM data into deeper
layers is applied for the SMOS L4 product. In contrast, the
assimilation applied to SMAP L4 removes this second sea-
sonal maximum for both the SSM and the RZSM data sets.
This indicates that the signal seen in the direct satellite SM
data is not represented by the forcing data of the underly-
ing model (i.e., precipitation) and thus fades out in the L4
SMAP product. This shows how strongly SMAP L4 is in-
fluenced by the underlying model and the climate data used
as model forcing. The secondary SM peak might thus be
caused by extensive irrigation after the end of the monsoon
season. The results corroborate a possible deficiency of the
SMAP L4 product (i.e., that it is mainly driven by precipita-
tion input in the data assimilation framework and thus does
not represent the impact of irrigation). The combination of
(near-surface) soil moisture products and TWS observations
may thus shed light on how human activities and irrigation
practices in particular translate into water storage changes in
deeper soil zones. While the focus of this study is on shorter-
term storage changes, overlapping trend signals in the un-
saturated zone and in the groundwater that may be caused
by these activities may be difficult to disentangle. However,
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Figure 3. Time series of TWS from ITSG-Grace2018 and satellite SM for an exemplary grid cell around Kota, Rajasthan, in India (25◦ N,
75◦ E). Linear trend components have been subtracted from all time series. (a) TWS ITSG-Grace2018 vs. SSM from SMOS L3, SMAP L3,
and ESA CCI. (b) TWS ITSG-Grace2018 vs. SSM from SMAP L4 and RZSM from SMOS L4 and SMAP L4. (c) Time series of the average
year between TWS and all SM products.

a detailed analysis of this particular phenomenon is beyond
the scope of this study.

The described characteristics of the different products are
also confirmed when investigating the average year (i.e., the
mean value for each day of the year shown in Fig. 3 at the
bottom). Even though the short overlapping time span does
not allow for the computation of a stable climatology, the in-
crease in the seasonal signal with SM during the monsoon
phase between July and September can clearly be identified.
The SSM products exhibit a larger seasonal amplitude than
the dampened RZSM counterparts. Furthermore, the time
shift between SSM and TWS is generally larger than for the
RZSM products. Here it can be concluded that the dynam-
ics of RZSM are closer to the variability in the integral TWS
signal that represents the entire water column, even though
the RZSM data still miss the even slower processes in deeper
soil layers and in groundwater.

4.2 Global analysis

The correspondence of the daily time series of TWS from
ITSG-Grace2018 with the various SM products is analyzed
globally for each 1◦ continental grid cell and displayed as
global maps of the correlation coefficient in Fig. 4. Desert
areas, according to the definition provided in Sect. 3.1, are
excluded, as the GRACE signal is dominated by noise in
these regions, and no reasonable comparison is possible. Ad-
ditionally, Fig. 5 shows the cumulative distribution functions
(CDFs) of cell-based correlation values, both globally and
separately, for the major land cover types shown in Fig. 2.

The global patterns of regions with comparably large cor-
relations between GRACE TWS and SM are similar for all
SM products. These regions are particularly found in humid
climate zones and in seasonally dry climates (parts of tropical
South America, Southeast Asia, southeastern USA, north-
ern Australia, and the outer tropics in Africa). The absolute
correlation values differ markedly between the SM products.
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Figure 4. Comparison of the correlation coefficient between all SM products and ITSG-Grace2018. Desert regions are masked out due to
low water variability. In all maps, the location of the exemplary time series in India (see Fig. 3) is marked with a blue circle.

The smallest correlations are found for the satellite-only L3
SSM data products (Fig. 4a–c). While maximum values in
individual grid cells can reach up to 0.92 (SMOS) and 0.93
(SMAP), the median values amount to 0.23 (SMOS) and
0.27 (SMAP) only. SMOS L3 SSM has negative correlations
(Fig. 5), particularly in the northern latitudes that are at least
partly influenced by snow cover and frozen ground (Fig. 5c),
and has fewer large positive correlations in grid cells that are
potentially well suited for SM remote sensing (i.e., that are
not influenced by snow, ice, or dense vegetation; Fig. 5b).
The latter might be attributed to a larger noise level in the
SMOS than in the SMAP time series. The combination data
product ESA CCI (black curve in Fig. 5b) generally shows
larger correlation values than both the single mission prod-
ucts (except in the northern latitudes), particularly in South
America, Africa, and Australia (Fig. 4c). Please note that the
masking of, e.g., rainforest areas in the CCI product leads
to an overall smaller number of grid cells for the compari-
son than for SMOS or SMAP. The overall larger correlation
of ESA CCI implies that the ensemble product weighs down
the spurious contributions of individual data sets. Neverthe-
less, the interpretation needs to be done with caution, as TWS

cannot be directly taken as a benchmark for SSM, and the
limitations of the GRACE data product outlined in Sect. 2.1
might additionally hamper the comparison.

The effect of using a land surface model with data assimi-
lation for generating the SMAP L4 SSM product is a strong
increase in the correspondence of the temporal dynamics of
this SM data set with GRACE-based TWS (Fig. 4d). The
CDF in Fig. 5a (red line) reveals the most common corre-
lation values in the range of 0.4–0.7, with a median of 0.52.
This increase in the correlation for the L4 SSM data indi-
cates that constraining the SM dynamics by a deterministic
modeling approach and by independently observed forcing
data, such as precipitation rates and air temperature, leads
to a model-dominated product with considerably less noise
than the L3 SSM product. For the L4 RZSM products of
both SMOS and SMAP, their larger integration depth leads
to another increase in the agreement with TWS compared to
the respective surface products (Fig. 4e, f). This again indi-
cates that reflecting the slower and delayed water transport
processes in deeper soil layers in the L4 RZSM products
causes their dynamics to be more similar to the integrative
GRACE-based TWS, in particular with respect to the tem-
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Figure 5. Cumulative distribution functions (CDFs) of cell-based correlation values. (a) Showing the CDFs of all grid cells globally. (b, c,
d) Showing the grid cells for the major land cover types, as defined in Fig. 2. In the upper left corner, the number of grid cells used for the
creation of the individual CDFs is shown.

poral phase (also see the time shift analysis below). This ap-
plies in particular to the grid cells that are reasonably suited
for satellite-based SM monitoring for which the CDFs are
shifted strongly to higher correlation values compared to the
L3 data, with the most common values of around 0.7 (SMOS)
and 0.8 (SMAP; Fig. 5b). In contrast, for SMOS L4 RZSM
in high northern latitudes, correlations with TWS become
even more negative than for SMOS L3 SSM (see the time
shift analysis below). Xu et al. (2021a) have already shown
that the SMAP L4 RZSM product outperforms the SMOS
L4 product in terms of agreement with in situ measurements
from the International Soil Moisture Network, particularly in
the Northern Hemisphere.

The different integration volumes and the different pro-
cesses acting on SM and TWS cause a time shift between
their respective dynamics (e.g., Fig. 3). We use a cross-
correlation analysis (see Appendix A1) for each grid cell to
investigate the time shift on a global scale. Regarding the
maps in Fig. 6, a negative time shift (blue colored grid cells)
indicates a delay of the GRACE signal; i.e., the maximum
of the dominant seasonal signal of TWS occurs later in the
year than the maximum of SM. In the Arctic regions, mostly
positive shifts (in some cases more than +120 d) are seen, in
particular for the two SMOS products (see also the CDFs in
Fig. 7). Snow accumulation leads to an increase and a max-
imum of TWS during the winter season, whereas the max-
imum of SM is reached during the melting season several
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months later, resulting in a delay of SM versus TWS. This
effect becomes even more pronounced when the further de-
lay by SM storage in deeper layers is considered in the L4
root zone products of SMAP and, in particular, SMOS. Neg-
ative correlation coefficients of TWS and SM time series are
a consequence of the inverse seasonal dynamics of the two
storage terms (Fig. 5). The least positive time shifts in the
northern latitude regions are visible in the ESA CCI data set,
which already masks out the data in the time series when
observations were taken under the conditions of frozen soil
and snow cover (see Sect. 3.1). Positive time shifts are also
seen in some tropical forest regions (e.g., the Amazon and
Congo rainforests), where the dense vegetation cover ham-
pers the SM retrieval. This is particularly evident in the SSM
L3 products (SMOS and SMAP) and persists in the SMOS
RZSM, while the data assimilation introduced for SMOS L4
strongly reduces this effect. The positive time shifts can thus
be attributed to artifacts in the SM data rather than to a hy-
drological signal.

In grid cells that are neither influenced by snow cover nor
by dense vegetation (Fig. 7b), the time shifts are primarily
negative, indicating the delayed dynamics of TWS compared
to SM. For the majority of the products, the time shifts are
negative and can reach up to −90 d and beyond. A compar-
ison of the different products reveals that the time shifts de-
crease (i.e., become less negative) the closer the SM products
conceptively resemble TWS. The three surface SM products
from ESA CCI, SMAP L3, and SMOS L3 show the high-
est negative time shifts (up to −60 to −90 d in Fig. 6), with
median values of −35 d (both ESA CCI and SMAP L3) and
−32 d (SMOS L3). The time shifts are smaller for SMAP
L4 (SSM; median of −17 d) and even smaller for the RZSM
products, with median values of −5 d (SMAP L4 RZSM)
and −13 d (SMOS L4 RZSM). This supports the assump-
tion that adding the SM dynamics of deeper soil layers to
SSM increases the resemblance to the integrated TWS sig-
nal. For SMOS L4 SM, the extrapolation into deeper soil
layers even leads to a change from a negative time shift to
a positive time shift (i.e., TWS dynamics preceding those of
SMOS L4 RZSM) in 17 % of the land areas, e.g., in parts of
South America, Asia, and Australia. This points out possible
deficiencies in the depth-scaling algorithm for SMOS L4 in
some regions in terms of the way that it represents the trans-
port and storage processes from the surface to deeper soil
layers with too many delays and that the rates of reduction in
the water storage in the deeper layers by evapotranspiration
and percolation and/or runoff may be underestimated, thus
leaving too much water in the storage for a time period that
is too long. While the limitations of the GRACE observations
can also be expected to cause some discrepancy between the
two data types, there is no known deficit in the GRACE data
that may spuriously pull their dynamics to an earlier stage.

4.3 Sub-monthly variations (high-pass filtered data)

The exemplary comparison of the TWS and SM time series
in Fig. 3 suggests that fast-changing SM signals might be
masked in the TWS time series by the dominating slower
dynamics of the deeper layers in the unsaturated zone and in
groundwater. Therefore, we isolate the water storage changes
on sub-monthly timescales by applying a high-pass filter
(third-order Butterworth filter) with a 30 d cutoff frequency
(see Appendix B for details). Exemplary high-pass filtered
time series for 1.5 years of SMAP L4 RZSM and TWS
from ITSG-Grace2018 are shown in Fig. 8 for the same grid
cell as in Fig. 3. The overall correlation of the two time
series amounts to ρ = 0.33, but it varies strongly with sig-
nal strength. While the GRACE time series is dominated
by noise and only a very small correlation to RZSM of
ρ = 0.17 was found in dry months (October to June) with
very small high-frequency water storage fluctuations, the cor-
relation is higher in the monsoon season (July to September)
with ρ = 0.45. Additional high-pass filtered time series for
grid cells belonging to different climate zones are presented
in Appendix C.

The correlations of the high-pass filtered TWS and SM
time series (Fig. 9) are considerably smaller than those of the
unfiltered time series. This can be expected, as the seasonal
storage variations that often cause high correlation values
for the unfiltered time series are not present anymore in the
filtered ones. Nevertheless, correlations of the sub-monthly
signals are generally positive, with only a few grid cells
showing negative correlations. Non-significant correlations
are stippled in Fig. 9 (for more information on significance
testing, see Appendix A2). Again, it can be observed that
RZSM products have a stronger correlation with TWS than
their SSM counterparts. While the numbers are very small
for the SSM of SMOS L3 (maximum value of ρmax = 0.33
and significantly positive correlations in only 26 % of land ar-
eas covered by the data product, with desert areas excluded),
they are larger for SMAP L3 SSM products (ρmax = 0.37 and
43 % significantly positive). Again, the larger noise floor of
the SMOS data set most likely dominates the high-pass fil-
tered time series. The share of grid cells with significantly
positive correlations increases for the combination data prod-
uct ESA CCI (ρmax = 0.38 and 58 % significantly positive)
and even more for the data-assimilated product of SMAP
L4 SSM (ρmax = 0.40 and 71 % significantly positive). The
former reveals the positive effect of combining several SSM
data sets, which very likely results in a reduction in the high-
frequency noise, and the latter indicates the influence of the
forcing data of the underlying land surface model. In partic-
ular, it can be argued that model forcing with observation-
based rainfall data causes major SSM increases to be closer
in time and magnitude to the water storage increases that
are seen by the GRACE observations. For the root zone, the
percentage of the significantly positive grid cells is still low
for SMOS L4 (37 %), with only a few larger areas in west-
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Figure 6. Time shift between SM and TWS time series per grid cell. Negative numbers imply that TWS is delayed in comparison to SM.

ern Brazil, the south of Africa, and India, but the magnitude
of the correlations has increased (ρmax = 0.50). For SMAP
L4 RZSM, the values are significantly positive in the largest
parts of the continents (77 %), with exceptions only in the
very high latitudes and some small spots in dry regions in
Africa, Australia, and Asia. In large regions (particularly in
the southeastern United States, large parts of South Amer-
ica’s southeastern region, the Ganges–Brahmaputra basin
and China, and northern Australia), the correlations are in
the range of 0.5, reaching maximum values of ρmax = 0.62.
Overall, even though correlations are rather low for the high-
pass filtered signals (with the exception of SMAP L4), they
are significantly positive in large parts of the continents, hint-
ing at the fact that satellite gravimetry and SM remote sens-
ing are sensitive to the same hydrological dynamics, even for
timescales shorter than 1 month.

Finally, by computing the cross-correlation function for
the high-pass filtered signals, we determine, for each grid
cell, the time shift in the TWS versus the SM time series that
leads to the highest correlation (Fig. 10). Time shifts larger
than ±15 d are masked out because they have no physical
meaning, given that a high-pass filter of 30 d was used. The
remaining regions with valid results noticeably overlap with
the regions in which some correspondence of TWS and SM
dynamics has already been found in the correlation analysis

with an unshifted time series (Fig. 9). The time shifts found
for the high-pass filtered time series are considerably smaller
than those found for the full unfiltered signal. Time shifts
tend to be negative, with up to −3 d for all SSM products
(i.e., TWS is lagging behind SSM). For the RZSM prod-
ucts, however, the time shifts are less negative or close to
zero (SMAP L4) or even positive (SMOS L4). The nega-
tive time shifts illustrate that GRACE observations represent
the depth-integrated water storage dynamics in the subsur-
face that are delayed relative to SSM, even at sub-monthly
timescales. This is corroborated by the observation that the
time shifts mostly vanish when deeper layers are included in
the SM product (SMAP L4; i.e., when the SM product be-
comes conceptually closer to the storage that is represented
by the TWS observations). The positive time shifts for the
SMOS L4 relative to TWS in most parts of the world indi-
cate that the depth-scaling approach used for SMOS L4 may
represent transport and storage processes from the surface to
deeper soil layers with too much delay, which is similar to
the results obtained with the full unfiltered signal. Even for
the short timescales considered here with the high-pass fil-
tered signal, some processes such as daily evapotranspiration
or runoff that cause water to be removed from the storage
may be underestimated.
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Figure 7. Cumulative distribution functions (CDFs) of the cell-based time shift. (a) Showing the CDFs of all grid cells globally. (b, c,
d) Showing the CDFs for grid cells for the major land cover types which are shown in Fig. 2. In the upper left corner, the number of grid
cells used for the creation of the individual CDFs is shown.

Figure 8. High-pass filtered time series of TWS from ITSG-Grace2018 and RZSM from SMAP L4 for an exemplary grid cell in India
(25◦ N, 75◦ E).
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Figure 9. Correlation coefficients of high-pass filtered SM and TWS time series. Grid cells with non-significant correlations are stippled. In
the lower-right map (f), the location of the exemplary time series in India (see Fig. 8) is circled in blue.

5 Conclusions and outlook

In this study, we investigated the global relationship of
satellite-based SM products and non-standard daily water
storage observations from the GRACE and GRACE-FO
satellite gravimetry missions. The SM products differ with
respect to satellite data (SMAP, SMOS, or a combination of
various satellites), soil depth (surface SM or root zone SM),
and the degree of post-processing (L3 or L4 data products).
Comparisons were carried out by correlation analyses for
both the full signal and for sub-monthly variations obtained
via high-pass filtering the time series with a 30 d cutoff fre-
quency. Strong correlations between TWS and the different
SM products generally occur in the same regions. These re-
gions are mainly characterized by a seasonally wet or semi-
arid climate, such as the east and south of Africa, northern
parts of India, east Australia, the southeast of China, Eastern
Europe, the northwest and southeast of the United States, and
significant parts of South America’s southeastern region. For
many regions, TWS dynamics are delayed relative to the SM
dynamics for both short-term variations at the scale of few
days and when considering the seasonal dynamics. In partic-
ular, in cold and snow-dominated regions, low correlations

between TWS and SM dynamics prevail, and the seasonal
TWS dynamics are ahead of the SM dynamics.

From a hydrological point of view, both quantities (SM
and TWS) actually represent different quantities regarding
their spatial domain (first centimeters of soil (SSM) vs. root
zone (RZSM) vs. integrated water column of all storage com-
partments (TWS)), their units (volumetric percentage of wa-
ter in the soil vs. water mass), and their spatial and tempo-
ral variability. The observed (dis)agreements of the SM and
TWS time series and the time shifts between them therefore
give insights into the relationships between the different wa-
ter storage compartments, including moisture variations in
different soil depths. It should be noted, though, that in some
regions non-hydrological effects that remain in the GRACE
data (e.g., major earthquakes) or storage variations in other
terrestrial water storage compartments that have not explic-
itly been taken into account in the present study, in particular
surface waterbodies, might affect these relationships. Due to
the limited spatial resolution of GRACE (i.e., 500 km for the
daily gravity field models use here), such strongly localizing
effects might also hamper the comparison between SM and
TWS in surrounding areas due to spatial leakage, as outlined
in Sect. 2.1. While both SM and TWS products are sensi-
tive to the effects of irrigation on near-surface soil moisture,
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Figure 10. Time shift between high-pass filtered soil moisture and total water storage time series per grid cell. Negative numbers imply that
the TWS is delayed in comparison to the SM.

GRACE-based TWS can provide additional information on
the effect of such human impacts on water storage dynamics
in the deeper unsaturated zone and in the groundwater, al-
though the latter may be difficult to disentangle if it overlaps
with groundwater withdrawal in the same region.

The fact that satellite gravimetry can detect high-
frequency signals that are related to SM variations, at least in
areas and time spans with sufficiently large short-term vari-
ability, is quite remarkable in itself and is shown for the first
time in this study. While the standard products of the GRACE
and GRACE-FO mission are monthly averages of water stor-
age anomalies, the present study adds a new thematic field
in which there is valuable information on the daily GRACE
data that goes beyond earlier examples, e.g., floods or hy-
drometeorological fluxes (Gouweleeuw et al., 2018; Eicker
et al., 2020).

For regions where SM plays a dominant role for TWS vari-
ations, the results indicate that satellite gravimetry can be
used to identify the differences between SM products. Hy-
drological processes that are relevant for redistributing water
vertically in the soil, particularly the percolation into deeper
soil layers, can be identified as time shifts between the SM
and TWS time series.

In this respect, our results give a preliminary indication
that gravity-based TWS variations might have the potential
to assess different methods of depth scaling (i.e., methods
that are used to extrapolate surface SM variations to deeper
soil layers). Such an assessment might be based on the anal-
ysis of time shifts between TWS and the depth-scaled SM
time series. Assuming that the TWS signal for the region of
interest and for the relevant temporal scale is dominated by
SM variations, the absence of a time shift between TWS and
the depth-scaled SM time series might be considered to be an
indicator of a suitable depth-scaling approach. For the anal-
yses presented here, this tends to be the case for the SMAP
L4 RZSM data. In contrast, negative time shifts (i.e., SM dy-
namics that are ahead of those of TWS) may indicate that
the delay of depth-integrated SM dynamics introduced by the
depth-scaling approach is not sufficient enough. In turn, pos-
itive time shifts after depth scaling, as found here for some
regions for the SMOS L4 RZSM data, may point out that the
depth-scaling approach mimics the soil water redistribution
processes in a way that causes a delay that is too large for the
SM dynamics.

While satellite gravimetry can identify short-term SM
changes in regions and time spans with large sub-seasonal
storage variability, this does not work well in cases with
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low signal-to-noise ratios (SNRs) of high-frequency varia-
tions. In the current study, spatial masking was applied so
that desert areas were completely excluded from the analy-
sis, and some other regions (frozen ground and dense vege-
tation) were discussed separately from the areas that are not
influenced by either effect. Nevertheless, there are still many
areas worldwide where the SNR is high in certain periods,
e.g., during the rain season but low in other time periods.
Therefore, an additional temporal masking and the explo-
ration of metadata such as snow flags or indicators of low
SNR is promising for an extended comparison in future.

Ongoing improvements to the GRACE/-FO data process-
ing and future improvements in gravity field determination
with the GRACE-FO laser ranging instrument measurements
and with next-generation gravity missions (NGGMs), such
as a constellation of two GRACE-like missions operating si-
multaneously at differently inclined orbits (Purkhauser et al.,
2020), will give prospective increases in the temporal and
spatial resolution of satellite-based TWS data in future. This
can be expected to be particularly beneficial for analyz-
ing fast-changing and rather small-scale SM variations. The
present study provides the first evidence of the insights into
the hydrological dynamics that can be gained from a combi-
nation of TWS and SM remote sensing data.

Appendix A: Metrics

A1 Correlation and cross-correlation

Suitable metrics are required to compare the time series of
soil moisture (SM) and terrestrial water storage (TWS) for
each continental grid cell. Since a direct comparison of the
absolute values of the two variables is not possible due to
the different integration depths and units, we analyze their
relationship using Pearson’s pairwise correlation coefficient
ρxy , which is defined as the covariance of two variables (x,y)
divided by the product of their standard deviations:

ρxy =

∑T
t=1 (xt − x)(yt − y)√∑T

t=1(xt − x)
2
√∑T

t=1(yt − y)
2
. (A1)

The summation is performed over all daily time steps t of the
available time series with a length of T days.

Possible time lags between the TWS and SM time series
are determined using cross-correlation analysis, which iden-
tifies the time shift k for which the two time series show max-
imum correlation. The concept of cross-correlation is shown
in Eqs. (A2) and (A3), according to Box et al. (1994), in
which first the covariance cxy between the two time series
xt and yt for a given time lag k is calculated as follows:

cxy (k)

=

{
1
T

∑T−k
t=1 (xt − x)(yt+k − y) for k = 0,1,2, . . .n

1
T

∑T+k
t=1 (yt − y)(xt−k − x) for k = 0,−1,−2, . . .− n,

(A2)

where x and y denote the mean values of the time series, and
t indicates the respective point in time. We use n= 180 in
our analysis, resulting in a total of 360 different covariances
for each grid cell (k =−180 to 180; ±6 months). From the
covariance, the cross-correlation r is computed as follows:

rxy (k)=
cxy (k)

sxsy
, (A3)

where sx and sy denote the standard deviations of the time
series. The time lag between SM and TWS is the value of k
for which the maximum cross-correlations is obtained.

A2 Significance test

To identify grid cells with significant correlations between
different time series, we use hypothesis testing, with the null
hypothesis H0 stating that the correlation is not significantly
different from zero and the alternative hypothesisHA assum-
ing a non-zero correlation.

H0 : p = 0

HA : p 6= 0 (A4)

A statistical test is carried out by computing the test vari-
able T , which is distributed with n− 2 degrees of freedom,
according to Student’s t distribution.

T =
|ρ|
√
n− 2√

1−p2
∼ tn−2 (A5)

In Eq. (A5), n is the total number of days with both TWS
and SM observations for the respective grid cell. The test as-
sumes uncorrelated observations from 1 d to the next, which,
however, is not strictly the case for the time series at hand.
An autocorrelation analysis was carried out for a large num-
ber of exemplary grid cells to determine a mean correla-
tion length of 3 d for surface and 5 d for root zone prod-
ucts. Consequently, the degree of freedom was adjusted to
n/3−2 (SSM) or n/5−2 (RZSM). For the significance test,
we chose a significance level of α = 0.05 and calculated
the corresponding quantiles K = F−1

t (α,n/3− 2) (SSM) or
K = F−1

t (α,n/5− 2) (RZSM). If T ≤K , the null hypothe-
sis cannot be rejected, and the correlation is assumed to be
insignificant. If T > K , then it is reasonable to assume that
the alternative hypothesis is correct and that the correlation
deviates considerably from zero.
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Appendix B: Derivation of sub-monthly signals using a
Butterworth high-pass filter

In this section, we demonstrate the computation of the high-
pass filtered signals for the exemplary grid cell around Kota,
India (also shown in Sect. 4.3 of the main text). Figure B1
shows the TWS from ITSG-Grace2018 (green lines) and
RZSM from SMAP L4 (brown lines) over a 15-month period
(October 2018 to December 2019). The Butterworth high-
pass filter, with a cutoff frequency of 30 d, was applied to
remove signals with periods longer than 30 d and thus to iso-
late sub-monthly fluctuations. The darker green and brown
colors illustrate the high-pass filtered signal for both vari-
ables. Additionally, the corresponding low-pass filtered sig-
nals (i.e., containing signals with periods longer than 30 d)
are added as dotted lines. Summing up the high-pass filtered
signal and the low-pass filtered signal again results in the
original full signal (shown in the respective brighter colors).
It can clearly be seen that the high-pass filtered time series
capture the fast variations present in the original time series.
These time series are the same as those displayed in Fig. 8.

Figure B1. Sub-monthly signals using a Butterworth high-pass filter (HPF), together with the full and the low-pass filtered (LPF) time series,
which are shown here for TWS from GRACE and root zone soil moisture (RZSM) from SMAP.
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Appendix C: Other examples of high-pass filtered time
series

In addition to the high-pass filtered signal computed for the
example grid cell in Kota, India, as shown before, Fig. C1
displays the high-pass filtered signals for SM from SMAP
L4 RZSM and TWS from ITSG-Grace2018 in some other
geographical locations of different aridity. These places were
chosen to illustrate the dynamics of the two variables under
different environmental conditions and signal characteristics.
Figure C1a is for a location in the northwest of the state of
Arkansas in the United States. The climate is humid and sub-
tropical, with a hot summer and no specific dry season. Ac-
cordingly, the time series show fast fluctuations and a high
correspondence of SM and TWS throughout the year, with a
correlation of ρ = 0.43. At a location in Hungary (Fig. C1b),
with a humid and continental climate with warm summers,
rain occurs throughout the year, while snow occurs during
the winter months. The high-pass filtered SM and TWS time
series show a correlation of ρ = 0.31 at this location. The
time series of Fig. C1c are for a location north of the Kala-
hari Desert in Botswana. The climate there is semi-arid and
mostly dry throughout the year, but there is a wet period,
with strong rainfall events during the summer. These events
are clearly visible in both TWS and SM time series, with
good correspondence, while no correlation and largely noise
in the TWS data are visible during the dry period. At this lo-
cation, the correlation over the entire time period is low, with
ρ = 0.11, but it is higher when only the precipitation period
is considered, with ρ = 0.23.
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Figure C1. High-pass filtered time series for grid cells in different climatic conditions.

Data availability. The daily GRACE data products of
ITSG-Grace2018 are publicly available from TU Graz
(https://doi.org/10.5880/ICGEM.2018.003, Mayer-Gürr et al.,
2018). The ESA CCI soil moisture product can be downloaded
from the ESA’s Climate Change Initiative (CCI) web page
(https://doi.org/10.5285/ea3eb0714dc6402b905fe9f7ee50dbbc,
Dorigo et al., 2023). Soil moisture products (Level 3 and
Level 4) from the ESA’s SMOS mission are made available by
the Centre Aval de Traitement des Données SMOS (CATDS;
https://doi.org/10.12770/9cef422f-ed3f-4090-9556-b2e895ba2ca8,
CATDS, 2022a; https://doi.org/10.12770/316e77af-cb72-4312-
96a3-3011cc5068d4, CATDS, 2022b). Soil moisture products
(Level 3 and Level 4) from NASA’s SMAP mission are provided
by the National Snow and Ice Data Center (NSIDC;

https://doi.org/10.5067/OMHVSRGFX38O, O’Neill et al., 2021;
https://doi.org/10.5067/08S1A6811J0U, Reichle et al., 2021).
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