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Abstract
Statistical inference is the process of drawing conclusions about underlying population(s) using sample data to either confirm
or falsify hypotheses. However, the complexity of real-life problems often makes the underlying statistical models inadequate,
as information is often imprecise in many respects. To address this common problem, some papers have been published on
modifications and extensions of test concepts by employing tools of fuzzy statistics. In this paper, we present a non-parametric
test for the difference between quantiles of two independent populations based on fuzzy random variables. For this purpose,
we consider the fuzzy quantile function and its estimation based on α-values of fuzzy random variables. We then provide a
fuzzy test based on the fuzzy empirical distribution function for the difference of fuzzy order statistics from these independent
populations.We also suggest a specific degree-based criterion to compare the fuzzy test statistics at a specific significance level
to decide whether the underlying fuzzy null hypothesis can be rejected or not. The effectiveness of the proposed two-sample
test on quantiles is investigated via numerical examples.

Keywords Fuzzy random variable · Fuzzy quantile function · Fuzzy hypothesis · Fuzzy test · Non-parametric test

1 Introduction

Hypothesis testing regarding an assumption about the proba-
bility distribution of one random variable or a set of random
variables is a main field of statistical inference. Those tests
demand a well-defined modeling of the tested hypothesis,
i.e., precisely stated requirements in relation to the distribu-
tion of the underlying random variable(s) (Chukhrova and
Johannssen 2020a). In many practical applications, it is nec-
essary to compare two independent populations concerning
their central tendencies or other distribution-related criteria
(O’Gorman 2004; Shi and Tao 2008; Taff 2018). With the
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aim to conclude whether the difference of interest between
both these populations is significant or not, techniques of
statistical inference are employed. Considering two-sample
hypothesis tests, the populations are usually compared in
terms of their central tendency measures (like the means)
to conclude if there are significant differences in these pop-
ulations. Although comparing two populations concerning
their means is a common problem, there are situations where
one needs to compare other characteristics of the popula-
tions such as quantiles (see, e.g., Hutson 2009; Viertl 2006;
Kosorok 1999).When using quantiles (e.g., quartiles) instead
of the means, the test decision is based on robust location
parameters and outliers have no impact on the test decision
(Chukhrova and Johannssen 2021b).

Further, censoring or truncation can complicate estimation
of entire distribution functions and an examination of a col-
lection of quantiles is a reasonable alternative (Gözde and
Özdemir 2018). In addition, in many real-life applications
(like psychology, biology, medicine, economics), the quan-
tiles of the underlying characteristic variables are important
boundaries for decision-making (Wang and Hettmansperger
1990; Farrell et al. 1997). For instance, the determination
of the differences in the tails (by employing quantiles) is
often of interest in such cases. But, the main advantage of
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non-parametric testing on quantiles compared to common
tests such as Student’s t-test is that there is no need for addi-
tional assumptions related to homoscedasticity or normality
of two population distributions, which are often not fulfilled
in practical applications (for instance, when the distributions
are asymmetric or irregularly shaped). That is, the results of
Student’s t-test can be misleading when the assumptions are
not satisfied. For these reasons, several non-parametric two-
sample quantile-based tests have been developed (Heinzl and
Mittlboeck 2017; Hutson 2009).

However, in situations, where point- or interval-valued
formulations of hypotheses appear too rigid for real-life
problems, the above limitations make the practitioner do
decision procedures in a non-reasonable way. In this case,
common statistical inference techniques are inappropriate
for testing a hypothesis. Moreover, there are many situations
in practical applications where the observations cannot be
measured as crisp quantities, because information is often
imprecise, incomplete, linguistic, noisy, qualitative, or vague
(Chukhrova and Johannssen2019). In contrast, fuzzyhypoth-
esis testing provides a more realistic framework for such
hypothesis testing problems, as fuzzy set theory is a natu-
ral tool for modeling and analyzing subjective and imprecise
concepts. A fuzzy hypothesis allows for a more appropriate
treatment of the unknown parameter(s), i.e., instead of spec-
ifying its (their) hypothesized values over a crisp interval,
it allows, for example, specifying a smooth transition from
“preferred” to “non-preferred” or from “possible” to “impos-
sible” values in terms of an appropriatemodeledmembership
function (Chukhrova and Johannssen 2020a). Furthermore,
hypothesis testing in fuzzy environments facilitates to add
available expert knowledge to the test procedure, taking into
consideration the economic context or possibilistic aspects.
Therefore, fuzzy modeling approaches provide appropriate
techniques for dealing with those various types of uncertain
information (Chukhrova and Johannssen 2021a).

Through the years, various techniques have been devel-
oped for testing hypotheses based on fuzzy information.
Such methods can be decomposed in parametric tests
(Arnold 1998; Filzmoser and Viertl 2004; Chen and Chang
2020; Haktanir and Kahraman 2019; Hesamian and Akbari
2021; Hryniewicz 2006b; Mylonas and Papadopoulos 2021;
Parchami 2020; Rodríguez et al. 2006; Viertl 2006; Wu
2005; Akbari and Rezaei 2010; Chukhrova and Johannssen
2020a, b, c; Hesamian and Shams 2016; Montenegro et al.
2004; Kahraman et al. 2004) and non-parametric tests
(Chukhrova and Johannssen 2021b, c, 2022; Grzegorzewski
2000; Denoeux et al. 2005; Gil et al. 2006; Grzegorzewski
2004, 2009, 2020; Hesamian and Chachi 2015; Hesamian
and Taheri 2013; Hryniewicz 2006a; Lin et al. 2010;
Hesamian and Taheri 2013; Kahraman et al. 2004). Fur-
ther, Akbari and Rezaei (2010); Chukhrova and Johannssen
(2020a, b, c, 2021b, c, 2022, 2023); Denoeux et al. (2005);

Filzmoser andViertl (2004);Grzegorzewski (2000);Hesamian
and Shams (2016); Hesamian and Taheri (2013); Hryniewicz
(2006b); Montenegro et al. (2004); Rodríguez et al. (2006);
Viertl (2006); Wu (2005); Kahraman et al. (2004) proposed
one-sample tests, while Denoeux et al. (2005); Gajivarad-
han and Parthiban (2015); Grzegorzewski (2005); Hesamian
and Chachi (2015); Montenegro et al. (2001); Kahraman
et al. (2004) discussed two-sample tests. Some of these
approaches mainly rely on fuzzy data and exact hypothe-
ses (Hesamian and Akbari 2021; Parchami 2020; Kahraman
et al. 2004; Grzegorzewski 2000; Denoeux et al. 2005; Grze-
gorzewski 2004, 2009; Filzmoser and Viertl 2004; Chen
and Chang 2020; Haktanir and Kahraman 2019; Hryniewicz
2006b; Mylonas and Papadopoulos 2021; Rodríguez et al.
2006; Viertl 2006; Akbari and Rezaei 2010; Chukhrova and
Johannssen 2020a, b;Montenegro et al. 2004;Grzegorzewski
2020; Hryniewicz 2006a; Lin et al. 2010), fuzzy data and
fuzzy hypotheses (Wu 2005; Hesamian and Shams 2016; Gil
et al. 2006;Hesamian andChachi 2015;Hesamian andTaheri
2013) or crisp data and fuzzy hypotheses (Arnold 1998;
Chukhrova and Johannssen 2020a, b, c, 2021c). In addition,
several studies rely on univariate hypothesis testing with
parametric or non-parametric intuitionistic fuzzy informa-
tion (Akbari and Hesamian 2019a, b; Hesamian and Akbari
2017; Zainali et al. 2014). For a comprehensive review on
the topic of fuzzy hypothesis testing, we refer to Chukhrova
and Johannssen (2021a).

Considering previous fuzzy non-parametric tests for the
two-sample case, they essentially rely on comparing fuzzy
medians. As comparing any quantiles of two populations is
an important issue, it is necessary to develop a methodol-
ogy to compare quantiles of two populations based on fuzzy
data. In this study, therefore, we introduce a new idea of
non-parametric testing for comparing fuzzy quantiles of two
independent populations based on fuzzy random variables.
Since the observed data are fuzzy quantities, it is a natural
step to consider the components of the population such as
distribution function, order statistics and quantile functions
as fuzzy quantities as well. In this regard, we extend the con-
cept of the fuzzy quantile function of fuzzy random variables
and their empirical estimation based on fuzzy data. We also
construct the respective hypotheses to compare fuzzy quan-
tiles of the populations via ranking criteria and introduce a
test statistic that employs the α-cuts of fuzzy numbers. Then,
a procedure for constructing a fuzzy test function to reject or
not reject the underlying null hypothesis related to the com-
parison of fuzzy quantiles is presented. Therefore, besides
testing on the medians of both populations, the introduced
method can be applied for any fuzzy quantile functions of
two populations related to, e.g., percentiles or deciles. For
practical reasons, the proposedmethod is illustrated via some
application examples.
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The rest of this paper is organized as follows. Section2
reviews essential concepts related to fuzzy numbers and
fuzzy random variables. Section3 introduces the notion of
fuzzy quantiles and discusses their empirical estimation
considering fuzzy random variables. In Sect. 4, the non-
parametric hypothesis test for comparing fuzzy quantiles of
two independent populations is developed. In Sect. 5, practi-
cal applications of the proposed test are illustrated. Finally,
conclusions are provided in Sect. 6.

2 Preliminaries

This section reviews some necessary basic definitions of
fuzzy numbers and fuzzy random variables.

2.1 Fuzzy sets and fuzzy numbers

A fuzzy set ˜A on the real lineR is defined by the membership
function μ

˜A : R → [0, 1] (Lee 2005). The subset {x ∈
R | μ

˜A(x) ≥ α}, α ∈ (0, 1], is referred to as α-cut of
˜A, i.e., ˜A[α]. The set ˜A[0] = {x ∈ R : μ

˜A(x) > 0} is the
support of ˜A, while A is the closure of A. The lower and
upper bounds of ˜A[α], α ∈ [0, 1], are denoted by ˜AL [α] and
˜AU [α], respectively. Further, a fuzzy set ˜A is a fuzzy number
(FN) when ˜A[α] is a non-empty, bounded interval in R for
all α ∈ [0, 1]. As for the practical handling of FNs, they
are often modeled via a functional parametric form called
LR-FN ˜A = (a; la, ra)LR . The membership function of an
LR-FN ˜A is given by

μ
˜A(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

L

(

a − x

la

)

if a − la ≤ x ≤ a,

R

(

x − a

ra

)

if a ≤ x ≤ a + ra,

where la > 0 is the left spread, ra > 0 is the right spread, and
L and R are reference functions defining the left and the right
shapes of the FN, respectively, where L, R : [0, 1] → [0, 1]
should satisfy the following conditions:

1. L(1) = R(1) = 0,
2. L(0) = R(0) = 1, and
3. L(x) and R(x) are continuous andmonotone-decreasing

functions on [0, 1].

The set of all LR-FNs is represented byF(R). Furthermore,
the most commonly used (unimodal) LR-FNs (with L(x) =
R(x) = max{0, 1 − x}) are triangular FNs (TFNs). The
membership function of aTFN, denoted by ˜A = (a; la, ra)T ,
is given by:

μ
˜A(x) =

⎧

⎪

⎨

⎪

⎩

x−(a−la)
la

if a − la ≤ x ≤ a
a+ra−x

ra
if a < x ≤ a + ra

0 otherwise.

Remark 1 (Hesamian and Shams 2016) For a given ˜A ∈
F(R), the mapping ˜Aα : [0, 1] → R is called α-cut of ˜A
defined by

˜Aα =
{

˜AL [2α] if α ∈ [0, 0.5],
˜AU [2(1 − α)] if α ∈, (0.5, 1],

where ˜AL [α] and ˜AU [α] denote the lower and upper limits
of α-cuts of ˜A, respectively. Then, it follows:

˜A[α] = [˜AL [α], ˜AU [α]] = [˜Aα/2, ˜A1−α/2].

For instance, α-cuts of an LR-fuzzy number ˜A = (a; la,
ra)LR can be calculated as:

˜Aα =
{

a − la L−1(2α) if α ∈ [0, 0.5]
a + ra R−1(2(1 − α)) if α ∈ (0.5, 1].

Specifically, if ˜A = (a; la, ra)T is a TFN, then:

˜Aα =
{

(a − la) + 2laα if α ∈ [0, 0.5]
a + ra − 2ra(1 − α) if α ∈ (0.5, 1].

Remark 2 (Hesamian et al. 2019) Note that for all ˜A, ˜B ∈
F(R), λ ∈ R and α ∈ [0, 1], the following arithmetic oper-
ations on fuzzy numbers can be defined:

(˜A ⊕ ˜B)α = ˜Aα + ˜Bα,

(λ ⊗ ˜A)α =
⎧

⎨

⎩

λ˜Aα if λ > 0,
0 if λ = 0,
λ˜A1−α if λ < 0,

where⊕ and⊗ denote common arithmetic operators of fuzzy
numbers.

Definition 1 (Yuan 1991) For two FNs ˜A and ˜B ∈ F(R), let

Δ
˜A˜B =

∫

{α:˜Aα≥˜Bα}
(˜Aα − ˜Bα)dα.

The preference degree “˜A is larger than ˜B” is defined by:

Pd(˜A � ˜B) =
{

0.5 ˜A = ˜B
Δ

˜A˜B
Δ

˜A˜B+Δ
˜B˜A

˜A 	= ˜B.

Definition 2 For two FNs ˜A and ˜B, it holds that:

1. ˜A is larger than ˜B, denoted by ˜A �Pd
˜B, if Pd(˜A �

˜B) > 0.5.
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2. ˜A is equivalent to ˜B, denoted by ˜A 
Pd
˜B, if Pd(˜A �

˜B) = Pd(˜B � ˜A) = 0.5.

The preference criterion Pd meets the following properties:

Proposition 1 Let ˜A, ˜B, ˜C be three FNs in F(R). Then, it
holds:

(1) Pd is reciprocal, i.e., Pd(˜A � ˜B) = 1 − Pd(˜B � ˜A).
(2) Pd is reflexive, i.e., ˜A �Pd

˜A.
(3) Pd is transitive, i.e., ˜A �Pd

˜B and ˜B �Pd
˜C imply

˜A �Pd
˜C.

(4) Pd(˜A � ˜B) = 1 if and only if ˜Bα ≤ ˜Aα for all α ∈
[0, 1].

Proof See Yuan (1991). �

Definition 3 (Hesamian andAkbari 2018) The absolute error
distance between two FNs ˜A and ˜B is defined as follows:

D(˜A, ˜B) = sup
α∈[0,1]

|˜Aα − ˜Bα|.

The TFNs ˜A, ˜B, ˜C satisfy the following conditions:

(1) D(˜A, ˜B) = 0, if and only if ˜A = ˜B,

(2) D(˜A, ˜B) = D(˜B, ˜A),

(3) D(˜A, ˜C) ≤ D(˜A, ˜B) + D(˜B, ˜C).

2.2 Fuzzy random variables

In the following, we briefly give common definitions of fuzzy
random variables, fuzzy cumulative distribution function and
its estimator.

Definition 4 (Hesamian and Shams 2016) Let (Ω,A, P) be
a probability space. The fuzzy-valued mapping ˜X : Ω →
F(R) is called a fuzzy random variable (FRV), if for any
α ∈ [0, 1] the real-valued mapping ˜Xα : Ω → R is a real-
valued random variable.

Definition 5 Two FRVs ˜X and ˜Y are called identically
distributed and independent, if ˜Xα and ˜Yα are identically
distributed and independent for all α ∈ [0, 1]. Similarly, it
can be said that ˜X1, . . . , ˜Xn is a fuzzy random sample (FRS)
of size n if all ˜Xi are independent and identically distributed
FRVs. An observed fuzzy random sample can denoted by
x̃1, . . . , x̃n .

Definition 6 (Hesamian et al. 2019) Let ˜X be a FRV and
{˜Xn}∞n=1 a collection of FRVs defined on the same probabil-
ity space. Then, ˜Xn converges almost surely to ˜X , denoted
by ˜Xn

a.s.→ ˜X . For every ε > 0, it holds

P
(

lim
n→∞ D(˜Xn, ˜X) > ε

)

= 0.

Definition 7 Let ˜X1, . . . , ˜Xm be a FRS of ˜X . The j th order
statistic of ˜X1, . . . , ˜Xm is defined to be a FN with α-cuts
(˜X( j))α = (˜Xα)( j).

Lemma 1 Let ˜X1, . . . , ˜Xm be aFRS of ˜X. Then, ˜X( j+1) �Pd
˜X( j) for every j = 1, 2, . . . ,m − 1.

Definition 8 (Hesamian andChachi 2015) The fuzzy number
˜F

˜X (x) is said to be a fuzzy cumulative distribution func-
tion (FCDF) of ˜X , if its α-cuts are defined by (˜F

˜X (x))α =
P(˜X1−α ≤ x).

Definition 9 (Hesamian and Chachi 2015) Let x̃1, . . . , x̃n be
a FRS of ˜X . The fuzzy number ˜

̂Fn(x) is said to be a fuzzy
empirical cumulative distribution function, if its α-cuts are
defined by (˜̂Fn(x))α = 1

n

∑n
i=1 I ((̃xi )1−α ≤ x).

Lemma 2 Suppose that ˜X1, . . . , ˜Xn is a fuzzy randomsample
with FCDF ˜F

˜X (x). Then,

P

(

sup
x∈R

D(˜̂Fn(x), ˜F
˜X (x)) → 0

)

= 1.

Proof See Hesamian and Chachi (2015). �


3 Fuzzy quantile function

In this section, the notions of fuzzy quantile function and
fuzzy empirical quantile are introduced and discussed.

Definition 10 Let ˜X be a FRV. The fuzzy quantile function
(FQF) of ˜X at level τ is defined by a FN with the following
α-cuts:

(˜Q
˜X (τ ))α = inf{x : (˜F

˜X (x))α > τ }.

Example 1 Consider the FRV ˜X = (0.99X , X , 1.1X)T ,
where X ∼ exp(λ). Then, it holds that ˜Q

˜X (τ ) = − ln(1 −
τ)/λ ⊗ (0.99, 1, 1.1)T .

Example 2 Let ˜X be a (normal)FRV (Puri andRalescu 1985)
with ˜X = μ̃ ⊕ ε, where ε ∼ N (0, σ 2). Then, it holds
that (˜Q

˜X (τ ))α = inf{x : (˜F
˜X (x))1−α > τ } = F−1

˜Xα
(τ ) =

μ̃α + Zτ σ , where Zτ denotes the τ th quantile of the stan-
dard normal distribution. Therefore, the FQF of ˜X can be
evaluated by ˜Q

˜X (τ ) = μ̃ ⊕ Zτ σ .

Definition 11 Let x̃1, . . . , x̃m be a FRS of ˜X . The fuzzy
empirical quantile function (FEQF) of ˜X at level τ is defined
by a FN with the following α-cuts:

(˜̂Q(τ ))α = inf{x : (˜̂Fn(x))α > τ }.

Lemma 3 Let ˜X1, . . . , ˜Xn be a FRS of ˜X. Then, ˜
̂Qn(τ ) =

˜X([nτ ]+1), where [k] represents the integer part of k.
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Table 1 Data set in Example 3 No x̃i

1 (6; 4, 10)LR
2 (5; 6, 8)LR
3 (8; 10, 6)LR
4 (10; 2, 4)LR
5 (13; 4, 8)LR
6 (19; 10, 12)LR
7 (20; 8, 6)LR
8 (23; 6, 6)LR
9 (25; 4, 4)LR
10 (27; 8, 8)LR
11 (26; 10, 2)LR
12 (25; 8, 4)LR
13 (5; 2, 2)LR
14 (8; 4, 2)LR
15 (9; 6, 4)LR
16 (10; 8, 2)LR
17 (12; 6, 4)LR
18 (13; 6, 10)LR
19 (20; 12, 8)LR
20 (28; 14, 14)LR
21 (29; 10, 4)LR
22 (30; 8, 6)LR
23 (35; 10, 4)LR
24 (44; 12, 6)LR
25 (45; 12, 12)LR
26 (43; 10, 4)LR
27 (47; 8, 4)LR
28 (48; 10, 6)LR
29 (50; 12, 16)LR
30 (49; 10, 10)LR

Proof The claim is immediately verified via

(˜̂Qn(τ ))α = inf{x : (˜̂Fn(x))α > τ } = (˜Xα)([nτ ]+1).

�


Example 3 Consider the data set given inTable 1with L(x) =
1 − x3 and R(x) = √

1 − x5. From Definition 9, first note
that

(˜̂Fn(x))α = 1

30

30
∑

i=1

I ((̃xi )1−α ≤ x),

where

(̃xi )α =
{

xi − lxi
3
√
1 − 2α if α ∈ [0, 0.5],

xi + rxi
5
√

1 − 4(1 − α)2 if α ∈ (0.5, 1].

Therefore, at quantile level τ ∈ (0, 1), the FEQF of ˜X is
given as follows:

(˜̂Qn(τ ))α = inf

{

x : 1

30

30
∑

i=1

I ((̃xi )1−α ≤ x) > τ

}

.

Table 2 shows the lower and upper bounds of ˜
̂Qn(τ )[α] for

τ = 0.25, 0.50 and 0.75 and some values of α. The plots of
˜
̂Qn(0.25),

˜
̂Qn(0.5) and

˜
̂Qn(0.75) are presented in Fig. 1.

Lemma 4 Suppose that ˜X1, . . . , ˜Xn is a fuzzy randomsample

with FQF ˜Q
˜X (τ ). Then, ˜

̂Qn(τ )
a.s.→ ˜Q

˜X (τ ).

Proof As

(˜̂Qn(τ ))α = inf{x : (˜̂Fn(x))α > τ } a.s.→ (˜Q
˜X (τ ))α,

holds for every α ∈ [0, 1], it follows that

P
(

lim
n→∞ D(˜̂Qn(τ ), ˜Q

˜X (τ )) > ε
)

≤
P

(

lim
n→∞ |(˜̂Qn(τ ))α − (˜Q

˜X (τ ))α| > ε
)

= 0

is satisfied for every ε > 0, which completes the proof. �


4 Hypothesis test for comparing fuzzy
quantiles of two populations

Let X1, . . . , Xm and Y1, . . . ,Yn be random samples from
two independent populations with absolutely continuous
distribution functions FX and GY , respectively. Also, let
X(1), . . . , X(m) andY(1), . . . ,Y(n) be the corresponding order
statistics. The null hypothesis of interest is H0 : QX (τ ) =
QY (ν), where τ and ν are two quantile levels. A test statis-
tic for the difference of the empirical quantile functions
̂QX (τ ) = X([mτ+1]) and ̂QY (τ ) = Y([nτ+1]) from different
populations can be defined by Heinzl andMittlboeck (2017);
Hutson (2009)

Tm,n =([mτ ] + 1)

(

m

[mτ ] + 1

)

n
∑

k=1

β(̂FX (Y(k))), [mτ ] + 1,m − [mτ ])w[mτ ]+1(k)

with

β(x, p, q) =
∫ x

0
s p−1(1 − s)q−1ds,

w[nν]+1(k) = ([nν] + 1)

(

n

[nν] + 1

)(

β

(

k

n
, [nν] + 1, n − [nν]

)

−β

(

k − 1

n
, [nν] + 1, n − [nν]

))

,
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Table 2 Some α-cuts of
˜
̂Qn(0.25),

˜
̂Q

˜X (0.50) and
˜
̂Q

˜X (0.75) in Example 3

α (˜̂Qn(0.25))
L
α (˜̂Qn(0.25))

U
α (˜̂Qn(0.5))

L
α (˜̂Qn(0.5))

U
α (˜̂Qn(0.75))

L
α (˜̂Qn(0.75))

U
α

0.1 6.54855 17.0477 16.4563 29.9787 25.9763 45.4955

0.2 6.91578 17.0477 17.1355 29.2550 25.9763 45.4955

0.3 7.24155 16.5811 17.1355 28.9515 26.2112 44.0328

0.4 7.37312 16.2511 18.2750 28.4225 27.2703 43.1025

0.5 7.61355 16.2511 19.9584 27.9620 27.2703 41.8256

0.6 8.92144 15.6251 20.8516 27.8455 28.8932 41.8256

0.7 9.85015 14.8163 20.8516 27.2235 29.5681 40.2810

0.8 9.92144 13.8515 21.7362 26.8511 31.4375 38.4708

0.9 9.96850 12.3797 22.6328 26.7078 33.3956 37.9838

Fig. 1 Plots of ˜
̂Qn(τ ) for τ = 0.25, 0.50 and 0.75 in Example 3

where

̂FX (Y(k)) = 1

m

m
∑

i=1

I (Xi ≤ Y(k)).

Now, let X̃1, . . . , X̃m and Ỹ1, . . . , Ỹn be two independent
FRSs from two populations with FCDFs ˜F

˜X and ˜F
˜Y . In the

following, a procedure is established for comparing fuzzy

quantiles of two populations. For this purpose, consider the
following fuzzy hypotheses concerning quantiles of two pop-
ulations:

Definition 12 Let ˜X and ˜Y be two FRVs. The hypotheses of
interest are defined as

H0 : ˜Q
˜X (τ ) =Pd

˜Q
˜Y (ν) with Pd(˜Q

˜X (τ ) � ˜Q
˜Y (ν))

= Pd(˜Q
˜Y (ν) � ˜Q

˜X (τ )) = 0.5
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versus

H A
1 : ˜Q

˜X (τ ) �Pd
˜Q

˜Y (ν) with Pd(˜Q
˜X(τ ) � ˜Q

˜Y (ν)) > 0.5,

or

HB
1 : ˜Q

˜Y (ν) �Pd
˜Q

˜X (τ ) with Pd(˜Q
˜Y (ν) � ˜Q

˜X(τ )) > 0.5.

For testing the above hypotheses,we employ the following
test statistic.

Definition 13 Let X̃1, . . . , X̃m and Ỹ1, . . . , Ỹn be two inde-
pendent FRS from two FCDFs ˜F

˜X and ˜F
˜Y . The α-cuts of

the fuzzy test statistic are defined by

˜Tm,n[α] =
[

inf
β∈Iα

˜Tm,n
β , sup

β∈Iα
˜Tm,n
β

]

,

where

(˜̂F
˜X )β((˜Yβ)(k)) = 1

m

m
∑

i=1

I ((˜Xi )1−β ≤ (˜Yβ)(k)).

The test decision on rejecting or non-rejecting H0 can be
made as follows:

Definition 14 Let us consider the problem of testing the
fuzzy hypothesis H0 versus H A

1 or HB
1 based on two indepen-

dent FRS x̃1, . . . , x̃m and ỹ1, . . . , ỹn . Then, at significance
level δ, the fuzzy test is defined as a fuzzy set:

1. As for testing H0 versus H A
1 , we use

ϕ̃A
δ [(̃x1, . . . , x̃m), (ỹ1, . . . , ỹn)] =

{

Reject

ϕ̃A
δ (Reject)

,
Accept

ϕ̃A
δ (Accept)

}

,

where ϕ̃A
δ (Reject) = Pd(˜Tm,n � 1−δ/2) is called the

degree of rejection of H0 and ϕ̃A
δ (Accept) = 1− ϕ̃A

δ (1)
is the degree of non-rejection of H0.

2. As for testing H0 versus HB
1 , we use

ϕ̃B
δ [(̃x1, . . . , x̃m), (ỹ1, . . . , ỹn)] =

{

Reject

ϕ̃B
δ (Reject)

,
Accept

ϕ̃B
δ (Accept)

}

,

where ϕ̃B
δ (Reject) = Pd(δ/2 � ˜Tm,n) is called the

degree of rejection of H0 and ϕ̃B
δ (Accept) = 1 −

ϕ̃B
δ (Reject) is the degree of non-rejection of H0.

Here, “Accept” and “Reject” stand for non-rejection
and rejection of H0, respectively. Since ϕ̃δ(Reject) +
ϕ̃δ(Accept) = 1, at significance level δ, one cannot
reject the null hypothesis if ϕ̃δ(Accept) > ϕ̃δ(Reject) or
ϕ̃δ(Accept) ≥ 0.5.

Remark 3 Since the decision to reject or non-reject H0 versus
H A
1 or HB

1 ismade via a fuzzy test, thismotivates to defuzzify
the decision in order to get an exact decision similar to clas-
sical statistical hypothesis testing. For this purpose, note that
˜A �PD k if and only if M

˜A = 0.5
∫ 1
0 (˜Aα + ˜A1−α) > k.

As for the interpretation of the test decision, it can be done
similar to the classical approach as follows:

1. Testing H0 versus H A
1 : if M

˜Tm,n > 1− δ/2, then H0 is
rejected; otherwise it cannot be rejected

2. Testing H0 versus HB
1 : if M

˜Tm,n < δ/2, then H0 is
rejected; otherwise, it cannot be rejected

Remark 4 As a special case of the proposed method, it
can be employed for comparing the fuzzy medians of two
populations. In this regard, Grzegorzewski (2005) and Grze-
gorzewski (2009) introduced a fuzzy test for comparing two
and k (crisp) population medians based on fuzzy random
variables, respectively. He developed a fuzzy test statistic
by employing fuzzy random variables and proposed a fuzzy
test based on the necessity ranking criterion. However, the
method presented in this paper follows a different strategy
for comparing fuzzy quantiles of two populations based on
fuzzy random variables. The proposed fuzzy quantile tech-
nique includes the following procedure:

1. Extending the quantile of a FRV as a FN
2. Extending the empirical estimator of a fuzzy quantile

based on a FRS
3. Investigating the relationship between a fuzzy quantile

and its corresponding estimator for large sample cases

Then, a non-parametric statistical hypothesis test was devel-
oped for comparing any fuzzy quantiles of two populations
based on two independent fuzzy random samples.

5 Numerical examples

In this section, the feasibility and effectiveness of the
proposed non-parametric two-sample test on quantiles are
examined via numerical examples. Note that there is no
method for a reasonable comparison, as other two-sample
fuzzy tests rely on comparing the means or medians (or vari-
ances) of two populations.

Example 4 A random sample of 30 identical twins underwent
psychological tests to measure their aggressiveness. We are
interested in comparing the twins to see if the firstborn twin
tends to be more aggressive than the other one. Assume that,
due to limitations in psychological measurements, the results
of the evaluations are reported as TFNs for the first born as
(x; 0.02x)L and the second born as (y; 0.02y)L with L(x) =
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Table 3 Data set in Example 4

No xi yi No xi yi No xi yi

1 82 65 11 89 83 21 82 68

2 90 82 12 81 68 22 77 73

3 80 75 13 82 75 23 75 70

4 83 74 14 91 83 24 83 78

5 77 73 15 71 78 25 78 71

6 80 67 16 90 86 26 79 66

7 82 80 17 91 75 27 89 82

8 84 79 18 88 83 28 86 83

9 80 77 19 91 82 29 93 84

10 92 69 20 88 74 30 78 64

Table 4 Some α-cuts of ˜T 30,30

in Example 4
α (˜T 30,30)Lα (˜T 30,30)Uα

0.1 0.353496 0.630744

0.2 0.370432 0.612636

0.3 0.386180 0.592001

0.4 0.400875 0.578113

0.5 0.413266 0.562957

0.6 0.427699 0.548200

0.7 0.441191 0.532902

0.8 0.455644 0.519171

0.9 0.470748 0.504895

1− x2, where the observations xi and yi , i = 1, . . . , 30, are
shown in Table 3. At significance level δ = 0.05 we intend
to test:

H0 : ˜Q
˜X (0.5) 
Pd

˜Q
˜Y (0.5),

H A
1 : ˜Q

˜X (0.5) �Pd
˜Q

˜Y (0.5).

The fuzzy test statistic can be determined based on Defini-
tion 13. The lower and upper bounds of ˜T 30,30 are shown in
Table 4 based on various values of α ∈ (0, 1). The plot of
˜T 30,30 is shown in Fig. 2. According to Definition 14, the
fuzzy test can be performed via

ϕ̃A
0.05[(̃x1, . . . , x̃30), (ỹ1, . . . , ỹ30)]

=
{

Reject

ϕ̃A
0.05(Reject)

,
Accept

ϕ̃A
0.05(Accept)

}

,

where ϕ̃A
0.05(Reject) = Pd(˜T 30,30 � 0.975) = 0.72. There-

fore, at significance level 0.05, the fuzzy null hypothesis is
rejected with a degree of 0.72 and non-rejected with a degree
of 0.28. As for the defuzzification of this test decision, note
that it holds M

˜T 30,30 = 0.984 > 1 − δ/2 = 0.975. Fol-
lowing this approach, the final decision is to reject the null
hypothesis at level δ = 0.05.

Fig. 2 The observed fuzzy test statistics in Example 4

Table 5 Data set in Example 5 No xi yi

1 15.30 7.74010

2 17.10 7.77490

3 16.30 7.72270

4 16.05 7.77925

5 16.75 7.96195

6 16.60 7.44720

7 17.10 8.07070

8 17.50 7.89525

9 16.10 8.07360

10 16.10 7.49650

11 16.00 7.57190

12 16.75 7.79810

13 17.50 7.87640

14 16.50 8.19250

15 16.40 8.01705

16 16.00 7.94310

17 16.20 7.71835

18 – 7.87785

19 – 7.29040

20 – 7.75750

21 – 7.31960

22 – 7.63570

23 – 8.06055

Example 5 Let us consider the rocket-motor experiment data
set based onWeerahandi and Johnson (1992). It is of interest
to make inference on the reliability of the rocket motor at the
highest operating temperature of 59oC . At this temperature,
the distribution of the operating pressure Y tends to be clos-
est to the distribution of the chamber burst strength X . It is
assumed that the observations can be reported as TFNs via
x̃i = (xi ; 0.05xi )T and ỹi = (yi ; 0.1yi )T , where the obser-
vations xi and yi are given in Table 5. At significance level
δ = 0.05, we test the following pair of hypotheses:
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Fig. 3 The observed fuzzy test statistics in Example 5

Table 6 Some α-cuts of ˜T 17,23

in Example 5
α (˜T 17,23)Lα (˜T 17,23)Uα

0.1 0.0127525 0.0724798

0.2 0.0190161 0.0707403

0.3 0.0245852 0.0694216

0.4 0.0289491 0.0671457

0.5 0.0323080 0.0646441

0.6 0.0376267 0.0628089

0.7 0.0413607 0.0609809

0.8 0.0460045 0.0594004

0.9 0.0460045 0.0594004

H0 : ˜Q
˜X (0.10) 
Pd

˜Q
˜Y (0.90),

HB
1 : ˜Q

˜X (0.10) ≺Pd
˜Q

˜Y (0.90).

According to Definition 13, the plot of ˜T 17,23 is shown in
Fig. 3. Table 6 also shows the lower and upper bounds of
˜T 17,23 based on specific values of α ∈ (0, 1). According to
Definition 14, the fuzzy test can be conducted via

ϕ̃B
0.05[(̃x1, . . . , x̃17), (ỹ1, . . . , ỹ23)]

=
{

Reject

ϕ̃B
0.05(Reject)

,
Accept

ϕ̃B
0.05(Accept)

}

,

where ϕ̃B
0.05(Reject) = Pd(˜T 17,23 ≺ 0.025) = 0.21 and

ϕ̃B
0.05(Accept) = 0.79. Thus, at significance level 0.05, the

fuzzy null hypothesis is not rejectedwith a degree of 0.79 and
rejected with a degree of 0.21. Furthermore, the defuzzified
value related to˜T 17,23 (M

˜T 17,23 = 0.057) is larger than δ/2 =
0.025, so the decisionwill be to non-reject the null hypothesis
at level δ = 0.05.

6 Conclusions

In this article, an inferential procedure was developed for
comparing fuzzy quantiles of two independent populations.
For this purpose, the notion of the fuzzy quantile of a fuzzy
random variable was introduced. Then, an estimator of the
proposed fuzzy quantile function was developed according
to a fuzzy random sample. The estimation procedure was
illustrated based on some numerical examples. Further, the
large sample property of the proposed fuzzy empirical quan-
tile functionwas analyzed based on an absolute error distance
for fuzzy numbers. In addition, the concept of the fuzzy test
statistic was introduced based on fuzzy order statistics of two
fuzzy random samples. To test the fuzzy hypotheses on quan-
tiles of two populations, the obtained fuzzy test statistic and
the crisp significance level were compared using an criterion
called preference degree. As the proposed fuzzy test leads to
a degree of rejection or non-rejection of the underlying fuzzy
null hypothesis, we also proposed an approach to defuzzify
the fuzzy test decision in order to reach a crisp test decision
that is important for practical usage.

The results of the practical applications indicate that the
proposed method is effective for comparing fuzzy quantiles
of two independent populations. One of the advantages of the
proposed method is that it can be applied to all kind of fuzzy
numbers. As for potential future investigations, employing
the proposed method to other types of imprecision such as
intuitionistic fuzzy data and/or intuitionistic fuzzy hypothe-
ses could be a promising direction. As another idea for future
research, the presented methodology could also be extended
to the case when more than two populations need to be com-
pared in terms of their quantiles.
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