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SUMMARY

More than 20 yr of measurement data of the gravity missions GRACE (Gravity Recovery
And Climate Experiment) and GRACE-FO (GRACE-Follow-On) allow detailed investiga-
tions of long-term trends in continental terrestrial water storage (TWS). However, the spatial
resolution of conventional GRACE/GRACE-FO data products is limited to a few hundred
kilometres which restrains from investigating hydrological trends at smaller spatial scales. In
this study GRACE and GRACE-FO data have been used to calculate TWS trends with maxi-
mized spatial resolution. Conventionally, GRACE/GRACE-FO is presented as a series of either
unconstrained gravity fields post-processed with spatial low pass filters or constrained inver-
sions commonly known as Mascon products. This paper demonstrates that both approaches to
suppress spatially correlated noise are mathematically equivalent. Moreover, we demonstrate
that readily inverting all available sensor data from GRACE/GRACE-FO for a single TWS
trend map, together with annual variations and a mean gravity field, provides additional spatial
detail not accessible from the standard products. The variable trade-off between spatial and
temporal resolution as a unique feature of satellite gravimetry allows for gravity products that
are tailored towards specific geophysical applications. We show additional signal content in
terms of long-term water storage trends for four dedicated examples (Lake Victoria, North-
west India, Bugachany Reservoir and High Plains Aquifer) for which external information
from other remote sensing instruments corroborates the enhanced spatial resolution of the new
mean-field trend product.
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mountain glaciers (Ciraci et al. 2020). The missions also provide

I INTRODUCTION direct estimates of the increase in ocean mass due to enhanced

Dedicated satellite missions that enable the precise and continu-
ous survey of spacecraft trajectories in low altitude orbits around
the Earth have revolutionized the ability to map the Earth’s global
gravity field and its temporal variations (Flechtner ef al. 2021). The
Gravity Recovery and Climate Experiment (GRACE, Tapley et al.
2019) and its successor GRACE Follow-On (GRACE-FO, Landerer
et al. 2020) allow the calculation of a new gravity field model from
sensor data accumulated over only 30 d. The resulting time-series
extends over more than 20 yr and has spurred entirely new and
innovative applications of satellite gravimetry in many branches
of the physical Earth sciences. GRACE and GRACE-FO data al-
lowed for the first time the unambiguous mapping of large-scale
mass losses from continental ice sheets (Shepherd et al. 2012) and

meltwater inflow as a consequence of ice mass loss (Cazenave &
Moreira 2020), which allows for the separation of sea-level rise
solely caused by ocean warming as a direct measure of the Earth’s
energy imbalance (von Schuckmann et al. 2016). Satellite gravime-
try has also triggered new research in the solid Earth sciences by
providing new observational insight into glacial isostatic adjustment
(Caron & Ivins 2020), the temporal evolution of megathrust earth-
quakes (Panet ef al. 2022), and ongoing tectonic processes in active
continental collision zones like the Tibetan Plateau (Braitenberg &
Shum 2017).

In addition, the data from GRACE and GRACE-FO have sig-
nificantly impacted hydrology, hydrometeorology and the climate
sciences. For the first time, variations in terrestrial water storage
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(TWS) in all possible storages from the surface down to the deepest
aquifers are mapped over all continental areas of the world. Be-
sides identifying seasonal variations in TWS (Tapley et al. 2004),
the satellite record provides insight into interannual variations re-
lated to large-scale climate modes (Pfeffer et al. 2022), the char-
acteristics of hydrometeorological extremes like extended periods
of drought (Thomas et al. 2014) or heavy flooding events (Chen
et al. 2010), as well as the quantification of atmospheric net-water
fluxes consisting of precipitation and evapotranspiration (Eicker
et al. 2020). GRACE data also allowed for the first time to iden-
tify large-scale groundwater losses (Famiglietti 2014) due to ex-
tensive anthropogenic water extraction for irrigation. Such human
interventions into the terrestrial water cycle are expected to in-
crease with increasing surface temperatures due to continuously
rising greenhouse gas concentrations in the atmosphere. Even to-
day, contemporary trends emerging in the GRACE record align
well with long-term projections from global coupled climate mod-
els (Jensen et al. 2019), thereby nicely corroborating inferences
obtained from such models for the future evolution of our planet.
The importance of continued monitoring of TWS from space uti-
lizing satellites has also been acknowledged by the Global Cli-
mate Observing System of the World Meteorological Organiza-
tion by listing TWS as a new Essential Climate Variable (ECV) in
its 2022 Implementation Plan (World Meteorological Organization
2022).

In contrast to the gravity gradiometer mission GOCE that di-
rectly observes functionals of the Earth’s gravity field along the
satellite orbit (Rummel ef al. 2011), the spacecrafts of each of
the twin-satellite missions GRACE and GRACE-FO instead act as
proof masses in Earth’s gravitational field. Precise monitoring of
the relative distance, velocity and accelerations between the two
identical satellites trailing each other approximately 200 km apart
allows for inferring the gravitational disturbances of the mass distri-
bution at or underneath the Earth’s surface. The tracking is realized
with microwave frequencies in the K- and Ka-bands for both mis-
sions, and on GRACE-FO additionally with an innovative laser in-
terferometry instrument (Abich ef al. 2019) that offers even higher
tracking precision. Nevertheless, satellite measurements require a
mathematical inversion to obtain surface mass changes at Earth’s
surface.

This inversion poses several challenges which directly impact the
quality of terrestrial water storage estimates derived from satellite
gravimetry. Each satellite is affected by the gravitational acceler-
ation changes at satellite altitude, which is smoothed compared to
the gravitational attraction at Earth’s surface due to the large dis-
tance of the satellite to the field-inducing masses. We note that
lower orbits would increase orbit perturbations and thus the sen-
sitivity of gravity missions. However, higher atmospheric densi-
ties and, consequently, more considerable atmospheric drag act-
ing on the satellites would require additional propulsion energy
to compensate for the loss of momentum and subsequently orbit
altitude. Therefore, the initial orbit height of 500 km is a care-
fully chosen compromise between mission duration and mission
sensitivity.

During the inversion, the observed signal needs to be propa-
gated from satellite altitude to Earth’s surface, to determine water
storage changes. This downward continuation process also ampli-
fies measurement noise depending on the spatial scale. Smaller
scales are subject to stronger amplification, resulting in well-known
high-frequency spatial noise patterns (e.g. Ik et al. 2002). Two ap-
proaches for noise reduction can be distinguished: Traditionally,
gravity field parameters are solved in terms of (unconstrained)
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spherical harmonics that are subsequently smoothed in space to
diminish the impact of noise contained in the poorly determined
smaller spatial scales (Wahr er al. 1998). Spatial smoothing might
also be performed with anisotropic filters objectively derived from
the characteristics of the error covariance matrix of a typical monthly
solution of the global gravity field derived from GRACE data
(Kusche 2007). The second approach includes a priori constraints
about surface mass variability for geographic blocks (or spherical
caps) to stabilize the inversion directly without requiring subsequent
post-processing. Pioneered for GRACE/GRACE-FO applications
by Luthcke et al. (2013), Mascon solutions are now available from
many groups that also include the GRACE/GRACE-FO Science
Data System centres Center for Space Research at University of
Austin (CSR, Save et al. 2016) and Jet Propulsion Laboratory (JPL,
Watkins et al. 2015) as well as from the Goddard Space Flight
Center (GSFC, Loomis et al. 2019). A comprehensive overview
on the development of Mascon solutions can be found in Antoni
(2022).

Both approaches have the same effect by acting as a spatial low-
pass filter to reduce the noise introduced by the inversion process
and are mathematically equivalent. That is evident mainly because
the constrained inversion can be rewritten as a filter matrix act-
ing on the unconstrained solution. For further consideration, we
treat both approaches as a low-pass filter acting on a noisy in-
put surface mass change field. A key design parameter in both
approaches is the signal-to-noise ratio (SNR) of the final mass
change fields. In other words, one has to decide how strong the
implicit or explicit low-pass filter should be to obtain a data product
with a suitable noise level. This decision can be based on exter-
nal models for the observation noise and expected signal. Regard-
less of how the filter is derived, it is beneficial to filter as little as
possible since additional smoothing will reduce the effective spa-
tial resolution of the resulting mass grids as not only noise but
also signal is filtered (e.g. Vishwakarma et al. 2017; Wiese et al.
2016). Additionally, it will inevitably enhance the adverse effects
of spatial leakage, which is one of the most considerable obsta-
cles in applying GRACE data for scientists with a non-geodetic
background.

The overall noise level in the unconstrained surface mass change
estimates is a significant factor in determining the filter strength.
By accumulating observations of a more extended period than 30 d,
the random noise components tend to average out, thus reduc-
ing the noise level in the derived unconstrained gravity field and
the subsequently inverted surface mass estimates. In other words,
we can directly benefit from the reduced noise level by apply-
ing a weaker filter, thus retaining more signals with less spatial
leakage so that processes at smaller spatial scales might be stud-
ied. Effectively, spatial resolution is traded against the temporal
resolution.

In this contribution, we contrast long-term water storage trends
estimated from monthly GRACE and GRACE-FO solutions against
trends based on accumulated observations over the same period. In
Section 2, we show the equivalence of post-processing filters and
constrained inversion, detail the derivation of our long-term TWS
trend estimate and outline the data sets used in this study. Section 3
contains an intercomparison of trend signals derived from different
data sets in small regions, as well as a comparison with independent
observations. Finally, we discuss the advantages and disadvantages
of long-term water storage trend estimates and highlight areas of
use where this complementary data set offers benefits over the more
traditional analysis of monthly GRACE/GRACE-FO water storage
products.
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2 DATA AND METHODS

2.1 A conceptual look at water storage trend estimates
based on GRACE/GRACE-FO data

For better accessibility, TWS anomalies based on GRACE and
GRACE-FO data are typically given in equivalent water height
(EWH) on geographic grids. As observation-derived data sets, the
treatment of the (inevitable) measurement noise has a significant
impact on the quality of the TWS data products, which are ei-
ther based on the output of a constrained inversion (CI), as in the
popular Mascon products, or derived from post-processing uncon-
strained gravity field solutions by applying spatial low-pass filters
(SLPF). In practice, different strategies exist for the determination
of the filter parameters. The DDK filter of Kusche e al. (2009)
uses a synthetic noise model for GRACE observations based on
a single month’s satellite ground track coverage. That works very
well for most of the GRACE/GRACE-FO period, except for months
where the satellites exhibit a repeat orbit which deteriorates the fil-
tered surface mass change fields. Horvath ez al. (2018) designed the
VDK filter to additionally consider changes in the orbit geometry
and the actual measurement noise level, which eventually increases
during a mission due to energy limitations leading to reduced ther-
mal stability, and other hardware degradations. Filtering with VDK
is, therefore, directly comparable to a constraint inversion based on
the same data. The signal covariance model of both the DDK and
VDK filters is based on an isotropic power law function. That means
the filter expects the same signal magnitude and spatial correlation
at each point on Earth’s surface. Compared to the VDK filter, Mas-
con solutions only differ in complexity and derivation of the signal
covariance model, which in their case may be variable in space and
time. A special case are the JPL Mascons, which also consider tem-
poral correlations between adjacent months. An advantage of the
Mascons is their parametrization in the space domain, which makes
formulating complex spatially varying constraints easier than the
otherwise utilized spherical harmonics. Nevertheless, it is mathe-
matically possible to introduce similar information in the spectral
domain (Chen et al. 2021).

Even though the CI and SLPF approaches seem very different,
they are closely related. Both approaches aim at suppressing spa-
tially correlated noise, which renders the usage of unconstrained
or unfiltered GRACE/GRACE-FO EWH grids impossible. This
noise increases inversely with the spatial scale, so CI and SLPF
approaches act as low-pass filters. The main difference between the
approaches is where the low-pass filter effect comes into play. In
CI, constraints in the form of a signal variance matrix are applied
directly in the inversion process to mitigate the effect of measure-
ment noise on the water storage estimates. Conversely, in SLPF, a
spatial low-pass filter is applied to unconstrained GRACE/GRACE-
FO gravity field solutions before propagating to EWH grids. The
final results of both approaches are comparable and mathematically
interchangeable.

As mentioned above, every constraint can be expressed as a fil-
tering operation, which is also the idea behind the widely used DDK
filter (Kusche et al. 2009). To show the equivalence between con-
straint inversion and applying a spatial filter, we start with the least
squares adjustment (LSA) to estimate the unconstrained/unfiltered
solution Xy. Given the satellite measurements 1, the linearized func-
tional model A, and the residuals e, the observation equations for
this LSA problem are given by

1= Axy +e. (1

The solution to this system of equations is obtained by forming the
normal equation matrix N and right-hand side n,

(ATPA) xy = A"Pl & Niy =n, )

where P is the inverse variance—covariance matrix of the observation
noise. Constraints can be applied by adding the inverse of the signal
covariance matrix S. Thus, the constrained solution can be written
as

fe=(N+8")"'n=(N+8")" Nz, 3)

where NXy = n is the system of normal equations of the uncon-
strained estimate. The spatial filter matrix equivalent to the con-
strained estimate is then defined as

W=(N+s")"'N, “)
which can be rewritten to
W =SS+ 3", (5)

using the Woodbury matrix identity (Woodbury 1950). In eq. (5),
¥z = N7 is the noise covariance matrix of the unconstrained solu-
tion and S is the expected signal covariance matrix. The filter or the
constrained adjustment is, therefore, fully described by the signal
and noise covariance models S and X;. In the case of monthly total
water storage products, the signal covariance matrix S should reflect
the month-to-month variability of water storage and X; is a mea-
sure of the observation noise present in an unconstrained monthly
solution. Note that these considerations are independent of the cho-
sen gravity field parametrization, so they apply to both spherical
harmonics- and Mascon-based solutions.

We can use eq. (5) to investigate how the filter properties change
with different noise levels. For low noise (£; — 0), the filter matrix
tends towards the identity matrix, resulting in a weak filter. That is
also the case if the expected signal S is drastically larger than the
noise. For high noise levels, W will tend towards zero, which means
both the signal and the noise are aggressively filtered.

Ideally, a post-processing filter maximizes the SNR in the sought-
after water storage grids by removing as much noise as possible
while retaining all the signals. Since applying a filter to the EWH
grids will affect both signal and noise, we also want to choose the
least aggressive filter, which allows us to reach a suitable SNR. A
reasonable goal is, therefore, to look for ways to reduce the input
noise, which then allows applying weaker filters and constraints.
So, we can reduce the GRACE/GRACE-FO measurement noise by
sacrificing temporal resolution. That comes somewhat intuitively as
restricting the possible temporal variation acts as an averaging pro-
cess in time. Applying this to our previous considerations means that
reducing the spatial resolution and, thus, reducing the measurement
noise, the filters we need to apply can be less aggressive.

The conclusion we can draw here is that filters and constraints
tailored to month-to-month water storage variations have to deal
with a higher inherent measurement noise level than filters and
constraints for a multiyear water storage trend due to the different
averaging periods. Subsequently, trends computed from monthly
GRACE/GRACE-FO data products are filtered too aggressively.
That means crucial trend information is lost, especially in smaller
catchments and aquifers.

If we directly formulate constraints which take into account the
expected trend signal and the reduced noise level resulting from the
long accumulation period, we can arrive at a better water stor-
age trend estimate, which preserves more small-scale features.
This approach is followed in long-term trends co-estimated with
mean gravity field models like GOCOO06s, ITSG-Grace2018s or
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Tongji-Grace2018k. It is, therefore, reasonable to compare these
co-estimated trends with trends based on monthly water storage
products. In the following, we want to determine the impact of tai-
lored constraints on the derived water storage trends, compared to
qualitative and quantitative trends from monthly data products.

2.2 Intercomparison of water storage trends based on
monthly data sets

First, we compare different monthly products derived with different
approaches. To that end, we estimate long-term trends, together with
constant and seasonal terms, from the RL0O6 Mascons solutions of
the Center of Space Research (CSR, Center for Space Research
2020), the Jet Propulsion Laboratory (JPL, NASA/JPL 2019), and
the Goddard Space Flight Center (GSFC, Loomis ef al. 2019), as
well as post-processed spherical-harmonics-based solutions of the
International Combination Service for Time-variable Gravity Fields
(COST-G) and the German Research Centre for Geosciences (GFZ).
The latter two are provided via the GFZ-hosted GravlS portal (Grav-
ity Information Service)! as gridded water storage anomalies. All
these data sets have the same signal definition on the continents
and are, therefore, directly comparable when looking at water stor-
age variations. Fig. 1 shows the estimated trends from 2002-04
to 2021-01 for each of the products in the comparison. We can see
the most prominent differences between spherical-harmonics-based
and Mascon-based solutions in regions where large horizontal gra-
dients in water storage trend values occur. This mainly concerns re-
gions with significant ice mass loss, such as Greenland, Antarctica,
the Gulf of Alaska and other coastal areas. Within the continental
areas, all the products are similar, with areas in Northern India and
China as notable exceptions.

Comparing Mascon solutions on a pixel-per-pixel basis without
interpolation is difficult because of the different Mascon placements
and shapes. We can, however, evaluate the spherical-harmonics-
based solutions on an arbitrary grid and average the water storage
values in each Mascon cell. That allows us to directly compare
spherical harmonic and Mascon solutions and perform indirect
inter-comparisons between the different Mascon products. Fig. 2
shows the differences between the two spherical-harmonic-based
solutions used in this study, and each of the three Mascon solutions.
In addition to the regions where we were already able to identify dif-
ferences in the absolute trend values, we can now also see other areas
with minor differences. The water storage trends of the CSR and JPL
Mascons primarily differ in spatially confined regions like Northern
India, China and around Lake Victoria. That can be attributed to
the inhomogeneous signal covariance model used in the Mascon
process compared to the isotropic one used in the VDK filter. The
GSFC Mascons fit closest to the spherical-harmonics-based solu-
tions with differences below 10 mmyr~' EWH on the continents.
Further, we can observe that the two spherical-harmonics-based
solutions are very similar except for slightly reduced striping arte-
facts in the COST-G products. Overall, all products show a close
agreement on the continents.

2.3 Trend co-estimated with mean gravity field

To calculate mean field trend (MFT) trend estimate, we take the sys-
tem of normal equations from ITSG-Grace2018s (Mayer-Girr ef al.
2018; Kvas et al. 2019), which consists of a static constituent, trend

Uhttp://gravis.gfz-potsdam.de/home, visited 2023-01-04
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and annual oscillation. We combine it with normal equations as-
sembled from approximately two and a half years for GRACE-FO
GPS tracking and microwave ranging data. The parametrization of
the individual constituents is the same as for the GRACE contri-
bution, which models the static component of Earth’s gravitational
field in spherical harmonics up to degree and order 200, and all
temporal constituents up to degree and order 120. The two systems
of normal equations are then added, a constraint is applied to the
annual oscillation, and both static and annual oscillation are sub-
sequently eliminated. That leaves us with an unconstrained system
of trend normal equations up to degree and order 120, which im-
plicitly contains static and annual parameters. Before solving the
system of normal equations, we transform it from the spherical har-
monics domain into the space domain. The reason for this is that
regionally varying constraints can be easier applied there, because
in the spectral domain, they will result in a dense regularization
matrix (Kvas ef al. 2021; Chen et al. 2021). Our target parameter
space are radial basis functions as defined in Eicker er al. (2014)
with a diagonal regularization matrix. Instead of pre-defining the
signal covariance matrix used to regularize the trend, we co-estimate
it with the trend parameters using variance component estimation
(VCE). That means we have a purely data-driven constraint for the
accumulated trend estimate without any prior information on the
signal level.

On the other hand, deriving a trend from a time-series of con-
strained or post-processed solutions is typically done by performing
regression in the form of

Rek = a9+ (i — 1) act + €% ag +e, (6)

where in addition to the trend parameters, a constant value and an an-
nual oscillation are estimated. In some cases, additional sinusoidal
parameters, for example, a 161-d or semi-annual oscillations are
set up. This deterministic model can be estimated in a multivariate
linear regression model of the form

L=AX+E, (7

where A is the design matrix containing the temporal basis func-
tions, L is the observation matrix which contains the filtered or
constrained solutions (.  in each row. The solution to this regres-
sion problem is subsequently given by
X¢ X Wi

= (ATA)'AT : . (8)

T T T
XC, n XU, an

Xc = (ATA) AT

We added the subscripts to the filter matrices because of their time
dependency. In the case of GRACE and GRACE-FO, the time de-
pendence is a result of varying accuracy due to changing orbit ge-
ometry, satellite altitude or instrument quality. Furthermore, some
processing centres use a time-varying signal model. For further con-
sideration, we assume an idealized case where we have stationary
signal and noise properties. That allows us to find a direct relation
between constrained and unconstrained model estimates given by

XC ~ XUWT ©)

where W describes a filter with properties representative for the
whole time-series. More concisely, we can relate the constrained
and unconstrained trend with acr &~ W ayr. Even though this is
a very idealized look at constrained trend estimates, we can con-
clude that fitting a trend to constrained or post-processed monthly
products are roughly equivalent to estimating the trend from un-
constrained or unfiltered solution and then applying a filter with the
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Figure 1. Comparison of linear TWS trend estimates based on monthly L3 products for the time span 2002-04 to 2021-01.

same properties. As a consequence, the resulting trend will have
roughly the same properties in terms of signal attenuation and spa-
tial leakage as each input solution. If we revisit eq. (5), we can see
that the constraints tailored to the monthly signal and noise content
represented by W might be a sub-optimal fit for the trend estimate.
In regions with large seasonal water storage, the signal covariance
S will overestimate the trend. More importantly, the noise level in
the unconstrained trend will be significantly lower than in a single
monthly solution if the accumulation period is long enough. Thus
W will generally result in a too aggressive low-pass filter when
long-term trends are concerned.

To make our MFT estimate comparable with the other data sets,
we added degree 1 rates obtained from GFZ GravIS? and removed
the effect of GIA using the ICE6G-D model (Peltier ef al. 2018).
The resulting trend propagated to the space domain can be found in
Fig. 3. We can see that most features are sharper and better local-
ized than in the trends based on monthly solutions. However, we can
also see ringing effects in regions with large signal gradients, like

2ftp://isdcftp.gfz-potsdam.de/grace/GravIS//GFZ/Level-2B/aux_data, vis-
ited 2023-01-04

Greenland, Alaska and Antarctica. This is a direct consequence of
the maximum spherical harmonic degree of 120 to which the initial
ITSG-Grace2018 and GRACE-FO systems of trend normal equa-
tions are developed. While suitable for applications on monthly time
scales where smaller spatial scales are smoothed more aggressively
due to lower SNR, this chosen maximum degree is not sufficient for
long-term trend estimate. Combined with our data-driven regular-
ization technique, which cannot discriminate between geophysical
signal and ringing effects, this diminishes the usability of the MFT
estimate in regions with larger spatial gradients. These artefacts can
be reduced with a higher spherical harmonic maximum degree of
the base normal equations, where sharper gradients can be repre-
sented or (additionally) a tailored regularization which suppresses
these spurious signals. Before the MFT estimate can be released
as a robust data product, these points need to be addressed, how-
ever, for the study at hand they play a minor, as our goal is to offer a
proof of concept that the MFT provides a theoretically higher spatial
resolution.
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Figure 2. Difference between trend estimates based on Mascon and spherical harmonic parametrizations in the time span 2002-04 to 2021-01.

3 EXAMPLES OF HYDROLOGICAL
TREND SIGNALS

This section will take a closer look at four smaller-scale hydrological
trends. These examples will showcase the value of the higher spatial
resolution of the MFT compared to trends estimated from monthly
solutions. As shown above, the differences between the trends of
monthly solutions are relatively small. Thus, we only use the COST-
G and the GSFC Mascons trend for comparison.

3.1 Lake Victoria

Lake Victoria in Eastern Africa is the second-largest freshwater
lake in the world. The lake’s water level has risen since around
2006 about three meters, which induces a strong trend signal in the
gravity field. Fig. 4 shows the spatial patterns of the TWS trends
around Lake Victoria. The trend is far better localized in the lake for

the MFT product than for monthly solutions. For independent com-
parison, we use a volume change time-series derived from satellite
altimetry observations from DAHITI (dahiti.dgfi.tum.de, Schwatke
et al. 2015) and a constant lake surface extent derived from
Global Surface Water (https://global-surface-water.appspot.com/,
Pekel ef al. 2016). The latter is an acceptable simplification since
the seasonal and internannual variations of the surface area of Lake
Victoria are small compared to its total extent. The altimetric vol-
ume change amounts to a total mass difference of 129.6 Gt between
April 2002 and January 2021. In order to get the accumulated mass
change from the TWS trends, the spatial integration area has to be
defined. We chose to integrate first over the lake area (58 000 km?)
and then also add a 50 km buffer to the lake shoreline to capture
leakage signals (139 000 km?). The buffer width is chosen subjec-
tively, as our primary interest is to gauge the spatial resolution and
spatial localization of the different trend products rather thana TWS
analysis. For this reason, we also omit uncertainty estimates for the
derived TWS trend values. Integrating only over lake area leads to an
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Figure 3. TWS trend estimate based on accumulated normal equations (mean field trend, MFT) for the period 2002-04 to 2021-01 (geocentre motion and
postglacial rebound were corrected). Ocean bathymetry is adapted from NASA Visible Earth.
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Figure 4. TWS trend from MFT, COST-G and GSFC Mascons for the period 2002-04 to 2021-01.

underestimation of the mass change in all three trends, with 76.1 Gt
for the MFT and 34.9 Gt and 38.8 Gt for the COST-G and GSFC
Masons trends, respectively. Taking the 50 km buffer into account
improves all estimates, with 131.3 Gt for the MFT, and 75.2 and
82.3 Gt for COST-G and GSFC Masons trends. Within the extended
integration area, the MFT almost captures the altimetry-derived
mass change, while the trends derived from monthly solution still
exhibit substantial underestimation. That proves the advantage of
the significantly better spatial resolution of the MFT in localizing
smaller scale hydrological signals. Note that extending the integra-
tion area to counteract signal attenuation only works for cases where
there is little to no signal outside of the region of interest. Extending
the integration region in areas with strong neighbouring signals will
mix signal sources and thus produce results that are hard to interpret.
However, in such cases, the MFT still proves advantageous because
due to the better spatial localization, as this example showcases,
signal cross-contamination will be lower, and the magnitude will be
higher even if only the catchment boundaries are considered.

3.2 Northwestern India

The following example takes a look at the well-known trend sig-
nal in Northwestern India (e.g. Rodell er al. 2018). While the
two trends calculated with the monthly data only show a strong
trend in the Northwestern part of India, the TWS trend of the
MEFT solution shows a considerably more detailed spatial pat-
tern than the trends derived from the monthly solutions Fig. 5.
The marked negative MFT trends to the northwest of the city of
Delhi in the Ganges—Indus plains and on the eastern side of the
Aravall range largely coincide with regions that are characterized
by irrigation that is to over 85 per cent fed from groundwater,
according to the Food and Agricultural Organization (FAO,https:
//data.apps.fao.org/aquamaps/, see outlines in Fig. 5). The negative
TWS trends can thus be related to groundwater overuse as stated
in previous studies, but are spatially attributed in a much better
way to the irrigation areas in the MFT data set. Another smaller
area with negative TWS trends in MFT in the Upper Indus Valley
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Figure 5. TWS trend from MFT, COST-G and GSFC Mascons for the period 04/2002—12/2021. Black outlines indicate areas with high-percentage

(>85 per cent) of irrigation fed from groundwater.

is most probably caused by melting high mountain glaciers in this
region (Brun ef al. 2017). All these spatially detailed trends cannot
be distinguished in the trend maps of the two monthly products.

3.3 Boguchany reservoir

The Boguchany Reservoir dams the Angara River in Siberia near
the town of Kodinsk. Though the works on the dam started as early
as 1974, the construction was only finished in 2012, after which the
reservoir was filled until 2016. The official capacity of the reservoir
amounts to 58.2 km? (SE Solutions & Ecoline Environmental As-
sessment Centre 2006) and it extends from the dam in Kodinsk to
the Ust-Ilimsk dam located 357 km upstream with a width ranging
from 1.2to 15 km (Jagus & Rzetala 2013). Fig. 6 shows the TWS
trend signals around the reservoir, again the MFT and the two trends
derived from the monthly solutions of COST-G and GSFC Mascons.
While the MFT shows a clear and robust positive signal in the reser-
voir’s area, the two monthly-solutions-derived trends display only
a weak signal. We first compute the mass change for an area that
represents the reservoir outlines by adding a 15km buffer to the
corresponding river segment. Here, all trend products underesti-
mate the reservoir capacity with 15.4 Gt for the MFT, and 3.2 and
3.6 Gt for the COST-G and GSFC trends. Extending the integration
area to a 50 km along the river yields a mass change for the MFT,
COST-G and GSFC products of 53.5, 12.2 and 13.7 Gt, respectively.
This leads to a similar conclusion as in the Lake Victoria example.
Extending the integration region to restore signal magnitude works
because there are no other large geophysical mass change signals in
the vicinity of the reservoir, but the superior spatial localization of
the MFT is evident. The derived mass signal from the MFT closely
matches the official reservoir capacity, while the other two trend
products underestimate the mass gain. Note that the negative ring
around the reservoir is likely caused by ringing effects due to the
limited resolution in the initial spherical harmonic parametrization.

3.4 High plains aquifer

The example shows North America’s High Plains Aquifer (Ogallala
Aquifer). The southern part of the aquifer showed a water mass loss
in the last years, as can be seen both from the GRACE/GRACE-FO
TWS observations and in sifu groundwater well levels (see Fig. 7),

provided by USGS (U.S. Geological Survey 2021) and analysed
for the same time period as the GRACE/GRACE-FO trends. While
TWS and groundwater level data show different quantities and thus
cannot be compared in absolute values unless converted to the same
unit by applying information on the aquifer storage coefficient or
specific yield, both data sets show similar spatial patterns of the
trends, with a drying Southern part and a slightly wetting northern
part of the aquifer.

The MFT data constrain the negative storage trend in the southern
part of the aquifer much closer to its area of major groundwater
depletion according to the in situ observations than the TWS trends
based on the monthly GRACE/GRACE-FO records.

4 DISCUSSION AND CONCLUSIONS

Satellite gravimetry, as realized with GRACE and GRACE-FO, ob-
tains information about the time-variable gravity field of the Earth
from precise tracking data of two twin-satellites acting as a free-
falling proof mass in a low orbit around the Earth. This implies a
strong dependency of the observation accuracy on the spatial scales
so that large scale signals are much better constrained than smaller
spatial scales. In order to suppress spatially correlated errors at those
smaller scales, either spatial constraints are used directly during the
inversion of Mascon solutions, or spatial smoothing filters are ap-
plied to otherwise unconstrained spherical harmonics solutions. We
have shown in this paper that both approaches are mathematically
equivalent (Kusche 2007).

We also demonstrated in this work that the spatial resolution
of gravity products derived from GRACE and GRACE-FO can be
increased at the expense of temporal resolution. Through a new
trend map based on an inversion of all available GRACE/GRACE-
FO sensor data (mean field trend - MFT), we demonstrate that mass
trend signals for several locations in the world with well-defined ge-
ographic boundaries (such as lakes, reservoirs, or regions with large
groundwater withdrawals for irrigation) are much better localized
in this new MFT trend product when compared to trend pattern
estimated a posteriori from monthly sampled GRACE products
typically available for geophysical applications.

In particular, we can separate the surface water storage trend
observed with GRACE/GRACE-FO over Lake Victoria from the
water storage trends of the surrounding area and lakes. The lake
storage trend from satellite gravimetry of Lake Victoria matches
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Figure 6. Krasnojarsk region in Siberia around Boguchany Reservoir: TWS trend from MFT, COST-G and GSFC Mascons for the period 2002-04-2021-01,
dam location, reservoir inlet and reservoir extent. The Angara river along which the reservoir is located is highlighted in blue.
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Figure 7. High Plains Aquifer in North America: TWS trend from MFT, COST-G and GSFC Mascons for the period 04/2002—12/2021. Circles give trends of
in situ groundwater levels for several observation wells. Please note the different colourbars for TWS trends and groundwater level trends.

very well an independent estimate based on satellite altimetry. The
benefit of the higher spatial resolution of the MFT product is also
apparent for the water storage trends in Northwest India. In contrast
to the standard monthly GRACE data sets, the new product can
localize these trends to regions with prevalent groundwater irriga-
tion. That supports the widely stated assumption that groundwater
overuse in the region causes falling water levels and, thus, a nega-
tive TWS trend. Only with the new MFT product can we accurately
estimate the water storage gain of the newly filled (2012-2016)
Boguchany Reservoir in Siberia. Also for the High Plains aquifer,
the higher spatial resolution of MFT allows for better localization of
the trend signal inside the aquifer compared to conventional TWS
products. The MFT approach can also be beneficial for groundwater
data products as provided by the Global Gravity-based Groundwa-
ter Product (Giintner et al. 2023), where satellite gravimetry is
combined with other remote sensing techniques and in situ data
to separate water storage compartments. The spatial resolution of
the GRACE/GRACE-FO contribution in this product is by far the

lowest and could be brought closer to the other remote sensing data
sets if only groundwater trends are of interest.

While MFT maximizes the spatial resolution at the expense of
temporal information, we note that it is also possible to increase
the temporal resolution at the cost of spatial resolution. An exam-
ple of this are daily sampled estimates of the gravity field (Kvas
et al. 2019). Here, additional stochastic constraints from indepen-
dent geophysical models are required to stabilize the solutions
as a consequence of the sparse satellite ground track coverage
within a day. However, the daily series published alongside the
nominal monthly GRACE/GRACE-FO gravity fields from ITSG-
Grace2018 have been successfully applied to identify major flood
events (Gouweleeuw et al. 2018) and for the evaluation of atmo-
spheric net-water fluxes (Eicker ef al. 2020). Depending on the
spatio-temporal characteristics of a mass transport process to be
studied with satellite gravimetry, it is possible to optimize the results
by trading spatial for temporal resolution and vice versa. A good
example could be the estimation of coseismic signals, where the
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exact timing of the rupture is readily available from seismometers.
In contrast, the spatial distribution of the mass shifts associated with
the earthquake could be assessed from the difference in inverting
all data before and after the event. Such an inversion was performed
in the GOCOO06s gravity field model (Kvas et al. 2021), where
co-seismic gravity changes for three megathrust Earthquakes (the
2004 Indian Ocean earthquake, the 2010 Chile earthquake and the
2011 Tohoku-Oki earthquake) were co-estimated. Thus, tailoring
the trade-off between spatial and temporal resolution to the signal
of interest can bring new insights from satellite gravimetry beyond
what standard monthly solutions offer.
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