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ABSTRACT:

The advancing climate change increases the danger of heavy rainfall events and devastating floods, which significantly threaten
people’s lives and properties. Geographic information system (GIS) has been a valuable tool for mapping flood risks and emergency
management worldwide. In this paper, we develop an interactive evacuation tool to improve public flood perception. This work
presents how to create an interactive and animated evacuation tool to strengthen the population’s preparedness and action ability in
case of a flood. We simulate water depths and flow velocities for a flood scenario in Bonn, Germany. Afterwards, we investigate
the flood’s impact on buildings and streets for different flood situations using geoinformation tools in the software QGIS. Based
on thresholds from the literature, we identify endangered buildings where inhabitants have to evacuate and streets still ensuring
safe locomotion options during the advancing flood. Taking possible shelter points for the population into account then allows for
computing the shortest path to the nearest shelter at each flood situation. Our findings are summarized in evacuation maps that can
be used together as interactive information tools for the public and can also serve rescue management and disaster education.

1. BACKGROUND

The latest report released by the Intergovernmental Panel on
Climate Change (IPCC)! confirmed that extreme disasters in-
duced by climate change had impacted human society more
intensely and frequently than previously thought (Bhatt et al.,
2015; Netzel et al., 2021). Particularly, catastrophic floods are
one of the most widespread and frequent natural disasters on
Earth (Li et al., 2013, 2015; Costabile et al., 2021; Li et al.,
2022b; Mudashiru et al., 2021). In July 2021, several European
countries experienced consecutive rainstorms and floods, dev-
astatingly damaging many homes and businesses, causing al-
most 700 injuries, and 200 people died in the floods, where
Germany and Belgium suffered the worst damage (Fekete and
Sandholz, 2021; Bosseler et al., 2021; Serra-Llobet et al., 2022).
In particular, more than 130 lives were lost in the Ahr Val-
ley to the south of Bonn, Germany. Across Europe, the eco-
nomic losses amounted to approximately 35.3 billion euros
(Mohr et al., 2022). This flood hints that the frequency of such
events may increase in a rapidly warming climate and global
fashion, and there is much room to improve the initiatives for
flood risk management (Tradowsky et al., 2023; Li et al., 2023;
Kruczkiewicz et al., 2022).

Apart from the structural measures for flood mitigation (Minea
and Zaharia, 2011; Islam and Ryan, 2015; Meyer et al., 2012b),
the Sendai Framework for Disaster Risk Reduction 2015-2030
(SFDRR) states that the disaster agency should develop, peri-
odically update and disseminate location-based disaster risk
information, including disaster maps, to decision-makers, the
general public and communities by using geospatial informa-
tion technology (Center, 2015; Chisty et al., 2022; Aitsi-Selmi
et al., 2016; Kelman, 2015), which the European Commis-
sion (EC) has also been working towards. For example, the
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European Union Floods Directive (FD) required the establish-
ment of flood maps for high-risk cities in all member states
by 2013 (Meyer et al., 2012a; Van Kerkvoorde et al., 2018).
Roughly spoken, flood maps targeting the preparation for the
public already exist, which are classified into frequent flood
events (HQ10-20), mean flood events (HQ100), and extreme
flood events (HQExtreme) (Viviroli et al., 2009; Barth and Doll,
2016). HQ values represent a statistically high, mean, and low
probability of occurrence according to the flood’s water runoff.

There are two types of maps, hazard and risk maps (Dransch
et al., 2010; Li et al., 2022b; Meyer et al., 2012a; Hagemeier-
Klose and Wagner, 2009). Hazard maps, also called damage
maps, highlight the affected areas, damaged buildings, causes
and consequences of a specific disaster event. Risk maps are
designed to illustrate the likelihood or frequency of a disaster
event occurring. In many cases, these two types of maps are
not clearly distinguished from each other, but they can serve a
variety of purposes, e.g. flood impact assessment, spatial plan-
ning, early warning, emergency planning, and disaster educa-
tion (Hammond et al., 2015; Bhola et al., 2020; Li et al., 2021b;
Macchione et al., 2019; Huang et al., 2015; Rothkrantz and
Fitrianie, 2018; Smith et al., 2016; Mudashiru et al., 2021). Fig-
ure 1(a) and (b) show an example of a risk map of a debris flow
disaster and an example of a landslide susceptibility map, re-
spectively.

Disaster maps generally have wealth of information, and a pro-
fessional design and representation (Peng et al., 2017). How-
ever, they are not entirely intuitive to the public (Li et al,,
2022a; Kellens et al., 2009; Meyer et al., 2009; Liu et al.,
2018; Hagemeier-Klose and Wagner, 2009), and they merely
show general static information about floods and give no recom-
mended individual action, which results in the general public
without direct flood experience not being able to imagine what
really happens. From the authors’ point of view, the primary
concern for the public is what to do when they face advancing
floods.
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Figure 1. Examples of disaster maps.

Specifically, the flood maps for the general public should an-
swer the following “ 2W and 1H ” questions:

1. When should they leave the house?
2. Where can they go?

3. How can they move to the shelter?

In this context, we develop an interactive evacuation tool for
floods and achieve a particular form of appealing storytelling
for the general public. The aim is to use this tool to recommend
individual evacuation actions for the public and also serve res-
cue management.

The reminder of this paper is structured as follows: Section 2
gives insights into the introduced approach. Section 3 discusses
the experimental results. Section 4 summarizes the paper and
gives an outlook for future research.

2. METHODOLOGY

Figure 2 shows the roadmap for the implementation of inter-
active flood evacuation tool, which mainly includes endangered
building detection, safe road detection, possible shelter selec-
tion, and the shortest route planning.

Based on the criteria proposed by Pistrika and Jonkman (2010),
we adopt the equation (1) to detect the endangered buildings in
the flooded area.
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Figure 2. Roadmap for the implementation of interactive flood
evacuation tool.
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In this equation, d indicates the water depth, and v represents
the flow velocity. Suppose the product of d and v around the
flooded building exceeds the threshold, the corresponding evac-
uation recommendation will be given. However, the risk status
of buildings will change as the flood evolves, therefore a time
series of simulation data is used to deal with this case.

Additionally, we use the equation (2) to detect flooded streets
where safe evacuation by walking is still possible to reach the
shelter points (Ishigaki, 2008).

2 2
vd &g )
g 2

Where ¢ is the gravitational acceleration and d and v are as
before.

Subsequently, the buffer analysis is used to identify the shelters
within 2 km of the evacuation area. In our case, the school is
mainly considered a shelter, and we concentrate on evacuation
by foot because of the lack of parking places at the shelters.

Finally, the single source shortest path algorithm is used to com-
pute the nearest reachable shelter for the building that needs to
be evacuated. We introduce a dummy node (red node in Fig-
ure 2) and link it to each shelter, which connects to the building
by the street graph. Subsequently, one call of the algorithm
with the dummy node as the source could find the shortest path
between every building and its nearest shelter, and the individu-
als can determine their optimal evacuation path by building ID.

3. EXPERIMENTAL RESULTS
3.1 Study area

In our study, we selected a section of the Rhine in Bonn, Ger-
many, as the case area for the experiment analysis. Bonn covers
an area of about 141km? with an average altitude of about 60m
above sea level. It is situated in a valley and is divided by the
Rhine River. Figure 3 shows the location of Bonn. Bonn has
been flooded many times in history, with the highest water level
exceeding 10m in 1993. Figure 4 shows the tide gauge station
in Bonn®.

2 https://undine.bafg.de/rhein/pegel/rhein_pegel_bonn.
html?msclkid=c183e776cf7c11ecb033793457de2307
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Figure 3. The location of Bonn, Germany.
Source: Openstreetmap
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Figure 4. Tide gauge station in Bonn.

3.2 Data description

Figure 5 shows the geodata required for flood simulation and
evacuation analysis. The flood simulation data was provided by
Li et al. (2021a), which refers to a system that integrates a nu-
merical model of flood based on the cellular automata (CA) and
the virtual geographic environment (VGE) framework. To real-
ize the simulation and visualization of a flood process, this sys-
tem develops a workflow that includes data acquisition, model
calculation and dynamic visualization functions. In addition,
the whole process of a flood can be visualized in a virtual 3D
view through a user-friendly operation interface and flexible
parameter configuration. Digital elevation model (DEM), build-
ing, and road network data were obtained from Open North-
Rhine-Westphalia (NRW)?>.

3.3 Results analysis

The interactive evacuation tool, designed to recommend evacu-
ation actions during a flood, has been implemented using Java.
Figure 6(a) shows the recommended action in 1 hour and 24
minutes after the flood started, while Figure 6(b) illustrates the
subsequent time step, which occurred 2 hours and 6 minutes
later. Although the building selected by the user was classified
as safe in both time steps, its assigned shelter and path were
determined based on the state of flood propagation. The sim-
ulation can foresee that the building will soon be classified as
endangered and thus has to be evacuated. Therefore the tool de-
picts the assignment and the path to a shelter at a point of time

3 https://open.nrw/
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Figure 5. Geodata required for flood simulation and evacuation
analysis.
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where evacuation via a path is still possible. In summary, the
finding of our work could provide a flood evacuation recom-
mendation to individuals, which could be further applied to the
popularization of disaster science for the general public, thus
enhancing flood risk perception in the community.
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Figure 6. Different recommendations from the interactive
evacuation tool.

4. CONCLUSION

In this paper, we developed an evacuation tool that considers
time series simulation data to generate evacuation actions for
the inhabitants in a flooded area. The advantage of the temporal
evolution of flood allows us to deduce the current and future
status of the building. In the case of an endangered building,
an optimal evacuation route to the nearest shelter will be gen-
erated, even at an earlier time step. With this proceeding, we
can clearly state for each inhabitant what to do in the case of a
flood.

The present interactive tool shows the evacuation for inhabit-
ants in endangered buildings by foot. An open point for future
work might be incorporating other evacuation methods, such as
by bus or car.
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