DC FieldValueLanguage
dc.contributor.authorKnura, Martin Michael-
dc.contributor.authorKluger, Florian-
dc.contributor.authorZahtila, Moris-
dc.contributor.authorSchiewe, Jochen-
dc.contributor.authorRosenhahn, Bodo-
dc.contributor.authorBurghardt, Dirk-
dc.date.accessioned2022-08-02T08:58:18Z-
dc.date.available2022-08-02T08:58:18Z-
dc.date.issued2021-10-28-
dc.identifier.issn2220-9964en_US
dc.identifier.urihttps://repos.hcu-hamburg.de/handle/hcu/682-
dc.description.abstractWith cities reinforcing greener ways of urban mobility, encouraging urban cycling helps to reduce the number of motorized vehicles on the streets. However, that also leads to a significant increase in the number of bicycles in urban areas, making the question of planning the cycling infrastructure an important topic. In this paper, we introduce a new method for analyzing the demand for bicycle parking facilities in urban areas based on object detection of social media images. We use a subset of the YFCC100m dataset, a collection of posts from the social media platform Flickr, and utilize a state-of-the-art object detection algorithm to detect and classify moving and parked bicycles in the city of Dresden, Germany. We were able to retrieve the vast majority of bicycles while generating few false positives and classify them as either moving or stationary. We then conducted a case study in which we compare areas with a high density of parked bicycles with the number of currently available parking spots in the same areas and identify potential locations where new bicycle parking facilities can be introduced. With the results of the case study, we show that our approach is a useful additional data source for urban bicycle infrastructure planning because it provides information that is otherwise hard to obtain.en
dc.language.isoenen_US
dc.publisherMDPI-
dc.relation.ispartofISPRS International Journal of Geo-Informationen_US
dc.subjectObject detectionen
dc.subjectsocial mediaen
dc.subjecturban planningen
dc.subjectbicycle infrastructureen
dc.subjectcomputer visionen
dc.subjectvolunteered geographical informationen
dc.subjectvisual analyticsen
dc.subject.ddc004: Informatik-
dc.subject.ddc710: Landschaftsgestaltung, Raumplanung-
dc.titleUsing Object Detection on Social Media Images for Urban Bicycle Infrastructure Planning: A Case Study of Dresdenen
dc.typeArticle-
dc.type.diniarticle-
dc.type.driverarticle-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:1373-repos-8819-
tuhh.oai.showtrueen_US
tuhh.publisher.doi10.3390/ijgi10110733-
tuhh.publication.instituteGeovisualisierung, Kartographieen_US
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.container.issue11en_US
tuhh.container.volume10en_US
tuhh.type.rdmfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
item.grantfulltextopen-
item.creatorOrcidKnura, Martin Michael-
item.creatorOrcidKluger, Florian-
item.creatorOrcidZahtila, Moris-
item.creatorOrcidSchiewe, Jochen-
item.creatorOrcidRosenhahn, Bodo-
item.creatorOrcidBurghardt, Dirk-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.creatorGNDKnura, Martin Michael-
item.creatorGNDKluger, Florian-
item.creatorGNDZahtila, Moris-
item.creatorGNDSchiewe, Jochen-
item.creatorGNDRosenhahn, Bodo-
item.creatorGNDBurghardt, Dirk-
item.openairetypeArticle-
crisitem.author.deptGeodäsie und Geoinformatik-
crisitem.author.deptGeovisualisierung, Kartographie-
crisitem.author.orcid0000-0002-6717-0923-
Appears in CollectionPublikationen (mit Volltext)
Files in This Item:
File Description SizeFormat
ijgi-10-00733-v2.pdf24.17 MBAdobe PDFView/Open
Show simple item record

Page view(s)

235
checked on Dec 26, 2024

Download(s)

66
checked on Dec 26, 2024

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons