DC FieldValueLanguage
dc.contributor.authorBarnefske, Eike Ruben-
dc.contributor.authorSternberg, Harald-
dc.date.accessioned2023-01-27T13:32:18Z-
dc.date.available2023-01-27T13:32:18Z-
dc.date.issued2023-01-12-
dc.identifier.issn2169-3536en_US
dc.identifier.urihttps://repos.hcu-hamburg.de/handle/hcu/860-
dc.description.abstractPoint clouds are generated by light imaging, detection and ranging (LIDAR) scanners or depth imaging cameras, which capture the geometry from the scanned objects with high accuracy. Unfortunately, these systems are unable to identify the semantics of the objects. Semantic 3D point clouds are an important basis for modeling the real world in digital applications. Manual semantic segmentation is a labor and cost intensive task. Automation of semantic segmentation using machine learning and deep learning (DL) approaches is therefore an interesting subject of research. In particular, point-based network architectures, such as PointNet, lead to a beneficial semantic segmentation in individual applications. For the application of DL methods, a large number of hyperparameters (HPs) have to be determined and these HPs influence the training success. In our work, the investigated HPs are the class distribution and the class combination. By means of seven combinations of classes following a hierarchical scheme and four methods to adapt the class sizes, these HPs are investigated in a detailed and structured manner. The investigated settings show an increased semantic segmentation performance, by an increase of 31% in recall for the class Erroneous points or that all classes have a recall of higher than 50%. However, based on our results the correct setting of only these HPs does not lead to a simple, universal and practical semantic segmentation procedure.en
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Accessen_US
dc.subject3D point cloudsen
dc.subjectdata hyperparameteren
dc.subjecthierarchical class combinationen
dc.subjecthyperparameteren
dc.subjectPointNeten
dc.subjectsemantic classesen
dc.subjectsemantic segmentationen
dc.subjectunbalanced dataen
dc.subject.ddc004: Informatiken_US
dc.titleEvaluation of Class Distribution and Class Combinations on Semantic Segmentation of 3D Point Clouds With PointNeten
dc.typeArticleen_US
dc.type.diniarticle-
dc.type.driverarticle-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:1373-repos-10946-
tuhh.oai.showtrueen_US
tuhh.publisher.doi10.1109/ACCESS.2022.3233411-
tuhh.publication.instituteHydrographie und Geodäsieen_US
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.container.volume11en_US
tuhh.container.startpage3826en_US
tuhh.container.endpage3845en_US
tuhh.type.rdmfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
item.grantfulltextopen-
item.creatorOrcidBarnefske, Eike Ruben-
item.creatorOrcidSternberg, Harald-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.creatorGNDBarnefske, Eike Ruben-
item.creatorGNDSternberg, Harald-
item.openairetypeArticle-
crisitem.author.deptHydrographie und Geodäsie-
crisitem.author.deptHydrographie und Geodäsie-
Appears in CollectionPublikationen (mit Volltext)
Show simple item record

Page view(s)

466
checked on Dec 23, 2024

Download(s)

227
checked on Dec 23, 2024

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons