DC FieldValueLanguage
dc.contributor.authorSchlegel, Inga-
dc.date.accessioned2023-05-26T14:21:47Z-
dc.date.available2023-05-26T14:21:47Z-
dc.date.issued2021-06-04-
dc.identifier.citationProceedings of the 24th AGILE Conference on Geographic Information Scienceen_US
dc.identifier.urihttps://repos.hcu-hamburg.de/handle/hcu/890-
dc.description.abstractHistorical maps are frequently neither readable, searchable nor analyzable by machines due to lacking databases or ancillary information about their content. Identifying and annotating map labels is seen as a first step towards an automated legibility of those. This article investigates a universal and transferable methodology for the work with large-scale historical maps and their comparability to others while reducing manual intervention to a minimum. We present an end-to-end approach which increases the number of true positive identified labels by combining available text detection, recognition, and similarity measuring tools with own enhancements. The comparison of recognized historical with current street names produces a satisfactory accordance which can be used to assign their point-like representatives within a final rough georeferencing. The demonstrated workflow facilitates a spatial orientation within large-scale historical maps by enabling the establishment of relating databases. Assigning the identified labels to the geometries of related map features may contribute to machine-readable and analyzable historical maps.en
dc.language.isoenen_US
dc.publisherCopernicusen_US
dc.subjecthistorical mapsen
dc.subjecttext detectionen
dc.subjecttext recognitionen
dc.subjecttext extractionen
dc.subjectoptical character recognitionen
dc.subjectlevenshtein distanceen
dc.subjectgeoreferencingen
dc.subject.ddc550: Geowissenschaftenen_US
dc.titleAutomated Extraction of Labels from Large-Scale Historical Mapsen
dc.typeinBooken_US
dc.relation.conference24th AGILE Conference on Geographic Information Science, 8–11 June 2021, Onlineen_US
dc.type.dinibookPart-
dc.type.driverbookPart-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiBook Chapter-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:1373-repos-11359-
tuhh.oai.showtrueen_US
tuhh.publisher.doi10.5194/agile-giss-2-12-2021-
tuhh.publication.instituteGeodäsie und Geoinformatiken_US
tuhh.type.opusInBuch (Kapitel / Teil einer Monographie)-
tuhh.relation.ispartofseriesnumber2en_US
tuhh.relation.ispartofseriesAGILE: GIScience Seriesen_US
tuhh.type.rdmfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
item.openairetypeinBook-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.tuhhseriesidAGILE: GIScience Series-
item.seriesrefAGILE: GIScience Series;2-
item.languageiso639-1en-
item.creatorOrcidSchlegel, Inga-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.creatorGNDSchlegel, Inga-
crisitem.author.deptGeodäsie und Geoinformatik-
crisitem.author.orcid0000-0003-1468-4944-
Appears in CollectionPublikationen (mit Volltext)
Files in This Item:
File Description SizeFormat
agile-giss-2-12-2021.pdf3.54 MBAdobe PDFView/Open
Show simple item record

Page view(s)

437
checked on Nov 23, 2024

Download(s)

91
checked on Nov 23, 2024

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons