DC FieldValueLanguage
dc.contributor.authorTegetmeier, Clemens-
dc.contributor.authorJohannssen, Arne-
dc.contributor.authorChukhrova, Nataliya-
dc.date.accessioned2024-10-18T14:41:11Z-
dc.date.available2024-10-18T14:41:11Z-
dc.date.issued2024-10-
dc.identifier.issn2198-5804en_US
dc.identifier.urihttps://repos.hcu-hamburg.de/handle/hcu/894-
dc.description.abstractBook recommender systems provide personalized recommendations of books to users based on their previous searches or purchases. As online trading of books has become increasingly important in recent years, artificial intelligence (AI) algorithms are needed to recommend suitable books to users and encourage them to make purchasing decisions in the short and the long run. In this paper, we consider AI algorithms for so called collaborative book recommender systems, especially the matrix factorization algorithm using the stochastic gradient descent method and the book-based k-nearest-neighbor algorithm. We perform a comprehensive case study based on the Book-Crossing benchmark data set, and implement various variants of both AI algorithms to predict unknown book ratings and to recommend books to individual users based on the highest predicted ratings. This study aims to evaluate the quality of the implemented methods in recommending books by using selected evaluation metrics for AI algorithms.en
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofAnnals of Data Scienceen_US
dc.subjectArtificial intelligenceen
dc.subjectBook recommender systemsen
dc.subjectknn algorithmen
dc.subjectMachine learningen
dc.subjectMatrix factorization algorithmen
dc.subjectStochastic gradient descent methoden
dc.subject.ddc004: Informatiken_US
dc.titleArtificial Intelligence Algorithms for Collaborative Book Recommender Systemsen
dc.typeArticleen_US
dc.type.diniarticle-
dc.type.driverarticle-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:1373-repos-11424-
tuhh.oai.showtrueen_US
tuhh.publisher.doi10.1007/s40745-023-00474-4-
tuhh.publication.instituteHydrographie und Geodäsieen_US
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.container.issue5en_US
tuhh.container.volume11en_US
tuhh.container.startpage1705en_US
tuhh.container.endpage1739en_US
tuhh.type.rdmfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
item.grantfulltextopen-
item.creatorOrcidTegetmeier, Clemens-
item.creatorOrcidJohannssen, Arne-
item.creatorOrcidChukhrova, Nataliya-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.creatorGNDTegetmeier, Clemens-
item.creatorGNDJohannssen, Arne-
item.creatorGNDChukhrova, Nataliya-
item.openairetypeArticle-
crisitem.author.deptHydrographie und Geodäsie-
crisitem.author.orcid0000-0002-4105-7033-
Appears in CollectionPublikationen (mit Volltext)
Files in This Item:
File Description SizeFormat
s40745-023-00474-4.pdf1.39 MBAdobe PDFView/Open
Show simple item record

Page view(s)

92
checked on Dec 21, 2024

Download(s)

11
checked on Dec 21, 2024

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons