DC FieldValueLanguage
dc.contributor.authorKnechtel, Julius-
dc.contributor.authorRottmann, Peter-
dc.contributor.authorHaunert, Jan-Henrik-
dc.contributor.authorDehbi, Youness-
dc.date.accessioned2024-10-10T13:26:38Z-
dc.date.available2024-10-10T13:26:38Z-
dc.date.issued2024-10-
dc.identifier.issn0926-5805en_US
dc.identifier.urihttps://repos.hcu-hamburg.de/handle/hcu/1063-
dc.description.abstractThis article presents an approach for the automatic semantic segmentation of floorplan images, predicting room boundaries (walls, doors, windows) and semantic labels of room types. A multi-task network was designed to represent and learn inherent dependencies by combining a Convolutional Neural Network to generate suitable features with a Graph Convolutional Network (GCN) to capture long-range dependencies. In particular, a Self-Constructing Graph module is applied to automatically induce an input graph for the GCN. Experiments on different datasets demonstrate the superiority and effectiveness of the multi-task network compared to state-of-the-art methods. The accurate results not only allow for subsequent vectorization of the existing floorplans but also for automatic inference of layout graphs including connectivity and adjacency relations. The latter could serve as basis to automatically sample layout graphs for architectural planning and design, predict missing links for unobserved parts for as-built building models and learn important latent topological and architectonic patterns.en
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofAutomation in Constructionen_US
dc.subjectFloorplanen
dc.subjectSemantic segmentationen
dc.subjectGraph Convolutional Networken
dc.subjectConvolutional neural networken
dc.subjectSelf-constructing graphen
dc.subject.ddc004: Informatiken_US
dc.titleSemantic floorplan segmentation using self-constructing graph networksen
dc.typeArticleen_US
dc.type.diniarticle-
dc.type.driverarticle-
dc.rights.cchttps://creativecommons.org/licenses/by-nc/4.0/en_US
dc.type.casraiJournal Article-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:1373-repos-13590-
tuhh.oai.showtrueen_US
tuhh.publisher.doi10.1016/j.autcon.2024.105649-
tuhh.publication.instituteComputational Methodsen_US
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.container.volume166en_US
tuhh.type.rdmfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
item.grantfulltextopen-
item.creatorOrcidKnechtel, Julius-
item.creatorOrcidRottmann, Peter-
item.creatorOrcidHaunert, Jan-Henrik-
item.creatorOrcidDehbi, Youness-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.creatorGNDKnechtel, Julius-
item.creatorGNDRottmann, Peter-
item.creatorGNDHaunert, Jan-Henrik-
item.creatorGNDDehbi, Youness-
item.openairetypeArticle-
crisitem.author.deptComputational Methods-
crisitem.author.orcid0000-0003-0133-4099-
Appears in CollectionPublikationen (mit Volltext)
Files in This Item:
File Description SizeFormat
1-s2.0-S0926580524003856-main.pdf3.08 MBAdobe PDFView/Open
Show simple item record

Page view(s)

93
checked on Dec 21, 2024

Download(s)

43
checked on Dec 21, 2024

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons