DC FieldValueLanguage
dc.contributor.authorLütjens, Mona Caroline-
dc.contributor.authorSternberg, Harald-
dc.date.accessioned2022-07-28T10:00:19Z-
dc.date.available2022-07-28T10:00:19Z-
dc.date.issued2021-11-02-
dc.identifier.issn2405-8963en_US
dc.identifier.urihttps://repos.hcu-hamburg.de/handle/hcu/664-
dc.description.abstractAssessing and monitoring benthic communities is increasingly important in view of global alteration of marine environments. Deep learning has proven to effectively detect marine specimen in underwater imagery but still face problems with small input datasets, unconstrained environments and class imbalance. This study evaluates a data augmentation strategy to alleviate these limitations. Through synthetically derived image compositions, the entire input dataset was greatly extended from 700 to 12700 images. Additionally, specimen numbers of brittle stars, soft corals and glass sponges are equalized resulting in a mean average precision increase of 24 %. The overall mean average precision for box detections yields 76.7 and for instance segmentation 67.7 at an intersection over union threshold of 0.5. This study shows that deep architectures such as the deployed CenterMask via ResNeXt-101 model can successfully be trained with few original images from varying underwater scenes.de
dc.language.isoenen_US
dc.publisherElsevier-
dc.relation.ispartofIFAC-PapersOnLineen_US
dc.subjectObject detectionen
dc.subjectDeep learningen
dc.subjectData augmentationen
dc.subjectMarine imageryen
dc.subjectBenthic megafaunaen
dc.subject.ddc550: Geowissenschaften-
dc.titleDeep Learning based Detection, Segmentation and Counting of Benthic Megafauna in Unconstrained Underwater Environmentsen
dc.typeconferencePaperen_US
dc.relation.conference13th IFAC Conference on Control Applications in Marine Systems, Robotics, and Vehicles CAMS 2021: Oldenburg, Germany, 22–24 September 2021en_US
dc.type.diniConferencePaper-
dc.type.driverconferenceObject-
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.type.casraiConference Paper-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:1373-repos-8619-
tuhh.oai.showtrueen_US
tuhh.publisher.doi10.1016/j.ifacol.2021.10.076-
tuhh.publication.instituteHydrographie und Geodäsieen_US
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
tuhh.container.issue16en_US
tuhh.container.volume54en_US
tuhh.container.startpage76en_US
tuhh.container.endpage82en_US
tuhh.type.rdmfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
item.grantfulltextopen-
item.creatorOrcidLütjens, Mona Caroline-
item.creatorOrcidSternberg, Harald-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.creatorGNDLütjens, Mona Caroline-
item.creatorGNDSternberg, Harald-
item.openairetypeconferencePaper-
crisitem.author.deptHydrographie und Geodäsie-
crisitem.author.deptHydrographie und Geodäsie-
Appears in CollectionPublikationen (mit Volltext)
Files in This Item:
File Description SizeFormat
1-s2.0-S2405896321014786-main.pdf1.22 MBAdobe PDFView/Open
Show simple item record

Page view(s)

169
checked on Dec 27, 2024

Download(s)

67
checked on Dec 27, 2024

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons