DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lütjens, Mona Caroline | - |
dc.contributor.author | Sternberg, Harald | - |
dc.date.accessioned | 2022-07-28T10:00:19Z | - |
dc.date.available | 2022-07-28T10:00:19Z | - |
dc.date.issued | 2021-11-02 | - |
dc.identifier.issn | 2405-8963 | en_US |
dc.identifier.uri | https://repos.hcu-hamburg.de/handle/hcu/664 | - |
dc.description.abstract | Assessing and monitoring benthic communities is increasingly important in view of global alteration of marine environments. Deep learning has proven to effectively detect marine specimen in underwater imagery but still face problems with small input datasets, unconstrained environments and class imbalance. This study evaluates a data augmentation strategy to alleviate these limitations. Through synthetically derived image compositions, the entire input dataset was greatly extended from 700 to 12700 images. Additionally, specimen numbers of brittle stars, soft corals and glass sponges are equalized resulting in a mean average precision increase of 24 %. The overall mean average precision for box detections yields 76.7 and for instance segmentation 67.7 at an intersection over union threshold of 0.5. This study shows that deep architectures such as the deployed CenterMask via ResNeXt-101 model can successfully be trained with few original images from varying underwater scenes. | de |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | - |
dc.relation.ispartof | IFAC-PapersOnLine | en_US |
dc.subject | Object detection | en |
dc.subject | Deep learning | en |
dc.subject | Data augmentation | en |
dc.subject | Marine imagery | en |
dc.subject | Benthic megafauna | en |
dc.subject.ddc | 550: Geowissenschaften | - |
dc.title | Deep Learning based Detection, Segmentation and Counting of Benthic Megafauna in Unconstrained Underwater Environments | en |
dc.type | conferencePaper | en_US |
dc.relation.conference | 13th IFAC Conference on Control Applications in Marine Systems, Robotics, and Vehicles CAMS 2021: Oldenburg, Germany, 22–24 September 2021 | en_US |
dc.type.dini | ConferencePaper | - |
dc.type.driver | conferenceObject | - |
dc.rights.cc | https://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
dc.type.casrai | Conference Paper | - |
dcterms.DCMIType | Text | - |
tuhh.identifier.urn | urn:nbn:de:gbv:1373-repos-8619 | - |
tuhh.oai.show | true | en_US |
tuhh.publisher.doi | 10.1016/j.ifacol.2021.10.076 | - |
tuhh.publication.institute | Hydrographie und Geodäsie | en_US |
tuhh.type.opus | InProceedings (Aufsatz / Paper einer Konferenz etc.) | - |
tuhh.container.issue | 16 | en_US |
tuhh.container.volume | 54 | en_US |
tuhh.container.startpage | 76 | en_US |
tuhh.container.endpage | 82 | en_US |
tuhh.type.rdm | false | - |
openaire.rights | info:eu-repo/semantics/openAccess | en_US |
item.grantfulltext | open | - |
item.creatorOrcid | Lütjens, Mona Caroline | - |
item.creatorOrcid | Sternberg, Harald | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.creatorGND | Lütjens, Mona Caroline | - |
item.creatorGND | Sternberg, Harald | - |
item.openairetype | conferencePaper | - |
crisitem.author.dept | Hydrographie und Geodäsie | - |
crisitem.author.dept | Hydrographie und Geodäsie | - |
Appears in Collection | Publikationen (mit Volltext) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S2405896321014786-main.pdf | 1.22 MB | Adobe PDF | View/Open |
Page view(s)
169
checked on Dec 27, 2024
Download(s)
67
checked on Dec 27, 2024
Google ScholarTM
Check
Export
This item is licensed under a Creative Commons License