DC ElementWertSprache
dc.contributor.authorSchiewe, Jochen-
dc.date.accessioned2022-08-29T13:29:35Z-
dc.date.available2022-08-29T13:29:35Z-
dc.date.issued2018-09-19-
dc.identifier.citationISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”en_US
dc.identifier.urihttps://repos.hcu-hamburg.de/handle/hcu/724-
dc.description.abstractIn the analysis and visualization of spatial information, quite often a data classification is applied. The choice of different methods, together with the choice of a different number of classes, the consideration of open classes and the treatment of outliers, can produce very different results. Hence, it is desirable to quantify the uncertainties that inevitably arise in this process. So far, almost only non-spatial properties have been considered. In addition to an extension of this set of statistical measures, this article also aims to define those which are concerned with the preservation of spatial patterns (e.g., local extreme values) as well as with visual perception. An empirical study will investigate the behavior of all these measures, for example depending on the classification method used or the number of classes. Also, correlations between the uncertainty measures and between the measures and statistical properties of the input data are examined. Finally, is will be shown that the uncertainty measures can not only be used individually or combined for pure evaluation purposes, but also for a-posteriori improvement of classification methods.en
dc.language.isoenen_US
dc.publisherCopernicus-
dc.subjectuncertaintyen
dc.subjectdata classificationen
dc.subjectuncertainty visualizationen
dc.subject.ddc004: Informatik-
dc.titleDevelopment and Comparison of Uncertainty Measures in the Framework of a Data Classificationen
dc.typeconferencePaperen_US
dc.relation.conferenceISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlandsen_US
dc.type.diniConferencePaper-
dc.type.driverconferenceObject-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiConference Paper-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:1373-repos-9261-
tuhh.oai.showtrueen_US
tuhh.publisher.doi10.5194/isprs-archives-XLII-4-551-2018-
tuhh.publication.instituteGeovisualisierung, Kartographieen_US
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
tuhh.container.startpage551en_US
tuhh.container.endpage558en_US
tuhh.relation.ispartofseriesnumberXLII-4en_US
tuhh.relation.ispartofseriesInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciencesen_US
tuhh.type.rdmfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
item.grantfulltextopen-
item.creatorOrcidSchiewe, Jochen-
item.fulltextWith Fulltext-
item.seriesrefInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;XLII-4-
item.languageiso639-1en-
item.tuhhseriesidInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.creatorGNDSchiewe, Jochen-
item.openairetypeconferencePaper-
crisitem.author.deptGeovisualisierung, Kartographie-
crisitem.author.orcid0000-0002-6717-0923-
Enthalten in der SammlungPublikationen (mit Volltext)
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
isprs-archives-XLII-4-551-2018.pdf1.37 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Seitenansichten

267
checked on 26.12.2024

Download(s)

71
checked on 26.12.2024

Google ScholarTM

Prüfe

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons