DC Element | Wert | Sprache |
---|---|---|
dc.contributor.author | Barnefske, Eike Ruben | - |
dc.contributor.author | Sternberg, Harald | - |
dc.date.accessioned | 2022-10-24T09:01:35Z | - |
dc.date.available | 2022-10-24T09:01:35Z | - |
dc.date.issued | 2019-09-17 | - |
dc.identifier.citation | ISPRS ICWG II/III PIA19+MRSS19 - Photogrammetric Image Analysis & Munich Remote Sensing Symposium: Joint ISPRS conference | en_US |
dc.identifier.uri | https://repos.hcu-hamburg.de/handle/hcu/793 | - |
dc.description.abstract | Point clouds give a very detailed and sometimes very accurate representation of the geometry of captured objects. In surveying, point clouds captured with laser scanners or camera systems are an intermediate result that must be processed further. Often the point cloud has to be divided into regions of similar types (object classes) for the next process steps. These classifications are very time-consuming and cost-intensive compared to acquisition. In order to automate this process step, conventional neural networks (ConvNet), which take over the classification task, are investigated in detail. In addition to the network architecture, the classification performance of a ConvNet depends on the training data with which the task is learned. This paper presents and evaluates the point clould classification tool (PCCT) developed at HCU Hamburg. With the PCCT, large point cloud collections can be semi-automatically classified. Furthermore, the influence of erroneous points in three-dimensional point clouds is investigated. The network architecture PointNet is used for this investigation. | en |
dc.language.iso | en | en_US |
dc.publisher | Copernicus | - |
dc.subject | ConvNet | en |
dc.subject | semantic labeling | en |
dc.subject | training data | en |
dc.subject | TLS | en |
dc.subject | deep learning | en |
dc.subject.ddc | 620: Ingenieurwissenschaften | - |
dc.title | PCCT: A Point Cloud Classification Tool to Create 3D Training Data to Adjust and Develop 3D ConvNet | en |
dc.type | conferencePaper | en_US |
dc.relation.conference | Photogrammetric Image Analysis & Munich Remote Sensing Symposium (PIA19+MRSS19), 18–20 September 2019, Munich, Germany | en_US |
dc.type.dini | ConferencePaper | - |
dc.type.driver | conferenceObject | - |
dc.rights.cc | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.type.casrai | Conference Paper | - |
dcterms.DCMIType | Text | - |
tuhh.identifier.urn | urn:nbn:de:gbv:1373-repos-10127 | - |
tuhh.oai.show | true | en_US |
tuhh.publisher.doi | 10.5194/isprs-archives-XLII-2-W16-35-2019 | - |
tuhh.publication.institute | Hydrographie und Geodäsie | en_US |
tuhh.type.opus | InProceedings (Aufsatz / Paper einer Konferenz etc.) | - |
tuhh.container.startpage | 35 | en_US |
tuhh.container.endpage | 40 | en_US |
tuhh.relation.ispartofseriesnumber | XLII-2/W16 | en_US |
tuhh.relation.ispartofseries | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | en_US |
tuhh.type.rdm | false | - |
openaire.rights | info:eu-repo/semantics/openAccess | en_US |
item.grantfulltext | open | - |
item.creatorOrcid | Barnefske, Eike Ruben | - |
item.creatorOrcid | Sternberg, Harald | - |
item.fulltext | With Fulltext | - |
item.seriesref | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;XLII-2/W16 | - |
item.languageiso639-1 | en | - |
item.tuhhseriesid | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.creatorGND | Barnefske, Eike Ruben | - |
item.creatorGND | Sternberg, Harald | - |
item.openairetype | conferencePaper | - |
crisitem.author.dept | Hydrographie und Geodäsie | - |
crisitem.author.dept | Hydrographie und Geodäsie | - |
Enthalten in der Sammlung | Publikationen (mit Volltext) |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
isprs-archives-XLII-2-W16-35-2019.pdf | 1.22 MB | Adobe PDF | Öffnen/Anzeigen |
Seitenansichten
328
checked on 25.12.2024
Download(s)
61
checked on 25.12.2024
Google ScholarTM
Prüfe
Export
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons