Type: | Article | Title: | Employing machine learning techniques in monitoring autocorrelated profiles | Authors: | Yeganeh, Ali Johannssen, Arne Chukhrova, Nataliya Abbasi, Saddam Akber Pourpanah, Farhad |
Issue Date: | Aug-2023 | Keywords: | Adaptive neuro-fuzzy inference system; Artificial neural network; Deep learning; Long short-term memory; Statistical process monitoring; Support vector regression | Abstract: | In profile monitoring, it is usually assumed that the observations between or within each profile are independent of each other. However, this assumption is often violated in manufacturing practice, and it is of utmost importance to carefully consider autocorrelation effects in the underlying models for profile monitoring. For this reason, various statistical control charts have been proposed to monitor profiles when between- or within-data is correlated in Phase II, in which the main aim is to develop control charts with quicker detection ability. As a novel approach, this study aims to employ machine learning techniques as control charts instead of statistical approaches in monitoring profiles with between-profile autocorrelations. Specifically, new input features based on conventional statistical control chart statistics and normalized estimated parameters are defined that are capable of adequately accounting for the between-autocorrelation effect of profiles. In addition, six machine learning techniques are extended and compared by means of Monte Carlo simulations. The simulation results indicate that machine learning techniques can obtain more accurate results compared with statistical control charts. Moreover, adaptive neuro-fuzzy inference systems outperform other machine learning techniques and the conventional statistical control charts. |
Subject Class (DDC): | 004: Informatik | HCU-Faculty: | Hydrographie und Geodäsie | Journal or Series Name: | Neural Computing & Applications | Volume: | 35 | Issue: | 22 | Start page: | 16321 | End page: | 16340 | Publisher: | Springer | ISSN: | 0941-0643 | Publisher DOI: | 10.1007/s00521-023-08483-3 | URN (Citation Link): | urn:nbn:de:gbv:1373-repos-11288 | Directlink: | https://repos.hcu-hamburg.de/handle/hcu/885 | Language: | English | Creative Commons License: | https://creativecommons.org/licenses/by/4.0/ |
Appears in Collection | Publikationen (mit Volltext) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
s00521-023-08483-3.pdf | 1.1 MB | Adobe PDF | View/Open |
Page view(s)
349
checked on Dec 23, 2024
Download(s)
137
checked on Dec 23, 2024
Google ScholarTM
Check
Export
This item is licensed under a Creative Commons License