Dokumenttyp: Artikel/Aufsatz
Titel: Social media insights on public perception and sentiment during and after disasters: The European floods in 2021 as a case study
Autor*in: Li, Weilian
Haunert, Jan-Henrik
Knechtel, Julius
Zhu, Jun
Zhu, Qing
Dehbi, Youness 
Erscheinungsdatum: 18-Sep-2023
Zusammenfassung: 
Detecting and collecting public opinion via social media can provide near real-time information to decision-makers, which plays a vital role in urban disaster management and sustainable development. However, there has been little work focusing on identifying the perception and the sentiment polarity expressed by users during and after disasters, particularly regional flood events. In this article, we comprehensively analyze tweets data related to the “European floods in 2021” over time, topic, and sentiment, forming a complete workflow from data processing, topic modeling, sentiment analysis, and topic and sentiment prediction. The aim is to address the following research questions: (1) What are the public perception and main concerns during and after floods? (2) How does the public sentiment change during and after floods? Results indicate that there is a significant correlation between a flood's trend and the heat of corresponding tweets. The three topics that receive the most public concern are: (1) climate change and global warming; (2) praying for the victims: and (3) disaster situations and information. Negative sentiments are predominant during the floods and will continue for some time. We tested five different classifiers, of which TextCNN-attention turned out to deliver the best predictions in topic and sentiment prediction, and performed well for sparse flood tweets, it can be used to predict the topic and sentiment polarity of a single tweet in real-time during the flood events. Our findings can help disaster agencies to better understand the dynamics of social networks and develop stronger situational awareness towards a disaster, which can contribute to scientifically justified decision-making in urban risk management and also meet the challenges associated with the global sustainable development goal 11 (SDGs) on Sustainable Cities and Communities.
Sachgruppe (DDC): 550: Geowissenschaften
HCU-Fachgebiet / Studiengang: Computational Methods 
Zeitschrift oder Schriftenreihe: Transactions in GIS 
Band: 27
Ausgabe: 6
Seite von: 1766
Seite bis: 1793
Verlag: Wiley
ISSN: 1467-9671
Verlagslink (DOI): 10.1111/tgis.13097
URN (Zitierlink): urn:nbn:de:gbv:1373-repos-11837
Direktlink: https://repos.hcu-hamburg.de/handle/hcu/920
Sprache: Englisch
Creative-Commons-Lizenz: https://creativecommons.org/licenses/by-nc-nd/4.0/
Enthalten in der SammlungPublikationen (mit Volltext)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
Transactions in GIS - 2023 - Li.pdf2.97 MBAdobe PDFÖffnen/Anzeigen
Internformat

Seitenansichten

485
checked on 23.12.2024

Download(s)

176
checked on 23.12.2024

Google ScholarTM

Prüfe

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons