DC FieldValueLanguage
dc.contributor.authorHesamian, Gholamreza-
dc.contributor.authorChukhrova, Nataliya-
dc.contributor.authorJohannssen, Arne-
dc.date.accessioned2023-10-19T09:02:47Z-
dc.date.available2023-10-19T09:02:47Z-
dc.date.issued2023-12-
dc.identifier.issn1432-7643en_US
dc.identifier.urihttps://repos.hcu-hamburg.de/handle/hcu/925-
dc.description.abstractStatistical inference is the process of drawing conclusions about underlying population(s) using sample data to either confirm or falsify hypotheses. However, the complexity of real-life problems often makes the underlying statistical models inadequate, as information is often imprecise in many respects. To address this common problem, some papers have been published on modifications and extensions of test concepts by employing tools of fuzzy statistics. In this paper, we present a non-parametric test for the difference between quantiles of two independent populations based on fuzzy random variables. For this purpose, we consider the fuzzy quantile function and its estimation based on α -values of fuzzy random variables. We then provide a fuzzy test based on the fuzzy empirical distribution function for the difference of fuzzy order statistics from these independent populations. We also suggest a specific degree-based criterion to compare the fuzzy test statistics at a specific significance level to decide whether the underlying fuzzy null hypothesis can be rejected or not. The effectiveness of the proposed two-sample test on quantiles is investigated via numerical examples.en
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofSoft Computingen_US
dc.subjectFuzzy random variableen
dc.subjectFuzzy quantile functionen
dc.subjectFuzzy hypothesisen
dc.subjectFuzzy testen
dc.subjectNon-parametric testen
dc.subject.ddc004: Informatiken_US
dc.titleStatistical inference on quantiles of two independent populations under uncertaintyen
dc.typeArticleen_US
dc.type.diniarticle-
dc.type.driverarticle-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:1373-repos-11912-
tuhh.oai.showtrueen_US
tuhh.publisher.doi10.1007/s00500-023-09202-9-
tuhh.publication.instituteHydrographie und Geodäsieen_US
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.container.issue23en_US
tuhh.container.volume27en_US
tuhh.container.startpage17573en_US
tuhh.container.endpage17583en_US
tuhh.type.rdmfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
item.grantfulltextopen-
item.creatorOrcidHesamian, Gholamreza-
item.creatorOrcidChukhrova, Nataliya-
item.creatorOrcidJohannssen, Arne-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.creatorGNDHesamian, Gholamreza-
item.creatorGNDChukhrova, Nataliya-
item.creatorGNDJohannssen, Arne-
item.openairetypeArticle-
crisitem.author.deptHydrographie und Geodäsie-
crisitem.author.orcid0000-0002-4105-7033-
Appears in CollectionPublikationen (mit Volltext)
Files in This Item:
File Description SizeFormat
s00500-023-09202-9.pdf873.82 kBAdobe PDFView/Open
Show simple item record

Page view(s)

342
checked on Dec 23, 2024

Download(s)

115
checked on Dec 23, 2024

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons