Dokumenttyp: | Artikel/Aufsatz | Titel: | The green window view index: automated multi-source visibility analysis for a multi-scale assessment of green window views | Autor*in: | Bolte, Anna-Maria Niedermann, Benjamin Kistemann, Thomas Haunert, Jan-Henrik Dehbi, Youness Kötter, Theo |
Erscheinungsdatum: | 11-Mär-2024 | Freie Schlagwörter: | Visibility analysis; Urban green; Open source data; CityGML; LiDAR; ALKIS | Zusammenfassung: | Context: Providing accessible urban green spaces is crucial for planning and ensuring healthy, resilient, and sustainable cities. The importance of visually accessible urban green spaces increases due to inner urban development processes. Objectives: This article proposes a new index, the Green Window View Index (GWVI) for analyzing and assessing visible vegetation, that promotes an integrated planning of urban green spaces and buildings at different scales and levels. It is defined as the proportion of visible vegetation area in a field of view when looking out of a specific window with a defined distance to the window. Methods: The method for estimating GWVI consists of three steps: (a) the modeling of the three-dimensional environment, (b) the simulation of the two-dimensional window views using modern rendering engines for three-dimensional graphics, (c) the computation of the GWVI. The method is proposed and tested through a case study of the urban area of Bonn, Germany, using a Digital Terrain Model (DTM), CityGML-based semantic 3D City Model at level of detail (LoD) 2, airborne Light Detection and Ranging (LiDAR) data, and 2D land use data from the official German property cadaster information system (ALKIS). Results: With an average processing time of 0.05 s per window view, an average GWVI of 26.00% could be calculated for the entire study area and visualized in both 2D and 3D. Conclusion: The proposed engine generates multi-scale visibility values for various vegetation shapes. These values are intended for use in participatory citizenship and decision-making processes for analysis by architects, real-estate appraisers, investors, and urban as well as landscape planners. |
Sachgruppe (DDC): | 710: Landschaftsgestaltung, Raumplanung | HCU-Fachgebiet / Studiengang: | Computational Methods | Zeitschrift oder Schriftenreihe: | Landscape Ecology | Band: | 39 | Verlag: | Springer | ISSN: | 0921-2973 | Verlagslink (DOI): | 10.1007/s10980-024-01871-7 | URN (Zitierlink): | urn:nbn:de:gbv:1373-repos-12703 | Direktlink: | https://repos.hcu-hamburg.de/handle/hcu/989 | Sprache: | Englisch | Creative-Commons-Lizenz: | https://creativecommons.org/licenses/by/4.0/ |
Enthalten in der Sammlung | Publikationen (mit Volltext) |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
s10980-024-01871-7.pdf | 4.35 MB | Adobe PDF | Öffnen/Anzeigen |
Seitenansichten
176
checked on 23.12.2024
Download(s)
49
checked on 23.12.2024
Google ScholarTM
Prüfe
Export
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons