Type: Conference Paper
Title: Towards a Deep Automatic Generation of Figure-ground Maps
Authors: Arzoumanidis, Lukas 
Hecht, Jonathan
Dehbi, Youness 
Source: ISPRS TC IV (WG IV/9) 19th 3D GeoInfo Conference 2024
Issue Date: 27-Jun-2024
Keywords: Generative Adversarial Networks; Geographical Data Translation; Figure-ground Maps; Urban Morphology; Built Density; Volunteered Geographic Information
Abstract: 
Figure-ground maps play a key role in many disciplines where urban planning or analysis is involved. In this context, the automatic generation of such maps with respect to certain requirements and constraints is an important task. This paper presents a first step towards a deep automatic generation of figure-ground maps where the built density of the generated scenes is controlled and taken into a...
Subject Class (DDC): 710: Landschaftsgestaltung, Raumplanung
HCU-Faculty: Computational Methods 
Start page: 33
End page: 39
Publisher: Copernicus
Part of Series: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 
Volume number: X-4/W5-2024
Publisher DOI: 10.5194/isprs-annals-X-4-W5-2024-33-2024
URN (Citation Link): urn:nbn:de:gbv:1373-repos-13279
Directlink: https://repos.hcu-hamburg.de/handle/hcu/1036
Language: English
Creative Commons License: https://creativecommons.org/licenses/by/4.0/
Appears in CollectionPublikationen (mit Volltext)

Files in This Item:
File Description SizeFormat
isprs-annals-X-4-W5-2024-33-2024.pdf5.46 MBAdobe PDFView/Open
Staff view

Page view(s)

2,776
checked on Mar 30, 2025

Download(s)

76
checked on Mar 30, 2025

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons