Type: Article
Title: Semantic floorplan segmentation using self-constructing graph networks
Authors: Knechtel, Julius
Rottmann, Peter
Haunert, Jan-Henrik
Dehbi, Youness 
Issue Date: Oct-2024
Keywords: Floorplan; Semantic segmentation; Graph Convolutional Network; Convolutional neural network; Self-constructing graph
Abstract: 
This article presents an approach for the automatic semantic segmentation of floorplan images, predicting room boundaries (walls, doors, windows) and semantic labels of room types. A multi-task network was designed to represent and learn inherent dependencies by combining a Convolutional Neural Network to generate suitable features with a Graph Convolutional Network (GCN) to capture long-range dep...
Subject Class (DDC): 004: Informatik
HCU-Faculty: Computational Methods 
Journal or Series Name: Automation in Construction 
Volume: 166
Publisher: Elsevier
ISSN: 0926-5805
Publisher DOI: 10.1016/j.autcon.2024.105649
URN (Citation Link): urn:nbn:de:gbv:1373-repos-13590
Directlink: https://repos.hcu-hamburg.de/handle/hcu/1063
Language: English
Creative Commons License: https://creativecommons.org/licenses/by-nc/4.0/
Appears in CollectionPublikationen (mit Volltext)

Files in This Item:
File Description SizeFormat
1-s2.0-S0926580524003856-main.pdf3.08 MBAdobe PDFView/Open
Staff view

Page view(s)

182
checked on Apr 6, 2025

Download(s)

85
checked on Apr 6, 2025

Google ScholarTM

Check

Export

This item is licensed under a Creative Commons License Creative Commons