Dokumenttyp: Artikel/Aufsatz
Titel: Informed sampling and recommendation of cycling routes: leveraging crowd-sourced trajectories with weighted-latent Dirichlet allocation
Autor*in: Li, Weilian 
Haunert, Jan-Henrik
Forsch, Axel
Zhu, Jun
Zhu, Qing
Dehbi, Youness 
Erscheinungsdatum: 2024
Freie Schlagwörter: Cycling route recommendation; weighted-latent Dirichlet allocation; crowd-sourced trajectories; spatial context mapping; natural language processing
Zusammenfassung: 
Attractive cycling routes can effectively promote active mobility, thus reducing the twin pressures of the population boom and the greenhouse effect. However, the existing approaches for cycling route recommendation primarily concentrate on identifying the most efficient routes while ignoring the urban spatial context, which is essential to meet the user’s particular preferences. This article proposes a novel method for informed sampling and recommending cycling routes leveraging crowd-sourced trajectories with weighted-latent Dirichlet allocation (WLDA). Precisely, spatial context mapping, incorporating a weighting mechanism into LDA, latent topics mining, and cycling route recommendation based on informed sampling are introduced. We collected 1,016 cycling trajectories around Cologne, Germany, for experimental analysis. The experimental results show that the three latent topics within the trajectories, leisure, city, and green tours, are clearly presented in the line density analysis. The insightful recommendation for unfamiliar cyclists could also be actively sampled upon the WLDA model. These findings suggest that our approach could shift the route recommendation paradigm from GIS analysis to a semantic mining perspective, yielding highly interpretable results and offering novel research avenues for applying machine learning in route planning.
Sachgruppe (DDC): 710: Landschaftsgestaltung, Raumplanung
HCU-Fachgebiet / Studiengang: Computational Methods 
Zeitschrift oder Schriftenreihe: International Journal of Geographical Information Science 
Band: 38
Ausgabe: 12
Seite von: 2492
Seite bis: 2513
Verlag: Taylor & Francis
ISSN: 1365-8816
Verlagslink (DOI): 10.1080/13658816.2024.2391428
URN (Zitierlink): urn:nbn:de:gbv:1373-repos-13746
Direktlink: https://repos.hcu-hamburg.de/handle/hcu/1076
Sprache: Englisch
Creative-Commons-Lizenz: https://creativecommons.org/licenses/by/4.0/
Enthalten in der SammlungPublikationen (mit Volltext)

Internformat

Seitenansichten

64
checked on 12.12.2024

Download(s)

8
checked on 12.12.2024

Google ScholarTM

Prüfe

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons