Dokumenttyp: Artikel/Aufsatz
Titel: Preserving Spatial Patterns in Point Data: A Generalization Approach Using Agent-Based Modeling
Autor*in: Knura, Martin Michael 
Schiewe, Jochen 
Erscheinungsdatum: 2024
Freie Schlagwörter: point generalization; agent-based modeling; constraints; spatial pattern
Zusammenfassung: 
Visualization and interpretation of user-generated spatial content such as Volunteered Geographic Information (VGI) is challenging because it combines enormous data volume and heterogeneity with a spatial bias. When dealing with point data on a map, these characteristics can lead to point clutter, reducing the readability of the map product and misleading users to false interpretations of patterns in the data, e.g., regarding specific clusters or extreme values. With this work, we provide a framework that is able to generalize point data, preserving spatial clusters and extreme values simultaneously. The framework consists of an agent-based generalization model using predefined constraints and measures. We present the architecture of the model and compare the results with methods focusing on extreme value preservation as well as clutter reduction. As a result, we can state that our agent-based model is able to preserve elementary characteristics of point datasets, such as the point density of clusters, while also retaining the existing extreme values in the data.
Sachgruppe (DDC): 710: Landschaftsgestaltung, Raumplanung
HCU-Fachgebiet / Studiengang: Geodäsie und Geoinformatik 
Zeitschrift oder Schriftenreihe: ISPRS International Journal of Geo-Information 
Band: 13
Ausgabe: 12
ISSN: 2220-9964
Verlagslink (DOI): 10.3390/ijgi13120431
URN (Zitierlink): urn:nbn:de:gbv:1373-repos-14501
Direktlink: https://repos.hcu-hamburg.de/handle/hcu/1124
Sprache: Englisch
Creative-Commons-Lizenz: https://creativecommons.org/licenses/by/4.0/
Enthalten in der SammlungPublikationen (mit Volltext)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
ijgi-13-00431-with-cover.pdf2.16 MBAdobe PDFÖffnen/Anzeigen
Internformat

Seitenansichten

5
checked on 20.05.2025

Google ScholarTM

Prüfe

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons