Dokumenttyp: Artikel/Aufsatz
Titel: Using Object Detection on Social Media Images for Urban Bicycle Infrastructure Planning: A Case Study of Dresden
Autor*in: Knura, Martin Michael 
Kluger, Florian
Zahtila, Moris
Schiewe, Jochen 
Rosenhahn, Bodo
Burghardt, Dirk
Erscheinungsdatum: 28-Okt-2021
Freie Schlagwörter: Object detection; social media; urban planning; bicycle infrastructure; computer vision; volunteered geographical information; visual analytics
Zusammenfassung: 
With cities reinforcing greener ways of urban mobility, encouraging urban cycling helps to reduce the number of motorized vehicles on the streets. However, that also leads to a significant increase in the number of bicycles in urban areas, making the question of planning the cycling infrastructure an important topic. In this paper, we introduce a new method for analyzing the demand for bicycle parking facilities in urban areas based on object detection of social media images. We use a subset of the YFCC100m dataset, a collection of posts from the social media platform Flickr, and utilize a state-of-the-art object detection algorithm to detect and classify moving and parked bicycles in the city of Dresden, Germany. We were able to retrieve the vast majority of bicycles while generating few false positives and classify them as either moving or stationary. We then conducted a case study in which we compare areas with a high density of parked bicycles with the number of currently available parking spots in the same areas and identify potential locations where new bicycle parking facilities can be introduced. With the results of the case study, we show that our approach is a useful additional data source for urban bicycle infrastructure planning because it provides information that is otherwise hard to obtain.
Sachgruppe (DDC): 004: Informatik
710: Landschaftsgestaltung, Raumplanung
HCU-Fachgebiet / Studiengang: Geovisualisierung, Kartographie 
Zeitschrift oder Schriftenreihe: ISPRS International Journal of Geo-Information 
Band: 10
Ausgabe: 11
Verlag: MDPI
ISSN: 2220-9964
Verlagslink (DOI): 10.3390/ijgi10110733
URN (Zitierlink): urn:nbn:de:gbv:1373-repos-8819
Direktlink: https://repos.hcu-hamburg.de/handle/hcu/682
Sprache: Englisch
Creative-Commons-Lizenz: https://creativecommons.org/licenses/by/4.0/
Enthalten in der SammlungPublikationen (mit Volltext)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
ijgi-10-00733-v2.pdf24.17 MBAdobe PDFÖffnen/Anzeigen
Internformat

Seitenansichten

235
checked on 26.12.2024

Download(s)

66
checked on 26.12.2024

Google ScholarTM

Prüfe

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons