DC Element | Wert | Sprache |
---|---|---|
dc.contributor.author | Yeganeh, Ali | - |
dc.contributor.author | Johannssen, Arne | - |
dc.contributor.author | Chukhrova, Nataliya | - |
dc.contributor.author | Abbasi, Saddam Akber | - |
dc.contributor.author | Pourpanah, Farhad | - |
dc.date.accessioned | 2023-07-17T14:07:49Z | - |
dc.date.available | 2023-07-17T14:07:49Z | - |
dc.date.issued | 2023-08 | - |
dc.identifier.issn | 0941-0643 | en_US |
dc.identifier.uri | https://repos.hcu-hamburg.de/handle/hcu/885 | - |
dc.description.abstract | In profile monitoring, it is usually assumed that the observations between or within each profile are independent of each other. However, this assumption is often violated in manufacturing practice, and it is of utmost importance to carefully consider autocorrelation effects in the underlying models for profile monitoring. For this reason, various statistical control charts have been proposed to monitor profiles when between- or within-data is correlated in Phase II, in which the main aim is to develop control charts with quicker detection ability. As a novel approach, this study aims to employ machine learning techniques as control charts instead of statistical approaches in monitoring profiles with between-profile autocorrelations. Specifically, new input features based on conventional statistical control chart statistics and normalized estimated parameters are defined that are capable of adequately accounting for the between-autocorrelation effect of profiles. In addition, six machine learning techniques are extended and compared by means of Monte Carlo simulations. The simulation results indicate that machine learning techniques can obtain more accurate results compared with statistical control charts. Moreover, adaptive neuro-fuzzy inference systems outperform other machine learning techniques and the conventional statistical control charts. | en |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Neural Computing & Applications | en_US |
dc.subject | Adaptive neuro-fuzzy inference system | en |
dc.subject | Artificial neural network | en |
dc.subject | Deep learning | en |
dc.subject | Long short-term memory | en |
dc.subject | Statistical process monitoring | en |
dc.subject | Support vector regression | en |
dc.subject.ddc | 004: Informatik | en_US |
dc.title | Employing machine learning techniques in monitoring autocorrelated profiles | en |
dc.type | Article | en_US |
dc.type.dini | article | - |
dc.type.driver | article | - |
dc.rights.cc | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.type.casrai | Journal Article | - |
dcterms.DCMIType | Text | - |
tuhh.identifier.urn | urn:nbn:de:gbv:1373-repos-11288 | - |
tuhh.oai.show | true | en_US |
tuhh.publisher.doi | 10.1007/s00521-023-08483-3 | - |
tuhh.publication.institute | Hydrographie und Geodäsie | en_US |
tuhh.type.opus | (wissenschaftlicher) Artikel | - |
tuhh.container.issue | 22 | en_US |
tuhh.container.volume | 35 | en_US |
tuhh.container.startpage | 16321 | en_US |
tuhh.container.endpage | 16340 | en_US |
tuhh.type.rdm | false | - |
openaire.rights | info:eu-repo/semantics/openAccess | en_US |
item.grantfulltext | open | - |
item.creatorOrcid | Yeganeh, Ali | - |
item.creatorOrcid | Johannssen, Arne | - |
item.creatorOrcid | Chukhrova, Nataliya | - |
item.creatorOrcid | Abbasi, Saddam Akber | - |
item.creatorOrcid | Pourpanah, Farhad | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
item.creatorGND | Yeganeh, Ali | - |
item.creatorGND | Johannssen, Arne | - |
item.creatorGND | Chukhrova, Nataliya | - |
item.creatorGND | Abbasi, Saddam Akber | - |
item.creatorGND | Pourpanah, Farhad | - |
item.openairetype | Article | - |
crisitem.author.dept | Hydrographie und Geodäsie | - |
crisitem.author.orcid | 0000-0002-4105-7033 | - |
Enthalten in der Sammlung | Publikationen (mit Volltext) |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
s00521-023-08483-3.pdf | 1.1 MB | Adobe PDF | Öffnen/Anzeigen |
Seitenansichten
349
checked on 23.12.2024
Download(s)
137
checked on 23.12.2024
Google ScholarTM
Prüfe
Export
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons