DC ElementWertSprache
dc.contributor.authorYeganeh, Ali-
dc.contributor.authorJohannssen, Arne-
dc.contributor.authorChukhrova, Nataliya-
dc.contributor.authorAbbasi, Saddam Akber-
dc.contributor.authorPourpanah, Farhad-
dc.date.accessioned2023-07-17T14:07:49Z-
dc.date.available2023-07-17T14:07:49Z-
dc.date.issued2023-08-
dc.identifier.issn0941-0643en_US
dc.identifier.urihttps://repos.hcu-hamburg.de/handle/hcu/885-
dc.description.abstractIn profile monitoring, it is usually assumed that the observations between or within each profile are independent of each other. However, this assumption is often violated in manufacturing practice, and it is of utmost importance to carefully consider autocorrelation effects in the underlying models for profile monitoring. For this reason, various statistical control charts have been proposed to monitor profiles when between- or within-data is correlated in Phase II, in which the main aim is to develop control charts with quicker detection ability. As a novel approach, this study aims to employ machine learning techniques as control charts instead of statistical approaches in monitoring profiles with between-profile autocorrelations. Specifically, new input features based on conventional statistical control chart statistics and normalized estimated parameters are defined that are capable of adequately accounting for the between-autocorrelation effect of profiles. In addition, six machine learning techniques are extended and compared by means of Monte Carlo simulations. The simulation results indicate that machine learning techniques can obtain more accurate results compared with statistical control charts. Moreover, adaptive neuro-fuzzy inference systems outperform other machine learning techniques and the conventional statistical control charts.en
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofNeural Computing & Applicationsen_US
dc.subjectAdaptive neuro-fuzzy inference systemen
dc.subjectArtificial neural networken
dc.subjectDeep learningen
dc.subjectLong short-term memoryen
dc.subjectStatistical process monitoringen
dc.subjectSupport vector regressionen
dc.subject.ddc004: Informatiken_US
dc.titleEmploying machine learning techniques in monitoring autocorrelated profilesen
dc.typeArticleen_US
dc.type.diniarticle-
dc.type.driverarticle-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dcterms.DCMITypeText-
tuhh.identifier.urnurn:nbn:de:gbv:1373-repos-11288-
tuhh.oai.showtrueen_US
tuhh.publisher.doi10.1007/s00521-023-08483-3-
tuhh.publication.instituteHydrographie und Geodäsieen_US
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.container.issue22en_US
tuhh.container.volume35en_US
tuhh.container.startpage16321en_US
tuhh.container.endpage16340en_US
tuhh.type.rdmfalse-
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
item.grantfulltextopen-
item.creatorOrcidYeganeh, Ali-
item.creatorOrcidJohannssen, Arne-
item.creatorOrcidChukhrova, Nataliya-
item.creatorOrcidAbbasi, Saddam Akber-
item.creatorOrcidPourpanah, Farhad-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.creatorGNDYeganeh, Ali-
item.creatorGNDJohannssen, Arne-
item.creatorGNDChukhrova, Nataliya-
item.creatorGNDAbbasi, Saddam Akber-
item.creatorGNDPourpanah, Farhad-
item.openairetypeArticle-
crisitem.author.deptHydrographie und Geodäsie-
crisitem.author.orcid0000-0002-4105-7033-
Enthalten in der SammlungPublikationen (mit Volltext)
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
s00521-023-08483-3.pdf1.1 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Seitenansichten

349
checked on 23.12.2024

Download(s)

137
checked on 23.12.2024

Google ScholarTM

Prüfe

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons