Dokumenttyp: Artikel/Aufsatz
Titel: Employing machine learning techniques in monitoring autocorrelated profiles
Autor*in: Yeganeh, Ali
Johannssen, Arne
Chukhrova, Nataliya 
Abbasi, Saddam Akber
Pourpanah, Farhad
Erscheinungsdatum: Aug-2023
Freie Schlagwörter: Adaptive neuro-fuzzy inference system; Artificial neural network; Deep learning; Long short-term memory; Statistical process monitoring; Support vector regression
Zusammenfassung: 
In profile monitoring, it is usually assumed that the observations between or within each profile are independent of each other. However, this assumption is often violated in manufacturing practice, and it is of utmost importance to carefully consider autocorrelation effects in the underlying models for profile monitoring. For this reason, various statistical control charts have been proposed to monitor profiles when between- or within-data is correlated in Phase II, in which the main aim is to develop control charts with quicker detection ability. As a novel approach, this study aims to employ machine learning techniques as control charts instead of statistical approaches in monitoring profiles with between-profile autocorrelations. Specifically, new input features based on conventional statistical control chart statistics and normalized estimated parameters are defined that are capable of adequately accounting for the between-autocorrelation effect of profiles. In addition, six machine learning techniques are extended and compared by means of Monte Carlo simulations. The simulation results indicate that machine learning techniques can obtain more accurate results compared with statistical control charts. Moreover, adaptive neuro-fuzzy inference systems outperform other machine learning techniques and the conventional statistical control charts.
Sachgruppe (DDC): 004: Informatik
HCU-Fachgebiet / Studiengang: Hydrographie und Geodäsie 
Zeitschrift oder Schriftenreihe: Neural Computing & Applications 
Band: 35
Ausgabe: 22
Seite von: 16321
Seite bis: 16340
Verlag: Springer
ISSN: 0941-0643
Verlagslink (DOI): 10.1007/s00521-023-08483-3
URN (Zitierlink): urn:nbn:de:gbv:1373-repos-11288
Direktlink: https://repos.hcu-hamburg.de/handle/hcu/885
Sprache: Englisch
Creative-Commons-Lizenz: https://creativecommons.org/licenses/by/4.0/
Enthalten in der SammlungPublikationen (mit Volltext)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
s00521-023-08483-3.pdf1.1 MBAdobe PDFÖffnen/Anzeigen
Internformat

Seitenansichten

349
checked on 23.12.2024

Download(s)

137
checked on 23.12.2024

Google ScholarTM

Prüfe

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons