Dokumenttyp: Buchkapitel
Titel: Automated Extraction of Labels from Large-Scale Historical Maps
Autor*in: Schlegel, Inga 
Quellenangabe: Proceedings of the 24th AGILE Conference on Geographic Information Science
Erscheinungsdatum: 4-Jun-2021
Freie Schlagwörter: historical maps; text detection; text recognition; text extraction; optical character recognition; levenshtein distance; georeferencing
Zusammenfassung: 
Historical maps are frequently neither readable, searchable nor analyzable by machines due to lacking databases or ancillary information about their content. Identifying and annotating map labels is seen as a first step towards an automated legibility of those. This article investigates a universal and transferable methodology for the work with large-scale historical maps and their comparability to others while reducing manual intervention to a minimum. We present an end-to-end approach which increases the number of true positive identified labels by combining available text detection, recognition, and similarity measuring tools with own enhancements. The comparison of recognized historical with current street names produces a satisfactory accordance which can be used to assign their point-like representatives within a final rough georeferencing. The demonstrated workflow facilitates a spatial orientation within large-scale historical maps by enabling the establishment of relating databases. Assigning the identified labels to the geometries of related map features may contribute to machine-readable and analyzable historical maps.
Sachgruppe (DDC): 550: Geowissenschaften
HCU-Fachgebiet / Studiengang: Geodäsie und Geoinformatik 
Verlag: Copernicus
Teil der Schriftenreihe: AGILE: GIScience Series 
Bandangabe: 2
Verlagslink (DOI): 10.5194/agile-giss-2-12-2021
URN (Zitierlink): urn:nbn:de:gbv:1373-repos-11359
Direktlink: https://repos.hcu-hamburg.de/handle/hcu/890
Sprache: Englisch
Creative-Commons-Lizenz: https://creativecommons.org/licenses/by/4.0/
Enthalten in der SammlungPublikationen (mit Volltext)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
agile-giss-2-12-2021.pdf3.54 MBAdobe PDFÖffnen/Anzeigen
Internformat

Seitenansichten

437
checked on 23.11.2024

Download(s)

91
checked on 23.11.2024

Google ScholarTM

Prüfe

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons