Dokumenttyp: Artikel/Aufsatz
Titel: Artificial Intelligence Algorithms for Collaborative Book Recommender Systems
Autor*in: Tegetmeier, Clemens
Johannssen, Arne
Chukhrova, Nataliya 
Erscheinungsdatum: Okt-2024
Freie Schlagwörter: Artificial intelligence; Book recommender systems; knn algorithm; Machine learning; Matrix factorization algorithm; Stochastic gradient descent method
Zusammenfassung: 
Book recommender systems provide personalized recommendations of books to users based on their previous searches or purchases. As online trading of books has become increasingly important in recent years, artificial intelligence (AI) algorithms are needed to recommend suitable books to users and encourage them to make purchasing decisions in the short and the long run. In this paper, we consider AI algorithms for so called collaborative book recommender systems, especially the matrix factorization algorithm using the stochastic gradient descent method and the book-based k-nearest-neighbor algorithm. We perform a comprehensive case study based on the Book-Crossing benchmark data set, and implement various variants of both AI algorithms to predict unknown book ratings and to recommend books to individual users based on the highest predicted ratings. This study aims to evaluate the quality of the implemented methods in recommending books by using selected evaluation metrics for AI algorithms.
Sachgruppe (DDC): 004: Informatik
HCU-Fachgebiet / Studiengang: Hydrographie und Geodäsie 
Zeitschrift oder Schriftenreihe: Annals of Data Science 
Band: 11
Ausgabe: 5
Seite von: 1705
Seite bis: 1739
Verlag: Springer
ISSN: 2198-5804
Verlagslink (DOI): 10.1007/s40745-023-00474-4
URN (Zitierlink): urn:nbn:de:gbv:1373-repos-11424
Direktlink: https://repos.hcu-hamburg.de/handle/hcu/894
Sprache: Englisch
Creative-Commons-Lizenz: https://creativecommons.org/licenses/by/4.0/
Enthalten in der SammlungPublikationen (mit Volltext)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
s40745-023-00474-4.pdf1.39 MBAdobe PDFÖffnen/Anzeigen
Internformat

Seitenansichten

92
checked on 21.12.2024

Download(s)

11
checked on 21.12.2024

Google ScholarTM

Prüfe

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons