Dokumenttyp: Artikel/Aufsatz
Titel: A Three-Stage Nonparametric Kernel-Based Time Series Model Based on Fuzzy Data
Autor*in: Hesamian, Gholamreza
Johannssen, Arne
Chukhrova, Nataliya 
Erscheinungsdatum: 21-Jun-2023
Freie Schlagwörter: fuzzy regression; fuzzy time series model; nonparametric time series analysis; time series analysis
Zusammenfassung: 
In this paper, a nonlinear time series model is developed for the case when the underlying time series data are reported by 𝐿𝑅 fuzzy numbers. To this end, we present a three-stage nonparametric kernel-based estimation procedure for the center as well as the left and right spreads of the unknown nonlinear fuzzy smooth function. In each stage, the nonparametric Nadaraya–Watson estimator is used to evaluate the center and the spreads of the fuzzy smooth function. A hybrid algorithm is proposed to estimate the unknown optimal bandwidths and autoregressive order simultaneously. Various goodness-of-fit measures are utilized for performance assessment of the fuzzy nonlinear kernel-based time series model and for comparative analysis. The practical applicability and superiority of the novel approach in comparison with further fuzzy time series models are demonstrated via a simulation study and some real-life applications.
Sachgruppe (DDC): 500: Naturwissenschaften
HCU-Fachgebiet / Studiengang: Hydrographie und Geodäsie 
Zeitschrift oder Schriftenreihe: Mathematics 
Band: 11
Ausgabe: 13
Verlag: MDPI
ISSN: 2227-7390
Verlagslink (DOI): 10.3390/math11132800
URN (Zitierlink): urn:nbn:de:gbv:1373-repos-11632
Direktlink: https://repos.hcu-hamburg.de/handle/hcu/906
Sprache: Englisch
Creative-Commons-Lizenz: https://creativecommons.org/licenses/by/4.0/
Enthalten in der SammlungPublikationen (mit Volltext)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
mathematics-11-02800.pdf1.38 MBAdobe PDFÖffnen/Anzeigen
Internformat

Seitenansichten

283
checked on 23.12.2024

Download(s)

96
checked on 23.12.2024

Google ScholarTM

Prüfe

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons