Dokumenttyp: Artikel/Aufsatz
Titel: Statistical inference on quantiles of two independent populations under uncertainty
Autor*in: Hesamian, Gholamreza
Chukhrova, Nataliya 
Johannssen, Arne
Erscheinungsdatum: Dez-2023
Freie Schlagwörter: Fuzzy random variable; Fuzzy quantile function; Fuzzy hypothesis; Fuzzy test; Non-parametric test
Zusammenfassung: 
Statistical inference is the process of drawing conclusions about underlying population(s) using sample data to either confirm or falsify hypotheses. However, the complexity of real-life problems often makes the underlying statistical models inadequate, as information is often imprecise in many respects. To address this common problem, some papers have been published on modifications and extensions of test concepts by employing tools of fuzzy statistics. In this paper, we present a non-parametric test for the difference between quantiles of two independent populations based on fuzzy random variables. For this purpose, we consider the fuzzy quantile function and its estimation based on α -values of fuzzy random variables. We then provide a fuzzy test based on the fuzzy empirical distribution function for the difference of fuzzy order statistics from these independent populations. We also suggest a specific degree-based criterion to compare the fuzzy test statistics at a specific significance level to decide whether the underlying fuzzy null hypothesis can be rejected or not. The effectiveness of the proposed two-sample test on quantiles is investigated via numerical examples.
Sachgruppe (DDC): 004: Informatik
HCU-Fachgebiet / Studiengang: Hydrographie und Geodäsie 
Zeitschrift oder Schriftenreihe: Soft Computing 
Band: 27
Ausgabe: 23
Seite von: 17573
Seite bis: 17583
Verlag: Springer
ISSN: 1432-7643
Verlagslink (DOI): 10.1007/s00500-023-09202-9
URN (Zitierlink): urn:nbn:de:gbv:1373-repos-11912
Direktlink: https://repos.hcu-hamburg.de/handle/hcu/925
Sprache: Englisch
Creative-Commons-Lizenz: https://creativecommons.org/licenses/by/4.0/
Enthalten in der SammlungPublikationen (mit Volltext)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
s00500-023-09202-9.pdf873.82 kBAdobe PDFÖffnen/Anzeigen
Internformat

Seitenansichten

342
checked on 23.12.2024

Download(s)

115
checked on 23.12.2024

Google ScholarTM

Prüfe

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons