Dokumenttyp: Artikel/Aufsatz
Titel: Semantic floorplan segmentation using self-constructing graph networks
Autor*in: Knechtel, Julius
Rottmann, Peter
Haunert, Jan-Henrik
Dehbi, Youness 
Erscheinungsdatum: Okt-2024
Freie Schlagwörter: Floorplan; Semantic segmentation; Graph Convolutional Network; Convolutional neural network; Self-constructing graph
Zusammenfassung: 
This article presents an approach for the automatic semantic segmentation of floorplan images, predicting room boundaries (walls, doors, windows) and semantic labels of room types. A multi-task network was designed to represent and learn inherent dependencies by combining a Convolutional Neural Network to generate suitable features with a Graph Convolutional Network (GCN) to capture long-range dependencies. In particular, a Self-Constructing Graph module is applied to automatically induce an input graph for the GCN. Experiments on different datasets demonstrate the superiority and effectiveness of the multi-task network compared to state-of-the-art methods. The accurate results not only allow for subsequent vectorization of the existing floorplans but also for automatic inference of layout graphs including connectivity and adjacency relations. The latter could serve as basis to automatically sample layout graphs for architectural planning and design, predict missing links for unobserved parts for as-built building models and learn important latent topological and architectonic patterns.
Sachgruppe (DDC): 004: Informatik
HCU-Fachgebiet / Studiengang: Computational Methods 
Zeitschrift oder Schriftenreihe: Automation in Construction 
Band: 166
Verlag: Elsevier
ISSN: 0926-5805
Verlagslink (DOI): 10.1016/j.autcon.2024.105649
URN (Zitierlink): urn:nbn:de:gbv:1373-repos-13590
Direktlink: https://repos.hcu-hamburg.de/handle/hcu/1063
Sprache: Englisch
Creative-Commons-Lizenz: https://creativecommons.org/licenses/by-nc/4.0/
Enthalten in der SammlungPublikationen (mit Volltext)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
1-s2.0-S0926580524003856-main.pdf3.08 MBAdobe PDFÖffnen/Anzeigen
Internformat

Seitenansichten

93
checked on 21.12.2024

Download(s)

43
checked on 21.12.2024

Google ScholarTM

Prüfe

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons