Dokumenttyp: Konferenzbeitrag
Titel: Deep Learning based Detection, Segmentation and Counting of Benthic Megafauna in Unconstrained Underwater Environments
Autor*in: Lütjens, Mona Caroline 
Sternberg, Harald 
Erscheinungsdatum: 2-Nov-2021
Freie Schlagwörter: Object detection; Deep learning; Data augmentation; Marine imagery; Benthic megafauna
Zusammenfassung: 
Assessing and monitoring benthic communities is increasingly important in view of global alteration of marine environments. Deep learning has proven to effectively detect marine specimen in underwater imagery but still face problems with small input datasets, unconstrained environments and class imbalance. This study evaluates a data augmentation strategy to alleviate these limitations. Through synthetically derived image compositions, the entire input dataset was greatly extended from 700 to 12700 images. Additionally, specimen numbers of brittle stars, soft corals and glass sponges are equalized resulting in a mean average precision increase of 24 %. The overall mean average precision for box detections yields 76.7 and for instance segmentation 67.7 at an intersection over union threshold of 0.5. This study shows that deep architectures such as the deployed CenterMask via ResNeXt-101 model can successfully be trained with few original images from varying underwater scenes.
Sachgruppe (DDC): 550: Geowissenschaften
HCU-Fachgebiet / Studiengang: Hydrographie und Geodäsie 
Zeitschrift oder Schriftenreihe: IFAC-PapersOnLine 
Band: 54
Ausgabe: 16
Seite von: 76
Seite bis: 82
Verlag: Elsevier
ISSN: 2405-8963
Verlagslink (DOI): 10.1016/j.ifacol.2021.10.076
URN (Zitierlink): urn:nbn:de:gbv:1373-repos-8619
Direktlink: https://repos.hcu-hamburg.de/handle/hcu/664
Sprache: Englisch
Creative-Commons-Lizenz: https://creativecommons.org/licenses/by-nc-nd/4.0/
Enthalten in der SammlungPublikationen (mit Volltext)

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
1-s2.0-S2405896321014786-main.pdf1.22 MBAdobe PDFÖffnen/Anzeigen
Internformat

Seitenansichten

169
checked on 27.12.2024

Download(s)

67
checked on 27.12.2024

Google ScholarTM

Prüfe

Export

Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons